132 lines
4.9 KiB
Python
132 lines
4.9 KiB
Python
from functools import reduce
|
|
from fn.op import foldr
|
|
import pandas as pd
|
|
|
|
from SimCAD import configs
|
|
from SimCAD.utils import key_filter
|
|
from SimCAD.configuration.utils.behaviorAggregation import dict_elemwise_sum
|
|
from SimCAD.configuration.utils import exo_update_per_ts
|
|
|
|
|
|
class Configuration(object):
|
|
def __init__(self, sim_config=None, state_dict=None, seed=None, env_processes=None,
|
|
exogenous_states=None, mechanisms=None, behavior_ops=[foldr(dict_elemwise_sum())]):
|
|
self.sim_config = sim_config
|
|
self.state_dict = state_dict
|
|
self.seed = seed
|
|
self.env_processes = env_processes
|
|
self.exogenous_states = exogenous_states
|
|
self.mechanisms = mechanisms
|
|
self.behavior_ops = behavior_ops
|
|
|
|
|
|
def append_configs(sim_configs, state_dict, seed, raw_exogenous_states, env_processes, mechanisms, _exo_update_per_ts=True):
|
|
if _exo_update_per_ts is True:
|
|
exogenous_states = exo_update_per_ts(raw_exogenous_states)
|
|
else:
|
|
exogenous_states = raw_exogenous_states
|
|
|
|
if isinstance(sim_configs, list):
|
|
for sim_config in sim_configs:
|
|
configs.append(
|
|
Configuration(
|
|
sim_config=sim_config,
|
|
state_dict=state_dict,
|
|
seed=seed,
|
|
exogenous_states=exogenous_states,
|
|
env_processes=env_processes,
|
|
mechanisms=mechanisms
|
|
)
|
|
)
|
|
elif isinstance(sim_configs, dict):
|
|
configs.append(
|
|
Configuration(
|
|
sim_config=sim_configs,
|
|
state_dict=state_dict,
|
|
seed=seed,
|
|
exogenous_states=exogenous_states,
|
|
env_processes=env_processes,
|
|
mechanisms=mechanisms
|
|
)
|
|
)
|
|
|
|
|
|
class Identity:
|
|
def __init__(self, behavior_id={'identity': 0}):
|
|
self.beh_id_return_val = behavior_id
|
|
|
|
def b_identity(self, var_dict, step, sL, s):
|
|
return self.beh_id_return_val
|
|
|
|
def behavior_identity(self, k):
|
|
return self.b_identity
|
|
|
|
def no_state_identity(self, var_dict, step, sL, s, _input):
|
|
return None
|
|
|
|
def state_identity(self, k):
|
|
return lambda var_dict, step, sL, s, _input: (k, s[k])
|
|
|
|
def apply_identity_funcs(self, identity, df, cols):
|
|
def fillna_with_id_func(identity, df, col):
|
|
return df[[col]].fillna(value=identity(col))
|
|
|
|
return list(map(lambda col: fillna_with_id_func(identity, df, col), cols))
|
|
|
|
|
|
class Processor:
|
|
def __init__(self, id=Identity()):
|
|
self.id = id
|
|
self.b_identity = id.b_identity
|
|
self.behavior_identity = id.behavior_identity
|
|
self.no_state_identity = id.no_state_identity
|
|
self.state_identity = id.state_identity
|
|
self.apply_identity_funcs = id.apply_identity_funcs
|
|
|
|
def create_matrix_field(self, mechanisms, key):
|
|
if key == 'states':
|
|
identity = self.state_identity
|
|
elif key == 'behaviors':
|
|
identity = self.behavior_identity
|
|
df = pd.DataFrame(key_filter(mechanisms, key))
|
|
col_list = self.apply_identity_funcs(identity, df, list(df.columns))
|
|
if len(col_list) != 0:
|
|
return reduce((lambda x, y: pd.concat([x, y], axis=1)), col_list)
|
|
else:
|
|
return pd.DataFrame({'empty': []})
|
|
|
|
def generate_config(self, state_dict, mechanisms, exo_proc):
|
|
|
|
def no_update_handler(bdf, sdf):
|
|
if (bdf.empty == False) and (sdf.empty == True):
|
|
bdf_values = bdf.values.tolist()
|
|
sdf_values = [[self.no_state_identity] * len(bdf_values) for m in range(len(mechanisms))]
|
|
return sdf_values, bdf_values
|
|
elif (bdf.empty == True) and (sdf.empty == False):
|
|
sdf_values = sdf.values.tolist()
|
|
bdf_values = [[self.b_identity] * len(sdf_values) for m in range(len(mechanisms))]
|
|
return sdf_values, bdf_values
|
|
else:
|
|
sdf_values = sdf.values.tolist()
|
|
bdf_values = bdf.values.tolist()
|
|
return sdf_values, bdf_values
|
|
|
|
def only_ep_handler(state_dict):
|
|
sdf_functions = [
|
|
lambda step, sL, s, _input: (k, v) for k, v in zip(state_dict.keys(), state_dict.values())
|
|
]
|
|
sdf_values = [sdf_functions]
|
|
bdf_values = [[self.b_identity] * len(sdf_values)]
|
|
return sdf_values, bdf_values
|
|
|
|
if len(mechanisms) != 0:
|
|
bdf = self.create_matrix_field(mechanisms, 'behaviors')
|
|
sdf = self.create_matrix_field(mechanisms, 'states')
|
|
sdf_values, bdf_values = no_update_handler(bdf, sdf)
|
|
zipped_list = list(zip(sdf_values, bdf_values))
|
|
else:
|
|
sdf_values, bdf_values = only_ep_handler(state_dict)
|
|
zipped_list = list(zip(sdf_values, bdf_values))
|
|
|
|
return list(map(lambda x: (x[0] + exo_proc, x[1]), zipped_list))
|