Reafactor Pt. 1
This commit is contained in:
parent
7d96a78907
commit
311c867000
|
|
@ -69,12 +69,4 @@ def generate_config(state_dict, mechanisms, exo_proc):
|
|||
sdf_values, bdf_values = only_ep_handler(state_dict)
|
||||
zipped_list = list(zip(sdf_values, bdf_values))
|
||||
|
||||
return list(map(lambda x: (x[0] + exo_proc, x[1]), zipped_list))
|
||||
|
||||
def create_tensor_field(mechanisms, exo_proc, keys=['behaviors', 'states']):
|
||||
dfs = [ create_matrix_field(mechanisms, k) for k in keys ]
|
||||
df = pd.concat(dfs, axis=1)
|
||||
for es, i in zip(exo_proc, range(len(exo_proc))):
|
||||
df['es'+str(i+1)] = es
|
||||
df['m'] = df.index + 1
|
||||
return df
|
||||
return list(map(lambda x: (x[0] + exo_proc, x[1]), zipped_list))
|
||||
|
|
@ -1,107 +1,109 @@
|
|||
from copy import deepcopy
|
||||
from fn import _
|
||||
from fn.op import foldr, call
|
||||
from ui.config2 import behavior_ops
|
||||
|
||||
class Executor(object):
|
||||
def __init__(self, behavior_ops):
|
||||
self.behavior_ops = behavior_ops
|
||||
|
||||
def getColResults(step, sL, s, funcs):
|
||||
return list(map(lambda f: f(step, sL, s), funcs))
|
||||
# Data Type reduction
|
||||
def getBehaviorInput(self, step, sL, s, funcs):
|
||||
|
||||
# Data Type reduction
|
||||
def getBehaviorInput(step, sL, s, funcs, ops = behavior_ops):
|
||||
|
||||
if len(ops) == 0:
|
||||
ops = [foldr(_ + _)]
|
||||
else:
|
||||
ops = ops[::-1]
|
||||
|
||||
return foldr(call, getColResults(step, sL, s, funcs))(ops)
|
||||
|
||||
def apply_env_proc(env_processes, state_dict, step):
|
||||
for state in state_dict.keys():
|
||||
if state in list(env_processes.keys()):
|
||||
state_dict[state] = env_processes[state](step)(state_dict[state])
|
||||
|
||||
# remove / modify
|
||||
def exception_handler(f, m_step, sL, last_mut_obj, _input):
|
||||
try:
|
||||
return f(m_step, sL, last_mut_obj, _input)
|
||||
except KeyError:
|
||||
print("Exception")
|
||||
return f(m_step, sL, sL[-2], _input)
|
||||
|
||||
|
||||
def mech_step(m_step, sL, state_funcs, behavior_funcs, env_processes, t_step, run):
|
||||
last_in_obj = sL[-1]
|
||||
|
||||
_input = exception_handler(getBehaviorInput, m_step, sL, last_in_obj, behavior_funcs)
|
||||
|
||||
# print(sL)
|
||||
|
||||
# *** add env_proc value here as wrapper function ***
|
||||
last_in_copy = dict([ exception_handler(f, m_step, sL, last_in_obj, _input) for f in state_funcs ])
|
||||
|
||||
for k in last_in_obj:
|
||||
if k not in last_in_copy:
|
||||
last_in_copy[k] = last_in_obj[k]
|
||||
|
||||
del last_in_obj
|
||||
|
||||
# make env proc trigger field agnostic
|
||||
apply_env_proc(env_processes, last_in_copy, last_in_copy['timestamp']) # mutating last_in_copy
|
||||
|
||||
last_in_copy["mech_step"], last_in_copy["time_step"], last_in_copy['run'] = m_step, t_step, run
|
||||
# print(last_in_copy)
|
||||
sL.append(last_in_copy)
|
||||
del last_in_copy
|
||||
|
||||
return sL
|
||||
|
||||
|
||||
def block_gen(states_list, configs, env_processes, t_step, run):
|
||||
m_step = 0
|
||||
states_list_copy = deepcopy(states_list)
|
||||
# remove copy
|
||||
genesis_states = states_list_copy[-1]
|
||||
genesis_states['mech_step'], genesis_states['time_step'] = m_step, t_step
|
||||
states_list = [genesis_states]
|
||||
|
||||
m_step += 1
|
||||
for config in configs:
|
||||
s_conf, b_conf = config[0], config[1]
|
||||
states_list = mech_step(m_step, states_list, s_conf, b_conf, env_processes, t_step, run)
