803 lines
22 KiB
Markdown
803 lines
22 KiB
Markdown
# Architecture Documentation
|
|
|
|
Technical architecture of the Cross-Iteration Pattern Synthesis System.
|
|
|
|
## System Overview
|
|
|
|
```
|
|
┌─────────────────────────────────────────────────────────────────┐
|
|
│ ORCHESTRATOR AGENT │
|
|
│ (infinite-synthesis.md) │
|
|
└─────────────────────────────────────────────────────────────────┘
|
|
│
|
|
├─── Wave 1: Cold Start
|
|
│ │
|
|
│ ├─> Sub-Agent 1 ─> Iteration 1
|
|
│ ├─> Sub-Agent 2 ─> Iteration 2
|
|
│ ├─> Sub-Agent 3 ─> Iteration 3
|
|
│ ├─> Sub-Agent 4 ─> Iteration 4
|
|
│ └─> Sub-Agent 5 ─> Iteration 5
|
|
│
|
|
├─── Pattern Extraction
|
|
│ │
|
|
│ └─> Extract Patterns Agent
|
|
│ └─> Pattern Library v1.0
|
|
│
|
|
├─── Wave 2: Pattern-Guided
|
|
│ │
|
|
│ ├─> Sub-Agent 6 (+ patterns) ─> Iteration 6
|
|
│ ├─> Sub-Agent 7 (+ patterns) ─> Iteration 7
|
|
│ ├─> Sub-Agent 8 (+ patterns) ─> Iteration 8
|
|
│ ├─> Sub-Agent 9 (+ patterns) ─> Iteration 9
|
|
│ └─> Sub-Agent 10 (+ patterns) ─> Iteration 10
|
|
│
|
|
├─── Pattern Refinement
|
|
│ │
|
|
│ └─> Extract Patterns Agent
|
|
│ └─> Pattern Library v1.1
|
|
│
|
|
└─── Wave 3+ (Continuous Learning)
|
|
└─> ... (repeat until count reached)
|
|
```
|
|
|
|
## Core Components
|
|
|
|
### 1. Orchestrator Agent
|
|
|
|
**File**: `.claude/commands/infinite-synthesis.md`
|
|
|
|
**Responsibilities**:
|
|
- Parse command arguments (spec, output dir, count, pattern library path)
|
|
- Calculate wave parameters (number of waves, iterations per wave)
|
|
- Coordinate wave execution
|
|
- Trigger pattern extraction between waves
|
|
- Manage context budget
|
|
- Generate final report
|
|
|
|
**State Management**:
|
|
```javascript
|
|
{
|
|
total_count: 20,
|
|
waves: 4,
|
|
wave_size: 5,
|
|
current_wave: 1,
|
|
pattern_library_version: "1.0",
|
|
iterations_generated: [],
|
|
quality_metrics: []
|
|
}
|
|
```
|
|
|
|
**Key Algorithms**:
|
|
|
|
```python
|
|
# Wave calculation
|
|
def calculate_waves(count):
|
|
if count == "infinite":
|
|
return infinite_waves, 5
|
|
elif count <= 5:
|
|
return 1, count
|
|
elif count <= 15:
|
|
return 2, count // 2
|
|
else:
|
|
return count // 5, 5
|
|
|
|
# Pattern extraction trigger
|
|
def should_extract_patterns(current_wave, total_waves):
|
|
# Extract after every wave except the last
|
|
return current_wave < total_waves
|
|
```
|
|
|
|
### 2. Sub-Agent System
|
|
|
|
**Created via**: Task tool
|
|
|
|
**Context Provided**:
|
|
```markdown
|
|
SPECIFICATION:
|
|
{Full spec content}
|
|
|
|
EXISTING ITERATIONS:
|
|
{List of already generated files}
|
|
|
|
PATTERN LIBRARY (Wave 2+ only):
|
|
{3-5 most relevant patterns}
|
|
|
|
REQUIREMENTS:
|
|
- Generate unique iteration
|
|
- Follow specification
|
|
- Incorporate patterns (if provided)
|
|
- Add novel innovation
|
|
- Maintain quality standards
|
|
|
|
OUTPUT:
|
|
Save to: {output_path}
|
|
```
|
|
|
|
**Execution Model**:
|
|
- Parallel execution (5 sub-agents at a time)
|
|
- Independent context (each agent has full spec + patterns)
|
|
- Synchronization point: All agents complete before pattern extraction
|
|
|
|
### 3. Pattern Extraction Agent
|
|
|
|
**File**: `.claude/commands/extract-patterns.md`
|
|
|
|
**Responsibilities**:
|
|
- Read all iteration files
|
|
- Score iterations across dimensions (functionality, quality, innovation, etc.)
