merge hell
This commit is contained in:
commit
2989dc2554
|
|
@ -1,6 +1,9 @@
|
|||
.idea
|
||||
.ipynb_checkpoints
|
||||
.DS_Store
|
||||
.idea
|
||||
notebooks
|
||||
SimCAD.egg-info
|
||||
__pycache__
|
||||
Pipfile
|
||||
Pipfile.lock
|
||||
|
|
|
|||
|
|
@ -19,9 +19,9 @@ SimCAD is written in Python 3.
|
|||
|
||||
**1. Install Dependencies:**
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
pip3 install -r requirements.txt
|
||||
python3 setup.py sdist bdist_wheel
|
||||
pip install dist/SimCAD-0.1-py3-none-any.whl
|
||||
pip3 install dist/SimCAD-0.1-py3-none-any.whl
|
||||
```
|
||||
|
||||
**2. Configure Simulation:**
|
||||
|
|
|
|||
|
|
@ -2,36 +2,70 @@ from functools import reduce
|
|||
from fn.op import foldr
|
||||
import pandas as pd
|
||||
|
||||
from SimCAD import configs
|
||||
from SimCAD.utils import key_filter
|
||||
from SimCAD.configuration.utils.behaviorAggregation import dict_elemwise_sum
|
||||
from SimCAD.configuration.utils import exo_update_per_ts
|
||||
|
||||
|
||||
class Configuration:
|
||||
def __init__(self, sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms, behavior_ops=[foldr(dict_elemwise_sum())]):
|
||||
class Configuration(object):
|
||||
def __init__(self, sim_config=None, state_dict=None, seed=None, env_processes=None,
|
||||
exogenous_states=None, mechanisms=None, behavior_ops=[foldr(dict_elemwise_sum())]):
|
||||
self.sim_config = sim_config
|
||||
self.state_dict = state_dict
|
||||
self.seed = seed
|
||||
self.exogenous_states = exogenous_states
|
||||
self.env_processes = env_processes
|
||||
self.behavior_ops = behavior_ops
|
||||
self.exogenous_states = exogenous_states
|
||||
self.mechanisms = mechanisms
|
||||
self.behavior_ops = behavior_ops
|
||||
|
||||
|
||||
def append_configs(sim_configs, state_dict, seed, raw_exogenous_states, env_processes, mechanisms, _exo_update_per_ts=True):
|
||||
if _exo_update_per_ts is True:
|
||||
exogenous_states = exo_update_per_ts(raw_exogenous_states)
|
||||
else:
|
||||
exogenous_states = raw_exogenous_states
|
||||
|
||||
if isinstance(sim_configs, list):
|
||||
for sim_config in sim_configs:
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_config,
|
||||
state_dict=state_dict,
|
||||
seed=seed,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
mechanisms=mechanisms
|
||||
)
|
||||
)
|
||||
elif isinstance(sim_configs, dict):
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_configs,
|
||||
state_dict=state_dict,
|
||||
seed=seed,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
mechanisms=mechanisms
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class Identity:
|
||||
def __init__(self, behavior_id={'identity': 0}):
|
||||
self.beh_id_return_val = behavior_id
|
||||
|
||||
def b_identity(self, step, sL, s):
|
||||
def b_identity(self, var_dict, step, sL, s):
|
||||
return self.beh_id_return_val
|
||||
|
||||
def behavior_identity(self, k):
|
||||
return self.b_identity
|
||||
|
||||
def no_state_identity(self, step, sL, s, _input):
|
||||
def no_state_identity(self, var_dict, step, sL, s, _input):
|
||||
return None
|
||||
|
||||
def state_identity(self, k):
|
||||
return lambda step, sL, s, _input: (k, s[k])
|
||||
return lambda var_dict, step, sL, s, _input: (k, s[k])
|
||||
|
||||
def apply_identity_funcs(self, identity, df, cols):
|
||||
def fillna_with_id_func(identity, df, col):
|
||||
|
|
|
|||
|
|
@ -1,8 +1,11 @@
|
|||
from datetime import datetime, timedelta
|
||||
from decimal import Decimal
|
||||
from copy import deepcopy
|
||||
from fn.func import curried
|
||||
import pandas as pd
|
||||
|
||||
from SimCAD.utils import dict_filter, contains_type
|
||||
|
||||
|
||||
class TensorFieldReport:
|
||||
def __init__(self, config_proc):
|
||||
|
|
@ -17,9 +20,17 @@ class TensorFieldReport:
|
|||
return df
|
||||
|
||||
|
||||
# def s_update(y, x):
|
||||
# return lambda step, sL, s, _input: (y, x)
|
||||
#
|
||||
#
|
||||
def state_update(y, x):
|
||||
return lambda step, sL, s, _input: (y, x)
|
||||
|
||||
|
||||
def bound_norm_random(rng, low, high):
|
||||
res = rng.normal((high+low)/2, (high-low)/6)
|
||||
if (res<low or res>high):
|
||||
if res < low or res > high:
|
||||
res = bound_norm_random(rng, low, high)
|
||||
return Decimal(res)
|
||||
|
||||
|
|
@ -32,26 +43,78 @@ def proc_trigger(trigger_step, update_f, step):
|
|||
return lambda x: x
|
||||
|
||||
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=30)
|
||||
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', _timedelta = t_delta):
|
||||
step_t_delta = timedelta(days=0, minutes=0, seconds=30)
|
||||
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', _timedelta = step_t_delta):
|
||||
dt = datetime.strptime(dt_str, dt_format)
|
||||
t = dt + _timedelta
|
||||
return t.strftime(dt_format)
|
||||
|
||||
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = t_delta):
|
||||
ep_t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', _timedelta = ep_t_delta):
|
||||
if s['mech_step'] == 0:
|
||||
return time_step(dt_str, fromat_str, _timedelta)
|
||||
else:
|
||||
return dt_str
|
||||
|
||||
|
||||
def mech_sweep_filter(mech_field, mechanisms):
|
||||
mech_dict = dict([(k, v[mech_field]) for k, v in mechanisms.items()])
|
||||
return dict([
|
||||
(k, dict_filter(v, lambda v: isinstance(v, list))) for k, v in mech_dict.items()
|
||||
if contains_type(list(v.values()), list)
|
||||
])
|
||||
|
||||
|
||||
def state_sweep_filter(raw_exogenous_states):
|
||||
return dict([(k, v) for k, v in raw_exogenous_states.items() if isinstance(v, list)])
|
||||
|
||||
@curried
|
||||
def sweep_mechs(_type, in_config):
|
||||
configs = []
|
||||
filtered_mech_states = mech_sweep_filter(_type, in_config.mechanisms)
|
||||
if len(filtered_mech_states) > 0:
|
||||
for mech, state_dict in filtered_mech_states.items():
|
||||
for state, state_funcs in state_dict.items():
|
||||
for f in state_funcs:
|
||||
config = deepcopy(in_config)
|
||||
config.mechanisms[mech][_type][state] = f
|
||||
configs.append(config)
|
||||
del config
|
||||
else:
|
||||
configs = [in_config]
|
||||
|
||||
return configs
|
||||
|
||||
|
||||
@curried
|
||||
def sweep_states(state_type, states, in_config):
|
||||
configs = []
|
||||
filtered_states = state_sweep_filter(states)
|
||||
if len(filtered_states) > 0:
|
||||
for state, state_funcs in filtered_states.items():
|
||||
for f in state_funcs:
|
||||
config = deepcopy(in_config)
|
||||
exploded_states = deepcopy(states)
|
||||
exploded_states[state] = f
|
||||
if state_type == 'exogenous':
|
||||
config.exogenous_states = exploded_states
|
||||
elif state_type == 'environmental':
|
||||
config.env_processes = exploded_states
|
||||
configs.append(config)
|
||||
del config, exploded_states
|
||||
else:
|
||||
configs = [in_config]
|
||||
|
||||
return configs
|
||||
|
||||
|
||||
def exo_update_per_ts(ep):
|
||||
@curried
|
||||
def ep_decorator(f, y, step, sL, s, _input):
|
||||
def ep_decorator(f, y, var_dict, step, sL, s, _input):
|
||||
if s['mech_step'] + 1 == 1:
|
||||
return f(step, sL, s, _input)
|
||||
return f(var_dict, step, sL, s, _input) # curry_pot
|
