217 lines
5.6 KiB
Python
217 lines
5.6 KiB
Python
from decimal import Decimal
|
|
import numpy as np
|
|
|
|
from SimCAD import Configuration, configs
|
|
from SimCAD.utils.configuration import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
|
ep_time_step
|
|
|
|
seed = {
|
|
'z': np.random.RandomState(1)
|
|
}
|
|
|
|
# Signals
|
|
# Pr_signal
|
|
beta = Decimal('0.25') # agent response gain
|
|
beta_LT = Decimal('0.1') # LT agent response gain
|
|
alpha = Decimal('0.091') # 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
|
|
max_withdraw_factor = Decimal('0.9')
|
|
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
|
|
|
|
# Stochastic process factors
|
|
correction_factor = Decimal('0.01')
|
|
volatility = Decimal('5.0')
|
|
|
|
# Buy_Log_signal =
|
|
# Z_signal =
|
|
# Price_signal =
|
|
# TDR_draw_signal =
|
|
# P_Ext_Markets_signal =
|
|
|
|
# Behaviors per Mechanism
|
|
|
|
# BEHAVIOR 1: EMH Trader
|
|
EMH_portion = Decimal('0.250')
|
|
EMH_Ext_Hold = Decimal('42000.0')
|
|
|
|
|
|
def b1m1(step, sL, s):
|
|
print('b1m1')
|
|
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
|
|
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
|
|
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
|
|
return {'buy_order1': buy}
|
|
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
|
|
return {'buy_order1': 0}
|
|
else:
|
|
return {'buy_order1': 0}
|
|
|
|
|
|
def b1m2(step, sL, s):
|
|
print('b1m2')
|
|
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
|
|
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
|
|
return {'sell_order1': 0}
|
|
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
|
|
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
|
|
return {'sell_order1': sell}
|
|
else:
|
|
return {'sell_order1': 0}
|
|
|
|
# BEHAVIOR 3: Herding
|
|
|
|
|
|
# BEHAVIOR 4: HODLers
|
|
HODL_belief = Decimal('10.0')
|
|
HODL_portion = Decimal('0.250')
|
|
HODL_Ext_Hold = Decimal('4200.0')
|
|
|
|
|
|
def b4m2(step, sL, s):
|
|
print('b4m2')
|
|
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
|
|
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
|
|
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
|
|
return {'sell_order2': sell}
|
|
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
|
|
return {'sell_order2': 0}
|
|
else:
|
|
return {'sell_order2': 0}
|
|
|
|
|
|
# STATES
|
|
# ZEUS Fixed Supply
|
|
def s1m1(step, sL, s, _input):
|
|
y = 'Z'
|
|
x = s['Z'] #+ _input # / Psignal_int
|
|
return (y, x)
|
|
|
|
|
|
def s2m1(step, sL, s, _input):
|
|
y = 'Price'
|
|
x = (s['P_Ext_Markets'] - _input['buy_order1']) / s['Z'] * 10000
|
|
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
|
|
return (y, x)
|
|
|
|
|
|
def s3m1(step, sL, s, _input):
|
|
y = 'Buy_Log'
|
|
x = _input['buy_order1'] # / Psignal_int
|
|
return (y, x)
|
|
|
|
|
|
def s4m2(step, sL, s, _input):
|
|
y = 'Sell_Log'
|
|
x = _input['sell_order1'] + _input['sell_order2'] # / Psignal_int
|
|
return (y, x)
|
|
|
|
|
|
def s3m3(step, sL, s, _input):
|
|
y = 'Buy_Log'
|
|
x = s['Buy_Log'] + _input # / Psignal_int
|
|
return (y, x)
|
|
|
|
|
|
# Price Update
|
|
def s2m3(step, sL, s, _input):
|
|
|
|
y = 'Price'
|
|
#var1 = Decimal.from_float(s['Buy_Log'])
|
|
x = s['Price'] + s['Buy_Log'] * 1/s['Z'] - s['Sell_Log']/s['Z']
|
|
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
|
|
return (y, x)
|
|
|
|
|
|
def s6m1(step, sL, s, _input):
|
|
y = 'P_Ext_Markets'
|
|
x = s['P_Ext_Markets'] - _input
|
|
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
|
|
return (y, x)
|
|
|
|
|
|
def s2m2(step, sL, s, _input):
|
|
y = 'Price'
|
|
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
|
|
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
|
|
return (y, x)
|
|
|
|
# Exogenous States
|
|
proc_one_coef_A = -125
|
|
proc_one_coef_B = 125
|
|
|
|
# A change in belief of actual price, passed onto behaviors to make action
|
|
def es4p2(step, sL, s, _input):
|
|
y = 'P_Ext_Markets'
|
|
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
|
|
|
|
return (y,x)
|
|
|
|
|
|
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
|
|
y = 'timestamp'
|
|
x = ep_time_step(s, s['timestamp'], seconds=1)
|
|
return (y, x)
|
|
|
|
#Environment States
|
|
# NONE
|
|
|
|
# Genesis States
|
|
state_dict = {
|
|
'Z': Decimal(21000000.0),
|
|
'Price': Decimal(100.0), # Initialize = Z for EMA
|
|
'Buy_Log': Decimal(0.0),
|
|
'Sell_Log': Decimal(0.0),
|
|
'Trans': Decimal(0.0),
|
|
'P_Ext_Markets': Decimal(25000.0),
|
|
'timestamp': '2018-10-01 15:16:24'
|
|
}
|
|
|
|
def env_proc_id(x):
|
|
return x
|
|
|
|
env_processes = {
|
|
# "P_Ext_Markets": env_proc_id
|
|
}
|
|
|
|
exogenous_states = exo_update_per_ts(
|
|
{
|
|
"P_Ext_Markets": es4p2,
|
|
"timestamp": es5p2
|
|
}
|
|
)
|
|
|
|
sim_config = {
|
|
"N": 1,
|
|
"T": range(1000)
|
|
}
|
|
|
|
# test return vs. non-return functions as lambdas
|
|
# test fully defined functions
|
|
mechanisms = {
|
|
"m1": {
|
|
"behaviors": {
|
|
"b1": b1m1
|
|
},
|
|
"states": {
|
|
"Z": s1m1,
|
|
"Buy_Log": s3m1
|
|
}
|
|
},
|
|
"m2": {
|
|
"behaviors": {
|
|
"b1": b1m2,
|
|
"b4": b4m2
|
|
},
|
|
"states": {
|
|
"Sell_Log": s4m2
|
|
}
|
|
},
|
|
"m3": {
|
|
"behaviors": {
|
|
},
|
|
"states": {
|
|
"Price": s2m3
|
|
}
|
|
}
|
|
}
|
|
|
|
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms)) |