|
|
- Identify top 20% per category
|
|
- Extract patterns with examples
|
|
- Build/update pattern library JSON
|
|
- Validate library structure
|
|
- Generate extraction report
|
|
|
|
**Scoring Dimensions**:
|
|
```javascript
|
|
{
|
|
functionality: 0-10, // Does it work as specified?
|
|
visual_appeal: 0-10, // Aesthetics and UX
|
|
code_quality: 0-10, // Readability, organization
|
|
innovation: 0-10, // Novel ideas and creativity
|
|
documentation: 0-10, // Comments and explanations
|
|
robustness: 0-10 // Error handling, edge cases
|
|
}
|
|
|
|
overall_score = average(dimensions)
|
|
```
|
|
|
|
**Pattern Selection Algorithm**:
|
|
```python
|
|
def extract_patterns(iterations, category, count=5):
|
|
# 1. Score all iterations for this category
|
|
scored = [(iteration, score_for_category(iteration, category))
|
|
for iteration in iterations]
|
|
|
|
# 2. Sort by score (descending)
|
|
scored.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
# 3. Take top 20%
|
|
top_20_percent = scored[:len(scored)//5]
|
|
|
|
# 4. Select diverse patterns
|
|
patterns = []
|
|
for iteration, score in top_20_percent:
|
|
pattern = extract_pattern_from(iteration, category)
|
|
if is_diverse_from(pattern, patterns):
|
|
patterns.append(pattern)
|
|
if len(patterns) >= count:
|
|
break
|
|
|
|
return patterns
|
|
```
|
|
|
|
### 4. Pattern Library
|
|
|
|
**File**: `pattern_library/patterns.json`
|
|
|
|
**Schema**:
|
|
```json
|
|
{
|
|
"version": "semver",
|
|
"last_updated": "ISO 8601 timestamp",
|
|
"total_iterations_analyzed": "integer",
|
|
"analysis_depth": "quick|deep",
|
|
"patterns": {
|
|
"structural": [/* 3-5 pattern objects */],
|
|
"content": [/* 3-5 pattern objects */],
|
|
"innovation": [/* 3-5 pattern objects */],
|
|
"quality": [/* 3-5 pattern objects */]
|
|
},
|
|
"metadata": {
|
|
"extraction_date": "ISO 8601",
|
|
"source_directory": "path",
|
|
"patterns_extracted": "count",
|
|
"avg_quality_score": "float"
|
|
}
|
|
}
|
|
```
|
|
|
|
**Pattern Object Schema**:
|
|
```json
|
|
{
|
|
"name": "string (short, descriptive)",
|
|
"description": "string (1-2 sentences)",
|
|
"example_file": "string (path to exemplary iteration)",
|
|
"key_characteristics": ["array", "of", "defining", "traits"],
|
|
"success_metrics": "string (specific, measurable)",
|
|
"code_snippet": "string (5-15 lines representative code)"
|
|
}
|
|
```
|
|
|
|
**Update Strategy**:
|
|
```python
|
|
def update_pattern_library(old_library, new_iterations):
|
|
# Extract patterns from new iterations only
|
|
new_patterns = extract_all_patterns(new_iterations)
|
|
|
|
# Merge with existing patterns
|
|
for category in categories:
|
|
# Combine old and new patterns
|
|
all_patterns = old_library[category] + new_patterns[category]
|
|
|
|
# Rank by effectiveness
|
|
ranked = rank_patterns(all_patterns)
|
|
|
|
# Keep top 5 (or 3 for quick mode)
|
|
old_library[category] = ranked[:5]
|
|
|
|
# Increment version
|
|
