import { frag, vert } from './common/tags.ts'; import { WebGLUtils } from './common/webgl.ts'; import type { FolkShape } from './folk-shape.ts'; /** * The DistanceField class calculates a distance field using the Jump Flooding Algorithm (JFA) in WebGL. * It renders shapes as seed points and computes the distance from each pixel to the nearest seed point. * Previous CPU-based implementation: github.com/folk-canvas/folk-canvas/commit/fdd7fb9d84d93ad665875cad25783c232fd17bcc */ export class DistanceField extends HTMLElement { static tagName = 'distance-field'; private textures: WebGLTexture[] = []; private shapes!: NodeListOf; private canvas!: HTMLCanvasElement; private glContext!: WebGL2RenderingContext; private framebuffer!: WebGLFramebuffer; private fullscreenQuadVAO!: WebGLVertexArrayObject; private shapeVAO!: WebGLVertexArrayObject; private jfaProgram!: WebGLProgram; // Shader program for the Jump Flooding Algorithm private renderProgram!: WebGLProgram; // Shader program for final rendering private seedProgram!: WebGLProgram; // Shader program for rendering seed points private static readonly MAX_DISTANCE = 99999.0; private positionBuffer: WebGLBuffer | null = null; private isPingTexture: boolean = true; static define() { customElements.define(this.tagName, this); } connectedCallback() { this.shapes = document.querySelectorAll('folk-shape'); this.initWebGL(); this.initShaders(); this.initPingPongTextures(); this.initSeedPointRendering(); window.addEventListener('resize', this.handleResize); this.shapes.forEach((geometry) => { geometry.addEventListener('move', this.handleGeometryUpdate); geometry.addEventListener('resize', this.handleGeometryUpdate); }); } disconnectedCallback() { window.removeEventListener('resize', this.handleResize); this.shapes.forEach((geometry) => { geometry.removeEventListener('move', this.handleGeometryUpdate); geometry.removeEventListener('resize', this.handleGeometryUpdate); }); this.cleanupWebGLResources(); } private initWebGL() { const { gl, canvas } = WebGLUtils.createWebGLCanvas(this.clientWidth, this.clientHeight, this); if (!gl || !canvas) { throw new Error('Failed to initialize WebGL context.'); } this.canvas = canvas; this.glContext = gl; } /** * Handles updates to geometry elements by re-initializing seed points and rerunning the JFA. */ private handleGeometryUpdate = () => { this.initSeedPointRendering(); this.runJumpFloodingAlgorithm(); }; /** * Initializes all shader programs used in rendering. */ private initShaders() { this.jfaProgram = WebGLUtils.createShaderProgram(this.glContext, commonVertShader, jfaFragShader); this.renderProgram = WebGLUtils.createShaderProgram(this.glContext, commonVertShader, renderFragShader); this.seedProgram = WebGLUtils.createShaderProgram(this.glContext, seedVertShader, seedFragShader); } /** * Initializes textures and framebuffer for ping-pong rendering. * Ping-pong textures are used to alternate between reading and writing textures in multi-pass algorithms. */ private initPingPongTextures() { const gl = this.glContext; const width = this.canvas.width; const height = this.canvas.height; // Delete existing textures to prevent memory leaks for (const texture of this.textures) { gl.deleteTexture(texture); } this.textures = []; // Enable the EXT_color_buffer_half_float extension for high-precision floating-point textures const ext = gl.getExtension('EXT_color_buffer_half_float'); if (!ext) { console.error('EXT_color_buffer_half_float extension is not supported.'); return; } // Create two textures for ping-pong rendering for (let i = 0; i < 2; i++) { const texture = gl.createTexture()!; gl.bindTexture(gl.TEXTURE_2D, texture); // Set texture parameters gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); // Use high-precision format for accurate distance calculations gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA16F, width, height, 0, gl.RGBA, gl.HALF_FLOAT, null); this.textures.push(texture); } // Create or reuse the framebuffer if (!this.framebuffer) { this.framebuffer = gl.createFramebuffer()!; } // Check if framebuffer is complete const status = gl.checkFramebufferStatus(gl.FRAMEBUFFER); if (status !