||||
else:
|
||||
return (y, s[y])
|
||||
return y, s[y]
|
||||
|
||||
return {es: ep_decorator(f, es) for es, f in ep.items()}
|
||||
|
|
|
|||
|
|
@ -2,13 +2,14 @@ from fn.op import foldr
|
|||
from fn.func import curried
|
||||
|
||||
|
||||
def get_base_value(datatype):
|
||||
if datatype is str:
|
||||
def get_base_value(x):
|
||||
if isinstance(x, str):
|
||||
return ''
|
||||
elif datatype is int:
|
||||
elif isinstance(x, int):
|
||||
return 0
|
||||
elif datatype is list:
|
||||
elif isinstance(x, list):
|
||||
return []
|
||||
else:
|
||||
return 0
|
||||
|
||||
|
||||
|
|
@ -32,7 +33,7 @@ def sum_dict_values():
|
|||
def dict_op(f, d1, d2):
|
||||
def set_base_value(target_dict, source_dict, key):
|
||||
if key not in target_dict:
|
||||
return get_base_value(type(source_dict[key]))
|
||||
return get_base_value(source_dict[key])
|
||||
else:
|
||||
return target_dict[key]
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,19 @@
|
|||
from SimCAD.utils import flatten_tabulated_dict, tabulate_dict
|
||||
|
||||
|
||||
def process_variables(d):
|
||||
return flatten_tabulated_dict(tabulate_dict(d))
|
||||
|
||||
|
||||
def config_sim(d):
|
||||
if "M" in d:
|
||||
return [
|
||||
{
|
||||
"N": d["N"],
|
||||
"T": d["T"],
|
||||
"M": M
|
||||
}
|
||||
for M in process_variables(d["M"])
|
||||
]
|
||||
else:
|
||||
return d
|
||||
|
|
@ -16,16 +16,16 @@ class ExecutionContext:
|
|||
self.name = context
|
||||
self.method = None
|
||||
|
||||
def single_proc_exec(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns):
|
||||
def single_proc_exec(simulation_execs, var_dict, states_lists, configs_structs, env_processes_list, Ts, Ns):
|
||||
l = [simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns]
|
||||
simulation, states_list, config, env_processes, T, N = list(map(lambda x: x.pop(), l))
|
||||
result = simulation(states_list, config, env_processes, T, N)
|
||||
result = simulation(var_dict, states_list, config, env_processes, T, N)
|
||||
return flatten(result)
|
||||
|
||||
def parallelize_simulations(fs, states_list, configs, env_processes, Ts, Ns):
|
||||
l = list(zip(fs, states_list, configs, env_processes, Ts, Ns))
|
||||
def parallelize_simulations(fs, var_dict_list, states_list, configs, env_processes, Ts, Ns):
|
||||
l = list(zip(fs, var_dict_list, states_list, configs, env_processes, Ts, Ns))
|
||||
with Pool(len(configs)) as p:
|
||||
results = p.map(lambda t: t[0](t[1], t[2], t[3], t[4], t[5]), l)
|
||||
results = p.map(lambda t: t[0](t[1], t[2], t[3], t[4], t[5], t[6]), l)
|
||||
return results
|
||||
|
||||
if context == 'single_proc':
|
||||
|
|
@ -47,13 +47,16 @@ class Executor:
|
|||
create_tensor_field = TensorFieldReport(config_proc).create_tensor_field
|
||||
|
||||
print(self.exec_context+": "+str(self.configs))
|
||||
states_lists, Ts, Ns, eps, configs_structs, env_processes_list, mechanisms, simulation_execs = \
|
||||
[], [], [], [], [], [], [], []
|
||||
var_dict_list, states_lists, Ts, Ns, eps, configs_structs, env_processes_list, mechanisms, simulation_execs = \
|
||||
[], [], [], [], [], [], [], [], []
|
||||
config_idx = 0
|
||||
for x in self.configs:
|
||||
states_lists.append([x.state_dict])
|
||||
|
||||
Ts.append(x.sim_config['T'])
|
||||
Ns.append(x.sim_config['N'])
|
||||
var_dict_list.append(x.sim_config['M'])
|
||||
|
||||
states_lists.append([x.state_dict])
|
||||
eps.append(list(x.exogenous_states.values()))
|
||||
configs_structs.append(config_proc.generate_config(x.state_dict, x.mechanisms, eps[config_idx]))
|
||||
env_processes_list.append(x.env_processes)
|
||||
|
|
@ -64,11 +67,11 @@ class Executor:
|
|||
|
||||
if self.exec_context == ExecutionMode.single_proc:
|
||||
tensor_field = create_tensor_field(mechanisms.pop(), eps.pop())
|
||||
result = self.exec_method(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||
result = self.exec_method(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||
return result, tensor_field
|
||||
elif self.exec_context == ExecutionMode.multi_proc:
|
||||
if len(self.configs) > 1:
|
||||
simulations = self.exec_method(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||
simulations = self.exec_method(simulation_execs, var_dict_list, states_lists, configs_structs, env_processes_list, Ts, Ns)
|
||||
results = []
|
||||
for result, mechanism, ep in list(zip(simulations, mechanisms, eps)):
|
||||
results.append((flatten(result), create_tensor_field(mechanism, ep)))
|
||||
|
|
|
|||
|
|
@ -1,5 +1,6 @@
|
|||
from copy import deepcopy
|
||||
from fn.op import foldr, call
|
||||
|
||||
from SimCAD.engine.utils import engine_exception
|
||||
|
||||
id_exception = engine_exception(KeyError, KeyError, None)
|
||||
|
|
@ -11,13 +12,15 @@ class Executor:
|
|||
self.state_update_exception = state_update_exception
|
||||
self.behavior_update_exception = behavior_update_exception
|
||||
|
||||
def get_behavior_input(self, step, sL, s, funcs):
|
||||
def get_behavior_input(self, var_dict, step, sL, s, funcs):
|
||||
ops = self.behavior_ops[::-1]
|
||||
|
||||
def get_col_results(step, sL, s, funcs):
|
||||
return list(map(lambda f: f(step, sL, s), funcs))
|
||||
def get_col_results(var_dict, step, sL, s, funcs):
|
||||
# return list(map(lambda f: curry_pot(f, step, sL, s), funcs))
|
||||
return list(map(lambda f: f(var_dict, step, sL, s), funcs))
|
||||
|
||||
return foldr(call, get_col_results(step, sL, s, funcs))(ops)
|
||||
# print(get_col_results(step, sL, s, funcs))
|
||||
return foldr(call, get_col_results(var_dict, step, sL, s, funcs))(ops)
|
||||
|
||||
def apply_env_proc(self, env_processes, state_dict, step):
|
||||
for state in state_dict.keys():
|
||||
|
|
@ -28,12 +31,19 @@ class Executor:
|
|||
else:
|
||||
state_dict[state] = env_state(state_dict[state])
|
||||
|
||||
def mech_step(self, m_step, sL, state_funcs, behavior_funcs, env_processes, t_step, run):
|
||||
def mech_step(self, var_dict, m_step, sL, state_funcs, behavior_funcs, env_processes, t_step, run):
|
||||
last_in_obj = sL[-1]
|
||||
|
||||
_input = self.state_update_exception(self.get_behavior_input(m_step, sL, last_in_obj, behavior_funcs))
|
||||
_input = self.behavior_update_exception(self.get_behavior_input(var_dict, m_step, sL, last_in_obj, behavior_funcs))
|
||||
# print(_input)
|
||||
|
||||
last_in_copy = dict([self.behavior_update_exception(f(m_step, sL, last_in_obj, _input)) for f in state_funcs])
|
||||
# ToDo: add env_proc generator to `last_in_copy` iterator as wrapper function
|
||||
last_in_copy = dict(
|
||||
[
|
||||
# self.state_update_exception(curry_pot(f, m_step, sL, last_in_obj, _input)) for f in state_funcs
|
||||
self.state_update_exception(f(var_dict, m_step, sL, last_in_obj, _input)) for f in state_funcs
|
||||
]
|
||||
)
|
||||
|
||||
for k in last_in_obj:
|
||||
if k not in last_in_copy:
|
||||
|
|
@ -49,7 +59,7 @@ class Executor:
|
|||
|
||||
return sL
|
||||
|
||||
def mech_pipeline(self, states_list, configs, env_processes, t_step, run):
|
||||
def mech_pipeline(self, var_dict, states_list, configs, env_processes, t_step, run):
|
||||
m_step = 0
|
||||
states_list_copy = deepcopy(states_list)