old_library["version"] = increment_version(old_library["version"])
|
|
|
|
return old_library
|
|
```
|
|
|
|
### 5. Analysis Agent
|
|
|
|
**File**: `.claude/commands/analyze-patterns.md`
|
|
|
|
**Responsibilities**:
|
|
- Load pattern library
|
|
- Categorize iterations (pre-pattern vs post-pattern)
|
|
- Calculate adoption rate
|
|
- Compare quality metrics
|
|
- Rank pattern effectiveness
|
|
- Generate analysis report
|
|
|
|
**Metrics Calculated**:
|
|
```javascript
|
|
{
|
|
// Adoption metrics
|
|
pattern_adoption_rate: percent,
|
|
avg_patterns_per_iteration: float,
|
|
most_adopted_pattern: pattern_name,
|
|
least_adopted_pattern: pattern_name,
|
|
|
|
// Quality metrics
|
|
pre_pattern_quality: float,
|
|
post_pattern_quality: float,
|
|
quality_improvement: percent,
|
|
consistency_improvement: percent,
|
|
|
|
// Innovation metrics
|
|
pre_pattern_innovations: count,
|
|
post_pattern_innovations: count,
|
|
innovation_preservation: percent,
|
|
|
|
// Pattern effectiveness
|
|
pattern_rankings: [
|
|
{pattern: name, adoption: percent, impact: float}
|
|
]
|
|
}
|
|
```
|
|
|
|
### 6. Validation System
|
|
|
|
**File**: `validators/check_patterns.sh`
|
|
|
|
**Validations Performed**:
|
|
```bash
|
|
# 1. JSON Syntax
|
|
jq empty pattern_library.json
|
|
|
|
# 2. Required Fields
|
|
for field in version last_updated patterns metadata
|
|
check_exists(field)
|
|
|
|
# 3. Pattern Categories
|
|
for category in structural content innovation quality
|
|
check_exists(patterns[category])
|
|
check_count(patterns[category], 3-5)
|
|
|
|
# 4. Pattern Objects
|
|
for pattern in all_patterns
|
|
check_fields(name, description, example_file,
|
|
key_characteristics, success_metrics, code_snippet)
|
|
|
|
# 5. Pattern Quality
|
|
calculate_snippet_coverage()
|
|
calculate_metrics_coverage()
|
|
|
|
# 6. Consistency Checks
|
|
check_no_duplicate_names()
|
|
check_version_incremented()
|
|
```
|
|
|
|
## Data Flow
|
|
|
|
### Wave 1: Cold Start Generation
|
|
|
|
```
|
|
User Command
|
|
│
|
|
├─> Parse Arguments
|
|
│ └─> spec_file, output_dir, count=5
|
|
│
|
|
├─> Read Specification
|
|
│ └─> Load spec content
|
|
│
|
|
├─> Create Sub-Agents (x5)
|
|
│ │
|
|
│ ├─> Sub-Agent 1: {spec, existing_iterations=[]}
|
|
│ ├─> Sub-Agent 2: {spec, existing_iterations=[iter_1]}
|
|
│ ├─> Sub-Agent 3: {spec, existing_iterations=[iter_1, iter_2]}
|
|
│ ├─> Sub-Agent 4: {spec, existing_iterations=[iter_1..3]}
|
|
│ └─> Sub-Agent 5: {spec, existing_iterations=[iter_1..4]}
|
|
│
|
|
├─> Execute in Parallel
|
|
│ └─> Wait for all to complete
|
|
│
|
|
├─> Collect Outputs
|
|
│ └─> [iteration_1..5.html]
|
|
│
|
|
└─> Trigger Pattern Extraction
|
|
└─> See Pattern Extraction Flow
|
|
```
|
|
|
|
### Pattern Extraction Flow
|
|
|
|
```
|
|
Extract Patterns Command
|
|
│
|
|
├─> Read All Iterations
|
|
│ └─> [iteration_1..5.html]
|
|
│
|
|
├─> Score Each Iteration
|
|
│ │
|
|
│ ├─> Structural Score
|
|
│ ├─> Content Score
|
|
│ ├─> Innovation Score
|
|
│ └─> Quality Score