|
||||
m_step += 1
|
||||
|
||||
t_step += 1
|
||||
|
||||
return states_list
|
||||
|
||||
|
||||
# rename pipe
|
||||
def pipe(states_list, configs, env_processes, time_seq, run):
|
||||
time_seq = [x + 1 for x in time_seq]
|
||||
simulation_list = [states_list]
|
||||
for time_step in time_seq:
|
||||
pipe_run = block_gen(simulation_list[-1], configs, env_processes, time_step, run)
|
||||
_, *pipe_run = pipe_run
|
||||
simulation_list.append(pipe_run)
|
||||
|
||||
return simulation_list
|
||||
|
||||
|
||||
# Del _ / head
|
||||
def simulation(states_list, configs, env_processes, time_seq, runs):
|
||||
pipe_run = []
|
||||
for run in range(runs):
|
||||
run += 1
|
||||
if run == 1:
|
||||
head, *tail = pipe(states_list, configs, env_processes, time_seq, run)
|
||||
head[-1]['mech_step'], head[-1]['time_step'], head[-1]['run'] = 0, 0, 0
|
||||
simulation_list = [head] + tail
|
||||
pipe_run += simulation_list
|
||||
if len(self.behavior_ops) == 0:
|
||||
ops = [foldr(_ + _)]
|
||||
else:
|
||||
transient_states_list = [pipe_run[-1][-1]]
|
||||
_, *tail = pipe(transient_states_list, configs, env_processes, time_seq, run)
|
||||
pipe_run += tail
|
||||
ops = self.behavior_ops[::-1]
|
||||
|
||||
return pipe_run
|
||||
def getColResults(step, sL, s, funcs):
|
||||
return list(map(lambda f: f(step, sL, s), funcs))
|
||||
|
||||
return foldr(call, getColResults(step, sL, s, funcs))(ops)
|
||||
|
||||
def apply_env_proc(env_processes, state_dict, step):
|
||||
for state in state_dict.keys():
|
||||
if state in list(env_processes.keys()):
|
||||
state_dict[state] = env_processes[state](step)(state_dict[state])
|
||||
|
||||
# remove / modify
|
||||
def exception_handler(f, m_step, sL, last_mut_obj, _input):
|
||||
try:
|
||||
return f(m_step, sL, last_mut_obj, _input)
|
||||
except KeyError:
|
||||
print("Exception")
|
||||
return f(m_step, sL, sL[-2], _input)
|
||||
|
||||
|
||||
def mech_step(self, m_step, sL, state_funcs, behavior_funcs, env_processes, t_step, run):
|
||||
last_in_obj = sL[-1]
|
||||
|
||||
_input = Executor.getBehaviorInput(self, m_step, sL, last_in_obj, behavior_funcs)
|
||||
|
||||
# print(sL)
|
||||
|
||||
# *** add env_proc value here as wrapper function ***
|
||||
last_in_copy = dict([ Executor.exception_handler(f, m_step, sL, last_in_obj, _input) for f in state_funcs ])
|
||||
|
||||
for k in last_in_obj:
|
||||
if k not in last_in_copy:
|
||||
last_in_copy[k] = last_in_obj[k]
|
||||
|
||||
del last_in_obj
|
||||
|
||||
# make env proc trigger field agnostic
|
||||
Executor.apply_env_proc(env_processes, last_in_copy, last_in_copy['timestamp']) # mutating last_in_copy
|
||||
|
||||
last_in_copy["mech_step"], last_in_copy["time_step"], last_in_copy['run'] = m_step, t_step, run
|
||||
# print(last_in_copy)
|
||||
sL.append(last_in_copy)
|
||||
del last_in_copy
|
||||
|
||||
return sL
|
||||
|
||||
|
||||
def block_gen(self, states_list, configs, env_processes, t_step, run):
|
||||
m_step = 0
|
||||
states_list_copy = deepcopy(states_list)
|
||||
# remove copy
|
||||
genesis_states = states_list_copy[-1]
|
||||
genesis_states['mech_step'], genesis_states['time_step'] = m_step, t_step
|
||||
states_list = [genesis_states]
|
||||
|
||||
m_step += 1
|
||||
for config in configs:
|
||||
s_conf, b_conf = config[0], config[1]
|
||||
states_list = Executor.mech_step(self, m_step, states_list, s_conf, b_conf, env_processes, t_step, run)