== gl.FRAMEBUFFER_COMPLETE) { console.error('Framebuffer is not complete:', status); return; } } /** * Initializes rendering of seed points (shapes) into a texture. * Seed points are the starting locations for distance calculations. */ private initSeedPointRendering() { const gl = this.glContext; const positions: number[] = []; const windowWidth = window.innerWidth; const windowHeight = window.innerHeight; // Collect positions and assign unique IDs to all shapes this.shapes.forEach((geometry, index) => { const rect = geometry.getClientRect(); // Convert DOM coordinates to Normalized Device Coordinates (NDC) const x1 = (rect.left / windowWidth) * 2 - 1; const y1 = -((rect.top / windowHeight) * 2 - 1); const x2 = (rect.right / windowWidth) * 2 - 1; const y2 = -((rect.bottom / windowHeight) * 2 - 1); const shapeID = index + 1; // Avoid zero to prevent hash function issues // Represent each rectangle as two triangles, including shapeID as the z component positions.push( x1, y1, shapeID, x2, y1, shapeID, x1, y2, shapeID, x1, y2, shapeID, x2, y1, shapeID, x2, y2, shapeID ); }); if (!this.shapeVAO) { this.shapeVAO = gl.createVertexArray()!; gl.bindVertexArray(this.shapeVAO); this.positionBuffer = gl.createBuffer()!; gl.bindBuffer(gl.ARRAY_BUFFER, this.positionBuffer); gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.DYNAMIC_DRAW); const positionLocation = gl.getAttribLocation(this.seedProgram, 'a_position'); gl.enableVertexAttribArray(positionLocation); gl.vertexAttribPointer(positionLocation, 3, gl.FLOAT, false, 0, 0); gl.bindVertexArray(null); } else { gl.bindBuffer(gl.ARRAY_BUFFER, this.positionBuffer!); gl.bufferSubData(gl.ARRAY_BUFFER, 0, new Float32Array(positions)); } // Render the seed points into the texture this.renderSeedPoints(); } /** * Renders the seed points (shapes) into one of the ping-pong textures. * This serves as the initial state for the Jump Flooding Algorithm. */ private renderSeedPoints() { const gl = this.glContext; // Bind framebuffer to render to the seed texture const seedTexture = this.textures[this.isPingTexture ? 0 : 1]; gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffer); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, seedTexture, 0); // Clear the texture with a large initial distance gl.viewport(0, 0, this.canvas.width, this.canvas.height); gl.clearColor(0.0, 0.0, 0.0, DistanceField.MAX_DISTANCE); gl.clear(gl.COLOR_BUFFER_BIT); // Use the seed shader program gl.useProgram(this.seedProgram); // Set the canvas size uniform const canvasSizeLocation = gl.getUniformLocation(this.seedProgram, 'u_canvasSize'); gl.uniform2f(canvasSizeLocation, this.canvas.width, this.canvas.height); // Bind VAO and draw shapes gl.bindVertexArray(this.shapeVAO); gl.drawArrays(gl.TRIANGLES, 0, this.shapes.length * 6); // Unbind VAO and framebuffer gl.bindVertexArray(null); gl.bindFramebuffer(gl.FRAMEBUFFER, null); } /** * Executes the Jump Flooding Algorithm (JFA) to compute the distance field. * It progressively reduces step sizes to refine the distance calculations. */ private runJumpFloodingAlgorithm() { let stepSize = 1 << Math.floor(Math.log2(Math.max(this.canvas.width, this.canvas.height))); // Perform passes with decreasing step sizes for (; stepSize >= 1; stepSize >>= 1) { this.renderPass(stepSize); } // Render the final result to the screen this.renderToScreen(); } /** * Performs a single pass of the Jump Flooding Algorithm with a given step size. * This involves sampling neighboring pixels at the current step size. * @param stepSize The current step size for this pass. */ private renderPass(stepSize: number) { const gl = this.glContext; // Swap textures for ping-pong rendering const inputTexture = this.isPingTexture ? this.textures[0] : this.textures[1]; const outputTexture = this.isPingTexture ? this.textures[1] : this.textures[0]; // Bind framebuffer to output texture