|
|
│
|
|
├─> Identify Top 20% per Category
|
|
│ │
|
|
│ ├─> Structural: [iter_3, iter_5]
|
|
│ ├─> Content: [iter_2, iter_5]
|
|
│ ├─> Innovation: [iter_1, iter_4]
|
|
│ └─> Quality: [iter_3, iter_4]
|
|
│
|
|
├─> Extract Pattern Objects
|
|
│ │
|
|
│ ├─> For each top iteration:
|
|
│ │ ├─> Analyze code structure
|
|
│ │ ├─> Extract key characteristics
|
|
│ │ ├─> Capture code snippet
|
|
│ │ └─> Document success metrics
|
|
│ │
|
|
│ └─> Select 3-5 most diverse patterns per category
|
|
│
|
|
├─> Build Pattern Library JSON
|
|
│ │
|
|
│ └─> {
|
|
│ version: "1.0",
|
|
│ patterns: {
|
|
│ structural: [pattern1, pattern2, pattern3],
|
|
│ content: [pattern1, pattern2, pattern3],
|
|
│ ...
|
|
│ }
|
|
│ }
|
|
│
|
|
├─> Validate Pattern Library
|
|
│ └─> Run check_patterns.sh
|
|
│
|
|
├─> Save to File
|
|
│ └─> pattern_library/patterns.json
|
|
│
|
|
└─> Generate Report
|
|
└─> Pattern extraction summary
|
|
```
|
|
|
|
### Wave 2+: Pattern-Guided Generation
|
|
|
|
```
|
|
Continue Generation (Wave 2)
|
|
│
|
|
├─> Load Pattern Library
|
|
│ └─> pattern_library/patterns.json v1.0
|
|
│
|
|
├─> Create Sub-Agents (x5)
|
|
│ │
|
|
│ ├─> Sub-Agent 6:
|
|
│ │ ├─> spec
|
|
│ │ ├─> existing_iterations=[iter_1..5]
|
|
│ │ └─> relevant_patterns=[
|
|
│ │ structural_pattern_1,
|
|
│ │ content_pattern_1,
|
|
│ │ quality_pattern_1
|
|
│ │ ]
|
|
│ │
|
|
│ ├─> Sub-Agent 7: (similar context + patterns)
|
|
│ └─> ... (Sub-Agents 8-10)
|
|
│
|
|
├─> Execute in Parallel
|
|
│ └─> Sub-agents incorporate pattern examples
|
|
│
|
|
├─> Collect Outputs
|
|
│ └─> [iteration_6..10.html]
|
|
│
|
|
├─> Extract Patterns from ALL iterations
|
|
│ │
|
|
│ ├─> Analyze [iteration_1..10.html]
|
|
│ ├─> Extract new patterns from iterations 6-10
|
|
│ ├─> Merge with existing patterns
|
|
│ ├─> Keep top 5 per category
|
|
│ └─> Increment version to v1.1
|
|
│
|
|
└─> Continue to Wave 3 if count allows
|
|
```
|
|
|
|
## Multi-Shot Prompting Integration
|
|
|
|
### How Patterns Serve as Examples
|
|
|
|
When a sub-agent receives pattern context:
|
|
|
|
```markdown
|
|
PATTERN CONTEXT PROVIDED:
|
|
|
|
### Structural Pattern: Modular Three-Layer Architecture
|
|
|
|
**Description**: Separates data, rendering logic, and interaction handlers
|
|
|
|
**Why This Works**: Readability 9.5/10, easy to test, modifications don't cascade
|
|
|
|
**Example Code**:
|
|
```javascript
|
|
// DATA LAYER
|
|
const dataset = {
|
|
values: [...],
|
|
validate() { return this.values.length > 0; }
|
|
};
|
|
|
|
// VIEW LAYER
|
|
const renderer = {
|
|
render(data) { /* D3 rendering */ }
|
|
};
|
|
|
|
// CONTROLLER LAYER
|
|
const controller = {
|
|
onNodeClick(e) { /* interaction logic */ }
|
|
};
|
|
```
|
|
|
|
**Key Characteristics**:
|
|
- Clear layer boundaries with comments
|
|
- Data validation methods on data objects
|
|
- Pure rendering functions (no business logic)
|
|
- Event handlers isolated in controller
|
|
|
|
---
|
|
|
|
[2-4 more patterns provided...]
