16 KiB
SDG Network Visualization - Analysis & Strategy
Executive Summary
I've analyzed the existing SDG network modelling project and designed a web-enhanced infinite loop system that will progressively generate sophisticated force-directed network visualizations with automatic API discovery.
What Was Reviewed
Existing SDG Network Project (ai_docs/sdg-network-modelling/):
- Python notebooks fetching UN SDG API data
- D3.js v3 force-directed graph visualization
- Basic network showing: Geographic areas ↔ Ecosystem Capitals ↔ SDGs ↔ Targets
- Simple interactions: hover tooltips, drag nodes
- Single API source (UN Statistics)
Current Limitations:
- Outdated D3.js version (v3 vs current v7)
- Single hardcoded API
- Basic visual design (simple circles/lines)
- Limited interactivity (just hover)
- No progressive enhancement
- No web learning integration
New System Design
Architecture Overview
┌─────────────────────────────────────────────────────────────────┐
│ Web-Enhanced Infinite Loop (/project:infinite-web) │
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Phase 0: │ → │ Phase 1: │ → │ Phase 2: │ │
│ │ Web Priming │ │ Spec + Web │ │ API │ │
│ │ │ │ Analysis │ │ Discovery │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ ↓ ↓ ↓ │
│ Fetch D3.js docs Read spec file Search for APIs │
│ Learn force graphs + priming knowledge Parse Swagger │
│ │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Phase 3: │ → │ Phase 4: │ → │ Phase 5: │ │
│ │ Iteration │ │ Parallel │ │ Quality │ │
│ │ Strategy │ │ Agents │ │ Assurance │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
│ ↓ ↓ ↓ │
│ Map URLs to iters Launch sub-agents Verify outputs │
│ Plan API sources Each learns + builds Check API usage │
└─────────────────────────────────────────────────────────────────┘
Progressive Enhancement Strategy
Phase 1: Foundation (Iterations 1-5)
- Modern D3.js v7
- Single API per iteration
- Node sizing, color coding, labels
- Basic interactivity (drag, zoom, click)
- Learn from: D3.js fundamentals, force simulation basics
Phase 2: Intermediate (Iterations 6-12)
- Combine 2-3 APIs
- Multi-property encoding (color + border)
- Edge bundling, curved edges
- Search, filter, side panels
- Learn from: Advanced D3 techniques, data integration
Phase 3: Advanced (Iterations 13-20)
- 4+ API sources
- Clustering algorithms, community detection
- Real-time data updates
- Graph metrics dashboards
- Learn from: Graph algorithms, streaming data
Phase 4: Expert (Iterations 21+)
- Federated API queries
- ML-based layouts
- AI-powered insights
- 3D/VR capabilities
- Learn from: Cutting-edge research, novel techniques
API Discovery System
Automatic Discovery Process
Each iteration performs web searches to find new APIs:
// Search patterns (from sdg_network_url_strategy.json)
"environmental data API swagger site:github.com"
"scientific data REST API openapi"
"sustainable development goals API JSON"
"atmospheric weather data API free"
"water quality watershed API REST"
"forest biodiversity data API open source"
"NOAA ocean marine data API"
"NASA earth observation API"
Target API Domains
Environmental:
- OpenAQ (air quality)
- EPA APIs (environmental protection)
- USGS Water Services
- Global Forest Watch
Scientific:
- GBIF (biodiversity)
- NASA Earthdata
- NOAA (ocean, weather, climate)
- Seismic/earthquake data (USGS)
Sustainable Development:
- UN SDG API (baseline)
- World Bank Open Data
- OECD Statistics
- WHO Global Health
- FAO Agricultural Data
Data Integration:
- Swagger/OpenAPI spec parsing
- Automatic entity mapping to nodes/edges
- Cross-API entity resolution
- Data quality assessment
Network Data Model
Node Structure
{
id: "unique_id",
name: "Display Name",
type: "entity_type", // country, indicator, species, etc.
group: "category", // for color coding
size: value, // visual size from data
properties: {
value: number,
unit: "string",
timestamp: "date",
source_api: "api_name",
// ... domain-specific attributes
}
}
Edge Structure
{
source: "node_id",
target: "node_id",
type: "relationship", // correlation, dependency, etc.