|
||||
genesis_states = states_list_copy[-1]
|
||||
|
|
@ -59,29 +69,32 @@ class Executor:
|
|||
m_step += 1
|
||||
for config in configs:
|
||||
s_conf, b_conf = config[0], config[1]
|
||||
states_list = self.mech_step(m_step, states_list, s_conf, b_conf, env_processes, t_step, run)
|
||||
states_list = self.mech_step(var_dict, m_step, states_list, s_conf, b_conf, env_processes, t_step, run)
|
||||
m_step += 1
|
||||
|
||||
t_step += 1
|
||||
|
||||
return states_list
|
||||
|
||||
def block_pipeline(self, states_list, configs, env_processes, time_seq, run):
|
||||
# ToDo: Rename Run Pipeline
|
||||
def block_pipeline(self, var_dict, states_list, configs, env_processes, time_seq, run):
|
||||
time_seq = [x + 1 for x in time_seq]
|
||||
simulation_list = [states_list]
|
||||
for time_step in time_seq:
|
||||
pipe_run = self.mech_pipeline(simulation_list[-1], configs, env_processes, time_step, run)
|
||||
pipe_run = self.mech_pipeline(var_dict, simulation_list[-1], configs, env_processes, time_step, run)
|
||||
_, *pipe_run = pipe_run
|
||||
simulation_list.append(pipe_run)
|
||||
|
||||
return simulation_list
|
||||
|
||||
def simulation(self, states_list, configs, env_processes, time_seq, runs):
|
||||
|
||||
# ToDo: Muiltithreaded Runs
|
||||
def simulation(self, var_dict, states_list, configs, env_processes, time_seq, runs):
|
||||
pipe_run = []
|
||||
for run in range(runs):
|
||||
run += 1
|
||||
states_list_copy = deepcopy(states_list)
|
||||
head, *tail = self.block_pipeline(states_list_copy, configs, env_processes, time_seq, run)
|
||||
head, *tail = self.block_pipeline(var_dict, states_list_copy, configs, env_processes, time_seq, run)
|
||||
genesis = head.pop()
|
||||
genesis['mech_step'], genesis['time_step'], genesis['run'] = 0, 0, run
|
||||
first_timestep_per_run = [genesis] + tail.pop(0)
|
||||
|
|
|
|||
|
|
@ -24,6 +24,8 @@ def retrieve_state(l, offset):
|
|||
return l[last_index(l) + offset + 1]
|
||||
|
||||
|
||||
# exception_function = f(m_step, sL, sL[-2], _input)
|
||||
# try_function = f(m_step, sL, last_mut_obj, _input)
|
||||
@curried
|
||||
def engine_exception(ErrorType, error_message, exception_function, try_function):
|
||||
try:
|
||||
|
|
@ -31,3 +33,10 @@ def engine_exception(ErrorType, error_message, exception_function, try_function)
|
|||
except ErrorType:
|
||||
print(error_message)
|
||||
return exception_function
|
||||
|
||||
|
||||
@curried
|
||||
def fit_param(param, x):
|
||||
return x + param
|
||||
|
||||
# fit_param = lambda param: lambda x: x + param
|
||||
|
|
|
|||
|
|
@ -1,3 +1,7 @@
|
|||
from collections import defaultdict
|
||||
from itertools import product
|
||||
|
||||
|
||||
def pipe(x):
|
||||
return x
|
||||
|
||||
|
|
@ -7,14 +11,118 @@ def print_pipe(x):
|
|||
return x
|
||||
|
||||
|
||||
def flattenDict(l):
|
||||
def tupalize(k, vs):
|
||||
l = []
|
||||
if isinstance(vs, list):
|
||||
for v in vs:
|
||||
l.append((k, v))
|
||||
else:
|
||||
l.append((k, vs))
|
||||
return l
|
||||
|
||||
flat_list = [tupalize(k, vs) for k, vs in l.items()]
|
||||
flat_dict = [dict(items) for items in product(*flat_list)]
|
||||
return flat_dict
|
||||
|
||||
|
||||
def flatten(l):
|
||||
if isinstance(l, list):
|
||||
return [item for sublist in l for item in sublist]
|
||||
elif isinstance(l, dict):
|
||||
return flattenDict(l)
|
||||
|
||||
|
||||
def flatMap(f, collection):
|
||||
return flatten(list(map(f, collection)))
|
||||
|
||||
|
||||
def dict_filter(dictionary, condition):
|
||||
return dict([(k, v) for k, v in dictionary.items() if condition(v)])
|
||||
|
||||
|
||||
def get_max_dict_val_len(g):
|
||||
return len(max(g.values(), key=len))
|
||||
|
||||
|
||||
def tabulate_dict(d):
|
||||
max_len = get_max_dict_val_len(d)
|
||||
_d = {}
|
||||
for k, vl in d.items():
|
||||
if len(vl) != max_len:
|
||||
_d[k] = vl + list([vl[-1]] * (max_len-1))
|
||||
else:
|
||||
_d[k] = vl
|
||||
|
||||
return _d
|
||||
|
||||
|
||||
def flatten_tabulated_dict(d):
|
||||
max_len = get_max_dict_val_len(d)
|
||||
dl = [{} for i in range(max_len)]
|
||||
|
||||
for k, vl in d.items():
|
||||
for v, i in zip(vl, list(range(len(vl)))):
|
||||
dl[i][k] = v
|
||||
|
||||
return dl
|
||||
|
||||
|
||||
def contains_type(_collection, type):
|
||||
return any(isinstance(x, type) for x in _collection)
|
||||
|
||||
|
||||
def drop_right(l, n):
|
||||
return l[:len(l) - n]
|
||||
|
||||
|
||||
def key_filter(l, keyname):
|
||||
return [v[keyname] for k, v in l.items()]
|
||||
|
||||
|
||||
def groupByKey(l):
|
||||
d = defaultdict(list)
|
||||
for key, value in l:
|
||||
d[key].append(value)
|
||||
return list(dict(d).items()).pop()
|
||||
|
||||
|
||||
# @curried
|
||||
def rename(new_name, f):
|
||||
f.__name__ = new_name
|
||||
return f
|
||||
|
||||
|
||||
def curry_pot(f, *argv):
|
||||
sweep_ind = f.__name__[0:5] == 'sweep'
|
||||
arg_len = len(argv)
|
||||
if sweep_ind is True and arg_len == 4:
|
||||
return f(argv[0])(argv[1])(argv[2])(argv[3])
|
||||
elif sweep_ind is False and arg_len == 4:
|
||||
return f(argv[0], argv[1], argv[2], argv[3])
|
||||
elif sweep_ind is True and arg_len == 3:
|
||||
return f(argv[0])(argv[1])(argv[2])
|
||||
elif sweep_ind is False and arg_len == 3:
|
||||
return f(argv[0], argv[1], argv[2])
|
||||
else:
|
||||
raise TypeError('curry_pot() needs 3 or 4 positional arguments')
|
||||
|
||||
# def curry_pot(f, *argv):
|
||||
# sweep_ind = f.__name__[0:5] == 'sweep'
|
||||
# arg_len = len(argv)
|
||||
# if sweep_ind is True and arg_len == 4:
|
||||
# return f(argv[0])(argv[1])(argv[2])(argv[3])
|
||||
# elif sweep_ind is False and arg_len == 4:
|
||||
# return f(argv[0])(argv[1])(argv[2])(argv[3])
|
||||
# elif sweep_ind is True and arg_len == 3:
|
||||
# return f(argv[0])(argv[1])(argv[2])
|
||||
# elif sweep_ind is False and arg_len == 3:
|
||||
# return f(argv[0])(argv[1])(argv[2])
|
||||
# else:
|
||||
# raise TypeError('curry_pot() needs 3 or 4 positional arguments')
|
||||
|
||||
# def rename(newname):
|
||||
# def decorator(f):
|
||||
# f.__name__ = newname
|
||||
# return f
|
||||
# return decorator
|
||||
|
|
|
|||
|
|
@ -1,4 +1,4 @@
|
|||
# SimmCAD Documentation
|
||||
# SimCAD Documentation
|
||||
|
||||
## Introduction
|
||||
|
||||
|
|
|
|||
|
|
@ -0,0 +1,576 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import _thread\n",
|
||||
"import time\n",
|
||||
"from fn.func import curried"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Define a function for the thread\n",
|
||||
"def f(threadName, delay):\n",
|
||||
" count = 0\n",
|
||||
" print(count)\n",
|
||||
" # while count < 5:\n",
|
||||
" # time.sleep(delay)\n",
|
||||
" # count += 1\n",
|
||||
" # print(count)\n",
|
||||
" \n",
|
||||
"def pipe(x):\n",
|
||||
" print(x)\n",
|
||||
" return x"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"00\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Create two threads as follows\n",
|
||||
"try:\n",
|
||||
" _thread.start_new_thread( f, (\"Thread-1\", 2, ) )\n",
|
||||
" _thread.start_new_thread( f, (\"Thread-2\", 4, ) )\n",
|
||||
"except:\n",
|
||||
" print (\"Error: unable to start thread\")\n",
