folk-canvas/src/distance-field.ts

567 lines
18 KiB
TypeScript

import { frag, vert } from './common/tags.ts';
import { WebGLUtils } from './common/webgl.ts';
import type { FolkShape } from './folk-shape.ts';
/**
* The DistanceField class calculates a distance field using the Jump Flooding Algorithm (JFA) in WebGL.
* It renders shapes as seed points and computes the distance from each pixel to the nearest seed point.
* Previous CPU-based implementation: github.com/folk-canvas/folk-canvas/commit/fdd7fb9d84d93ad665875cad25783c232fd17bcc
*/
export class DistanceField extends HTMLElement {
static tagName = 'distance-field';
private textures: WebGLTexture[] = [];
private shapes!: NodeListOf<FolkShape>;
private canvas!: HTMLCanvasElement;
private glContext!: WebGL2RenderingContext;
private framebuffer!: WebGLFramebuffer;
private fullscreenQuadVAO!: WebGLVertexArrayObject;
private shapeVAO!: WebGLVertexArrayObject;
private jfaProgram!: WebGLProgram; // Shader program for the Jump Flooding Algorithm
private renderProgram!: WebGLProgram; // Shader program for final rendering
private seedProgram!: WebGLProgram; // Shader program for rendering seed points
private static readonly MAX_DISTANCE = 99999.0;
private positionBuffer: WebGLBuffer | null = null;
private isPingTexture: boolean = true;
static define() {
customElements.define(this.tagName, this);
}
connectedCallback() {
this.shapes = document.querySelectorAll('folk-shape');
this.initWebGL();
this.initShaders();
this.initPingPongTextures();
this.initSeedPointRendering();
window.addEventListener('resize', this.handleResize);
this.shapes.forEach((geometry) => {
geometry.addEventListener('move', this.handleGeometryUpdate);
geometry.addEventListener('resize', this.handleGeometryUpdate);
});
}
disconnectedCallback() {
window.removeEventListener('resize', this.handleResize);
this.shapes.forEach((geometry) => {
geometry.removeEventListener('move', this.handleGeometryUpdate);
geometry.removeEventListener('resize', this.handleGeometryUpdate);
});
this.cleanupWebGLResources();
}
private initWebGL() {
const { gl, canvas } = WebGLUtils.createWebGLCanvas(this.clientWidth, this.clientHeight, this);
if (!gl || !canvas) {
throw new Error('Failed to initialize WebGL context.');
}
this.canvas = canvas;
this.glContext = gl;
}
/**
* Handles updates to geometry elements by re-initializing seed points and rerunning the JFA.
*/
private handleGeometryUpdate = () => {
this.initSeedPointRendering();
this.runJumpFloodingAlgorithm();
};
/**
* Initializes all shader programs used in rendering.
*/
private initShaders() {
this.jfaProgram = WebGLUtils.createShaderProgram(this.glContext, commonVertShader, jfaFragShader);
this.renderProgram = WebGLUtils.createShaderProgram(this.glContext, commonVertShader, renderFragShader);
this.seedProgram = WebGLUtils.createShaderProgram(this.glContext, seedVertShader, seedFragShader);
}
/**
* Initializes textures and framebuffer for ping-pong rendering.
* Ping-pong textures are used to alternate between reading and writing textures in multi-pass algorithms.
*/
private initPingPongTextures() {
const gl = this.glContext;
const width = this.canvas.width;
const height = this.canvas.height;
// Delete existing textures to prevent memory leaks
for (const texture of this.textures) {
gl.deleteTexture(texture);
}
this.textures = [];
// Enable the EXT_color_buffer_half_float extension for high-precision floating-point textures
const ext = gl.getExtension('EXT_color_buffer_half_float');
if (!ext) {
console.error('EXT_color_buffer_half_float extension is not supported.');
return;
}
// Create two textures for ping-pong rendering
for (let i = 0; i < 2; i++) {
const texture = gl.createTexture()!;
gl.bindTexture(gl.TEXTURE_2D, texture);
// Set texture parameters
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
// Use high-precision format for accurate distance calculations
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA16F, width, height, 0, gl.RGBA, gl.HALF_FLOAT, null);
this.textures.push(texture);
}
// Create or reuse the framebuffer
if (!this.framebuffer) {
this.framebuffer = gl.createFramebuffer()!;
}
// Check if framebuffer is complete
const status = gl.checkFramebufferStatus(gl.FRAMEBUFFER);
if (status !== gl.FRAMEBUFFER_COMPLETE) {
console.error('Framebuffer is not complete:', status);
return;
}
}
/**
* Initializes rendering of seed points (shapes) into a texture.