strength: value, // for force simulation
weight: value, // visual width
properties: {
correlation: number,
confidence: number,
source_api: "api_name"
}
}
Visual Enhancement Progression
Node Enhancements
Foundation:
- Size ← data magnitude
- Color ← category
- Labels with smart positioning
Intermediate:
- Border color ← secondary property
- Icon overlays ← entity type
- Clustering ← community detection
Advanced:
- Shape ← entity class
- Opacity ← confidence level
- Animation ← state changes
Expert:
- 3D projection ← multi-dimensional data
- ML-based positioning
- Anomaly highlighting
Edge Enhancements
Foundation:
- Width ← relationship strength
- Color ← relationship type
- Arrows ← directionality
Intermediate:
- Curved paths ← visibility
- Bundling ← clarity
- Dash patterns ← relationship class
Advanced:
- Animated flow ← data transfer
- Dynamic strength ← real-time values
- Hierarchical bundling ← complex relationships
Expert:
- Probabilistic rendering
- Predicted relationships
- Causal inference visualization
Web Learning Integration
URL Strategy Structure
The system uses specs/sdg_network_url_strategy.json with:
Foundation URLs (Iterations 1-5):
- D3.js fundamentals
- Basic force-directed graphs
- Color scales and node styling
- Interactive tooltips
Intermediate URLs (Iterations 6-12):
- Force-based clustering
- Custom force implementations
- Advanced color schemes
- Animated transitions
Advanced URLs (Iterations 13-20):
- Edge bundling algorithms
- 3D projections
- Adaptive rendering
- Real-time data integration
Expert URLs (Iterations 21+):
- Graph theory algorithms
- ML-enhanced layouts
- Multi-view interfaces
- Export capabilities
Learning Process Per Iteration
- WebFetch assigned URL
- Extract 1-3 specific techniques
- Implement in visualization
- Document source and learnings
- Demonstrate improvement
File Structure
Created Files
specs/
├── sdg_network_progressive.md # Main specification
└── sdg_network_url_strategy.json # Learning URLs
SDG_NETWORK_GUIDE.md # Complete usage guide
SDG_NETWORK_ANALYSIS.md # This file (analysis)
CLAUDE.md # Updated with SDG commands
Output Structure
sdg_viz/ # Created by command
├── sdg_viz_1.html # Iteration 1
├── sdg_viz_2.html # Iteration 2
├── ...
└── sdg_viz_N.html # Iteration N
Each HTML file is self-contained with:
- D3.js v7 force-directed graph
- API data fetching
- Interactive controls
- Documentation footer (APIs used, web learning)
Usage Examples
Quick Start
claude
> /project:infinite-web specs/sdg_network_progressive.md sdg_viz 1
Output: sdg_viz/sdg_viz_1.html
- UN SDG API baseline
- Basic D3.js force graph
- Foundation-level enhancements
Small Batch
> /project:infinite-web specs/sdg_network_progressive.md sdg_viz 5
Output: 5 files, each with:
- Different API source
- Progressive D3 techniques
- Building on previous iterations
Full Progressive Learning
> /project:infinite-web specs/sdg_network_progressive.md sdg_viz 12 specs/sdg_network_url_strategy.json
Output: 12 iterations
- Iterations 1-5: Foundation (basic graphs, single APIs)
- Iterations 6-12: Intermediate (multi-API, advanced interactivity)
Infinite Mode
> /project:infinite-web specs/sdg_network_progressive.md sdg_viz infinite specs/sdg_network_url_strategy.json
Runs until context limit:
- Progressive difficulty waves
- Automatic API discovery
- Increasingly sophisticated visualizations
Key Innovations
1. Automatic API Discovery
- Old: Hardcoded UN SDG API only
- New: Web searches find Swagger/OpenAPI endpoints
- Impact: Unlimited data source expansion
2. Progressive Web Learning
- Old: Static implementation
- New: Each iteration learns from curated web resources
- Impact: Continuous technique improvement
3. Multi-Source Integration
- Old: Single API
- New: Combine 2-5+ APIs per iteration
- Impact: Richer, more insightful networks
4. Modern D3.js
- Old: D3.js v3 (2012)
- New: D3.js v7 (2023)
- Impact: Better performance, modern features
5. Rich Interactivity
- Old: Basic hover tooltip
- New: Search, filter, zoom, click actions, exports, real-time updates
- Impact: Deeper data exploration
Quality Metrics
Each iteration evaluated on:
Data Richness
- API sources count (1 → 5+)
- Node count
- Edge count
- Update frequency
Visual Quality
- Color sophistication
- Label readability
- Animation smoothness (60fps target)
- Layout clarity score
Interactivity
- Feature count
- Response time
- Filter capabilities
- Information density
Technical Innovation
- New techniques applied
- Performance metrics
- Code quality
- Browser compatibility
Comparison: Old vs New
| Aspect | Old System | New System |
|---|---|---|
| D3 Version | v3 (2012) | v7 (2023) |
| APIs | 1 (hardcoded) | Unlimited (auto-discovery) |
| Node Styling | Basic circles | Size, color, border, icons, shapes |
| Edge Styling | Simple lines | Width, color, curves, bundling, animation |
| Interactivity | Hover only | Hover, click, drag, zoom, search, filter |
| Learning | None | Web-sourced techniques per iteration |
| Data Sources | UN SDG only | Environmental, scientific, SDG, health, etc. |
| Architecture | Static | Progressive enhancement |
| Output | Single file | Iteration series |
Next Steps
Immediate Actions
-
Test Single Iteration:
claude > /project:infinite-web specs/sdg_network_progressive.md sdg_viz 1 -
Review Output:
- Open
sdg_viz/sdg_viz_1.htmlin browser - Check UN SDG API integration
- Test basic interactivity
- Verify web learning attribution
- Open
-
Generate Small Batch:
> /project:infinite-web specs/sdg_network_progressive.md sdg_viz 5 -
Compare Iterations:
- See API diversity
- Note progressive improvements
- Identify new techniques applied
Advanced Exploration
-
Custom API Focus:
- Modify spec to target specific domains (ocean, climate, etc.)