|
||||
"\n",
|
||||
"while 1:\n",
|
||||
" pass\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[1, 2]\n",
|
||||
"('s2', <function fit_param.<locals>.<lambda> at 0x1099efae8>)\n",
|
||||
"('s2', <function fit_param.<locals>.<lambda> at 0x1099ef9d8>)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from SimCAD.engine.utils import sweep\n",
|
||||
"from SimCAD.utils import rename\n",
|
||||
"from SimCAD.configuration.utils import s_update\n",
|
||||
"\n",
|
||||
"# @curried\n",
|
||||
"def fit_param(param):\n",
|
||||
" return lambda x: x + param\n",
|
||||
"\n",
|
||||
"# xf = lambda param: lambda x: x + param\n",
|
||||
"\n",
|
||||
"def sweep(params, y, xf):\n",
|
||||
" op = [rename('sweep', s_update(y, xf(param))) for param in params]\n",
|
||||
" print(params)\n",
|
||||
" # print()\n",
|
||||
" return op\n",
|
||||
"\n",
|
||||
"for f in sweep([1,2], 's2', fit_param):\n",
|
||||
" print(f(1,2,3,4))\n",
|
||||
"# sweep([1,2], 's2', xf)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"[1, 64, 2187, 65536]\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# instantiate and configure the worker pool\n",
|
||||
"from pathos.threading import ThreadPool\n",
|
||||
"pool = ThreadPool(nodes=4)\n",
|
||||
"\n",
|
||||
"# do a blocking map on the chosen function\n",
|
||||
"print(pool.map(pow, [1,2,3,4], [5,6,7,8]))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "SyntaxError",
|
||||
"evalue": "invalid syntax (<ipython-input-2-6e999d313015>, line 3)",
|
||||
"traceback": [
|
||||
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-2-6e999d313015>\"\u001b[0;36m, line \u001b[0;32m3\u001b[0m\n\u001b[0;31m [for f in fs]\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
|
||||
],
|
||||
"output_type": "error"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"with Pool(len(configs)) as p:\n",
|
||||
" results = p.map(lambda t: t[0](t[1], t[2], t[3], t[4], t[5]), l)\n",
|
||||
" \n",
|
||||
"\n",
|
||||
"def state_multithreading(self, fs, m_step, sL, last_in_obj, _input):\n",
|
||||
" if type(fs) == 'list':\n",
|
||||
" pool.map(f(m_step, sL, last_in_obj, _input), fs)\n",
|
||||
" else:\n",
|
||||
" f(m_step, sL, last_in_obj, _input)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[('s2', [11, 23])]"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from itertools import groupby\n",
|
||||
"l = [('s2', 11), ('s2', 23)]\n",
|
||||
"l.sort(key = lambda i : i[0])\n",
|
||||
"[(key, [i[1] for i in values]) for key, values in groupby(l, lambda i: i[0])]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def groupByKV(l):\n",
|
||||
" l.sort(key = lambda i : i[0])\n",
|
||||
" return [(key, [i[1] for i in values]) for key, values in groupby(l, lambda i: i[0])]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[('s2', [11, 23])]"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"groupByKV(l)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "SyntaxError",
|
||||
"evalue": "invalid syntax (<ipython-input-20-fada0ccd8d2a>, line 2)",
|
||||
"traceback": [
|
||||
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-20-fada0ccd8d2a>\"\u001b[0;36m, line \u001b[0;32m2\u001b[0m\n\u001b[0;31m collect = lambda tuplist: reduce(lambda acc, (k,v): acc[k].append(v) or acc,tuplist, defaultdict(list))\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
|
||||
],
|
||||
"output_type": "error"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from collections import defaultdict \n",
|
||||
"collect = lambda tuplist: reduce(lambda acc, (k,v): acc[k].append(v) or acc,tuplist, defaultdict(list))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 23,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from collections import defaultdict\n",
|
||||
"d = defaultdict(list)\n",
|
||||
"for key, value in [('s2', 11), ('s2', 23)]:\n",
|
||||
" d[key].append(value)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
"metadata": {
|
||||
"collapsed": true
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Help on defaultdict object:\n",
|
||||
"\n",
|
||||
"class defaultdict(builtins.dict)\n",
|
||||
" | defaultdict(default_factory[, ...]) --> dict with default factory\n",
|
||||
" | \n",
|
||||
" | The default factory is called without arguments to produce\n",
|
||||
" | a new value when a key is not present, in __getitem__ only.\n",
|
||||
" | A defaultdict compares equal to a dict with the same items.\n",
|
||||
" | All remaining arguments are treated the same as if they were\n",
|
||||
" | passed to the dict constructor, including keyword arguments.\n",
|
||||
" | \n",
|
||||
" | Method resolution order:\n",
|
||||
" | defaultdict\n",
|
||||
" | builtins.dict\n",
|
||||
" | builtins.object\n",
|
||||
" | \n",
|
||||
" | Methods defined here:\n",
|
||||
" | \n",
|
||||
" | __copy__(...)\n",
|
||||
" | D.copy() -> a shallow copy of D.\n",
|
||||
" | \n",
|
||||
" | __getattribute__(self, name, /)\n",
|
||||
" | Return getattr(self, name).\n",
|
||||
" | \n",
|
||||
" | __init__(self, /, *args, **kwargs)\n",
|
||||
" | Initialize self. See help(type(self)) for accurate signature.\n",
|
||||
" | \n",
|
||||
" | __missing__(...)\n",
|
||||
" | __missing__(key) # Called by __getitem__ for missing key; pseudo-code:\n",
|
||||
" | if self.default_factory is None: raise KeyError((key,))\n",
|
||||
" | self[key] = value = self.default_factory()\n",
|
||||
" | return value\n",
|
||||
" | \n",
|
||||
" | __reduce__(...)\n",
|
||||
" | Return state information for pickling.\n",
|
||||
" | \n",
|
||||
" | __repr__(self, /)\n",
|
||||
" | Return repr(self).\n",
|
||||
" | \n",
|
||||
" | copy(...)\n",
|
||||
" | D.copy() -> a shallow copy of D.\n",
|
||||
" | \n",
|
||||
" | ----------------------------------------------------------------------\n",
|
||||
" | Data descriptors defined here:\n",
|
||||
" | \n",
|
||||
" | default_factory\n",
|
||||
" | Factory for default value called by __missing__().\n",
|
||||
" | \n",
|
||||
" | ----------------------------------------------------------------------\n",
|
||||
" | Methods inherited from builtins.dict:\n",
|
||||
" | \n",
|
||||
" | __contains__(self, key, /)\n",
|
||||
" | True if D has a key k, else False.\n",
|
||||
" | \n",
|
||||
" | __delitem__(self, key, /)\n",
|
||||
" | Delete self[key].\n",
|
||||
" | \n",
|
||||
" | __eq__(self, value, /)\n",
|
||||
" | Return self==value.\n",
|
||||
" | \n",
|
||||
" | __ge__(self, value, /)\n",
|
||||
" | Return self>=value.\n",
|
||||
" | \n",
|
||||
" | __getitem__(...)\n",
|
||||
" | x.__getitem__(y) <==> x[y]\n",
|
||||
" | \n",
|
||||
" | __gt__(self, value, /)\n",
|
||||
" | Return self>value.\n",
|
||||
" | \n",
|
||||
" | __iter__(self, /)\n",
|
||||
" | Implement iter(self).\n",
|
||||
" | \n",
|
||||
" | __le__(self, value, /)\n",
|
||||
" | Return self<=value.\n",
|
||||
" | \n",
|
||||
" | __len__(self, /)\n",
|
||||
" | Return len(self).\n",
|
||||
" | \n",
|
||||
" | __lt__(self, value, /)\n",
|
||||
" | Return self<value.\n",
|
||||
" | \n",
|
||||
" | __ne__(self, value, /)\n",
|
||||
" | Return self!=value.\n",
|
||||
" | \n",
|
||||
