876 lines
344 KiB
Plaintext
876 lines
344 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np\n",
|
|
"import pandas as pd\n",
|
|
"import seaborn as sns\n",
|
|
"\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# CIC Initialization Notebook\n",
|
|
"\n",
|
|
"### Goals\n",
|
|
" - Define the Mathematics of the CIC Bonding Curve in formal terms\n",
|
|
" - Identify and make explicit the paramters\n",
|
|
" - Define the initial state as a function of the parameters\n",
|
|
" - Demonstrate the Bonding Curve Shape as a function of the parameters\n",
|
|
"\n",
|
|
"### Formal Foundations\n",
|
|
"For a detailed Treatment of properties of Bonding Curves see:\n",
|
|
"[From Curved Bonding to Configuration Spaces](https://epub.wu.ac.at/7385)\n",
|
|
"and subsequent Publications on the subject appearing in the Proceedings of IEEE ICBC 2020 and MARBLE 2020.\n",
|
|
"\n",
|
|
"### System Scope\n",
|
|
"Broad Mapping of the Grassroots Economics CIC Ecosystem including the CIC Users, the operators of the CIC Program and the underlying smart contracts:\n",
|
|
"\n",
|
|
"\n",
|
|
"Zooming in on the Bonding Curve Smart Contract Subsystem:\n",
|
|
"\n",
|
|
"\n",
|
|
"Explicit mapping of Conservation Equations which will regulate the supply of CIC tokens relative to xDAI reserves.\n",
|
|
"\n",
|
|
"\n",
|
|
"### Questions to be Answered\n",
|
|
" - Choose Parameters which characterize the bonding curve mechanisms: $\\kappa$ and $\\phi$\n",
|
|
" - Choose the initial conditions for Supply $S_0$ and Reserve $R_0$\n",
|
|
" - Note that due to the Bonding Curve construction its initial conditions partially determine the systems properties."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Bonding Curve Mathematics"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Basic Definitions\n",
|
|
"- $R$ = xDai in Reserve\n",
|
|
"- $S$ = Total Supply of CIC tokens\n",
|
|
"- $P$ = Spot Price of the Bonding Curve$^*$\n",
|
|
"- $P \\cdot S$ = Market Cap implied by the Spot Price and Token Supply\n",
|
|
"- $\\frac{R}{P \\cdot S}$ = Reserve Ratio in the Liquidity Pool$^\\dagger$\n",
|
|
"\n",
|
|
"$^*$ The spot price is the limiting price for both the Bond-to-Mint and the Burn-to-Withdraw Mechanisms in the case with no fees. Realized prices account for slippage and fees, see references.\n",
|
|
"\n",
|
|
"$^\\dagger$ Bonding Curves such as the one being employed by the CIC systems are tools which enforce the Reserve Ratio to be a constant $\\rho \\in (0,1)$, also called the connector weight. In this work we work with the \"curvature\" $\\kappa = \\frac{1}{\\rho} = \\frac{P \\cdot S}{R}$ in order to align notation with associated academic work."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Invariance and Consequences\n",
|
|
"Consider the Conservation Function:\n",
|
|