|
||||
m_step += 1
|
||||
|
||||
t_step += 1
|
||||
|
||||
return states_list
|
||||
|
||||
|
||||
# rename pipe
|
||||
def pipe(self, states_list, configs, env_processes, time_seq, run):
|
||||
time_seq = [x + 1 for x in time_seq]
|
||||
simulation_list = [states_list]
|
||||
for time_step in time_seq:
|
||||
pipe_run = Executor.block_gen(self, simulation_list[-1], configs, env_processes, time_step, run)
|
||||
_, *pipe_run = pipe_run
|
||||
simulation_list.append(pipe_run)
|
||||
|
||||
return simulation_list
|
||||
|
||||
|
||||
# Del _ / head
|
||||
def simulation(self, states_list, configs, env_processes, time_seq, runs):
|
||||
pipe_run = []
|
||||
for run in range(runs):
|
||||
run += 1
|
||||
if run == 1:
|
||||
head, *tail = Executor.pipe(self, states_list, configs, env_processes, time_seq, run)
|
||||
head[-1]['mech_step'], head[-1]['time_step'], head[-1]['run'] = 0, 0, 0
|
||||
simulation_list = [head] + tail
|
||||
pipe_run += simulation_list
|
||||
else:
|
||||
transient_states_list = [pipe_run[-1][-1]]
|
||||
_, *tail = Executor.pipe(self, transient_states_list, configs, env_processes, time_seq, run)
|
||||
pipe_run += tail
|
||||
|
||||
return pipe_run
|
||||
|
|
@ -1,8 +1,8 @@
|
|||
from pathos.multiprocessing import ProcessingPool as Pool
|
||||
|
||||
|
||||
def parallelize_simulations(f, states_list, configs, env_processes, T, N):
|
||||
def parallelize_simulations(fs, states_list, configs, env_processes, T, N):
|
||||
l = list(zip(fs, states_list, configs, env_processes))
|
||||
with Pool(len(configs)) as p:
|
||||
results = p.map(lambda x: f(states_list, x[0], x[1], T, N), list(zip(configs, env_processes)))
|
||||
|
||||
results = p.map(lambda x: x[0](x[1], x[2], x[3], T, N), l)
|
||||
return results
|
||||
|
|
@ -1,56 +1,52 @@
|
|||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
|
||||
from engine.configProcessor import generate_config, create_tensor_field
|
||||
from engine.mechanismExecutor import simulation
|
||||
from engine.utils import flatten
|
||||
from engine.configProcessor import generate_config
|
||||
from engine.mechanismExecutor import Executor
|
||||
from utils.engine import flatten
|
||||
from utils.ui import create_tensor_field
|
||||
from engine.multiproc import parallelize_simulations
|
||||
|
||||
from decimal import Decimal
|
||||
|
||||
# from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
|
||||
|
||||
import ui.config1 as conf1
|
||||
import ui.config2 as conf2
|
||||
|
||||
def main():
|
||||
state_dict = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
sim_config = {
|
||||
"N": 2,
|
||||
"T": range(5)
|
||||
}
|
||||
states_list1 = [conf1.state_dict]
|
||||
states_list2 = [conf2.state_dict]
|
||||
states_lists = [states_list1,states_list2]
|
||||
|
||||
T = sim_config['T']
|
||||
N = sim_config['N']
|
||||
states_list = [state_dict]
|
||||
T = conf1.sim_config['T']
|
||||
N = conf2.sim_config['N']
|
||||
|
||||
ep1 = list(conf1.exogenous_states.values())
|
||||
ep2 = list(conf2.exogenous_states.values())
|
||||
eps = [ep1,ep2]
|
||||
eps = [ep1, ep2]
|
||||
|
||||
config1 = generate_config(conf1.state_dict, conf1.mechanisms, ep1)
|
||||
config2 = generate_config(conf2.state_dict, conf2.mechanisms, ep2)
|
||||
|
||||
mechanisms = [conf1.mechanisms, conf2.mechanisms]
|
||||
|
||||
configs = [config1, config2]
|
||||
|
||||
env_processes = [conf1.env_processes, conf2.env_processes]
|
||||
|
||||