" | __new__(*args, **kwargs) from builtins.type\n",
|
||||
" | Create and return a new object. See help(type) for accurate signature.\n",
|
||||
" | \n",
|
||||
" | __setitem__(self, key, value, /)\n",
|
||||
" | Set self[key] to value.\n",
|
||||
" | \n",
|
||||
" | __sizeof__(...)\n",
|
||||
" | D.__sizeof__() -> size of D in memory, in bytes\n",
|
||||
" | \n",
|
||||
" | clear(...)\n",
|
||||
" | D.clear() -> None. Remove all items from D.\n",
|
||||
" | \n",
|
||||
" | fromkeys(iterable, value=None, /) from builtins.type\n",
|
||||
" | Returns a new dict with keys from iterable and values equal to value.\n",
|
||||
" | \n",
|
||||
" | get(...)\n",
|
||||
" | D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None.\n",
|
||||
" | \n",
|
||||
" | items(...)\n",
|
||||
" | D.items() -> a set-like object providing a view on D's items\n",
|
||||
" | \n",
|
||||
" | keys(...)\n",
|
||||
" | D.keys() -> a set-like object providing a view on D's keys\n",
|
||||
" | \n",
|
||||
" | pop(...)\n",
|
||||
" | D.pop(k[,d]) -> v, remove specified key and return the corresponding value.\n",
|
||||
" | If key is not found, d is returned if given, otherwise KeyError is raised\n",
|
||||
" | \n",
|
||||
" | popitem(...)\n",
|
||||
" | D.popitem() -> (k, v), remove and return some (key, value) pair as a\n",
|
||||
" | 2-tuple; but raise KeyError if D is empty.\n",
|
||||
" | \n",
|
||||
" | setdefault(...)\n",
|
||||
" | D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D\n",
|
||||
" | \n",
|
||||
" | update(...)\n",
|
||||
" | D.update([E, ]**F) -> None. Update D from dict/iterable E and F.\n",
|
||||
" | If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]\n",
|
||||
" | If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v\n",
|
||||
" | In either case, this is followed by: for k in F: D[k] = F[k]\n",
|
||||
" | \n",
|
||||
" | values(...)\n",
|
||||
" | D.values() -> an object providing a view on D's values\n",
|
||||
" | \n",
|
||||
" | ----------------------------------------------------------------------\n",
|
||||
" | Data and other attributes inherited from builtins.dict:\n",
|
||||
" | \n",
|
||||
" | __hash__ = None\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"help(d)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"{'s2': [11, 23]}"
|
||||
]
|
||||
},
|
||||
"execution_count": 27,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"dict(d)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 55,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def groupByKey(l):\n",
|
||||
" d = defaultdict(list)\n",
|
||||
" for key, value in l:\n",
|
||||
" d[key].append(value)\n",
|
||||
" return list(dict(d).items()).pop()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"('s2', [11, 23])"
|
||||
]
|
||||
},
|
||||
"execution_count": 56,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"r = groupByKey([('s2', 11), ('s2', 23)])\n",
|
||||
"r"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# xf = lambda param: 1.0 + param\n",
|
||||
"# def xf(y, param, s):\n",
|
||||
"# return s[y] + param\n",
|
||||
"\n",
|
||||
"# def fit_param(param):\n",
|
||||
"# y = 's2'\n",
|
||||
"# x = 1 + param\n",
|
||||
"# return lambda step, sL, s, _input: (y, x)\n",
|
||||
"#\n",
|
||||
"# def fit_param(param):\n",
|
||||
"# return lambda step, sL, s, _input: (\n",
|
||||
"# 's2',\n",
|
||||
"# s['s2'] + param\n",
|
||||
"# )\n",
|
||||
"#\n",
|
||||
"# s2m1 = sweep(\n",
|
||||
"# params = [Decimal(11.0), Decimal(22.0)],\n",
|
||||
"# sweep_f = fit_param\n",
|
||||
"# )"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from decimal import Decimal\n",
|
||||
"from itertools import product\n",
|
||||
"\n",
|
||||
"# def \n",
|
||||
"\n",
|
||||
"l = {\n",
|
||||
" 's1': 1, \n",
|
||||
" 's2': [Decimal('11'), Decimal('22')], \n",
|
||||
" 's3': [Decimal('12'), Decimal('23')], \n",
|
||||
" 's4': 10, \n",
|
||||
" 'timestamp': '2018-10-01 15:16:25', \n",
|
||||
" 'mech_step': 0, \n",
|
||||
" 'time_step': 1\n",
|
||||
"}\n",
|
||||
"\n",
|
||||
"def flattenDict(l):\n",
|
||||
" def tupalize(k, vs):\n",
|
||||
" l = []\n",
|
||||
" if isinstance(vs, list):\n",
|
||||
" for v in vs:\n",
|
||||
" l.append((k, v))\n",
|
||||
" else:\n",
|
||||
" l.append((k, vs))\n",
|
||||
" return l\n",
|
||||
"\n",
|
||||
" flat_list = [tupalize(k, vs) for k, vs in l.items()]\n",
|
||||
" flat_dict = [dict(items) for items in product(*flat_list)]\n",
|
||||
" return flat_dict"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'s1': 1,\n",
|
||||
" 's2': Decimal('11'),\n",
|
||||
" 's3': Decimal('12'),\n",
|
||||
" 's4': 10,\n",
|
||||
" 'timestamp': '2018-10-01 15:16:25',\n",
|
||||
" 'mech_step': 0,\n",
|
||||
" 'time_step': 1},\n",
|
||||
" {'s1': 1,\n",
|
||||
" 's2': Decimal('11'),\n",
|
||||
" 's3': Decimal('23'),\n",
|
||||
" 's4': 10,\n",
|
||||
" 'timestamp': '2018-10-01 15:16:25',\n",
|
||||
" 'mech_step': 0,\n",
|
||||
" 'time_step': 1},\n",
|
||||
" {'s1': 1,\n",
|
||||
" 's2': Decimal('22'),\n",
|
||||
" 's3': Decimal('12'),\n",
|
||||
" 's4': 10,\n",
|
||||
" 'timestamp': '2018-10-01 15:16:25',\n",
|
||||
" 'mech_step': 0,\n",
|
||||
" 'time_step': 1},\n",
|
||||
" {'s1': 1,\n",
|
||||
" 's2': Decimal('22'),\n",
|
||||
" 's3': Decimal('23'),\n",
|
||||
" 's4': 10,\n",
|
||||
" 'timestamp': '2018-10-01 15:16:25',\n",
|
||||
" 'mech_step': 0,\n",
|
||||
" 'time_step': 1}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"flattenDict(l)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.6.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 1
|
||||
}
|
||||
|
|
@ -1,4 +1,5 @@
|
|||
wheel
|
||||
pandas
|
||||
pathos
|
||||
fn
|
||||
tabulate
|
||||
|
|
@ -1,29 +1,27 @@
|
|||
import pandas as pd
|
||||
from tabulate import tabulate
|
||||
|
||||
# The following imports NEED to be in the exact order
|
||||
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||
from simulations.validation import config1, config2
|
||||
from simulations.validation import sweep_config
|
||||
from SimCAD import configs
|
||||
|
||||
exec_mode = ExecutionMode()
|
||||
|
||||
print("Simulation Execution 1")
|
||||
print()
|
||||
first_config = [configs[0]] # from config1
|
||||
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||
run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
|
||||
run1_raw_result, tensor_field = run1.main()
|
||||
result = pd.DataFrame(run1_raw_result)
|
||||
print()
|
||||
print("Tensor Field:")
|
||||
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
|
||||
print("Output:")
|
||||
print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||
print()
|
||||
# print("Simulation Execution 1")
|
||||
# print()
|
||||
# first_config = [configs[0]] # from config1
|
||||
# single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
|
||||
# run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
|
||||
# run1_raw_result, tensor_field = run1.main()
|
||||
# result = pd.DataFrame(run1_raw_result)
|
||||
# print()
|
||||
# print("Tensor Field:")
|
||||
# print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
|
||||
# print("Output:")
|
||||
# print(tabulate(result, headers='keys', tablefmt='psql'))
|
