timedelta input
This commit is contained in:
parent
21f1155ae7
commit
d60411b7b4
|
|
@ -35,7 +35,7 @@ import pandas as pd
|
|||
from tabulate import tabulate
|
||||
|
||||
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||
# from sandboxUX import config1, config2
|
||||
sandbox
|
||||
from SimCAD import configs
|
||||
|
||||
# ToDo: pass ExecutionContext with execution method as ExecutionContext input
|
||||
|
|
|
|||
|
|
@ -19,6 +19,12 @@ class ExecutionContext:
|
|||
self.name = context
|
||||
self.method = None
|
||||
|
||||
def single_proc_exec(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns):
|
||||
l = [simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns]
|
||||
simulation, states_list, config, env_processes, T, N = list(map(lambda x: x.pop(), l))
|
||||
result = simulation(states_list, config, env_processes, T, N)
|
||||
return flatten(result)
|
||||
|
||||
def parallelize_simulations(fs, states_list, configs, env_processes, Ts, Ns):
|
||||
l = list(zip(fs, states_list, configs, env_processes, Ts, Ns))
|
||||
with Pool(len(configs)) as p:
|
||||
|
|
@ -27,7 +33,7 @@ class ExecutionContext:
|
|||
return results
|
||||
|
||||
if context == 'single_proc':
|
||||
self.method = None
|
||||
self.method = single_proc_exec
|
||||
elif context == 'multi_proc':
|
||||
self.method = parallelize_simulations
|
||||
|
||||
|
|
@ -62,16 +68,7 @@ class Executor:
|
|||
|
||||
# Dimensions: N x r x mechs
|
||||
|
||||
def single_proc_exec(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns):
|
||||
l = [simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns]
|
||||
simulation, states_list, config, env_processes, T, N = list(map(lambda x: x.pop(), l))
|
||||
# print(states_list)
|
||||
result = simulation(states_list, config, env_processes, T, N)
|
||||
return flatten(result)
|
||||
|
||||
if self.exec_context == ExecutionMode.single_proc:
|
||||
return single_proc_exec(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||
elif self.exec_context == ExecutionMode.multi_proc:
|
||||
if self.exec_context == ExecutionMode.multi_proc:
|
||||
if len(self.configs) > 1:
|
||||
simulations = self.exec_method(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||
results = []
|
||||
|
|
@ -79,5 +76,5 @@ class Executor:
|
|||
print(tabulate(create_tensor_field(mechanism, ep), headers='keys', tablefmt='psql'))
|
||||
results.append(flatten(result))
|
||||
return results
|
||||
else:
|
||||
return single_proc_exec(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||
else:
|
||||
return self.exec_method(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||
|
|
@ -59,7 +59,7 @@ class Executor:
|
|||
return sL
|
||||
|
||||
|
||||
def block_gen(self, states_list, configs, env_processes, t_step, run):
|
||||
def mech_pipeline(self, states_list, configs, env_processes, t_step, run):
|
||||
m_step = 0
|
||||
states_list_copy = deepcopy(states_list)
|
||||
# print(states_list_copy)
|
||||
|
|
@ -80,12 +80,14 @@ class Executor:
|
|||
|
||||
|
||||
# rename pipe
|
||||
def pipe(self, states_list, configs, env_processes, time_seq, run):
|
||||
def block_pipeline(self, states_list, configs, env_processes, time_seq, run):
|
||||
time_seq = [x + 1 for x in time_seq]
|
||||
simulation_list = [states_list]
|
||||
for time_step in time_seq:
|
||||
# print(run)
|
||||
pipe_run = self.block_gen(simulation_list[-1], configs, env_processes, time_step, run)
|
||||
pipe_run = self.mech_pipeline(simulation_list[-1], configs, env_processes, time_step, run)
|
||||
# pp.pprint(pipe_run)
|
||||
# exit()
|
||||
_, *pipe_run = pipe_run
|
||||
simulation_list.append(pipe_run)
|
||||
|
||||
|
|
@ -99,11 +101,11 @@ class Executor:
|
|||
run += 1
|
||||
# print("Run: "+str(run))
|
||||
states_list_copy = deepcopy(states_list) # WHY ???