* Seed points are the starting locations for distance calculations.
*/
private initSeedPointRendering() {
const gl = this.glContext;
const positions: number[] = [];
const windowWidth = window.innerWidth;
const windowHeight = window.innerHeight;
// Collect positions and assign unique IDs to all shapes
this.shapes.forEach((geometry, index) => {
const rect = geometry.getClientRect();
// Convert DOM coordinates to Normalized Device Coordinates (NDC)
const x1 = (rect.left / windowWidth) * 2 - 1;
const y1 = -((rect.top / windowHeight) * 2 - 1);
const x2 = (rect.right / windowWidth) * 2 - 1;
const y2 = -((rect.bottom / windowHeight) * 2 - 1);
const shapeID = index + 1; // Avoid zero to prevent hash function issues
// Represent each rectangle as two triangles, including shapeID as the z component
positions.push(
x1,
y1,
shapeID,
x2,
y1,
shapeID,
x1,
y2,
shapeID,
x1,
y2,
shapeID,
x2,
y1,
shapeID,
x2,
y2,
shapeID
);
});
if (!this.shapeVAO) {
this.shapeVAO = gl.createVertexArray()!;
gl.bindVertexArray(this.shapeVAO);
this.positionBuffer = gl.createBuffer()!;
gl.bindBuffer(gl.ARRAY_BUFFER, this.positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.DYNAMIC_DRAW);
const positionLocation = gl.getAttribLocation(this.seedProgram, 'a_position');
gl.enableVertexAttribArray(positionLocation);
gl.vertexAttribPointer(positionLocation, 3, gl.FLOAT, false, 0, 0);
gl.bindVertexArray(null);
} else {
gl.bindBuffer(gl.ARRAY_BUFFER, this.positionBuffer!);
gl.bufferSubData(gl.ARRAY_BUFFER, 0, new Float32Array(positions));
}
// Render the seed points into the texture
this.renderSeedPoints();
}
/**
* Renders the seed points (shapes) into one of the ping-pong textures.
* This serves as the initial state for the Jump Flooding Algorithm.
*/
private renderSeedPoints() {
const gl = this.glContext;
// Bind framebuffer to render to the seed texture
const seedTexture = this.textures[this.isPingTexture ? 0 : 1];
gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffer);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, seedTexture, 0);
// Clear the texture with a large initial distance
gl.viewport(0, 0, this.canvas.width, this.canvas.height);
gl.clearColor(0.0, 0.0, 0.0, DistanceField.MAX_DISTANCE);
gl.clear(gl.COLOR_BUFFER_BIT);
// Use the seed shader program
gl.useProgram(this.seedProgram);
// Set the canvas size uniform
const canvasSizeLocation = gl.getUniformLocation(this.seedProgram, 'u_canvasSize');
gl.uniform2f(canvasSizeLocation, this.canvas.width, this.canvas.height);
// Bind VAO and draw shapes
gl.bindVertexArray(this.shapeVAO);
gl.drawArrays(gl.TRIANGLES, 0, this.shapes.length * 6);
// Unbind VAO and framebuffer
gl.bindVertexArray(null);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
}
/**
* Executes the Jump Flooding Algorithm (JFA) to compute the distance field.
* It progressively reduces step sizes to refine the distance calculations.
*/
private runJumpFloodingAlgorithm() {
let stepSize = 1 << Math.floor(Math.log2(Math.max(this.canvas.width, this.canvas.height)));
// Perform passes with decreasing step sizes
for (; stepSize >= 1; stepSize >>= 1) {
this.renderPass(stepSize);
}
// Render the final result to the screen
this.renderToScreen();
}
/**
* Performs a single pass of the Jump Flooding Algorithm with a given step size.
* This involves sampling neighboring pixels at the current step size.
* @param stepSize The current step size for this pass.