# Dimensions: N x r x mechs
|
||||
|
||||
simulation1 = Executor(conf1.behavior_ops).simulation
|
||||
simulation2 = Executor(conf2.behavior_ops).simulation
|
||||
simulation_execs = [simulation1,simulation2]
|
||||
|
||||
|
||||
if len(configs) > 1:
|
||||
simulations = parallelize_simulations(simulation, states_list, configs, env_processes, T, N)
|
||||
simulations = parallelize_simulations(simulation_execs, states_lists, configs, env_processes, T, N)
|
||||
# else:
|
||||
# simulations = [simulation(states_list, configs[0], env_processes, T, N)]
|
||||
# simulations = [simulation(states_list1, configs[0], env_processes, T, N)]
|
||||
|
||||
# simulations = [simulation(states_list, config1, conf1.env_processes, T, N)]
|
||||
# behavior_ops, states_list, configs, env_processes, time_seq, runs
|
||||
# result = simulation(states_list1, config1, conf1.env_processes, T, N)
|
||||
# return pd.DataFrame(flatten(result))
|
||||
|
||||
mechanisms = [conf1.mechanisms, conf2.mechanisms]
|
||||
for result, mechanism, ep in list(zip(simulations, mechanisms, eps)):
|
||||
print(tabulate(create_tensor_field(mechanism, ep), headers='keys', tablefmt='psql'))
|
||||
print(tabulate(pd.DataFrame(flatten(result)), headers='keys', tablefmt='psql'))
|
||||
|
|
@ -1,95 +0,0 @@
|
|||
from datetime import datetime, timedelta
|
||||
from decimal import Decimal
|
||||
from fn.func import curried
|
||||
|
||||
flatten = lambda l: [item for sublist in l for item in sublist]
|
||||
|
||||
def flatmap(f, items):
|
||||
return list(map(f, items))
|
||||
|
||||
|
||||
def datetime_range(start, end, delta, dt_format='%Y-%m-%d %H:%M:%S'):
|
||||
reverse_head = end
|
||||
[start, end] = [datetime.strptime(x, dt_format) for x in [start, end]]
|
||||
|
||||
def _datetime_range(start, end, delta):
|
||||
current = start
|
||||
while current < end:
|
||||
yield current
|
||||
current += delta
|
||||
|
||||
reverse_tail = [dt.strftime(dt_format) for dt in _datetime_range(start, end, delta)]
|
||||
return reverse_tail + [reverse_head]
|
||||
|
||||
def last_index(l):
|
||||
return len(l)-1
|
||||
|
||||
def retrieve_state(l, offset):
|
||||
return l[last_index(l) + offset + 1]
|
||||
|
||||
# shouldn't
|
||||
def bound_norm_random(rng, low, high):
|
||||
# Add RNG Seed
|
||||
res = rng.normal((high+low)/2,(high-low)/6)
|
||||
if (res<low or res>high):
|
||||
res = bound_norm_random(rng, low, high)
|
||||
return Decimal(res)
|
||||
|
||||
@curried
|
||||
def proc_trigger(trigger_step, update_f, step):
|
||||
if step == trigger_step:
|
||||
return update_f
|
||||
else:
|
||||
return lambda x: x
|
||||
|
||||
# accept timedelta instead of timedelta params
|
||||
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', days=0, minutes=0, seconds=30):
|
||||
dt = datetime.strptime(dt_str, dt_format)
|
||||
t = dt + timedelta(days=days, minutes=minutes, seconds=seconds)
|
||||
return t.strftime(dt_format)
|
||||
|
||||
# accept timedelta instead of timedelta params
|
||||
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', days=0, minutes=0, seconds=1):
|
||||
if s['mech_step'] == 0:
|
||||
return time_step(dt_str, fromat_str, days, minutes, seconds)
|
||||
else:
|
||||
return dt_str
|
||||
|
||||
def exo_update_per_ts(ep):
|
||||
@curried
|
||||
def ep_decorator(f, y, step, sL, s, _input):
|
||||
if s['mech_step'] + 1 == 1: # inside f body to reduce performance costs
|
||||
return f(step, sL, s, _input)
|
||||