|
||||
head, *tail = self.pipe(states_list_copy, configs, env_processes, time_seq, run)
|
||||
head, *tail = self.block_pipeline(states_list_copy, configs, env_processes, time_seq, run)
|
||||
genesis = head.pop()
|
||||
genesis['mech_step'], genesis['time_step'], genesis['run'] = 0, 0, run
|
||||
first_timestep = [genesis] + tail.pop(0)
|
||||
pipe_run += [first_timestep] + tail
|
||||
first_timestep_per_run = [genesis] + tail.pop(0)
|
||||
pipe_run += [first_timestep_per_run] + tail
|
||||
del states_list_copy
|
||||
|
||||
return pipe_run
|
||||
|
|
@ -10,7 +10,7 @@ def state_identity(k):
|
|||
return lambda step, sL, s, _input: (k, s[k])
|
||||
|
||||
|
||||
# fix
|
||||
# Make returntype chosen by user. Must Classify Configs
|
||||
def b_identity(step, sL, s):
|
||||
return {'indentity': 0}
|
||||
|
||||
|
|
|
|||
|
|
@ -21,16 +21,18 @@ def proc_trigger(trigger_step, update_f, step):
|
|||
|
||||
|
||||
# accept timedelta instead of timedelta params
|
||||
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', days=0, minutes=0, seconds=30):
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=30)
|
||||
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', _timedelta = t_delta):
|
||||
dt = datetime.strptime(dt_str, dt_format)
|
||||
t = dt + timedelta(days=days, minutes=minutes, seconds=seconds)
|
||||
t = dt + _timedelta
|
||||
return t.strftime(dt_format)
|
||||
|
||||
|
||||
# accept timedelta instead of timedelta params
|
||||
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', days=0, minutes=0, seconds=1):
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = t_delta):
|
||||
if s['mech_step'] == 0:
|
||||
return time_step(dt_str, fromat_str, days, minutes, seconds)
|
||||
return time_step(dt_str, fromat_str, _timedelta)
|
||||
else:
|
||||
return dt_str
|
||||
|
||||
|
|
|
|||
|
|
@ -2,8 +2,9 @@ import pandas as pd
|
|||
from tabulate import tabulate
|
||||
|
||||
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||
from sandboxUX import config1, config2
|
||||
# from sandboxUX import config4
|
||||
from sandbox.validation import config1, config2
|
||||
# from sandbox import config4
|
||||
# from sandbox import config_zx
|
||||
from SimCAD import configs
|
||||
|
||||
# ToDo: pass ExecutionContext with execution method as ExecutionContext input
|
||||
|
|
@ -25,6 +26,7 @@ print()
|
|||
print("Simulation Run 2: Pairwise Execution")
|
||||
print()
|
||||
multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)
|
||||
# configs = [config1, config1]
|
||||
run2 = Executor(multi_proc_ctx, configs)
|
||||
run2_raw_results = run2.main()
|
||||
for raw_result in run2_raw_results:
|
||||
|
|
@ -1,5 +1,6 @@
|
|||
from decimal import Decimal
|
||||
import numpy as np
|
||||
from datetime import timedelta
|
||||
|
||||
from SimCAD import Configuration, configs
|
||||
from SimCAD.utils.configuration import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
||||
|
|
@ -72,9 +73,11 @@ def es4p2(step, sL, s, _input):
|
|||
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
|
||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def es5p2(step, sL, s, _input):
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, s['timestamp'], seconds=1)
|
||||
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
||||
return (y, x)
|
||||
|
||||
|
||||
|
|
@ -1,5 +1,6 @@
|
|||
from decimal import Decimal
|
||||
import numpy as np
|
||||
from datetime import timedelta
|
||||
|
||||
from SimCAD import Configuration, configs
|
||||
from SimCAD.utils.configuration import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
||||
|
|
@ -74,9 +75,11 @@ def es4p2(step, sL, s, _input):
|
|||
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
|
||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def es5p2(step, sL, s, _input):
