BUG: run value for Genesis State always last run for large datasets

This commit is contained in:
Joshua E. Jodesty 2018-11-27 14:26:22 -05:00
parent 4cc180b9d4
commit 21f1155ae7
7 changed files with 275 additions and 27 deletions

3
.gitignore vendored
View File

@ -9,4 +9,5 @@ SimCAD.egg-info
__pycache__
Pipfile
Pipfile.lock
scrapbox/
scrapbox/
results/

View File

@ -63,8 +63,9 @@ class Executor:
# Dimensions: N x r x mechs
def single_proc_exec(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns):
simulation, states_list, config = simulation_execs.pop(), states_lists.pop(), configs_structs.pop()
env_processes, T, N = env_processes_list.pop(), Ts.pop(), Ns.pop()
l = [simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns]
simulation, states_list, config, env_processes, T, N = list(map(lambda x: x.pop(), l))
# print(states_list)
result = simulation(states_list, config, env_processes, T, N)
return flatten(result)

View File

@ -1,6 +1,7 @@
from copy import deepcopy
from fn.op import foldr, call
import pprint
pp = pprint.PrettyPrinter(indent=4)
class Executor:
def __init__(self, behavior_ops):
@ -61,6 +62,7 @@ class Executor:
def block_gen(self, states_list, configs, env_processes, t_step, run):
m_step = 0
states_list_copy = deepcopy(states_list)
# print(states_list_copy)
# remove copy
genesis_states = states_list_copy[-1]
genesis_states['mech_step'], genesis_states['time_step'] = m_step, t_step
@ -82,6 +84,7 @@ class Executor:
time_seq = [x + 1 for x in time_seq]
simulation_list = [states_list]
for time_step in time_seq:
# print(run)
pipe_run = self.block_gen(simulation_list[-1], configs, env_processes, time_step, run)
_, *pipe_run = pipe_run
simulation_list.append(pipe_run)
@ -94,9 +97,13 @@ class Executor:
pipe_run = []
for run in range(runs):
run += 1
head, *tail = self.pipe(states_list, configs, env_processes, time_seq, run)
head[-1]['mech_step'], head[-1]['time_step'], head[-1]['run'] = 0, 0, run
simulation_list = [head] + tail
pipe_run += simulation_list
# print("Run: "+str(run))
states_list_copy = deepcopy(states_list) # WHY ???
head, *tail = self.pipe(states_list_copy, configs, env_processes, time_seq, run)
genesis = head.pop()
genesis['mech_step'], genesis['time_step'], genesis['run'] = 0, 0, run
first_timestep = [genesis] + tail.pop(0)
pipe_run += [first_timestep] + tail
del states_list_copy
return pipe_run

View File

@ -79,11 +79,6 @@ def sum_dict_values():
# config7c
@curried
def dict_op(f, d1, d2):
print('d1')
print(d1)
print('d2')
print(d2)
print()
def set_base_value(target_dict, source_dict, key):
if key not in target_dict:
return get_base_value(type(source_dict[key]))

View File

@ -6,7 +6,7 @@ from SimCAD.utils.configuration import exo_update_per_ts, proc_trigger, bound_no
ep_time_step
seed = {
'z': np.random.RandomState(1)
'z': np.random.RandomState(1)
}
# Signals
@ -19,7 +19,7 @@ external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =

243
sandboxUX/config4.py Normal file
View File

@ -0,0 +1,243 @@
from decimal import Decimal
import numpy as np
from SimCAD import Configuration, configs
from SimCAD.utils.configuration import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
}
# Signals
# Pr_signal
beta = Decimal('0.25') # agent response gain
beta_LT = Decimal('0.1') # LT agent response gain
# alpha = .67, 2 block moving average
alpha = Decimal('0.67') # 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.250')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# print('b1m1')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'buy_order1': buy}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'buy_order1': 0}
else:
return {'buy_order1': 0}
def b1m2(step, sL, s):
# print('b1m2')
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return {'sell_order1': 0}
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
return {'sell_order1': sell}
else:
return {'sell_order1': 0}
# BEHAVIOR 3: Herding
Herd_portion = Decimal('0.250')
Herd_Ext_Hold = Decimal('42000.0')
Herd_UB = Decimal('0.10') # UPPER BOUND
Herd_LB = Decimal('0.10') # LOWER BOUND
def b3m2(step, sL, s):
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
return {'herd_sell': sell, 'herd_buy': 0}
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
return {'herd_sell': 0, 'herd_buy': buy}
else:
return {'herd_sell': 0, 'herd_buy': 0}
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.250')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
# print('b4m2')
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
return {'sell_order2': sell}
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return {'sell_order2': 0}
else:
return {'sell_order2': 0}
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x = (s['P_Ext_Markets'] - _input['buy_order1']) / s['Z'] * 10000
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = _input['buy_order1'] + _input['herd_buy'] # / Psignal_int
return (y, x)
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input['sell_order1'] + _input['sell_order2'] + _input['herd_sell'] # / Psignal_int
return (y, x)
def s3m3(step, sL, s, _input):
y = 'Buy_Log'
x = s['Buy_Log'] + _input # / Psignal_int
return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
y = 'Price'
#var1 = Decimal.from_float(s['Buy_Log'])
x = s['Price'] + s['Buy_Log'] /s['Z'] - s['Sell_Log']/s['Z']
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s5m3(step, sL, s, _input):
y = 'Price_Signal'
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s2m2(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1)
return (y, x)
#Environment States
# NONE
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Price_Signal': Decimal(100.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
'timestamp': '2018-10-01 15:16:24'
}
def env_proc_id(x):
return x
env_processes = {}
exogenous_states = exo_update_per_ts(
{
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
sim_config = {
"N": 20,
"T": range(1000)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b3": b3m2
},
"states": {
"Z": s1m1,
"Buy_Log": s3m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b3": b3m2,
"b4": b4m2
},
"states": {
"Sell_Log": s4m2
}
},
"m3": {
"behaviors": {
},
"states": {
"Price": s2m3,
"Price_Signal": s5m3
}
}
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))

View File

@ -2,8 +2,8 @@ import pandas as pd
from tabulate import tabulate
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
# from sandboxUX import config1, config2
from sandboxUX import config3
from sandboxUX import config1, config2
# from sandboxUX import config4
from SimCAD import configs
# ToDo: pass ExecutionContext with execution method as ExecutionContext input
@ -18,15 +18,16 @@ single_proc_ctx = ExecutionContext(exec_mode.single_proc)
run1 = Executor(single_proc_ctx, single_config)
run1_raw_result = run1.main()
result = pd.DataFrame(run1_raw_result)
# result.to_csv('~/Projects/DiffyQ-SimCAD/results/config4.csv', sep=',')
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
#
# print("Simulation Run 2: Pairwise Execution")
# print()
# multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)
# run2 = Executor(multi_proc_ctx, configs)
# run2_raw_results = run2.main()
# for raw_result in run2_raw_results:
# result = pd.DataFrame(raw_result)
# print(tabulate(result, headers='keys', tablefmt='psql'))
# print()
print("Simulation Run 2: Pairwise Execution")
print()
multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)
run2 = Executor(multi_proc_ctx, configs)
run2_raw_results = run2.main()
for raw_result in run2_raw_results:
result = pd.DataFrame(raw_result)
print(tabulate(result, headers='keys', tablefmt='psql'))
print()