"- $V(S,R) = \\frac{S^\\kappa}{R}$\n",
|
|
"- As a consquence, $P = -\\frac{\\partial V}{\\partial} = \\kappa \\frac{R}{S}$\n",
|
|
"\n",
|
|
"In the absense of Fees:\n",
|
|
"- $V(S,R) = \\frac{S^\\kappa}{R}$ is constant\n",
|
|
"- $V(S,R) = V_0$ where $V_0 = \\frac{S_0^\\kappa}{R_0}$ where $S_0$ and $R_0$ are the initial Supply and Reserve, respectively.\n",
|
|
"\n",
|
|
"\n",
|
|
"\n",
|
|
"In the presence of Fees:\n",
|
|
"- $V(S^+,R^+) > V(S,R)$ for all admissible actions\n",
|
|
"- $V(S_t,R_t) > V_0$ for all $t>0$ where the index $t$ is an ordering of all transcations on the contract.\n",
|
|
"- Under the invariant enforcing logic with fees, the reserve accumulates relative to the supply, essentially violating the invariant, but in a manner guaranteed to increase $V$. A concept introduced formally in [A State-Space Modeling Framework for Engineering Blockchain-Enabled\n",
|
|
"Economic Systems](https://arxiv.org/pdf/1807.00955.pdf) which was presented at the International Conference on Complex Systems, May 2018.\n",
|
|
"- Formal properties such as this are implicit in designs being designed and developed in a range of DeFi applications including but not limited to Bancor, Uniswap, Balancer, Fairmint. Such properties will serve as the basis of any formal stability claims over compositions of DeFi subsystems in to higher order financial systems.\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Conservation Function Enforcing Deposit-to-Mint with Fees\n",
|
|
" - Deposit $\\Delta R$ xDAI to mint $\\Delta S$ CIC tokens\n",
|
|
" - Apply Fee $\\phi$: $\\Delta R' = (1-\\phi) \\Delta R$\n",
|
|
" - Conservation equation: $V(R+ \\Delta R', S+\\Delta S) = \\frac{(S+\\Delta S)^\\kappa}{R+\\Delta R'} =\\frac{S^\\kappa}{R}$\n",
|
|
" - Derived Mint equation: $\\Delta S = mint\\big(\\Delta R ; (R,S)\\big)= S\\big(\\sqrt[\\kappa]{(1+(1-\\phi)\\frac{\\Delta R}{R})}-1\\big)$\n",
|
|
" \n",
|
|
"### Conservation Function Enforcing Burn-to-Withdraw with Fees\n",
|
|
" - Burn $\\Delta S$ CIC tokens to withdraw $\\Delta R$ xDAI\n",
|
|
" - Applying fee $\\phi$: $\\Delta R = (1-\\phi) \\Delta R'$\n",
|
|
" - Conservation equation: $V(R- \\Delta R', S-\\Delta S) = \\frac{(S-\\Delta S)^\\kappa}{R-\\Delta R'} =\\frac{S^\\kappa}{R}$\n",
|
|
" - Derived Withdraw equation: $\\Delta R = withdraw\\big(\\Delta S ; (R,S)\\big)= R(1-\\phi)\\big(1-(1-\\frac{\\Delta S}{S})^\\kappa \\big)$\n",
|
|
"\n",
|
|
"### Properties of the Parameters\n",
|
|
"- Require $\\kappa >0$; any $\\kappa \\in (0,1)$ is over reserved, $\\kappa =1$ results in a constant price $P=\\frac{R}{S}$ and is essentially a fully reserved system but may still be very useful when composed with other mechanisms (eg Pool tokens in Uniswap instances, the reserve in this case is a unit of liquidity which is the constant product mixture of eth and token), and when $\\kappa > 1$ the properties widely attributed to bonding curves hold. Additionally, the equations simplify significantly for $\\kappa=2$ which makes it an obvious choice when other considerations don't rule it out.\n",