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, s['timestamp'], seconds=1)
|
||||
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
||||
return (y, x)
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,157 @@
|
|||
from fn.op import foldr
|
||||
from fn import _
|
||||
|
||||
from decimal import Decimal
|
||||
import numpy as np
|
||||
|
||||
from SimCAD import Configuration, configs
|
||||
from SimCAD.utils.configuration import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
||||
ep_time_step
|
||||
|
||||
seed = {
|
||||
'z': np.random.RandomState(1),
|
||||
'a': np.random.RandomState(2),
|
||||
'b': np.random.RandomState(3),
|
||||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
# Behaviors per Mechanism
|
||||
def b1m1(step, sL, s):
|
||||
return s['s1'] + 1
|
||||
def b2m1(step, sL, s):
|
||||
return s['s1'] + 1
|
||||
|
||||
def b1m2(step, sL, s):
|
||||
return s['s1'] + 1
|
||||
def b2m2(step, sL, s):
|
||||
return s['s1'] + 1
|
||||
|
||||
def b1m3(step, sL, s):
|
||||
return s['s1'] + 1
|
||||
def b2m3(step, sL, s):
|
||||
return s['s2'] + 1
|
||||
|
||||
|
||||
# Internal States per Mechanism
|
||||
def s1m1(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = s['s1'] + _input
|
||||
return (y, x)
|
||||
def s2m1(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = s['s2'] + _input
|
||||
return (y, x)
|
||||
|
||||
def s1m2(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = s['s1'] + _input
|
||||
return (y, x)
|
||||
def s2m2(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = s['s2'] + _input
|
||||
return (y, x)
|
||||
|
||||
def s1m3(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = s['s1'] + _input
|
||||
return (y, x)
|
||||
def s2m3(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = s['s2'] + s['s3'] + _input
|
||||
return (y, x)
|
||||
|
||||
# Exogenous States
|
||||
proc_one_coef_A = 0.7
|
||||
proc_one_coef_B = 1.3
|
||||
|
||||
def es3p1(step, sL, s, _input):
|
||||
y = 's3'
|
||||
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es4p2(step, sL, s, _input):
|
||||
y = 's4'
|
||||
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, s['timestamp'], seconds=1)
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Environment States
|
||||
def env_a(x):
|
||||
return 10
|
||||
def env_b(x):
|
||||
return 10
|
||||
# def what_ever(x):
|
||||
# return x + 1
|
||||
|
||||
# Genesis States
|
||||
state_dict = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
exogenous_states = exo_update_per_ts(
|
||||
{
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestamp": es5p2
|
||||
}
|
||||
)
|
||||
|
||||
env_processes = {
|
||||
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
|
||||
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
}
|
||||
|
||||
# lambdas
|
||||
# genesis Sites should always be there
|
||||
# [1, 2]
|
||||
# User Defined Aggregate Function
|
||||
behavior_udaf = [ foldr(_ + _), lambda x: x + 0 ]
|
||||
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
||||
mechanisms = {
|
||||
"m1": {
|
||||
"behaviors": {
|
||||
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
|
||||
"b2": b2m1
|
||||
},
|
||||
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
|
||||
"s1": s1m1,
|
||||
"s2": s2m1
|
||||
}
|
||||
},
|
||||
"m2": {
|
||||
"behaviors": {
|
||||
"b1": b1m2,
|
||||
"b2": b2m2
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m2,
|
||||
"s2": s2m2
|
||||
}
|
||||
},
|
||||
"m3": {
|
||||
"behaviors": {
|
||||
"b1": b1m3,
|
||||
"b2": b2m3
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m3,
|
||||
"s2": s2m3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sim_config = {
|
||||
"N": 2,
|
||||
"T": range(5)
|
||||
}
|
||||
|
||||
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms, behavior_udaf))
|
||||
Loading…
Reference in New Issue