*/
private renderPass(stepSize: number) {
const gl = this.glContext;
// Swap textures for ping-pong rendering
const inputTexture = this.isPingTexture ? this.textures[0] : this.textures[1];
const outputTexture = this.isPingTexture ? this.textures[1] : this.textures[0];
// Bind framebuffer to output texture
gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffer);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, outputTexture, 0);
// Use the JFA shader program
gl.useProgram(this.jfaProgram);
// Compute and set the offsets uniform for neighboring pixels
const offsets = this.computeOffsets(stepSize);
const offsetsLocation = gl.getUniformLocation(this.jfaProgram, 'u_offsets');
gl.uniform2fv(offsetsLocation, offsets);
// Bind input texture containing the previous step's results
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, inputTexture);
gl.uniform1i(gl.getUniformLocation(this.jfaProgram, 'u_previousTexture'), 0);
// Draw a fullscreen quad to process all pixels
this.drawFullscreenQuad();
// Toggle the flag
this.isPingTexture = !this.isPingTexture;
}
/**
* Renders the final distance field to the screen using the render shader program.
*/
private renderToScreen() {
const gl = this.glContext;
// Unbind framebuffer to render directly to the canvas
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.viewport(0, 0, this.canvas.width, this.canvas.height);
// Use the render shader program
gl.useProgram(this.renderProgram);
// Bind the final texture containing the computed distance field
const finalTexture = this.textures[this.isPingTexture ? 0 : 1];
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, finalTexture);
gl.uniform1i(gl.getUniformLocation(this.renderProgram, 'u_texture'), 0);
// Draw a fullscreen quad to display the result
this.drawFullscreenQuad();
}
/**
* Draws a fullscreen quad to cover the entire canvas.
* This is used in shader passes where every pixel needs to be processed.
*/
private drawFullscreenQuad() {
const gl = this.glContext;
// Initialize the quad geometry if it hasn't been done yet
if (!this.fullscreenQuadVAO) {
this.initFullscreenQuad();
}
gl.bindVertexArray(this.fullscreenQuadVAO);
gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
gl.bindVertexArray(null);
}
/**
* Initializes the geometry and buffers for the fullscreen quad.
*/
private initFullscreenQuad() {
const gl = this.glContext;
// Define positions for a quad covering the entire screen
const positions = new Float32Array([-1, -1, 1, -1, -1, 1, 1, 1]);
this.fullscreenQuadVAO = gl.createVertexArray()!;
gl.bindVertexArray(this.fullscreenQuadVAO);
const positionBuffer = gl.createBuffer()!;
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, positions, gl.STATIC_DRAW);
const positionAttributeLocation = gl.getAttribLocation(this.jfaProgram, 'a_position');
gl.enableVertexAttribArray(positionAttributeLocation);
gl.vertexAttribPointer(
positionAttributeLocation,
2, // size (x, y)
gl.FLOAT, // type
false, // normalize
0, // stride
0 // offset
);
gl.bindVertexArray(null);
}
/**
* Handles window resize events by updating canvas size, re-initializing textures and seed points,
* and rerunning the Jump Flooding Algorithm.
*/
private handleResize = () => {
const gl = this.glContext;
// Update canvas size to match the window
this.canvas.width = window.innerWidth;
this.canvas.height = window.innerHeight;
// Update the viewport
gl.viewport(0, 0, this.canvas.width, this.canvas.height);
// Re-initialize textures with the new dimensions
this.initPingPongTextures();
// Re-initialize seed point rendering to update positions
this.initSeedPointRendering();
// Rerun the Jump Flooding Algorithm with the new sizes
this.runJumpFloodingAlgorithm();
};
/**
* Computes the offsets to sample neighboring pixels based on the current step size.
* These offsets are used in the JFA shader to determine where to look for potential nearer seed points.
* @param stepSize The current step size for neighbor sampling.
* @returns A Float32Array of offsets.
*/
private computeOffsets(stepSize: number): Float32Array {
const aspectRatio = this.canvas.width / this.canvas.height;
const offsets: number[] = [];
for (let y = -1; y <= 1; y++) {
for (let x = -1; x <= 1; x++) {
// Adjust x offset by aspect ratio to maintain uniform distances
offsets.push((x * stepSize * aspectRatio) / this.canvas.width, (y * stepSize) / this.canvas.height);
}
}
return new Float32Array(offsets);
}
/**
* Cleans up WebGL resources to prevent memory leaks.
* This is called when the element is disconnected from the DOM.