|
|
|
|
YOUR TASK:
|
|
Study these patterns. Understand WHY they work (success metrics).
|
|
Apply their principles to your iteration.
|
|
Add your own innovation beyond these examples.
|
|
```
|
|
|
|
### Pattern as Multi-Shot Example
|
|
|
|
This is textbook multi-shot prompting:
|
|
|
|
1. **Concrete Example**: Actual code, not just description
|
|
2. **Success Context**: "Why This Works" explains effectiveness
|
|
3. **Multiple Examples**: 3-5 patterns provide diversity
|
|
4. **Clear Structure**: Consistent format makes patterns easy to parse
|
|
5. **Transferable**: Characteristics list shows how to adapt
|
|
|
|
Research shows this approach (3-5 concrete examples with success context) maximizes consistency while preserving creativity.
|
|
|
|
## Context Budget Management
|
|
|
|
### Context Allocation
|
|
|
|
```
|
|
Total Context Budget: ~200K tokens
|
|
|
|
Allocation per Wave:
|
|
├─ Specification: ~2K tokens
|
|
├─ Pattern Library: ~3K tokens (grows slightly over time)
|
|
├─ Sub-Agent Context (x5): ~15K tokens total
|
|
│ ├─ Spec: 2K
|
|
│ ├─ Patterns: 3K
|
|
│ ├─ Existing iterations list: 500 tokens
|
|
│ └─ Task instructions: 1K
|
|
├─ Pattern Extraction: ~5K tokens
|
|
└─ Orchestrator Logic: ~2K tokens
|
|
|
|
Per Wave Total: ~27K tokens
|
|
|
|
Maximum Waves: 200K / 27K ≈ 7 waves (35 iterations)
|
|
```
|
|
|
|
### Context Optimization Strategies
|
|
|
|
1. **Pattern Library Size Cap**: Max 5 patterns per category (3 for "quick" mode)
|
|
2. **Iteration List Compression**: Only file names, not content
|
|
3. **Selective Pattern Provision**: Provide 3-5 most relevant patterns, not all
|
|
4. **Summary vs Full Content**: Pattern extraction works with summaries
|
|
5. **Garbage Collection**: Remove obsolete patterns as better ones emerge
|
|
|
|
### Infinite Mode Termination
|
|
|
|
```python
|
|
def should_continue_infinite(context_usage):
|
|
# Stop if context usage exceeds 80% of budget
|
|
if context_usage > 0.8 * CONTEXT_BUDGET:
|
|
return False, "Context budget limit approaching"
|
|
|
|
# Stop if pattern library isn't improving
|
|
if library_unchanged_for_N_waves(3):
|
|
return False, "Pattern library converged"
|
|
|
|
# Stop if quality plateaued
|
|
if quality_unchanged_for_N_waves(5):
|
|
return False, "Quality plateau reached"
|
|
|
|
return True, "Continue generation"
|
|
```
|
|
|
|
## Error Handling
|
|
|
|
### Orchestrator Level
|
|
|
|
```python
|
|
try:
|
|
# Execute wave
|
|
iterations = execute_wave(wave_num)
|
|
except SubAgentFailure as e:
|
|
# Log error, continue with successful iterations
|
|
log_error(f"Sub-agent {e.agent_id} failed: {e.message}")
|
|
# Optionally retry failed iteration
|
|
if should_retry(e):
|
|
retry_iteration(e.iteration_num)
|
|
```
|
|
|
|
### Pattern Extraction Level
|
|
|
|
```python
|
|
try:
|
|
# Extract patterns
|
|
patterns = extract_patterns(iterations)
|
|
except ExtractionFailure as e:
|
|
# Log warning, use previous pattern library
|
|
log_warning(f"Pattern extraction failed: {e.message}")
|
|
log_info("Continuing with existing pattern library")
|
|
patterns = load_previous_library()
|
|
```
|
|
|
|
### Sub-Agent Level
|
|
|
|
```python
|
|
try:
|
|
# Generate iteration
|
|