else:
|
||||
return (y, s[y])
|
||||
return {es: ep_decorator(f, es) for es, f in ep.items()}
|
||||
|
||||
# def create_tensor_field(mechanisms, env_poc, keys=['behaviors', 'states']):
|
||||
# dfs = [ create_matrix_field(mechanisms, k) for k in keys ]
|
||||
# df = pd.concat(dfs, axis=1)
|
||||
# for es, i in zip(env_poc, range(len(env_poc))):
|
||||
# df['es'+str(i)] = es
|
||||
# df['m'] = df.index + 1
|
||||
# return df
|
||||
#################
|
||||
|
||||
# def exo_proc_trigger(mech_step, update_f, y):
|
||||
# if mech_step == 1:
|
||||
# return update_f
|
||||
# else:
|
||||
# return lambda step, sL, s, _input: (y, s[y])
|
||||
|
||||
|
||||
|
||||
# def apply_exo_proc(s, x, y):
|
||||
# if s['mech_step'] == 1:
|
||||
# return x
|
||||
# else:
|
||||
# return s[y]
|
||||
|
||||
# def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
|
||||
# y = 'timestamp'
|
||||
# x = ep_time_step(s, s['timestamp'], seconds=1)
|
||||
# return (y, x)
|
||||
|
||||
|
||||
|
|
@ -1,4 +1,4 @@
|
|||
from engine.utils import bound_norm_random, ep_time_step, proc_trigger, exo_update_per_ts
|
||||
from utils.configuration import *
|
||||
from fn.op import foldr
|
||||
from fn import _
|
||||
from fn.func import curried
|
||||
|
|
@ -13,17 +13,6 @@ seed = {
|
|||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
# # Behaviors per Mechanism
|
||||
# def b1m1(step, sL, s):
|
||||
# return np.array([1, 2])
|
||||
# def b2m1(step, sL, s):
|
||||
# return np.array([3, 4])
|
||||
# # Internal States per Mechanism
|
||||
# def s1m1(step, sL, s, _input):
|
||||
# y = 's1'
|
||||
# x = _input['b1'] * s['s1'] + _input['b2']
|
||||
# return (y, x)
|
||||
|
||||
# Behaviors per Mechanism
|
||||
# Different return types per mechanism ?? *** No ***
|
||||
def b1m1(step, sL, s):
|
||||
|
|
@ -126,45 +115,6 @@ env_processes = {
|
|||
# genesis Sites should always be there
|
||||
# [1, 2]
|
||||
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
|
||||
def print_fwd(x):
|
||||
print(x)
|
||||
return x
|
||||
|
||||
def behavior_to_dict(v):
|
||||
return dict(list(zip(map(lambda n: 'b' + str(n+1), list(range(len(v)))), v)))
|
||||
|
||||
@curried
|
||||
def foldr_dict_vals(f, d):
|
||||
return foldr(f)(list(d.values()))
|
||||
|
||||
def sum_dict_values():
|
||||
return foldr_dict_vals(_ + _)
|
||||
|
||||
def get_base_value(datatype):
|
||||
if datatype is str:
|
||||
return ''
|
||||
elif datatype is int:
|
||||
return 0
|
||||
elif datatype is list:
|
||||
return []
|
||||
return 0
|
||||
|
||||
|
||||
@curried
|
||||
def dict_op(f, d1, d2):
|
||||
|
||||
def set_base_value(target_dict, source_dict, key):
|
||||
if key not in target_dict:
|
||||
return get_base_value(type(source_dict[key]))
|
||||
else:
|
||||
return target_dict[key]
|
||||
|
||||
key_set = set(list(d1.keys())+list(d2.keys()))
|
||||
|
||||
return {k: f(set_base_value(d1, d2, k), set_base_value(d2, d1, k)) for k in key_set}
|
||||
|
||||
def dict_elemwise_sum():
|
||||
return dict_op(_ + _)
|
||||
|
||||
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
|
||||
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
|
||||
|
|
|
|||
|
|
@ -1,11 +1,11 @@
|
|||
from engine.utils import bound_norm_random, ep_time_step, proc_trigger, exo_update_per_ts
|
||||
from utils.configuration import *
|
||||
from fn.op import foldr
|
||||
from fn import _
|
||||
from fn.func import curried
|
||||
|
||||
|
||||
import numpy as np
|
||||
