cadCAD/documentation/Simulation_Execution.md

161 lines
6.6 KiB
Markdown

Simulation Execution
==
System Simulations are executed with the execution engine executor (`cadCAD.engine.Executor`) given System Model
Configurations. There are multiple simulation Execution Modes and Execution Contexts.
### Steps:
1. #### *Choose Execution Mode*:
* ##### Simulation Execution Modes:
`cadCAD` executes a process per System Model Configuration and a thread per System Simulation.
##### Class: `cadCAD.engine.ExecutionMode`
##### Attributes:
* **Single Process:** A single process Execution Mode for a single System Model Configuration (Example:
`cadCAD.engine.ExecutionMode().single_proc`).
* **Multi-Process:** Multiple process Execution Mode for System Model Simulations which executes on a thread per
given System Model Configuration (Example: `cadCAD.engine.ExecutionMode().multi_proc`).
2. #### *Create Execution Context using Execution Mode:*
```python
from cadCAD.engine import ExecutionMode, ExecutionContext
exec_mode = ExecutionMode()
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
```
3. #### *Create Simulation Executor*
```python
from cadCAD.engine import Executor
from cadCAD import configs
simulation = Executor(exec_context=single_proc_ctx, configs=configs)
```
4. #### *Execute Simulation: Produce System Event Dataset*
A Simulation execution produces a System Event Dataset and the Tensor Field applied to initial states used to create it.
```python
import pandas as pd
raw_system_events, tensor_field = simulation.execute()
# Simulation Result Types:
# raw_system_events: List[dict]
# tensor_field: pd.DataFrame
# Result System Events DataFrame
simulation_result = pd.DataFrame(raw_system_events)
```
##### Example Tensor Field
```
+----+-----+--------------------------------+--------------------------------+
| | m | b1 | s1 |
|----+-----+--------------------------------+--------------------------------|
| 0 | 1 | <function p1m1 at 0x10c458ea0> | <function s1m1 at 0x10c464510> |
| 1 | 2 | <function p1m2 at 0x10c464048> | <function s1m2 at 0x10c464620> |
| 2 | 3 | <function p1m3 at 0x10c464400> | <function s1m3 at 0x10c464730> |
+----+-----+--------------------------------+--------------------------------+
```
##### Example Result: System Events DataFrame
```
+----+-------+------------+-----------+------+-----------+
| | run | timestep | substep | s1 | s2 |
|----+-------+------------+-----------+------+-----------|
| 0 | 1 | 0 | 0 | 0 | 0.0 |
| 1 | 1 | 1 | 1 | 1 | 4 |
| 2 | 1 | 1 | 2 | 2 | 6 |
| 3 | 1 | 1 | 3 | 3 | [ 30 300] |
| 4 | 2 | 0 | 0 | 0 | 0.0 |
| 5 | 2 | 1 | 1 | 1 | 4 |
| 6 | 2 | 1 | 2 | 2 | 6 |
| 7 | 2 | 1 | 3 | 3 | [ 30 300] |
+----+-------+------------+-----------+------+-----------+
```
### Execution Examples:
##### Single Simulation Execution (Single Process Execution)
Example System Model Configurations:
* [System Model A](examples/sys_model_A.py): `/documentation/examples/sys_model_A.py`
* [System Model B](examples/sys_model_B.py): `/documentation/examples/sys_model_B.py`
Example Simulation Executions:
* [System Model A](examples/sys_model_A_exec.py): `/documentation/examples/sys_model_A_exec.py`
* [System Model B](examples/sys_model_B_exec.py): `/documentation/examples/sys_model_B_exec.py`
```python
import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A
from cadCAD import configs
exec_mode = ExecutionMode()
# Single Process Execution using a Single System Model Configuration:
# sys_model_A
sys_model_A = [configs[0]] # sys_model_A
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
sys_model_A_simulation = Executor(exec_context=single_proc_ctx, configs=sys_model_A)
sys_model_A_raw_result, sys_model_A_tensor_field = sys_model_A_simulation.execute()
sys_model_A_result = pd.DataFrame(sys_model_A_raw_result)
print()
print("Tensor Field: sys_model_A")
print(tabulate(sys_model_A_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame")
print(tabulate(sys_model_A_result, headers='keys', tablefmt='psql'))
print()
```
##### Multiple Simulation Execution
* ##### *Multi Process Execution*
Documentation: Simulation Execution
[Example Simulation Executions::](examples/sys_model_AB_exec.py) `/documentation/examples/sys_model_AB_exec.py`
Example System Model Configurations:
* [System Model A](examples/sys_model_A.py): `/documentation/examples/sys_model_A.py`
* [System Model B](examples/sys_model_B.py): `/documentation/examples/sys_model_B.py`
```python
import pandas as pd
from tabulate import tabulate
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import sys_model_A, sys_model_B
from cadCAD import configs
exec_mode = ExecutionMode()
# # Multiple Processes Execution using Multiple System Model Configurations:
# # sys_model_A & sys_model_B
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
sys_model_AB_simulation = Executor(exec_context=multi_proc_ctx, configs=configs)
i = 0
config_names = ['sys_model_A', 'sys_model_B']
for sys_model_AB_raw_result, sys_model_AB_tensor_field in sys_model_AB_simulation.execute():
sys_model_AB_result = pd.DataFrame(sys_model_AB_raw_result)
print()
print(f"Tensor Field: {config_names[i]}")
print(tabulate(sys_model_AB_tensor_field, headers='keys', tablefmt='psql'))
print("Result: System Events DataFrame:")
print(tabulate(sys_model_AB_result, headers='keys', tablefmt='psql'))
print()
i += 1
```
* ##### [*System Model Parameter Sweep*](System_Model_Parameter_Sweep.md)
[Example:](examples/param_sweep.py) `/documentation/examples/param_sweep.py`
```python
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact order
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
from documentation.examples import param_sweep
from cadCAD import configs
exec_mode = ExecutionMode()
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run = Executor(exec_context=multi_proc_ctx, configs=configs)
for raw_result, tensor_field in run.execute():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
```