output = generate_iteration(spec, patterns)
|
|
validate_output(output)
|
|
except GenerationFailure as e:
|
|
# Report to orchestrator
|
|
return Error(f"Failed to generate iteration: {e.message}")
|
|
```
|
|
|
|
### Validation Level
|
|
|
|
```bash
|
|
# Validator returns non-zero exit code on failure
|
|
if ! ./validators/check_patterns.sh "$PATTERN_LIB"; then
|
|
echo "Pattern library validation failed"
|
|
echo "Fix errors before continuing"
|
|
exit 1
|
|
fi
|
|
```
|
|
|
|
## Performance Considerations
|
|
|
|
### Parallel Execution
|
|
|
|
Sub-agents execute in parallel:
|
|
|
|
```
|
|
Wave of 5 iterations:
|
|
|
|
Traditional Sequential:
|
|
Agent 1 ────> (2 min)
|
|
Agent 2 ────> (2 min)
|
|
Agent 3 ────> (2 min)
|
|
Agent 4 ────> (2 min)
|
|
Agent 5 ────> (2 min)
|
|
Total: 10 minutes
|
|
|
|
Parallel Execution:
|
|
Agent 1 ────> (2 min)
|
|
Agent 2 ────> (2 min)
|
|
Agent 3 ────> (2 min)
|
|
Agent 4 ────> (2 min)
|
|
Agent 5 ────> (2 min)
|
|
Total: 2 minutes (5x speedup)
|
|
```
|
|
|
|
### Pattern Extraction Optimization
|
|
|
|
```python
|
|
# Quick mode (3 patterns/category): ~30 seconds
|
|
# Deep mode (5 patterns/category): ~60 seconds
|
|
|
|
# Optimization: Cache iteration scores
|
|
scores_cache = {}
|
|
|
|
def score_iteration(iteration, category):
|
|
cache_key = f"{iteration.id}_{category}"
|
|
if cache_key not in scores_cache:
|
|
scores_cache[cache_key] = compute_score(iteration, category)
|
|
return scores_cache[cache_key]
|
|
```
|
|
|
|
### I/O Optimization
|
|
|
|
```python
|
|
# Read all iterations once, keep in memory
|
|
iterations = [read_file(f) for f in iteration_files]
|
|
|
|
# Avoid repeated file I/O
|
|
for category in categories:
|
|
extract_patterns(iterations, category) # Uses in-memory data
|
|
```
|
|
|
|
## Extension Points
|
|
|
|
### Custom Pattern Categories
|
|
|
|
Add new pattern categories by:
|
|
|
|
1. Update `pattern_library_template.json`:
|
|
```json
|
|
{
|
|
"patterns": {
|
|
"structural": [...],
|
|
"content": [...],
|
|
"innovation": [...],
|
|
"quality": [...],
|
|
"performance": [...] // NEW CATEGORY
|
|
}
|
|
}
|
|
```
|
|
|
|
2. Update extraction logic in `extract-patterns.md`
|
|
3. Update validator to check new category
|
|
4. Update analysis to track new category adoption
|
|
|
|
### Custom Scoring Dimensions
|
|
|
|
Add new scoring dimensions:
|
|
|
|
```python
|
|
def score_iteration(iteration):
|
|
return {
|
|
"functionality": score_functionality(iteration),
|
|
"code_quality": score_code_quality(iteration),
|
|
"innovation": score_innovation(iteration),
|
|
"accessibility": score_accessibility(iteration), // NEW
|
|
"performance": score_performance(iteration), // NEW
|
|
}
|
|
```
|
|
|
|
### Custom Pattern Selection
|
|
|
|
Override default selection algorithm:
|
|
|
|
```python
|
|
def extract_patterns_custom(iterations, category, count=5):
|
|
# Custom logic: prefer patterns from recent iterations
|
|
recent_iterations = iterations[-10:]
|
|
return extract_patterns(recent_iterations, category, count)
|
|
```
|
|
|
|
## Security Considerations
|
|
|
|
### File System Access
|
|
|
|
- Validators only read pattern library (no writes)
|
|
- Sub-agents write only to designated output directory