||||
# print()
|
||||
|
||||
print("Simulation Execution 2: Pairwise Execution")
|
||||
print()
|
||||
print("Simulation Execution 2: Concurrent Execution")
|
||||
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
|
||||
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
|
||||
for raw_result, tensor_field in run2.main():
|
||||
|
|
|
|||
|
|
@ -1,171 +0,0 @@
|
|||
from decimal import Decimal
|
||||
import numpy as np
|
||||
from datetime import timedelta
|
||||
|
||||
from SimCAD import configs
|
||||
from SimCAD.configuration import Configuration
|
||||
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
||||
ep_time_step
|
||||
|
||||
seed = {
|
||||
'z': np.random.RandomState(1),
|
||||
'a': np.random.RandomState(2),
|
||||
'b': np.random.RandomState(3),
|
||||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
# Behaviors per Mechanism
|
||||
# Different return types per mechanism ?? *** No ***
|
||||
def b1m1(step, sL, s):
|
||||
return {'param1': 1}
|
||||
def b2m1(step, sL, s):
|
||||
return {'param1': 1}
|
||||
|
||||
def b1m2(step, sL, s):
|
||||
return {'param1': 1, 'param2': 2}
|
||||
def b2m2(step, sL, s):
|
||||
return {'param1': 1, 'param2': 4}
|
||||
|
||||
def b1m3(step, sL, s):
|
||||
return {'param1': 1, 'param2': np.array([10, 100])}
|
||||
def b2m3(step, sL, s):
|
||||
return {'param1': 1, 'param2': np.array([20, 200])}
|
||||
|
||||
# deff not more than 2
|
||||
# Internal States per Mechanism
|
||||
def s1m1(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = s['s1'] + _input['param1']
|
||||
return (y, x)
|
||||
def s2m1(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = s['s2'] + _input['param1']
|
||||
return (y, x)
|
||||
|
||||
def s1m2(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = s['s1'] + _input['param1']
|
||||
return (y, x)
|
||||
def s2m2(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = s['s2'] + _input['param1']
|
||||
return (y, x)
|
||||
|
||||
def s1m3(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = s['s1'] + _input['param1']
|
||||
return (y, x)
|
||||
def s2m3(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = s['s2'] + _input['param1']
|
||||
return (y, x)
|
||||
|
||||
# Exogenous States
|
||||
proc_one_coef_A = 0.7
|
||||
proc_one_coef_B = 1.3
|
||||
|
||||
def es3p1(step, sL, s, _input):
|
||||
y = 's3'
|
||||
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es4p2(step, sL, s, _input):
|
||||
y = 's4'
|
||||
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def es5p2(step, sL, s, _input):
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Environment States
|
||||
def env_a(x):
|
||||
return 10
|
||||
def env_b(x):
|
||||
return 10
|
||||
# def what_ever(x):
|
||||
# return x + 1
|
||||
|
||||
# Genesis States
|
||||
genesis_states = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
# remove `exo_update_per_ts` to update every ts
|
||||
exogenous_states = exo_update_per_ts(
|
||||
{
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestamp": es5p2
|
||||
}
|
||||
)
|
||||
|
||||
# make env proc trigger field agnostic
|
||||
|
||||
# ToDo: Bug - Can't use environments without proc_trigger. TypeError: 'int' object is not callable
|
||||
# "/Users/jjodesty/Projects/DiffyQ-SimCAD/SimCAD/engine/simulation.py"
|
||||
env_processes = {
|
||||
# "s3": env_a,
|
||||
# "s4": env_b
|
||||
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
|
||||
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
}
|
||||
|
||||
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
||||
# mechanisms = {}
|
||||
mechanisms = {
|
||||
"m1": {
|
||||
"behaviors": {
|
||||
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
|
||||
"b2": b2m1
|
||||
},
|
||||
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
|
||||
"s1": s1m1,
|
||||
"s2": s2m1
|
||||
}
|
||||
},
|
||||
"m2": {
|
||||
"behaviors": {
|
||||
"b1": b1m2,
|
||||
"b2": b2m2
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m2,
|
||||
"s2": s2m2
|
||||
}
|
||||
},
|
||||
"m3": {
|
||||
"behaviors": {
|
||||
"b1": b1m3,
|
||||
"b2": b2m3
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m3,
|
||||
"s2": s2m3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sim_config = {
|
||||
"N": 2,
|
||||
"T": range(5)
|
||||
}
|
||||
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_config,
|
||||
state_dict=genesis_states,
|
||||
seed=seed,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
mechanisms=mechanisms
|
||||
)
|
||||
)
|
||||
|
|
@ -1,180 +0,0 @@
|
|||
from decimal import Decimal
|
||||
import numpy as np
|
||||
from datetime import timedelta
|
||||
|
||||
from SimCAD import configs
|
||||
from SimCAD.configuration import Configuration
|
||||
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
||||
ep_time_step
|
||||
|
||||
|
||||
seed = {
|
||||
'z': np.random.RandomState(1),
|
||||
'a': np.random.RandomState(2),
|
||||
'b': np.random.RandomState(3),
|
||||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
# Behaviors per Mechanism
|
||||
# Different return types per mechanism ?? *** No ***
|
||||
def b1m1(step, sL, s):
|
||||
return {'param1': 1}
|
||||
def b2m1(step, sL, s):
|
||||
return {'param2': 4}
|
||||
|
||||
def b1m2(step, sL, s):
|
||||
return {'param1': 'a', 'param2': 2}
|
||||
def b2m2(step, sL, s):
|
||||
return {'param1': 'b', 'param2': 4}
|
||||
|
||||
|
||||
def b1m3(step, sL, s):
|
||||
return {'param1': ['c'], 'param2': np.array([10, 100])}
|
||||
def b2m3(step, sL, s):
|
||||
return {'param1': ['d'], 'param2': np.array([20, 200])}
|
||||
|
||||
|
||||
# Internal States per Mechanism
|
||||
def s1m1(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m1(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m2(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m2(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m3(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m3(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
# Exogenous States
|
||||
proc_one_coef_A = 0.7
|
||||
proc_one_coef_B = 1.3
|
||||
|
||||
def es3p1(step, sL, s, _input):
|
||||
y = 's3'
|
||||
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es4p2(step, sL, s, _input):
|
||||
y = 's4'
|
||||
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def es5p2(step, sL, s, _input):
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Environment States
|
||||
def env_a(x):
|
||||
return 10
|
||||
def env_b(x):
|
||||
return 10
|
||||
# def what_ever(x):
|
||||
# return x + 1
|
||||
|
||||
# Genesis States
|
||||
genesis_states = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
# remove `exo_update_per_ts` to update every ts
|
||||
# why `exo_update_per_ts` here instead of `env_processes`
|
||||
exogenous_states = exo_update_per_ts(
|
||||
{
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestamp": es5p2
|
||||
}
|
||||
)
|
||||
|
||||
# make env proc trigger field agnostic
|
||||
env_processes = {
|
||||
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
|
||||
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
}
|
||||
|
||||
# lambdas
|
||||
# genesis Sites should always be there
|
||||
# [1, 2]
|