from decimal import Decimal
|
||||
|
||||
|
||||
seed = {
|
||||
'z': np.random.RandomState(1),
|
||||
'a': np.random.RandomState(2),
|
||||
|
|
@ -13,17 +13,6 @@ seed = {
|
|||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
# # Behaviors per Mechanism
|
||||
# def b1m1(step, sL, s):
|
||||
# return np.array([1, 2])
|
||||
# def b2m1(step, sL, s):
|
||||
# return np.array([3, 4])
|
||||
# # Internal States per Mechanism
|
||||
# def s1m1(step, sL, s, _input):
|
||||
# y = 's1'
|
||||
# x = _input['b1'] * s['s1'] + _input['b2']
|
||||
# return (y, x)
|
||||
|
||||
# Behaviors per Mechanism
|
||||
# Different return types per mechanism ?? *** No ***
|
||||
def b1m1(step, sL, s):
|
||||
|
|
@ -126,49 +115,11 @@ env_processes = {
|
|||
# genesis Sites should always be there
|
||||
# [1, 2]
|
||||
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
|
||||
def print_fwd(x):
|
||||
print(x)
|
||||
return x
|
||||
|
||||
def behavior_to_dict(v):
|
||||
return dict(list(zip(map(lambda n: 'b' + str(n+1), list(range(len(v)))), v)))
|
||||
|
||||
@curried
|
||||
def foldr_dict_vals(f, d):
|
||||
return foldr(f)(list(d.values()))
|
||||
|
||||
def sum_dict_values():
|
||||
return foldr_dict_vals(_ + _)
|
||||
|
||||
def get_base_value(datatype):
|
||||
if datatype is str:
|
||||
return ''
|
||||
elif datatype is int:
|
||||
return 0
|
||||
elif datatype is list:
|
||||
return []
|
||||
return 0
|
||||
|
||||
|
||||
@curried
|
||||
def dict_op(f, d1, d2):
|
||||
|
||||
def set_base_value(target_dict, source_dict, key):
|
||||
if key not in target_dict:
|
||||
return get_base_value(type(source_dict[key]))
|
||||
else:
|
||||
return target_dict[key]
|
||||
|
||||
key_set = set(list(d1.keys())+list(d2.keys()))
|
||||
|
||||
return {k: f(set_base_value(d1, d2, k), set_base_value(d2, d1, k)) for k in key_set}
|
||||
|
||||
def dict_elemwise_sum():
|
||||
return dict_op(_ + _)
|
||||
|
||||
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
|
||||
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
|
||||
behavior_ops = [ foldr(dict_elemwise_sum()) ]
|
||||
# behavior_ops = [behavior_to_dict, print_fwd, sum_dict_values]
|
||||
behavior_ops = [foldr(dict_elemwise_sum())]
|
||||
# behavior_ops = []
|
||||
|
||||
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
||||
|
|
@ -209,4 +160,4 @@ mechanisms = {
|
|||
sim_config = {
|
||||
"N": 2,
|
||||
"T": range(5)
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,82 @@
|
|||
from datetime import datetime, timedelta
|
||||
from decimal import Decimal
|
||||
from fn import _
|
||||
from fn.func import curried
|
||||
from fn.op import foldr
|
||||
|
||||
def bound_norm_random(rng, low, high):
|
||||
# Add RNG Seed
|
||||
res = rng.normal((high+low)/2,(high-low)/6)
|
||||
if (res<low or res>high):
|
||||
res = bound_norm_random(rng, low, high)
|
||||
return Decimal(res)
|
||||
|
||||
@curried
|
||||
def proc_trigger(trigger_step, update_f, step):
|
||||
if step == trigger_step:
|
||||
return update_f
|
||||
else:
|
||||
return lambda x: x
|
||||
|
||||
# accept timedelta instead of timedelta params
|
||||
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', days=0, minutes=0, seconds=30):
|
||||
dt = datetime.strptime(dt_str, dt_format)
|
||||
t = dt + timedelta(days=days, minutes=minutes, seconds=seconds)
|
||||
return t.strftime(dt_format)
|
||||
|
||||
# accept timedelta instead of timedelta params
|
||||