|
|
"- Require $\\phi \\ge 0$. When $\\phi=0$ the system is completely discribed by $\\kappa$ and the associated invariant function as above. When $\\phi>0$ it adds friction limiting the conditions under which an agent might choose to swap. It is important to note that this friction compounds with the slippage induced by the conservation law. The slippage is related to the curvature $\\kappa$ via the first order condition for convex functions. \n",
|
|
"- Both the slippage and the fee add friction, for large transactions relative to the liquidity pool the slippage dominates the fee, but for small transactions relative to the liquidity pool the fee dominates the slippage. In the case where the distribution of transactions size is estimatable, it may make sense to position the fee based on how strong an effect is desired relative to slippage."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Initialization Equations\n",
|
|
"\n",
|
|
"- Input $R_0$ xDai to generate $S_0$ initial supply\n",
|
|
"- \"Hatch\" sale \"Price\" $p_0$ (xDai per token minted) determines the initial supply: $S_0 = R_0/p_0$\n",
|
|
"- The 'Connector Weight' in Bancor terms maps to the concept 'Reserve Ratio' $\\rho=\\frac{1}{\\kappa}=\\frac{R}{P \\cdot S}$\n",
|
|
"- The initial spot price $P_0$ once the curve is live is $\\kappa \\frac{R_0}{S_0}$\n",
|
|
"- Note that $\\frac{P_0}{p_0} = \\frac{\\kappa R_0/S_0}{R_0/S_0}= \\kappa$ is leverage applied in deploying the bonding curve.\n",
|
|
"\n",
|
|
"### Inputs from Stakeholder\n",
|
|
"- $R_0= 40000$ xDAI\n",
|
|
"- Conversion rate between USD and Kenyan Shilling is approximately 1:100\n",
|
|
"- assume $P_0 = 1/100$ in order to ensure spot price is the right order of magnitude.\n",
|
|
"- leverage rate from past discussions, considering $\\kappa =4$\n",
|
|
"- above implies $S_0 = 4 \\times 100 \\times 40000 = 160\\, Million$ for the initial supply of CIC tokens "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Functions"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#value function for a given state (R,S)\n",
|
|
"def invariant(R,S,kappa):\n",
|
|
" return (S**kappa)/R\n",
|
|
"\n",
|
|
"#given a value function (parameterized by kappa)\n",
|
|
"#and an invariant coeficient V\n",
|
|
"#return Supply S as a function of reserve R\n",
|
|
"def supply(R, kappa, V):\n",
|
|
" return (V*R)**(1/kappa)\n",
|
|
"\n",
|
|
"#given a value function (parameterized by kappa)\n",
|
|
"#and an invariant coeficient V\n",
|
|
"#return a spot price P as a function of reserve R\n",
|
|
"def spot_price(R, kappa, V):\n",