|
|
- Pattern extraction reads only from output directory
|
|
- No execution of generated code during pattern extraction
|
|
|
|
### JSON Injection
|
|
|
|
- Pattern library validated with `jq` before use
|
|
- Malformed JSON fails gracefully
|
|
- No `eval()` or code execution from JSON
|
|
|
|
### Resource Limits
|
|
|
|
- Context budget prevents infinite loops
|
|
- Wave size capped (max 10 iterations per wave)
|
|
- Pattern library size capped (max 5 per category)
|
|
- File size limits on generated iterations (spec-dependent)
|
|
|
|
## Testing Architecture
|
|
|
|
### Unit Testing Pattern Extraction
|
|
|
|
```bash
|
|
# Create test iterations
|
|
mkdir test_iterations
|
|
echo "test content" > test_iterations/test_1.html
|
|
|
|
# Run extraction
|
|
/project:extract-patterns test_iterations test_patterns.json
|
|
|
|
# Validate output
|
|
./validators/check_patterns.sh test_patterns.json
|
|
```
|
|
|
|
### Integration Testing Full Loop
|
|
|
|
```bash
|
|
# Generate 10 iterations
|
|
/project:infinite-synthesis specs/example_spec.md test_output 10
|
|
|
|
# Verify outputs
|
|
ls test_output/*.html | wc -l # Should be 10
|
|
|
|
# Verify pattern library created
|
|
test -f pattern_library/patterns.json
|
|
|
|
# Verify pattern library valid
|
|
./validators/check_patterns.sh pattern_library/patterns.json
|
|
```
|
|
|
|
### Regression Testing
|
|
|
|
```bash
|
|
# Known-good pattern library
|
|
cp pattern_library/patterns.json pattern_library/baseline.json
|
|
|
|
# Generate with baseline
|
|
/project:infinite-synthesis specs/example_spec.md output_baseline 5 pattern_library/baseline.json
|
|
|
|
# Compare quality
|
|
/project:analyze-patterns pattern_library/baseline.json output_baseline
|
|
```
|
|
|
|
## Future Architecture Enhancements
|
|
|
|
### Planned Improvements
|
|
|
|
1. **Pattern Confidence Scores**
|
|
- Track success rate of each pattern
|
|
- Prioritize high-confidence patterns
|
|
- Deprecate low-confidence patterns
|
|
|
|
2. **Pattern Genealogy**
|
|
- Track which iteration created which pattern
|
|
- Visualize pattern evolution over waves
|
|
- Credit most influential iterations
|
|
|
|
3. **Cross-Spec Pattern Sharing**
|
|
- Export patterns for reuse across projects
|
|
- Import patterns from external sources
|
|
- Pattern library marketplace
|
|
|
|
4. **Adaptive Wave Sizing**
|
|
- Adjust wave size based on pattern stability
|
|
- Larger waves when patterns are stable
|
|
- Smaller waves during exploration phases
|
|
|
|
5. **Real-Time Quality Monitoring**
|
|
- Stream quality metrics during generation
|
|
- Early stopping if quality degrades
|
|
- Dynamic pattern injection
|
|
|
|
### Research Opportunities
|
|
|
|
1. **Optimal Pattern Count**: Is 3-5 truly optimal? A/B test different counts
|
|
2. **Pattern Decay**: Do patterns become less effective over time?
|
|
3. **Transfer Learning**: Can patterns from one domain help another?
|
|
4. **Human-in-the-Loop**: Manual pattern curation vs automatic extraction
|
|
5. **Pattern Combinations**: Identify synergistic pattern pairs
|
|
|
|
---
|
|
|
|
**Last Updated**: 2025-10-10
|
|
**Version**: 1.0
|
|
**Architecture Stability**: Stable (no breaking changes planned)
|