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', days=0, minutes=0, seconds=1):
|
||||
if s['mech_step'] == 0:
|
||||
return time_step(dt_str, fromat_str, days, minutes, seconds)
|
||||
else:
|
||||
return dt_str
|
||||
|
||||
def exo_update_per_ts(ep):
|
||||
@curried
|
||||
def ep_decorator(f, y, step, sL, s, _input):
|
||||
if s['mech_step'] + 1 == 1: # inside f body to reduce performance costs
|
||||
return f(step, sL, s, _input)
|
||||
else:
|
||||
return (y, s[y])
|
||||
return {es: ep_decorator(f, es) for es, f in ep.items()}
|
||||
|
||||
def print_fwd(x):
|
||||
print(x)
|
||||
return x
|
||||
|
||||
def get_base_value(datatype):
|
||||
if datatype is str:
|
||||
return ''
|
||||
elif datatype is int:
|
||||
return 0
|
||||
elif datatype is list:
|
||||
return []
|
||||
return 0
|
||||
|
||||
def behavior_to_dict(v):
|
||||
return dict(list(zip(map(lambda n: 'b' + str(n + 1), list(range(len(v)))), v)))
|
||||
|
||||
add = lambda a, b: a + b
|
||||
|
||||
@curried
|
||||
def foldr_dict_vals(f, d):
|
||||
return foldr(f)(list(d.values()))
|
||||
|
||||
def sum_dict_values():
|
||||
return foldr_dict_vals(add)
|
||||
|
||||
@curried
|
||||
def dict_op(f, d1, d2):
|
||||
|
||||
def set_base_value(target_dict, source_dict, key):
|
||||
if key not in target_dict:
|
||||
return get_base_value(type(source_dict[key]))
|
||||
else:
|
||||
return target_dict[key]
|
||||
|
||||
key_set = set(list(d1.keys()) + list(d2.keys()))
|
||||
|
||||
return {k: f(set_base_value(d1, d2, k), set_base_value(d2, d1, k)) for k in key_set}
|
||||
|
||||
def dict_elemwise_sum():
|
||||
return dict_op(add)
|
||||
|
|
@ -0,0 +1,45 @@
|
|||
from datetime import datetime
|
||||
|
||||
flatten = lambda l: [item for sublist in l for item in sublist]
|
||||
|
||||
def flatmap(f, items):
|
||||
return list(map(f, items))
|
||||
|
||||
|
||||
def datetime_range(start, end, delta, dt_format='%Y-%m-%d %H:%M:%S'):
|
||||
reverse_head = end
|
||||
[start, end] = [datetime.strptime(x, dt_format) for x in [start, end]]
|
||||
|
||||
def _datetime_range(start, end, delta):
|
||||
current = start
|
||||
while current < end:
|
||||
yield current
|
||||
current += delta
|
||||
|
||||
reverse_tail = [dt.strftime(dt_format) for dt in _datetime_range(start, end, delta)]
|
||||
return reverse_tail + [reverse_head]
|
||||
|
||||
def last_index(l):
|
||||
return len(l)-1
|
||||
|
||||
def retrieve_state(l, offset):
|
||||
return l[last_index(l) + offset + 1]
|
||||
|
||||
# def exo_proc_trigger(mech_step, update_f, y):
|
||||
# if mech_step == 1:
|
||||
# return update_f
|
||||
# else:
|
||||
# return lambda step, sL, s, _input: (y, s[y])
|
||||
|
||||
|
||||
|
||||
# def apply_exo_proc(s, x, y):
|
||||
# if s['mech_step'] == 1:
|
||||
# return x
|
||||
# else:
|
||||
# return s[y]
|
||||
|
||||
# def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
|
||||
# y = 'timestamp'
|
||||
# x = ep_time_step(s, s['timestamp'], seconds=1)
|
||||
# return (y, x)
|
||||
|
|
@ -0,0 +1,10 @@
|
|||
import pandas as pd
|
||||
from engine.configProcessor import create_matrix_field
|
||||
|
||||
def create_tensor_field(mechanisms, exo_proc, keys=['behaviors', 'states']):
|
||||
dfs = [ create_matrix_field(mechanisms, k) for k in keys ]
|
||||
df = pd.concat(dfs, axis=1)
|
||||
for es, i in zip(exo_proc, range(len(exo_proc))):
|
||||
df['es'+str(i+1)] = es
|
||||
df['m'] = df.index + 1
|
||||
return df
|
||||
Loading…
Reference in New Issue