|
|
" return kappa*R**((kappa-1)/kappa)/V**(1/kappa)\n",
|
|
"\n",
|
|
"#for a given state (R,S)\n",
|
|
"#given a value function (parameterized by kappa and phi)\n",
|
|
"#and an invariant coeficient V\n",
|
|
"#deposit deltaR to Mint deltaS\n",
|
|
"#with realized price deltaR/deltaS\n",
|
|
"def mint(deltaR, R,S, kappa, V, phi):\n",
|
|
" deltaS = (V*(R+(1-phi)*deltaR))**(1/kappa)-S\n",
|
|
" realized_price = deltaR/deltaS\n",
|
|
" return deltaS, realized_price\n",
|
|
"\n",
|
|
"#for a given state (R,S)\n",
|
|
"#given a value function (parameterized by kappa and phi)\n",
|
|
"#and an invariant coeficient V\n",
|
|
"#burn deltaS to Withdraw deltaR\n",
|
|
"#with realized price deltaR/deltaS\n",
|
|
"def withdraw(deltaS, R,S, kappa, V0, phi):\n",
|
|
" deltaR = (R-((S-deltaS)**kappa)/(V0))*(1-phi)\n",
|
|
" realized_price = deltaR/deltaS\n",
|
|
" return deltaR, realized_price\n",
|
|
"\n",
|
|
"#for a given state (R,S)\n",
|
|
"#given a value function (parameterized by kappa and phi)\n",
|
|
"#and an invariant coeficient V\n",
|
|
"#computed based on desired withdraw deltaR\n",
|
|
"#with realized price deltaR/deltaS\n",
|
|
"def withdrawR(deltaR, R,S, kappa, V, phi):\n",
|
|
" deltaS = S-(V*(R-(1-phi)*deltaR))**(1/kappa)\n",
|
|
" realized_price = deltaR/deltaS\n",
|
|
" return deltaS, realized_price"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Variable Declarations"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xd4VFX6wPHvSSY9JPQ6gQQSyFADhI40RYQIWGiKCupa2J+66uoa66K7rHFtWFjL6iK6K6goigYVpQrSCUiZ0AeSUARCQvpkkvP7494Mk5BAUEIK7+d58mTmzrn3nntnJnnnnfecq7TWCCGEEEIIIQxe1d0BIYQQQgghahIJkIUQQgghhPAgAbIQQgghhBAeJEAWQgghhBDCgwTIQgghhBBCeJAAWQghhBBCCA8SIAtRQyilpiul/mvebq2UylZKeVd3v2oipdRkpdTiczw+RCmVein7VNuc7xzWdub7p21196OqKaXamX87OlZ3X4SoSyRAFuIclFIOpVSe+c/2lFIqUSkVVtX71Vof0loHa62LqmL7SqneSqlFSqkMpVS6Umq9Uur2qthXVdBa/09rfXXJfaWUVkpF/p5tKqVGKKVWKqWylFLHlVIrlFJjfn9vq59SKtw8R5aSZWXP4UXc1xClVLH5nin5+fpi76fMPpcrpf7gucx8/+y/yPv5Xin1XDnLxyqljnqe34uwr4FKqZ+VUpnme3S1UqpXmTbNgcXAUGCxUqr1ObY3u7z3iVKqZcmHyTJ/744qpT5QSgVfrGMSojaRAFmI8xuttQ4GWgDHgDequT+/i1KqH7AUWAFEAo2AacDI37i9Wp/lVkqNAz4DPgSsQDPgGWB0dfarhDLUpr/Xh80AteSnRpzHi+AD4FallCqz/Fbgf1pr18XYiVIqBPgG429NQ6AV8CxQUKbNt8DHWuvBwKvAd0qpRuVsbyDQroLdjQK+87hf8vcuBugOPP67D0iIWqg2/cEVolpprfOB+YD7q0ylVKhS6kMz43hQKfVUSSCjlJqqlFqllHrJzD4fUEqN9Fg3wsxSZimlfgAaezxWKuNnZsj+ZmaRspRSi5VSnu1vM/d/Uin1tJkJuqqCQ3kRmKO1fkFrfUIbNmmtJ3j223MFz8yTmVV6y8xA5wCPm9kmb4/21yulfjFveyml4pVS+8z+faqUalhex8zzcaN5e6C531Hm/auUUlvK9lEptdJcfauZ+Zrosb0/K6V+VUodqShDbgY7rwB/01q/p7XO1FoXa61XaK3v8jiGp8xz/Kv5nIeWea6mKKUOKaVOKKWe9Nh+b6XURqXUaaXUMaXUKx6P9TWzhBlKqa1KqSEejy1XSs1QSq0GcoEnlFIby/T9IaXUQvN2nFIqydxPilJqukfTknOUYZ6jfmWfZ6VUf6XUBmVkLDcopfqX6UuFr7/KMl87f/e4X6oUxnzdPqKU+sXsxydKKX+Px8cqpbaYx7hPKXWNUmoGcAXwpnlsb5ptPV+zv/l9WsaXGAHrFR59agBci/Hh6mJpD6C1nqu1LtJa52mtF2utS95TfsBXwKda66fNti8DbwJfK6WCPPpnwQi076tgX6OARWUXaq2PAt9jBMpCXHYkQBaikpRSgcBEYK3H4jeAUKAtMBi4DfAMxPoAuzCC338C75sBGcDHwCbzsb8BU87ThZvNbTcFfIFHzH51BP4FTMbIcodiZJwqOoZ+GIH+73EzMAOoB7wE5ADDyjz+sXn7AeA6jPPTEjgFzKpguyuAIebtQcB+c72S+yvKrqC1HmTe7GZmKz8x7zfnzLm4E5hlBjNldQDCOPc5mWr+DMV4roMxghFPA81tXQk8o5SymctfA17TWodgZPE+BVBKtQISgb9jBF2PAJ8rpZp4bPNW4G6M8/wG0EEpFeXxuOd5zsF4/dUH4oBpSqnrzMdKzlF98xyt8ey4+YElEXgd4xuFV4BEVTobWe7rrwpMAK4BIoCuGOcdpVRvjCD0UYxjHAQ4tNZPAj8B95nHVl4g+Hvep25a6zyM5++2Mv1N1lpvLe9glFL/Mj8AlffzSwXnYDdQpJSao5QaWfZ1q7Uu0FoP1Vo/X2b5v7TW/bXWOR6LHwJWlgTXZfrmg3EefyjnMSvGt0p7K+ijEHWaBMhCnN+XSqkM4DQwHCMDW1JaMBF4XGudpbV2AC9jBDUlDmqt/23WEs/BCGCbKaNWsBfwtPnPbiVwvjrN2Vrr3R7/pEsyO+OAr7XWq7TWTozSAF3BNhpgvO+PXMDxl+crrfVqM9OaD8wFbgJQStXDyErNNdveAzyptU7VWhcA04Fxqvx6zRWUDoif97g/mHIC5HMoBJ7TWhdqrRcB2RgBbFklQeC5zslk4BWt9X6tdTbG186TyhzDs2ambyuwFejm0Y9IpVRjrXW21rrkA9YtwCKt9SLzPP4AbMQ4dyU+0Frv0Fq7tNaZGFnDkvMcBUQDCwG01su11tvMbf2Ccf4HUzlxwB6t9UfmvuYCyZQuMano9VeelmUCwQmV7AfA61rrw1rrdIz3RMl+7gT+o7X+wTzGNK118vk29nvepxVscg4wXikVYN6/zVxWLq31H7XW9Sv46VrBOqcxPnBp4N/AcaXUQqVURX0qlzLGS9yD8TehPIOArVrrLI9lXyqlsoAU4FfgrxeyTyHqCgmQhTi/67TW9QE/jK8pVyhjcExjjEzaQY+2BymdvT1ackNrnWveDMbMpJbJ9HhupzxHPW7nmtvB3FZKmf2crGAbp4BijADg90gpc/9j4Abzq98bgM1a65LjaQMsKAmWADtQRPkByBqgvRkIxGBkDMPMr/N7c6ZUoDJOlqkJ9TxnpdqZv891Tlpy9vNsofQxVPT83InxlXmyWbpwrbm8DUagleFxbgaW6Ud55/km8/bNwJclryulVB+l1DKzjCATuBePsp3zKHt8JcdY7muZis9licNlAsFPK9mPc+0nDNh3Adsp8Xvep2fRWq8CjgNjlTFLRi/OZPEvGq21XWs9VWttBTpjPEczL3AzMzE+JGZW8Hh55RXXaa3rYXyTE03lX0NC1CkSIAtRSWYt4BcYwd1A4ARGdrCNR7PWQFolNncEaOBZK2iu+1scwRhYBoCZ2TproA64//mvAW48x/ZygECP7TUvb1NltrsTI+gYSemv/cEI8kaWCZj8tdZnnSezf5uAPwHbzYz4z8DDwD6t9Ylz9Pu32mX28Vzn5DBnP88ujEGb56S13qO1vgmjNOEFYL75vKcAH5U5L0Fa6wTP1ctsbjHQWCkVgxEoe57njzGyyWFa61DgbaCkTKCibxQqOr6SY6zMa/lClHptYZTBVFYKFQ80O9fx/Z73aUU+xMgc3wos1lpX+DpQSr2tSs/o4fmzozI7MzPlH2AEyhfiSuBFZYwRKPkQsEYpdbN5exRGaU15+1xh7vOlC9ynEHWCBMhCVJIyjMUoU7CbX8d+CsxQStVTSrXBCOT+e75tmdnVjcCzSilfZYwy/60j/ecDo5UxyMoXY7T7WfWTHv4CTFVKPVpSY6qU6qaUmmc+vhXopJSKMQdITa9kPz7GqDcehDEjRIm3Mc5RG3NfTczzWJEVmJl68/7yMvfLcwyjvvSCaa01xvP2tFLqdqVUiDIG5Q1USr1rNpsLPKSMgZXBwD+AT3QlZi1QSt2ilGqitS4GMszFRRivk9HKmF7OWynlr4xBa9aKtmXubz5GmU9DSteO1gPStdb5Zr3uzR6PHcf45qCic7QII3N/s1LKooyBjh0xZlK4mLYAo5RSDc0PXg9ewLrvA7crpa40n59WSqlo87EKn//f8z49hw+Bq4C7OEd5hbn/e3XpGT08fzqVt45SKloZA0yt5v0wjA9Ea8trfw7tMUp9YjhTqjIa4xudCMDvPGUqM4Hh5gcyIS4rEiALcX5fK6WyMWqQZwBTtNYlmZ/7MbJi+4FVGEHifyq53ZsxBgelY9T5/aZR8GZf7gfmYWSTszBqBwsqaP8zxoC6YcB+pVQ68C7mV61a693Ac8CPwB7zuCpjLsbXskvLZHpfw8hsLjZrG9diHHdFVmAEeysruF+e6cCc31DvCoDWej5GneodGNnUYxiD574ym/wH+MjswwEgH+OcV8Y1wA7zNfQaMElrna+1TgHGAk9gBLApGAPQzvd3+WOM4OyzMgH6H4HnzHP8DOZgQPP4cjFeu6vNc9S3zPGfxJiJ4c8YJSd/Aa6tgoz9RxgfwBwY2fBPztm6dB/XYwysexXIxHhdlGSFX8Ooaz+llHq9nNV/z/u0vL44ML7ZCMKsAb/IsjDeI+uUMVPMWmA7xvNTaVrrX7XWR0t+zMUnzDryOMqZvaLM+scx/i49faEHIERtp4zkiRCirjAznBlAlNb6QHX3RwhR8yilFgFvmgNYhRBlSAZZiDpAKTVaKRVo1ra+BGzDyNIJIUR5lgPLqrsTQtRUkkEWog5QSr2HMd2bwqht/qPWelf19koIIYSonSRAFkIIIYQQwoOUWAghhBBCCOGhvCtZ1WleXl46ICDg/A2FEEIIIcQFyc3N1VrrWp+AvewC5ICAAHJycs7fUAghhBBCXBClVF519+FiqPURvhBCCCGEEBeTBMhCCCGEEEJ4kABZCCGEEEIIDxIgCyGEEEII4UECZCGEEEIIITxIgCyEEEIIIYQHCZCFEEIIIYTwIAGyEEIIIYQQHiRAFkIIIYQQwkOVXUnPHm3zB1YCfuZ+5tuS7X+1R9sigHlAQ2AzcKst2e60R9v8gA+BnsBJYKIt2e4wt/U4cCdQBDxgS7Z/by6/BngN8AbesyXbE6rqeIQQQgghxOWhKjPIBcAwW7K9GxADXGOPtvUFXgBetSXbo4BTGIEv5u9TtmR7JPCq2Q57tK0jMAnoBFwD/MsebfO2R9u8gVnASKAjcJPZVgghhBBCAK7sbAqPHKnubtQ6VZZBtiXbNZBt3vUxfzQwDLjZXD4HmA68BYw1bwPMB960R9uUuXyeLdleABywR9v2Ar3Ndnttyfb9APZo2zyz7c6qOiYhhBBCiJqk6PRpCg8fpjAtjcK0wxQePowzLY1f0gv5zqs5PzeMZHbKV3T94tPq7mqtUmUBMoCZ5d0ERGJke/cBGbZku8tskgq0Mm+3AlIAbMl2lz3algk0Mpev9dis5zopZZb3Ka8fSqm7gbsBfH19f99BCSGEEEJcAlprijIyKExNM4LgkkDY43dxVpa7/ZHAhiyL6MPS1n1IC6uPL8UMCcrH76o/VONR1E5VGiDbku1FQIw92lYfWADYymmmzd+qgscqWl5eeYguZxla63eBdwGCgoLKbSOEEEIIcSlprSlKT6cwNZXCtDScZYLfwrTD6Ly8Uut4BQXh06oVPi1bEhgbS36zViy1NCfxlA+bjhcA0LdtQ/7Uw8rIzs2p5+9THYdW61VpgFzClmzPsEfblgN9gfr2aJvFzCJbgcNms1QgDEi1R9ssQCiQ7rG8hOc6FS0XQgghhKh2RadPU5iaijM11cgEp6UZ99NSyw2AvUNDsbRqiV9EBMEDBriD4ZLfXiEhFBZpcgpcNAjy5ZfUDJ57czWRTX14dEQ413VvRav6AdV0tHVHVc5i0QQoNIPjAOAqjIF3y4BxGDNZTAG+MldZaN5fYz6+1JZs1/Zo20LgY3u07RWgJRAFrMfILEeZs2KkYQzkK6ltFkIIIYSocsW5uUb2tyQATk2l8HAaTvO2ZwkEgFdwMD5WK77h4QQPGGgEvlar8btVK7yDg869v2LNla8sp3/bxrwwritdWoWy6IErsLWoh1LlfekufouqzCC3AOaYdchewKe2ZPs39mjbTmCePdr2dyAJeN9s/z7wkTkILx0j4MWWbN9hj7Z9ijH4zgX8n1m6gT3adh/wPcY0b/+xJdt3VOHxCCGEEOIyU+x04jp82B3wFqaZ5RDm/aL09FLtlb+/GfS2IrB79zPBr7UVvlYrXiEhFxTIpqTn8mVSGtvSMnnn1p54eSnuGdSONo0Cjf0pRceWIRf1mAUorS+vktygoCCdk5NT3d0QQgghRA2gXS5cx45VGAC7fv0VPGMlHx98WrTA19oKn1ZWdwDsazUywd6NGv3uTO7p/EIW/XKELzansd5hBOB9Ihry3pTYGl9TrJTK1VqfOw1eC0iALIQQQog6rSg7m8KUFJyHUihMNX+npOBMSTHmCHa5zjRWCkvz5viWlD6UCYAtTZuivL0veh9dRcX8tPcEX2xOY/GOoxS4imnbJIgbe1gZG9MSa4PAi77PqiABci0lAbIQQghRt+jiYiMLnOIR+B5KMeqCU1IoOnWqVHvv+vXxCQvDN8yKjzXMXf7gY7Xi07w56hJPCbvnWBY3v7eO41kF1A/0YUy3ltzQw0o3a2itqyuuKwHyJZnFQgghhBDi9yjOyzMC39RUnIcOUZiSijPF+F2YmoouLDzT2NvbKINoHYb/8OH4tg7Dxxpm/rbiHVL9NbuzVx/A38ebm3q3JrxxEAMjGzOiU3OGRjfBz3LxM9TiwkgGWQghhBDVTmtN0YkTZ7LAHuUQztQUio6fKNXeKygIn9at8Q0LwyfMim9Ya/N3GD4tWqB8alatbn5hEVtSMujbthEAt76/jmA/C2/d0rOae3Zx1ZUMsgTIQgghhLgkdFERhUeO4Dx4kMJDh3A6Dp4JiFNTS88JXFILbLXi0zrMCHxLssBhYXjXr1/jyw+01mw+dIrPN6fxzdbDZBe4WPP4lTQL8SfPWUSAb93LFNeVAFlKLIQQQghx0WiXi8LDh3EePITz4EGchw5SePAQzkOHcKamgkcphPLzMwPe1gT174dPWGujLjisNT6tWuLl51eNR/LbpaTn8sXmNL5ISuXgyVwCfLwZ2bk5N/Sw0jjYOKa6GBzXJZJBFkIIIcQF0YWFxlRoJVngQ4dwHjpoZIbTDpeaFUIFBODbujW+bdrg26a1URbRug2+4W2wNGmC8vKqxiO5ePKcRXy99TDzN6ey/oAxNVu/to24saeVazo3J9jv8shJ1pUMsgTIQgghhDiLdjpxpqbhPOgwyiFKssAHD1J4+DAUFbnbegUG4hPexgh8W7fGt40REPu0bm0EwTW8FOK3KirWnMguoFmIPxm5TnrPWIK1QQA39qxdU7NdTBIg11ISIAshhBAGdxDscHiUQxzEefCQMT9wcbG7rVdw8JkscBszGG7TGt/WrS/KxTFqo8nvrSXPWcQXfxwAwIETOYQ3Crwsz0UJCZBrKQmQhRBCXE601sYcwQ6H8XPgAAXm7cLUtNKZ4JAQMwg+kwn2ad0a3/DwWjEoriqdyC5g4ZbDfLf9KB/c0YtAXwvfbT8KaEZ0an5ZnxtPdSVAvjwKYoQQQog6rigz0x0EFzgcOA843Jlhz9khlL8/vuHh+HfsSMioUfiFhxsBsRkEizMKXEUssf/KF5tTWb7rOK5iTZdWoRzJzKddk2Cu6dy8ursoqogEyEIIIUQtUVxQYJRCOBzG4DiPrHCpq8V5e+NjbYVfeARBffrgGxGOb7jxY2natM4MjKsKWmuSUjL4fFMq3/xyhMy8QpqF+HHnFRHc2MNK+2b1qruL4hKQAFkIIYSoQdxzBZdkgD1+Cg8fBo/SSEuTJvhGRFBv+HB3AOwbHo6vtdUlv1xyXZBd4GLMG6vYfyIHfx8vrulkTM02ILIx3l5SQnE5kRrkKubt7U2XLl1wuVxERETw0UcfUd/8CmvOnDn8/e9/B+Cpp55iypQpF7Tt+fPnM378eDZs2EBsbCwAzz//PO+//z7e3t68/vrrjBgx4qz1Dhw4wKRJk0hPT6dHjx589NFH+Jb5Q7p8+XJ8fX3p378/AFOnTuXaa69l3LhxF3wOLoXp06cTHBzMI488Uqn2U6dOZcWKFYSEhJCXl0ffvn15/vnnadWqlbtNUlISPXr04Lvvvit1HoODg8nOzr7oxyCEuLwU5+UZ5RD79+Pct5+CA/tx7j+A0+FAFxS423kFBxtBb0QEvuFtzgTBbcLxDq71pZ7V7rvtR9n7axb3DYsC4K9fbadTq1BGdm5OPf+adTW+2kBqkEWlBAQEsGXLFgCmTJnCrFmzePLJJ0lPT+fZZ59l48aNKKXo2bMnY8aMoUGDBpXablZWFq+//jp9+vRxL9u5cyfz5s1jx44dHD58mKuuuordu3fj7V16MvLHHnuMhx56iEmTJnHvvffy/vvvM23atFJtli9fTnBwsDtArotefPFFxo0bh9aamTNnMnToULZv3+7+sDB37lwGDhzI3Llzy/2gIYQQ56O1pujkSSMI3n8A54H9FOzbj3P/fiMbXMLLCx+rFb+2bQkaMADfiHD8IiKMuuDLdIaIqlJydbvuYQ3w8lKsP5DOyj3HuXdwOyzeXjw7tnN1d1HUAFKEdAn169ePtLQ0AL7//nuGDx9Ow4YNadCgAcOHD+e7776r9Laefvpp/vKXv+Dv7+9e9tVXXzFp0iT8/PyIiIggMjKS9evXl1pPa83SpUvdmeApU6bw5ZdflmrjcDh4++23efXVV4mJieGnn34CYOXKlfTv35+2bdsyf/589/YeffRROnfuTJcuXfjkk08AI8C+9tpr3du87777+OCDDwCIj4+nY8eOdO3a1Z3x/frrr+nTpw/du3fnqquu4tixY4CRGb7jjjsYMmQIbdu25fXXX3dvc8aMGXTo0IGrrrqKXbt2lXuexo4dy4cffgjAO++8w+TJk89qo5TioYceonnz5nz77bfu45o/fz4ffPABixcvJj8/v8LnQgghtMtFwYEDZC1dysn33uPwE0/imHQTu/v2Y8/AKzh02xSOTp/OqU8/oyg9nYAePWj8wP20mjmTiIVf0SFpM5GLvyfs7bdo9pdHaTB+PIGxsVgaN5bg+CJJy8jjjSV7GPLScm58aw3rzIt5PDKiPYsfHITFW0IicYZkkC+RoqIilixZwp133glAWloaYWFh7setVqs7eJ44cWK5Ad/DDz/MbbfdRlJSEikpKVx77bW89NJL7sfT0tLo27dvudsscfLkSerXr4/FYqmwTXh4OPfee2+pkoX333+fI0eOsGrVKpKTkxkzZgzjxo3jiy++YMuWLWzdupUTJ07Qq1cvBg0aVOF5SE9PZ8GCBSQnJ6OUIiMjA4CBAweydu1alFK89957/POf/+Tll18GIDk5mWXLlpGVlUWHDh2YNm0av/zyC/PmzSMpKQmXy0WPHj3o2bPnWft79913GTBgABEREbz88susXbu2wr716NGD5ORkxo4dy+rVq4mIiKBdu3YMGTKERYsWccMNN1S4rhDi8lCUnYPzwAGc+/dRsP8Azv1macTBQ6UuoWxp0gTftm0JGTUSv4i2+LZti1+7tliaNZMBcpdQnrOI73YcYf6mVH7edxKtoW/bhjwwLIqu1lAAAn0lFLrUwuMTrwFeA7yB9xwJcQllHvcDPgR6AieBiY6EOIf5WFfgHSAEKAZ6ORLiLnoWS14VVSwvL4+YmBgcDgc9e/Zk+PDhgJGhLKskS1CShS1PcXExDz30kDsb6+lc27yQNhW57rrr8PLyomPHju4M76pVq7jpppvw9vamWbNmDB48mA0bNhASElLuNkJCQvD39+cPf/gDcXFx7ixzamoqEydO5MiRIzidTiIiItzrxMXF4efnh5+fH02bNuXYsWP89NNPXH/99QQGGlcpGjNmTLn7a9asGc899xxDhw5lwYIFNGzYsMLj8zw3c+fOZdKkSQBMmjSJjz76SAJkIS4jRZmZFOzbR8GevRTs24tz7z4K9u3DZf7tA8Db25gruG1b6g0dZgTBbSPwjYjAu4K/gaLqaa3ZdPAU881ZKLILXIQ1DOBPV0ZxYw8rYQ0vv6vb1STh8YnewCxgOJAKbAiPT1zoSIjb6dHsTuCUIyEuMjw+cRLwAjAxPD7RAvwXuNWRELc1PD6xEVBIFZAAuYqV1CBnZmZy7bXXMmvWLB544AGsVivLly93t0tNTWXIkCHAuTPIY8eOZfv27e62R48eZcyYMSxcuBCr1UpKSkqpbbZs2bLUNho3