*/
private cleanupWebGLResources() {
const gl = this.glContext;
// Delete textures
this.textures.forEach((texture) => gl.deleteTexture(texture));
this.textures = [];
// Delete framebuffer
if (this.framebuffer) {
gl.deleteFramebuffer(this.framebuffer);
}
// Delete VAOs
if (this.fullscreenQuadVAO) {
gl.deleteVertexArray(this.fullscreenQuadVAO);
}
if (this.shapeVAO) {
gl.deleteVertexArray(this.shapeVAO);
}
// Delete shader programs
if (this.jfaProgram) {
gl.deleteProgram(this.jfaProgram);
}
if (this.renderProgram) {
gl.deleteProgram(this.renderProgram);
}
if (this.seedProgram) {
gl.deleteProgram(this.seedProgram);
}
// Clear other references
this.shapes = null!;
}
}
/**
* Vertex shader shared by multiple programs.
* Transforms vertices to normalized device coordinates and passes texture coordinates to the fragment shader.
*/
const commonVertShader = vert`#version 300 es
precision mediump float;
in vec2 a_position;
out vec2 v_texCoord;
void main() {
v_texCoord = a_position * 0.5 + 0.5; // Transform to [0, 1] range
gl_Position = vec4(a_position, 0.0, 1.0);
}`;
/**
* Fragment shader for the Jump Flooding Algorithm.
* Updates the nearest seed point and distance for each pixel by examining neighboring pixels.
*/
const jfaFragShader = frag`#version 300 es
precision mediump float;
precision mediump int;
in vec2 v_texCoord;
out vec4 outColor;
uniform sampler2D u_previousTexture;
uniform vec2 u_offsets[9];
void main() {
vec4 nearest = texture(u_previousTexture, v_texCoord);
float minDist = nearest.a;
float aspectRatio = float(textureSize(u_previousTexture, 0).x) / float(textureSize(u_previousTexture, 0).y);
for (int i = 0; i < 9; ++i) {
vec2 sampleCoord = v_texCoord + u_offsets[i];
sampleCoord = clamp(sampleCoord, vec2(0.0), vec2(1.0));
vec4 sampled = texture(u_previousTexture, sampleCoord);
if (sampled.z == 0.0) {
continue;
}
// Adjust x coordinate by aspect ratio when calculating distance
vec2 adjustedCoord = vec2(v_texCoord.x * aspectRatio, v_texCoord.y);
vec2 adjustedSampledCoord = vec2(sampled.x * aspectRatio, sampled.y);
float dist = distance(adjustedSampledCoord, adjustedCoord);
if (dist < minDist) {
nearest = sampled;
nearest.a = dist;
minDist = dist;
}
}
outColor = nearest;
}`;
/**
* Fragment shader for rendering the final distance field.
* Converts distances to colors for visualization.
*/
const renderFragShader = frag`#version 300 es
precision mediump float;
in vec2 v_texCoord;
out vec4 outColor;
uniform sampler2D u_texture;
vec3 hsv2rgb(vec3 c) {
vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y);
}
void main() {
vec4 texel = texture(u_texture, v_texCoord);
// Extract shape ID and distance
float shapeID = texel.z;
float distance = texel.a;
float hue = fract(shapeID * 0.61803398875); // Golden ratio conjugate
vec3 shapeColor = hsv2rgb(vec3(hue, 0.5, 0.95));
// Visualize distance as intensity
float intensity = exp(-distance * 10.0);
outColor = vec4(shapeColor * intensity, 1.0);
}`;
/**
* Vertex shader for rendering seed points.
* Outputs the shape ID to the fragment shader.
*/
const seedVertShader = vert`#version 300 es
precision mediump float;
in vec3 a_position; // x, y position and shapeID as z
flat out float v_shapeID;
void main() {
gl_Position = vec4(a_position.xy, 0.0, 1.0);
v_shapeID = a_position.z; // Pass shape ID to fragment shader
}`;
/**
* Fragment shader for rendering seed points.
* Initializes the texture with seed point positions and shape IDs.
*/
const seedFragShader = frag`#version 300 es
precision mediump float;
flat in float v_shapeID;
uniform vec2 u_canvasSize;
out vec4 outColor;
void main() {
vec2 seedCoord = gl_FragCoord.xy / u_canvasSize;
outColor = vec4(seedCoord, v_shapeID, 0.0); // Seed coords (x, y), shape ID (z), initial distance (a)
}`;