||||
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
|
||||
|
||||
|
||||
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
|
||||
# behavior_ops = [behavior_to_dict, print_fwd, sum_dict_values]
|
||||
# behavior_ops = [foldr(dict_elemwise_sum())]
|
||||
# behavior_ops = []
|
||||
|
||||
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
||||
# mechanisms = {}
|
||||
mechanisms = {
|
||||
"m1": {
|
||||
"behaviors": {
|
||||
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
|
||||
# "b2": b2m1
|
||||
},
|
||||
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
|
||||
"s1": s1m1,
|
||||
# "s2": s2m1
|
||||
}
|
||||
},
|
||||
"m2": {
|
||||
"behaviors": {
|
||||
"b1": b1m2,
|
||||
# "b2": b2m2
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m2,
|
||||
# "s2": s2m2
|
||||
}
|
||||
},
|
||||
"m3": {
|
||||
"behaviors": {
|
||||
"b1": b1m3,
|
||||
"b2": b2m3
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m3,
|
||||
"s2": s2m3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sim_config = {
|
||||
"N": 2,
|
||||
"T": range(5)
|
||||
}
|
||||
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_config,
|
||||
state_dict=genesis_states,
|
||||
seed=seed,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
mechanisms=mechanisms
|
||||
)
|
||||
)
|
||||
|
|
@ -1,178 +0,0 @@
|
|||
from decimal import Decimal
|
||||
import numpy as np
|
||||
from datetime import timedelta
|
||||
|
||||
from SimCAD import configs
|
||||
from SimCAD.configuration import Configuration
|
||||
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
||||
ep_time_step
|
||||
|
||||
seed = {
|
||||
'z': np.random.RandomState(1),
|
||||
'a': np.random.RandomState(2),
|
||||
'b': np.random.RandomState(3),
|
||||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
# Behaviors per Mechanism
|
||||
# Different return types per mechanism ?? *** No ***
|
||||
def b1m1(step, sL, s):
|
||||
return {'param1': 1}
|
||||
def b2m1(step, sL, s):
|
||||
return {'param2': 4}
|
||||
|
||||
def b1m2(step, sL, s):
|
||||
return {'param1': 'a', 'param2': 2}
|
||||
def b2m2(step, sL, s):
|
||||
return {'param1': 'b', 'param2': 4}
|
||||
|
||||
def b1m3(step, sL, s):
|
||||
return {'param1': ['c'], 'param2': np.array([10, 100])}
|
||||
def b2m3(step, sL, s):
|
||||
return {'param1': ['d'], 'param2': np.array([20, 200])}
|
||||
|
||||
# deff not more than 2
|
||||
# Internal States per Mechanism
|
||||
def s1m1(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1'] #+ [Coef1 x 5]
|
||||
return (y, x)
|
||||
def s2m1(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2'] #+ [Coef2 x 5]
|
||||
return (y, x)
|
||||
|
||||
def s1m2(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m2(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m3(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m3(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
# Exogenous States
|
||||
proc_one_coef_A = 0.7
|
||||
proc_one_coef_B = 1.3
|
||||
|
||||
def es3p1(step, sL, s, _input):
|
||||
y = 's3'
|
||||
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es4p2(step, sL, s, _input):
|
||||
y = 's4'
|
||||
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def es5p2(step, sL, s, _input):
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Environment States
|
||||
def env_a(x):
|
||||
return 5
|
||||
def env_b(x):
|
||||
return 10
|
||||
# def what_ever(x):
|
||||
# return x + 1
|
||||
|
||||
# Genesis States
|
||||
genesis_states = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
# remove `exo_update_per_ts` to update every ts
|
||||
exogenous_states = exo_update_per_ts(
|
||||
{
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestamp": es5p2
|
||||
}
|
||||
)
|
||||
|
||||
# ToDo: make env proc trigger field agnostic
|
||||
# ToDo: input json into function renaming __name__
|
||||
env_processes = {
|
||||
"s3": env_a,
|
||||
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
}
|
||||
|
||||
# lambdas
|
||||
# genesis Sites should always be there
|
||||
# [1, 2]
|
||||
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
|
||||
|
||||
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
|
||||
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
|
||||
# behavior_ops = [foldr(dict_elemwise_sum())]
|
||||
# behavior_ops = [foldr(lambda a, b: a + b)]
|
||||
|
||||
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
||||
# mechanisms = {}
|
||||
|
||||
mechanisms = {
|
||||
"m1": {
|
||||
"behaviors": {
|
||||
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
|
||||
"b2": b2m1
|
||||
},
|
||||
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
|
||||
"s1": s1m1,
|
||||
"s2": s2m1
|
||||
}
|
||||
},
|
||||
"m2": {
|
||||
"behaviors": {
|
||||
"b1": b1m2,
|
||||
"b2": b2m2
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m2,
|
||||
"s2": s2m2
|
||||
}
|
||||
},
|
||||
"m3": {
|
||||
"behaviors": {
|
||||
"b1": b1m3,
|
||||
"b2": b2m3
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m3,
|
||||
"s2": s2m3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sim_config = {
|
||||
"N": 2,
|
||||
"T": range(5)
|
||||
}
|
||||
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_config,
|
||||
state_dict=genesis_states,
|
||||
seed=seed,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
mechanisms=mechanisms
|
||||
)
|
||||
)
|
||||
|
|
@ -1,180 +0,0 @@
|
|||
from decimal import Decimal
|
||||
import numpy as np
|
||||
from datetime import timedelta
|
||||
|
||||
from SimCAD import configs
|
||||
from SimCAD.configuration import Configuration
|
||||
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
||||
ep_time_step
|
||||
|
||||
|
||||
seed = {
|
||||
'z': np.random.RandomState(1),
|
||||
'a': np.random.RandomState(2),
|
||||
'b': np.random.RandomState(3),
|
||||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
# Behaviors per Mechanism
|
||||
# Different return types per mechanism ?? *** No ***
|
||||
def b1m1(step, sL, s):
|
||||
return {'param1': 1}
|
||||
def b2m1(step, sL, s):
|
||||
return {'param2': 4}
|
||||
|
||||
def b1m2(step, sL, s):
|
||||
return {'param1': 'a', 'param2': 2}
|
||||
def b2m2(step, sL, s):
|
||||
return {'param1': 'b', 'param2': 4}
|
||||
|
||||
|
||||
def b1m3(step, sL, s):
|
||||
return {'param1': ['c'], 'param2': np.array([10, 100])}
|
||||
def b2m3(step, sL, s):
|
||||
return {'param1': ['d'], 'param2': np.array([20, 200])}
|
||||
|
||||
|
||||
# Internal States per Mechanism
|
||||
def s1m1(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m1(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m2(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m2(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m3(step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param1']
|
||||
return (y, x)
|
||||
def s2m3(step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
# Exogenous States
|
||||
proc_one_coef_A = 0.7
|
||||
proc_one_coef_B = 1.3
|
||||
|
||||
def es3p1(step, sL, s, _input):
|
||||
y = 's3'
|
||||
x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
def es4p2(step, sL, s, _input):
|
||||
y = 's4'
|
||||