gl.bindFramebuffer(gl.FRAMEBUFFER, this.framebuffer); gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, outputTexture, 0); // Use the JFA shader program gl.useProgram(this.jfaProgram); // Compute and set the offsets uniform for neighboring pixels const offsets = this.computeOffsets(stepSize); const offsetsLocation = gl.getUniformLocation(this.jfaProgram, 'u_offsets'); gl.uniform2fv(offsetsLocation, offsets); // Bind input texture containing the previous step's results gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_2D, inputTexture); gl.uniform1i(gl.getUniformLocation(this.jfaProgram, 'u_previousTexture'), 0); // Draw a fullscreen quad to process all pixels this.drawFullscreenQuad(); // Toggle the flag this.isPingTexture = !this.isPingTexture; } /** * Renders the final distance field to the screen using the render shader program. */ private renderToScreen() { const gl = this.glContext; // Unbind framebuffer to render directly to the canvas gl.bindFramebuffer(gl.FRAMEBUFFER, null); gl.viewport(0, 0, this.canvas.width, this.canvas.height); // Use the render shader program gl.useProgram(this.renderProgram); // Bind the final texture containing the computed distance field const finalTexture = this.textures[this.isPingTexture ? 0 : 1]; gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_2D, finalTexture); gl.uniform1i(gl.getUniformLocation(this.renderProgram, 'u_texture'), 0); // Draw a fullscreen quad to display the result this.drawFullscreenQuad(); } /** * Draws a fullscreen quad to cover the entire canvas. * This is used in shader passes where every pixel needs to be processed. */ private drawFullscreenQuad() { const gl = this.glContext; // Initialize the quad geometry if it hasn't been done yet if (!this.fullscreenQuadVAO) { this.initFullscreenQuad(); } gl.bindVertexArray(this.fullscreenQuadVAO); gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4); gl.bindVertexArray(null); } /** * Initializes the geometry and buffers for the fullscreen quad. */ private initFullscreenQuad() { const gl = this.glContext; // Define positions for a quad covering the entire screen const positions = new Float32Array([-1, -1, 1, -1, -1, 1, 1, 1]); this.fullscreenQuadVAO = gl.createVertexArray()!; gl.bindVertexArray(this.fullscreenQuadVAO); const positionBuffer = gl.createBuffer()!; gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer); gl.bufferData(gl.ARRAY_BUFFER, positions, gl.STATIC_DRAW); const positionAttributeLocation = gl.getAttribLocation(this.jfaProgram, 'a_position'); gl.enableVertexAttribArray(positionAttributeLocation); gl.vertexAttribPointer( positionAttributeLocation, 2, // size (x, y) gl.FLOAT, // type false, // normalize 0, // stride 0 // offset ); gl.bindVertexArray(null); } /** * Handles window resize events by updating canvas size, re-initializing textures and seed points, * and rerunning the Jump Flooding Algorithm. */ private handleResize = () => { const gl = this.glContext; // Update canvas size to match the window this.canvas.width = window.innerWidth; this.canvas.height = window.innerHeight; // Update the viewport gl.viewport(0, 0, this.canvas.width, this.canvas.height); // Re-initialize textures with the new dimensions this.initPingPongTextures(); // Re-initialize seed point rendering to update positions this.initSeedPointRendering(); // Rerun the Jump Flooding Algorithm with the new sizes this.runJumpFloodingAlgorithm(); }; /** * Computes the offsets to sample neighboring pixels based on the current step size. * These offsets are used in the JFA shader to determine where to look for potential nearer seed points. * @param stepSize The current step size for neighbor sampling. * @returns A Float32Array of offsets. */ private computeOffsets(stepSize: number): Float32Array { const aspectRatio = this.canvas.width / this.canvas.height; const offsets: number[] = []; for (let y = -1; y <= 1; y++) { for (let x = -1; x <= 1; x++) { // Adjust x offset by aspect ratio to maintain uniform distances offsets.push((x * stepSize * aspectRatio) / this.canvas.width, (y * stepSize) / this.canvas.height); } } return