- Adjust search templates for specific APIs
-
Algorithm Comparison:
- Generate iterations with different force algorithms
- Compare layout effectiveness
-
Real-time Dashboards:
- Generate iterations 13-20 for real-time features
- Test streaming data integration
-
Infinite Mode:
> /project:infinite-web specs/sdg_network_progressive.md sdg_viz infinite specs/sdg_network_url_strategy.json
Customization Options
Create Domain-Specific Specs:
# Ocean/marine networks
cp specs/sdg_network_progressive.md specs/ocean_network.md
# Edit to focus on ocean APIs
# Climate change networks
cp specs/sdg_network_progressive.md specs/climate_network.md
# Edit to focus on climate APIs
Extend URL Strategy:
- Add new D3 technique URLs
- Add domain-specific learning resources
- Create custom search templates
Modify Output Format:
- Change from single HTML to multi-file
- Add server-side API proxies
- Generate dashboards with multiple views
Success Indicators
Technical Success
- ✅ Modern D3.js v7 implementation
- ✅ Multiple API sources per iteration
- ✅ Self-contained HTML files
- ✅ 60fps animations
- ✅ No console errors
Functional Success
- ✅ Force-directed graphs render correctly
- ✅ API data fetches successfully
- ✅ Interactivity works smoothly
- ✅ Visualizations are informative
- ✅ Error handling is graceful
Learning Success
- ✅ Each iteration demonstrates new technique
- ✅ Web sources are properly attributed
- ✅ Progressive improvement is evident
- ✅ API diversity increases
- ✅ Complexity grows appropriately
User Value
- ✅ Insights are actionable
- ✅ Exploration is intuitive
- ✅ Data relationships are clear
- ✅ SDG analysis is enhanced
- ✅ Visualizations are shareable
Troubleshooting Guide
API Access Issues
Problem: API requires authentication Solution: Iterations handle gracefully with fallback APIs
Problem: CORS errors Solution: Use CORS proxies or alternative APIs
Problem: Rate limiting Solution: Implement caching and request throttling
Performance Issues
Problem: Large graphs lag Solution: Canvas rendering (implemented in advanced iterations)
Problem: Slow force simulation Solution: Adaptive sampling, LOD techniques
Browser Compatibility
Problem: Old browser issues Solution: Target modern browsers, provide fallbacks
Resources
Documentation
SDG_NETWORK_GUIDE.md- Complete usage guidespecs/sdg_network_progressive.md- Specificationspecs/sdg_network_url_strategy.json- Learning URLsCLAUDE.md- Project overview
Reference
ai_docs/sdg-network-modelling/- Original baseline- Observable HQ - D3.js examples
- GitHub public-apis - API directory
Commands
.claude/commands/infinite-web.md- Implementation/project:infinite-web- Run command
Conclusion
The new SDG Network Visualization system transforms a static, single-API visualization into a progressive, web-learning-enhanced, multi-API discovery system that:
- Discovers new data sources automatically via web search
- Learns advanced techniques from curated web resources
- Integrates multiple APIs into rich network visualizations
- Enhances progressively across iterations
- Documents sources and learnings clearly
This system leverages the web-enhanced infinite loop pattern to create increasingly sophisticated SDG network visualizations that provide genuine value for sustainable development insights and data exploration.
The system is ready to run. Start with:
claude
> /project:infinite-web specs/sdg_network_progressive.md sdg_viz 1