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
|
||||
return (y, x)
|
||||
|
||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def es5p2(step, sL, s, _input):
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Environment States
|
||||
def env_a(x):
|
||||
return 10
|
||||
def env_b(x):
|
||||
return 10
|
||||
# def what_ever(x):
|
||||
# return x + 1
|
||||
|
||||
# Genesis States
|
||||
genesis_states = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
# remove `exo_update_per_ts` to update every ts
|
||||
# why `exo_update_per_ts` here instead of `env_processes`
|
||||
exogenous_states = exo_update_per_ts(
|
||||
{
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestamp": es5p2
|
||||
}
|
||||
)
|
||||
|
||||
# make env proc trigger field agnostic
|
||||
env_processes = {
|
||||
"s3": proc_trigger('2018-10-01 15:16:25', env_a),
|
||||
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
}
|
||||
|
||||
# lambdas
|
||||
# genesis Sites should always be there
|
||||
# [1, 2]
|
||||
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
|
||||
|
||||
|
||||
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
|
||||
# behavior_ops = [behavior_to_dict, print_fwd, sum_dict_values]
|
||||
# behavior_ops = [foldr(dict_elemwise_sum())]
|
||||
# behavior_ops = []
|
||||
|
||||
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
||||
# mechanisms = {}
|
||||
mechanisms = {
|
||||
"m1": {
|
||||
"behaviors": {
|
||||
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
|
||||
# "b2": b2m1
|
||||
},
|
||||
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
|
||||
"s1": s1m1,
|
||||
# "s2": s2m1
|
||||
}
|
||||
},
|
||||
"m2": {
|
||||
"behaviors": {
|
||||
"b1": b1m2,
|
||||
# "b2": b2m2
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m2,
|
||||
# "s2": s2m2
|
||||
}
|
||||
},
|
||||
"m3": {
|
||||
"behaviors": {
|
||||
"b1": b1m3,
|
||||
"b2": b2m3
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m3,
|
||||
"s2": s2m3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sim_config = {
|
||||
"N": 2,
|
||||
"T": range(5)
|
||||
}
|
||||
|
||||
configs.append(
|
||||
Configuration(
|
||||
sim_config=sim_config,
|
||||
state_dict=genesis_states,
|
||||
seed=seed,
|
||||
exogenous_states=exogenous_states,
|
||||
env_processes=env_processes,
|
||||
mechanisms=mechanisms
|
||||
)
|
||||
)
|
||||
|
|
@ -0,0 +1,196 @@
|
|||
from decimal import Decimal
|
||||
import numpy as np
|
||||
from datetime import timedelta
|
||||
import pprint
|
||||
|
||||
from SimCAD.configuration import append_configs
|
||||
from SimCAD.configuration.utils import proc_trigger, ep_time_step
|
||||
from SimCAD.configuration.utils.parameterSweep import config_sim
|
||||
|
||||
pp = pprint.PrettyPrinter(indent=4)
|
||||
|
||||
seed = {
|
||||
'z': np.random.RandomState(1),
|
||||
'a': np.random.RandomState(2),
|
||||
'b': np.random.RandomState(3),
|
||||
'c': np.random.RandomState(3)
|
||||
}
|
||||
|
||||
|
||||
g = {
|
||||
'alpha': [1],
|
||||
'beta': [2, 5],
|
||||
'gamma': [3, 4],
|
||||
'omega': [7]
|
||||
}
|
||||
|
||||
# Behaviors per Mechanism
|
||||
def b1m1(_g, step, sL, s):
|
||||
return {'param1': 1}
|
||||
|
||||
def b2m1(_g, step, sL, s):
|
||||
return {'param2': 4}
|
||||
|
||||
def b1m2(_g, step, sL, s):
|
||||
return {'param1': 'a', 'param2': _g['beta']}
|
||||
|
||||
def b2m2(_g, step, sL, s):
|
||||
return {'param1': 'b', 'param2': 0}
|
||||
|
||||
def b1m3(_g, step, sL, s):
|
||||
return {'param1': np.array([10, 100])}
|
||||
|
||||
def b2m3(_g, step, sL, s):
|
||||
return {'param1': np.array([20, 200])}
|
||||
|
||||
# Internal States per Mechanism
|
||||
def s1m1(_g, step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = 0
|
||||
return (y, x)
|
||||
|
||||
def s2m1(_g, step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _g['beta']
|
||||
return (y, x)
|
||||
|
||||
def s1m2(_g, step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s2m2(_g, step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = _input['param2']
|
||||
return (y, x)
|
||||
|
||||
def s1m3(_g, step, sL, s, _input):
|
||||
y = 's1'
|
||||
x = 0
|
||||
return (y, x)
|
||||
|
||||
def s2m3(_g, step, sL, s, _input):
|
||||
y = 's2'
|
||||
x = 0
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Exogenous States
|
||||
proc_one_coef_A = 0.7
|
||||
proc_one_coef_B = 1.3
|
||||
|
||||
|
||||
def es3p1(_g, step, sL, s, _input):
|
||||
y = 's3'
|
||||
x = _g['gamma']
|
||||
return (y, x)
|
||||
# @curried
|
||||
def es4p2(_g, step, sL, s, _input):
|
||||
y = 's4'
|
||||
x = _g['gamma']
|
||||
return (y, x)
|
||||
|
||||
ts_format = '%Y-%m-%d %H:%M:%S'
|
||||
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
||||
def es5p2(_g, step, sL, s, _input):
|
||||
y = 'timestamp'
|
||||
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
||||
return (y, x)
|
||||
|
||||
|
||||
# Environment States
|
||||
# @curried
|
||||
# def env_a(param, x):
|
||||
# return x + param
|
||||
def env_a(x):
|
||||
return x
|
||||
def env_b(x):
|
||||
return 10
|
||||
|
||||
|
||||
# Genesis States
|
||||
genesis_states = {
|
||||
's1': Decimal(0.0),
|
||||
's2': Decimal(0.0),
|
||||
's3': Decimal(1.0),
|
||||
's4': Decimal(1.0),
|
||||
'timestamp': '2018-10-01 15:16:24'
|
||||
}
|
||||
|
||||
|
||||
# remove `exo_update_per_ts` to update every ts
|
||||
raw_exogenous_states = {
|
||||
"s3": es3p1,
|
||||
"s4": es4p2,
|
||||
"timestamp": es5p2
|
||||
}
|
||||
|
||||
|
||||
# ToDo: make env proc trigger field agnostic
|
||||
# ToDo: input json into function renaming __name__
|
||||
triggered_env_b = proc_trigger('2018-10-01 15:16:25', env_b)
|
||||
env_processes = {
|
||||
"s3": env_a, #sweep(beta, env_a),
|
||||
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)
|
||||
}
|
||||
# parameterized_env_processes = parameterize_states(env_processes)
|
||||
#
|
||||
# pp.pprint(parameterized_env_processes)
|
||||
# exit()
|
||||
|
||||
# ToDo: The number of values entered in sweep should be the # of config objs created,
|
||||
# not dependent on the # of times the sweep is applied
|
||||
# sweep exo_state func and point to exo-state in every other funtion
|
||||
# param sweep on genesis states
|
||||
|
||||
mechanisms = {
|
||||
"m1": {
|
||||
"behaviors": {
|
||||
"b1": b1m1,
|
||||
"b2": b2m1
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m1,
|
||||
"s2": s2m1
|
||||
}
|
||||
},
|
||||
"m2": {
|
||||
"behaviors": {
|
||||
"b1": b1m2,
|
||||
"b2": b2m2,
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m2,
|
||||
"s2": s2m2
|
||||
}
|
||||
},
|
||||
"m3": {
|
||||
"behaviors": {
|
||||
"b1": b1m3,
|
||||
"b2": b2m3
|
||||
},
|
||||
"states": {
|
||||
"s1": s1m3,
|
||||
"s2": s2m3
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
sim_config = config_sim(
|
||||
{
|
||||
"N": 2,
|
||||
"T": range(5),
|
||||
"M": g
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
append_configs(
|
||||
sim_configs=sim_config,
|
||||
state_dict=genesis_states,
|
||||
seed=seed,
|
||||
raw_exogenous_states=raw_exogenous_states,
|
||||
env_processes=env_processes,
|
||||
mechanisms=mechanisms
|
||||
)
|
||||
Loading…
Reference in New Issue