Dirty Parallelize Simulations
This commit is contained in:
parent
026e799c74
commit
7d96a78907
|
|
@ -1,7 +1,7 @@
|
|||
from copy import deepcopy
|
||||
from fn import _
|
||||
from fn.op import foldr, call
|
||||
from ui.config import behavior_ops
|
||||
from ui.config2 import behavior_ops
|
||||
|
||||
|
||||
def getColResults(step, sL, s, funcs):
|
||||
|
|
|
|||
|
|
@ -2,10 +2,7 @@ from pathos.multiprocessing import ProcessingPool as Pool
|
|||
|
||||
|
||||
def parallelize_simulations(f, states_list, configs, env_processes, T, N):
|
||||
def process(config):
|
||||
return f(states_list, config, env_processes, T, N)
|
||||
|
||||
with Pool(len(configs)) as p:
|
||||
results = p.map(process, configs)
|
||||
results = p.map(lambda x: f(states_list, x[0], x[1], T, N), list(zip(configs, env_processes)))
|
||||
|
||||
return results
|
||||
|
|
@ -4,26 +4,53 @@ from tabulate import tabulate
|
|||
from engine.configProcessor import generate_config, create_tensor_field
|
||||
from engine.mechanismExecutor import simulation
|
||||
from engine.utils import flatten
|
||||
from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
|
||||
from engine.multiproc import parallelize_simulations
|
||||
|
||||
from decimal import Decimal
|
||||
|
||||
# from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
|
||||
|
||||
import ui.config1 as conf1
|
||||
import ui.config2 as conf2
|
||||
|
||||
def main():
|
||||
states_list = [state_dict]
|
||||
ep = list(exogenous_states.values())
|
||||
config = generate_config(state_dict, mechanisms, ep)
|
||||
state_dict = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
sim_config = {
|
||||
"N": 2,
|
||||
"T": range(5)
|
||||
}
|
||||
|
||||
T = sim_config['T']
|
||||
N = sim_config['N']
|
||||
configs = [config, config]
|
||||
states_list = [state_dict]
|
||||
|
||||
ep1 = list(conf1.exogenous_states.values())
|
||||
ep2 = list(conf2.exogenous_states.values())
|
||||
eps = [ep1,ep2]
|
||||
|
||||
config1 = generate_config(conf1.state_dict, conf1.mechanisms, ep1)
|
||||
config2 = generate_config(conf2.state_dict, conf2.mechanisms, ep2)
|
||||
|
||||
mechanisms = [conf1.mechanisms, conf2.mechanisms]
|
||||
|
||||
configs = [config1, config2]
|
||||
env_processes = [conf1.env_processes, conf2.env_processes]
|
||||
|
||||
# Dimensions: N x r x mechs
|
||||
|
||||
if len(configs) > 1:
|
||||
simulations = parallelize_simulations(simulation, states_list, configs, env_processes, T, N)
|
||||
else:
|
||||
simulations = [simulation(states_list, configs[0], env_processes, T, N)]
|
||||
simulations = parallelize_simulations(simulation, states_list, configs, env_processes, T, N)
|
||||
# else:
|
||||
# simulations = [simulation(states_list, configs[0], env_processes, T, N)]
|
||||
|
||||
for result in simulations:
|
||||
print(tabulate(create_tensor_field(mechanisms, ep), headers='keys', tablefmt='psql'))
|
||||
print
|
||||
# simulations = [simulation(states_list, config1, conf1.env_processes, T, N)]
|
||||
|
||||
for result, mechanism, ep in list(zip(simulations, mechanisms, eps)):
|
||||
print(tabulate(create_tensor_field(mechanism, ep), headers='keys', tablefmt='psql'))
|
||||
print(tabulate(pd.DataFrame(flatten(result)), headers='keys', tablefmt='psql'))
|
||||
|
|
@ -10,13 +10,13 @@
|
|||
{
|
||||
"ename": "ImportError",
|
||||
"evalue": "cannot import name 'run'",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[1;32m<ipython-input-5-a6e895c51fc0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mengine\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[1;31mImportError\u001b[0m: cannot import name 'run'"
|
||||
]
|
||||
],
|
||||
"output_type": "error"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
|
|
|
|||
|
|
@ -0,0 +1,212 @@
|
|||
from engine.utils import bound_norm_random, ep_time_step, proc_trigger, exo_update_per_ts
|
||||
from fn.op import foldr
|
||||
from fn import _
|
||||
from fn.func import curried
|
||||
|
||||
import numpy as np
|
||||
from decimal import Decimal
|
||||
|
||||
seed = {
|
||||
'z': np.random.RandomState(1),
|
||||
'a': np.random.RandomState(2),
|
||||
'b': np.random.RandomState(3),
|
||||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
# # Behaviors per Mechanism
|
||||
# def b1m1(step, sL, s):
|
||||
# return np.array([1, 2])
|
||||
# def b2m1(step, sL, s):
|
||||
# return np.array([3, 4])
|
||||
