Dirty Parallelize Simulations

This commit is contained in:
Joshua E. Jodesty 2018-11-14 16:07:09 -05:00
parent 026e799c74
commit 7d96a78907
6 changed files with 254 additions and 18 deletions

View File

@ -1,7 +1,7 @@
from copy import deepcopy
from fn import _
from fn.op import foldr, call
from ui.config import behavior_ops
from ui.config2 import behavior_ops
def getColResults(step, sL, s, funcs):

View File

@ -2,10 +2,7 @@ from pathos.multiprocessing import ProcessingPool as Pool
def parallelize_simulations(f, states_list, configs, env_processes, T, N):
def process(config):
return f(states_list, config, env_processes, T, N)
with Pool(len(configs)) as p:
results = p.map(process, configs)
results = p.map(lambda x: f(states_list, x[0], x[1], T, N), list(zip(configs, env_processes)))
return results

View File

@ -4,26 +4,53 @@ from tabulate import tabulate
from engine.configProcessor import generate_config, create_tensor_field
from engine.mechanismExecutor import simulation
from engine.utils import flatten
from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
from engine.multiproc import parallelize_simulations
from decimal import Decimal
# from ui.config import state_dict, mechanisms, exogenous_states, env_processes, sim_config
import ui.config1 as conf1
import ui.config2 as conf2
def main():
states_list = [state_dict]
ep = list(exogenous_states.values())
config = generate_config(state_dict, mechanisms, ep)
state_dict = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
sim_config = {
"N": 2,
"T": range(5)
}
T = sim_config['T']
N = sim_config['N']
configs = [config, config]
states_list = [state_dict]
ep1 = list(conf1.exogenous_states.values())
ep2 = list(conf2.exogenous_states.values())
eps = [ep1,ep2]
config1 = generate_config(conf1.state_dict, conf1.mechanisms, ep1)
config2 = generate_config(conf2.state_dict, conf2.mechanisms, ep2)
mechanisms = [conf1.mechanisms, conf2.mechanisms]
configs = [config1, config2]
env_processes = [conf1.env_processes, conf2.env_processes]
# Dimensions: N x r x mechs
if len(configs) > 1:
simulations = parallelize_simulations(simulation, states_list, configs, env_processes, T, N)
else:
simulations = [simulation(states_list, configs[0], env_processes, T, N)]
simulations = parallelize_simulations(simulation, states_list, configs, env_processes, T, N)
# else:
# simulations = [simulation(states_list, configs[0], env_processes, T, N)]
for result in simulations:
print(tabulate(create_tensor_field(mechanisms, ep), headers='keys', tablefmt='psql'))
print
# simulations = [simulation(states_list, config1, conf1.env_processes, T, N)]
for result, mechanism, ep in list(zip(simulations, mechanisms, eps)):
print(tabulate(create_tensor_field(mechanism, ep), headers='keys', tablefmt='psql'))
print(tabulate(pd.DataFrame(flatten(result)), headers='keys', tablefmt='psql'))

View File

@ -10,13 +10,13 @@
{
"ename": "ImportError",
"evalue": "cannot import name 'run'",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)",
"\u001b[1;32m<ipython-input-5-a6e895c51fc0>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mengine\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mrun\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmain\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
"\u001b[1;31mImportError\u001b[0m: cannot import name 'run'"
]
],
"output_type": "error"
}
],
"source": [

212
ui/config1.py Normal file
View File

@ -0,0 +1,212 @@
from engine.utils import bound_norm_random, ep_time_step, proc_trigger, exo_update_per_ts
from fn.op import foldr
from fn import _
from fn.func import curried
import numpy as np
from decimal import Decimal
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# # Behaviors per Mechanism
# def b1m1(step, sL, s):
# return np.array([1, 2])
# def b2m1(step, sL, s):
# return np.array([3, 4])
# # Internal States per Mechanism
# def s1m1(step, sL, s, _input):
# y = 's1'
# x = _input['b1'] * s['s1'] + _input['b2']
# return (y, x)
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
def b1m2(step, sL, s):
return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m1(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1)
return (y, x)
# Environment States
def env_a(x):
return 10
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
state_dict = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
exogenous_states = exo_update_per_ts(
{
"s3": es3p1,
"s4": es4p2,
"timestamp": es5p2
}
)
# make env proc trigger field agnostic
env_processes = {
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
def print_fwd(x):
print(x)
return x
def behavior_to_dict(v):
return dict(list(zip(map(lambda n: 'b' + str(n+1), list(range(len(v)))), v)))
@curried
def foldr_dict_vals(f, d):
return foldr(f)(list(d.values()))
def sum_dict_values():
return foldr_dict_vals(_ + _)
def get_base_value(datatype):
if datatype is str:
return ''
elif datatype is int:
return 0
elif datatype is list:
return []
return 0
@curried
def dict_op(f, d1, d2):
def set_base_value(target_dict, source_dict, key):
if key not in target_dict:
return get_base_value(type(source_dict[key]))
else:
return target_dict[key]
key_set = set(list(d1.keys())+list(d2.keys()))
return {k: f(set_base_value(d1, d2, k), set_base_value(d2, d1, k)) for k in key_set}
def dict_elemwise_sum():
return dict_op(_ + _)
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
behavior_ops = [ foldr(dict_elemwise_sum()) ]
# behavior_ops = []
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
"s2": s2m1
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}