new Float32Array(offsets); } /** * Cleans up WebGL resources to prevent memory leaks. * This is called when the element is disconnected from the DOM. */ private cleanupWebGLResources() { const gl = this.glContext; // Delete textures this.textures.forEach((texture) => gl.deleteTexture(texture)); this.textures = []; // Delete framebuffer if (this.framebuffer) { gl.deleteFramebuffer(this.framebuffer); } // Delete VAOs if (this.fullscreenQuadVAO) { gl.deleteVertexArray(this.fullscreenQuadVAO); } if (this.shapeVAO) { gl.deleteVertexArray(this.shapeVAO); } // Delete shader programs if (this.jfaProgram) { gl.deleteProgram(this.jfaProgram); } if (this.renderProgram) { gl.deleteProgram(this.renderProgram); } if (this.seedProgram) { gl.deleteProgram(this.seedProgram); } // Clear other references this.shapes = null!; } } /** * Vertex shader shared by multiple programs. * Transforms vertices to normalized device coordinates and passes texture coordinates to the fragment shader. */ const commonVertShader = vert`#version 300 es precision mediump float; in vec2 a_position; out vec2 v_texCoord; void main() { v_texCoord = a_position * 0.5 + 0.5; // Transform to [0, 1] range gl_Position = vec4(a_position, 0.0, 1.0); }`; /** * Fragment shader for the Jump Flooding Algorithm. * Updates the nearest seed point and distance for each pixel by examining neighboring pixels. */ const jfaFragShader = frag`#version 300 es precision mediump float; precision mediump int; in vec2 v_texCoord; out vec4 outColor; uniform sampler2D u_previousTexture; uniform vec2 u_offsets[9]; void main() { vec4 nearest = texture(u_previousTexture, v_texCoord); float minDist = nearest.a; float aspectRatio = float(textureSize(u_previousTexture, 0).x) / float(textureSize(u_previousTexture, 0).y); for (int i = 0; i < 9; ++i) { vec2 sampleCoord = v_texCoord + u_offsets[i]; sampleCoord = clamp(sampleCoord, vec2(0.0), vec2(1.0)); vec4 sampled = texture(u_previousTexture, sampleCoord); if (sampled.z == 0.0) { continue; } // Adjust x coordinate by aspect ratio when calculating distance vec2 adjustedCoord = vec2(v_texCoord.x * aspectRatio, v_texCoord.y); vec2 adjustedSampledCoord = vec2(sampled.x * aspectRatio, sampled.y); float dist = distance(adjustedSampledCoord, adjustedCoord); if (dist < minDist) { nearest = sampled; nearest.a = dist; minDist = dist; } } outColor = nearest; }`; /** * Fragment shader for rendering the final distance field. * Converts distances to colors for visualization. */ const renderFragShader = frag`#version 300 es precision mediump float; in vec2 v_texCoord; out vec4 outColor; uniform sampler2D u_texture; vec3 hsv2rgb(vec3 c) { vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0); vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www); return c.z * mix(K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y); } void main() { vec4 texel = texture(u_texture, v_texCoord); // Extract shape ID and distance float shapeID = texel.z; float distance = texel.a; float hue = fract(shapeID * 0.61803398875); // Golden ratio conjugate vec3 shapeColor = hsv2rgb(vec3(hue, 0.5, 0.95)); // Visualize distance as intensity float intensity = exp(-distance * 10.0); outColor = vec4(shapeColor * intensity, 1.0); }`; /** * Vertex shader for rendering seed points. * Outputs the shape ID to the fragment shader. */ const seedVertShader = vert`#version 300 es precision mediump float; in vec3 a_position; // x, y position and shapeID as z flat out float v_shapeID; void main() { gl_Position = vec4(a_position.xy, 0.0, 1.0); v_shapeID = a_position.z; // Pass shape ID to fragment shader }`; /** * Fragment shader for rendering seed points. * Initializes the texture with seed point positions and shape IDs. */ const seedFragShader = frag`#version 300 es precision mediump float; flat in float v_shapeID; uniform vec2 u_canvasSize; out vec4 outColor; void main() { vec2 seedCoord = gl_FragCoord.xy / u_canvasSize; outColor = vec4(seedCoord, v_shapeID, 0.0); // Seed coords (x, y), shape ID (z), initial distance (a) }`;