# # Internal States per Mechanism
|
||||
# def s1m1(step, sL, s, _input):
|
||||
# y = 's1'
|
||||
# x = _input['b1'] * s['s1'] + _input['b2']
|
||||
# return (y, x)
|
||||
|
||||
# Behaviors per Mechanism
|
||||
# Different return types per mechanism ?? *** No ***
|
||||
def b1m1(step, sL, s):
|
||||
return {'param1': 1}
|
||||
def b2m1(step, sL, s):
|
||||
return {'param2': 4}
|
||||
|
||||
def b1m2(step, sL, s):
|
||||
return {'param1': 'a', 'param2': 2}
|
||||
def b2m2(step, sL, s):
|
||||
return {'param1': 'b', 'param2': 4}
|
||||
|
||||
def b1m3(step, sL, s):
|
||||
return {'param1': ['c'], 'param2': np.array([10, 100])}
|
||||
def b2m3(step, sL, s):
|
||||
return {'param1': ['d'], 'param2': np.array([20, 200])}
|
||||
|
||||
|
||||
# Internal States per Mechanism
|
||||
def s1m1(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m1(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m2(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m2(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m3(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m3(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
# Exogenous States
|
||||
proc_one_coef_A = 0.7
|
||||
proc_one_coef_B = 1.3
|
||||
|
||||
def es3p1(step, sL, s, _input):
|
||||
y = 's3'
|
||||
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es4p2(step, sL, s, _input):
|
||||
y = 's4'
|
||||
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, s['timestamp'], seconds=1)
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Environment States
|
||||
def env_a(x):
|
||||
return 10
|
||||
def env_b(x):
|
||||
return 10
|
||||
# def what_ever(x):
|
||||
# return x + 1
|
||||
|
||||
# Genesis States
|
||||
state_dict = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
# remove `exo_update_per_ts` to update every ts
|
||||
exogenous_states = exo_update_per_ts(
|
||||
{
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestamp": es5p2
|
||||
}
|
||||
)
|
||||
|
||||
# make env proc trigger field agnostic
|
||||
env_processes = {
|
||||
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
|
||||
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
}
|
||||
|
||||
# lambdas
|
||||
# genesis Sites should always be there
|
||||
# [1, 2]
|
||||
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
|
||||
def print_fwd(x):
|
||||
print(x)
|
||||
return x
|
||||
|
||||
def behavior_to_dict(v):
|
||||
return dict(list(zip(map(lambda n: 'b' + str(n+1), list(range(len(v)))), v)))
|
||||
|
||||
@curried
|
||||
def foldr_dict_vals(f, d):
|
||||
return foldr(f)(list(d.values()))
|
||||
|
||||
def sum_dict_values():
|
||||
return foldr_dict_vals(_ + _)
|
||||
|
||||
def get_base_value(datatype):
|
||||
if datatype is str:
|
||||
return ''
|
||||
elif datatype is int:
|
||||
return 0
|
||||
elif datatype is list:
|
||||
return []
|
||||
return 0
|
||||
|
||||
|
||||
@curried
|
||||
def dict_op(f, d1, d2):
|
||||
|
||||
def set_base_value(target_dict, source_dict, key):
|
||||
if key not in target_dict:
|
||||
return get_base_value(type(source_dict[key]))
|
||||
else:
|
||||
return target_dict[key]
|
||||
|
||||
key_set = set(list(d1.keys())+list(d2.keys()))
|
||||
|
||||
return {k: f(set_base_value(d1, d2, k), set_base_value(d2, d1, k)) for k in key_set}
|
||||
|
||||
def dict_elemwise_sum():
|
||||
return dict_op(_ + _)
|
||||
|
||||
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
|
||||
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
|
||||
behavior_ops = [ foldr(dict_elemwise_sum()) ]
|
||||
# behavior_ops = []
|
||||
|
||||
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
||||
# mechanisms = {}
|
||||
mechanisms = {
|
||||
"m1": {
|
||||
"behaviors": {
|
||||
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
|
||||
"b2": b2m1
|
||||
},
|
||||
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
|
||||
"s1": s1m1,
|
||||
"s2": s2m1
|
||||
}
|
||||
},
|
||||
"m2": {
|
||||
"behaviors": {
|
||||
"b1": b1m2,
|
||||
"b2": b2m2
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m2,
|
||||
"s2": s2m2
|
||||
}
|
||||
},
|
||||
"m3": {
|
||||
"behaviors": {
|
||||
"b1": b1m3,
|
||||
"b2": b2m3
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m3,
|
||||
"s2": s2m3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sim_config = {
|
||||
"N": 2,
|
||||
"T": range(5)
|
||||
}
|
||||
Loading…
Reference in New Issue