typst/src/library/stack.rs

274 lines
8.6 KiB
Rust

//! Side-by-side layout of nodes along an axis.
use super::prelude::*;
use super::{AlignNode, SpacingKind};
/// Stack children along an axis.
#[derive(Debug, Hash)]
pub struct StackNode {
/// The stacking direction.
pub dir: Dir,
/// The spacing between non-spacing children.
pub spacing: Option<SpacingKind>,
/// The children to be stacked.
pub children: Vec<StackChild>,
}
#[class]
impl StackNode {
fn construct(_: &mut EvalContext, args: &mut Args) -> TypResult<Node> {
Ok(Node::block(Self {
dir: args.named("dir")?.unwrap_or(Dir::TTB),
spacing: args.named("spacing")?,
children: args.all().collect(),
}))
}
}
impl Layout for StackNode {
fn layout(
&self,
ctx: &mut LayoutContext,
regions: &Regions,
styles: StyleChain,
) -> Vec<Constrained<Arc<Frame>>> {
StackLayouter::new(self, regions.clone(), styles).layout(ctx)
}
}
/// A child of a stack node.
#[derive(Hash)]
pub enum StackChild {
/// Spacing between other nodes.
Spacing(SpacingKind),
/// An arbitrary node.
Node(PackedNode),
}
impl Debug for StackChild {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
Self::Spacing(node) => node.fmt(f),
Self::Node(node) => node.fmt(f),
}
}
}
castable! {
StackChild,
Expected: "linear, fractional or template",
Value::Length(v) => Self::Spacing(SpacingKind::Linear(v.into())),
Value::Relative(v) => Self::Spacing(SpacingKind::Linear(v.into())),
Value::Linear(v) => Self::Spacing(SpacingKind::Linear(v)),
Value::Fractional(v) => Self::Spacing(SpacingKind::Fractional(v)),
Value::Node(v) => Self::Node(v.into_block()),
}
/// Performs stack layout.
struct StackLayouter<'a> {
/// The flow node to layout.
children: &'a [StackChild],
/// The stacking direction.
dir: Dir,
/// The axis of the stacking direction.
axis: SpecAxis,
/// The spacing between non-spacing children.
spacing: Option<SpacingKind>,
/// The regions to layout children into.
regions: Regions,
/// The inherited styles.
styles: StyleChain<'a>,
/// Whether the stack should expand to fill the region.
expand: Spec<bool>,
/// The full size of `regions.current` that was available before we started
/// subtracting.
full: Size,
/// The generic size used by the frames for the current region.
used: Gen<Length>,
/// The sum of fractional ratios in the current region.
fr: Fractional,
/// Spacing and layouted nodes.
items: Vec<StackItem>,
/// Finished frames for previous regions.
finished: Vec<Constrained<Arc<Frame>>>,
}
/// A prepared item in a stack layout.
enum StackItem {
/// Absolute spacing between other items.
Absolute(Length),
/// Fractional spacing between other items.
Fractional(Fractional),
/// A layouted child node.
Frame(Arc<Frame>, Align),
}
impl<'a> StackLayouter<'a> {
/// Create a new stack layouter.
fn new(stack: &'a StackNode, mut regions: Regions, styles: StyleChain<'a>) -> Self {
let dir = stack.dir;
let axis = dir.axis();
let expand = regions.expand;
let full = regions.current;
// Disable expansion along the block axis for children.
regions.expand.set(axis, false);
Self {
children: &stack.children,
dir,
axis,
spacing: stack.spacing,
regions,
styles,
expand,
full,
used: Gen::zero(),
fr: Fractional::zero(),
items: vec![],
finished: vec![],
}
}
/// Layout all children.
fn layout(mut self, ctx: &mut LayoutContext) -> Vec<Constrained<Arc<Frame>>> {
// Spacing to insert before the next node.
let mut deferred = None;
for child in self.children {
match *child {
StackChild::Spacing(kind) => {
self.layout_spacing(kind);
deferred = None;
}
StackChild::Node(ref node) => {
if let Some(kind) = deferred {
self.layout_spacing(kind);
}
if self.regions.is_full() {
self.finish_region();
}
self.layout_node(ctx, node);
deferred = self.spacing;
}
}
}
self.finish_region();
self.finished
}
/// Layout spacing.
fn layout_spacing(&mut self, spacing: SpacingKind) {
match spacing {
SpacingKind::Linear(v) => self.layout_absolute(v),
SpacingKind::Fractional(v) => {
self.items.push(StackItem::Fractional(v));
self.fr += v;
}
}
}
/// Layout absolute spacing.
fn layout_absolute(&mut self, amount: Linear) {
// Resolve the linear, limiting it to the remaining available space.
let remaining = self.regions.current.get_mut(self.axis);
let resolved = amount.resolve(self.regions.base.get(self.axis));
let limited = resolved.min(*remaining);
*remaining -= limited;
self.used.main += limited;
self.items.push(StackItem::Absolute(resolved));
}
/// Layout a node.
fn layout_node(&mut self, ctx: &mut LayoutContext, node: &PackedNode) {
// Align nodes' block-axis alignment is respected by the stack node.
let align = node
.downcast::<AlignNode>()
.and_then(|node| node.aligns.get(self.axis))
.unwrap_or(self.dir.start().into());
let frames = node.layout(ctx, &self.regions, self.styles);
let len = frames.len();
for (i, frame) in frames.into_iter().enumerate() {
// Grow our size, shrink the region and save the frame for later.
let size = frame.item.size.to_gen(self.axis);
self.used.main += size.main;
self.used.cross.set_max(size.cross);
*self.regions.current.get_mut(self.axis) -= size.main;
self.items.push(StackItem::Frame(frame.item, align));
if i + 1 < len {
self.finish_region();
}
}
}
/// Finish the frame for one region.
fn finish_region(&mut self) {
// Determine the size of the stack in this region dependening on whether
// the region expands.
let used = self.used.to_spec(self.axis);
let mut size = self.expand.select(self.full, used);
// Expand fully if there are fr spacings.
let full = self.full.get(self.axis);
let remaining = full - self.used.main;
if self.fr.get() > 0.0 && full.is_finite() {
self.used.main = full;
size.set(self.axis, full);
}
let mut output = Frame::new(size);
let mut cursor = Length::zero();
let mut ruler: Align = self.dir.start().into();
// Place all frames.
for item in self.items.drain(..) {
match item {
StackItem::Absolute(v) => {
cursor += v;
}
StackItem::Fractional(v) => {
cursor += v.resolve(self.fr, remaining);
}
StackItem::Frame(frame, align) => {
if self.dir.is_positive() {
ruler = ruler.max(align);
} else {
ruler = ruler.min(align);
}
// Align along the block axis.
let parent = size.get(self.axis);
let child = frame.size.get(self.axis);
let block = ruler.resolve(parent - self.used.main)
+ if self.dir.is_positive() {
cursor
} else {
self.used.main - child - cursor
};
let pos = Gen::new(Length::zero(), block).to_point(self.axis);
cursor += child;
output.push_frame(pos, frame);
}
}
}
// Generate tight constraints for now.
let mut cts = Constraints::new(self.expand);
cts.exact = self.full.map(Some);
cts.base = self.regions.base.map(Some);
// Advance to the next region.
self.regions.next();
self.full = self.regions.current;
self.used = Gen::zero();
self.fr = Fractional::zero();
self.finished.push(output.constrain(cts));
}
}