bkxGRgYulwuLxVJum4r4+fm5b5cEkxUN8rRYLBR7XIGppETBYrGwfv16lixZwrx583jzzTdZunQp999/Pw8//DBjxoxh+fLlTJ8+vdz9ent743K5gMoH9tu2baNRo0Yc9qz3K0dSUhJXXnklRUVFfP755yxcuJAZM2agtebkyZNkZWVRr55M7yNEXeI6dQrnvn0U7N1Lwd59FOzbS8HevRQdP+FuowIC8GvXjqC+ffBt2w7fthH4tWuHr9UqM0XUIDkFLoL8LGgND36yhfQcJ6O6tGBcTyu9wxviJbNQ1BS9gb2OhLj9AOHxifOAsYBngDwWmG7eng+8GR6fqICrgV8cCXFbARwJcSerqpMSIF8ioaGhvP7664wdO5Zp06YxYsQInnjiCU6Z81YuXryY559/Hjh3BhngxIkzf7iHDBnCSy+9RGxsLAEBAdx88808/PDDHD58mD179tC7d+9S6yqlGDp0KPPnz2fSpEnMmTOHsWPHnrWPevXqcfr06fMe16BBg3jnnXeYMmUK6enprFy5khdffJHCwkJ27txJQUEB+fn5LFmyhIEDB5KdnU1ubi6jRo2ib9++REZGApCZmemeQWLOnDmV2u/UqVOJj4/H5XLx9ddfc88995zVbv369Xz77bckJSUxePBgrr766lLZaTCC/DfeeIMjR45wzTXX8OOPP9KtWze+//57d5uSWu1bb731vH0TQtQ8rvR0Mwg+kw0u2LuXopNn/r96BQbiGxlJ8MAr8Itsh19kJL7tIvFp2ULKImq415fs4cM1B/k5fhi+Fi/eubUn4Y2CCPKTMKcaWJRSGz3uv6u1ftfjfisgxeN+KtCH0txtHAlxrvD4xEygEdAe0OHxid8DTYB5joS4f17sAwAJkC+p7t27061bN+bNm8ett97K008/Ta9evQB45plnzvn1f2V06tSJCRMm0LFjRywWC7NmzXLPYDFq1Cjee+89WrZsyQsvvMCkSZN46qmn6N69u7su2tPo0aMZN24cX331FW+88UaF+7z++utZs2YN3bp1QynFP//5T5o3N64sNGHCBLp27UpUVBTdu3cHjNk3xo4dS35+PlprXn2hAycFAAAgAElEQVT1VcAYjDd+/HhatWpF3759OXDgwDmPtUePHkycOJGYmBjatGnDFVdccVabgoIC7rrrLmbPnk3Lli15+eWXueOOO1i6dCkAjz76KH/729/Izc2lb9++LFu2DF9fX+bOncv1119fals33ngjb731lgTIQtRg7hkj9poZ4ZLSiL17S11EwysoCL/ISIKHDMavXSR+UZH4tWuHpUULGRBXC5TMQjF/Uyp3XdGWtk2C6RXekKJijbOoGF+LF51ahlZ3Ny9nLq117DkeL+9NVvbr6IraWICBQC8gF1gSHp+4yZEQt+Q39fQcZB5kIYQQtU5RZiYFu3eTv3s3BXv2GJnhPXspysx0t/GqVw+/du3wi4rEt107dzBsadZMAuFa6HBGHguS0pi/KZUDJ3II8PHmpfHdiOvaorq7Jjycbx7k8PjEfsB0R0LcCPP+4wCOhLjnPdp8b7ZZY9YdH8XIGE8ErnEkxE012z0N5DsS4l682MchGWQhhBA1VnF+vlEOsXuPEQjv3k3B7t24fv3V3carXj38oqKoN2IEfpHtjGA4MgpL0yYSCNdy+YVFfL/jKPM3pbJq7wm0hj4RDfnjkHaM7NKCYCmhqI02AFHh8YkRQBowCbi5TJuFwBRgDTAOWOpIiCsprfhLeHxiIOAEBgOvVkUnJYMshBCi2umiIpyHDp0VCDsPHQJzwK/y9cW3XTv820fhFxWFX/v2+LVvLxnhOmpG4k7mrU8hq8BFq/oBjOtp5cYeVlo3klkoarLKXEkvPD5xFDATY5q3/zgS4maExyc+B2x0JMQtDI9P9Ac+AroD6cAkj0F9twCPY5RcLHIkxP2lSo5DAmQhhBCXitYa16/HjQDYIxAu2LfvzOWVlcKndRj+7dvjF9Uev/ZGMOzbujXKIhnDuupoZj4/7DzKLX3boJRi+sIdnM4vZHzPMPpEyCwUtUVdudS0BMhCCCGqRHFenlEnnLyLgl273EGxZ52wd5PG+EcZmWB3VjiyHV4BAdXYc3Gp5BcWAeDv483H6w7xxIJt/PDQIKKayZSatZUEyLWUBMhCCHFxaa1xHTtGfnIyBcm7yN+VTIE9GefBg2D+j/EKCjoTALvLI6KwNGhQzb0Xl5rWmu1pp/l0YwpfbUnj0REduLVfONkFLk5mF9CmUa2PrS5rdSVAlu+qhBBCVFqx04lz3z4jK5xsN38nl8oK+1it+EV3IOTaa/GP7oBfdDQ+rVpJnfBlLj3HyZdJaXy6MYXko1n4WbwY2bk5Xaz1AQj2s8igO1FjSAZZCCFEuVwnT5bOCifvomD/fii5mqW/P37t2+PfoQN+0R3wj47Gr0MHvIODq7nnoqZwFRXz054TfLoxhR/txygs0nSzhjI+NozR3VoSGuBT3V0UF5lkkIUQQtQJurgY58GD5O/cSUFysjsr7Dp+3N3G0qwZftEdCB4yxJ0V9m3TBmVejEiI8vz5s618teUwDYN8mdIvnPGxYXRoLvXFouaTDLIQQlxGdGEhBfv3k79jJ/l2uxEU2+0U5+YaDXx88GvXzswKR+NvM7LCUissKmN7WibPfbOTmRNjaFk/gPUH0knPKWBYdDN8LXK57suBZJCFEELUaMX5+cYsEjuNQDh/504Kdu9GO50AqMBA/KOjCb3hBvxtNvw72vBr1w7l61vNPRe1hdaaTQdP4e/jTedWodTzt3Aiu4AjmXm0rB9A74iG1d1FIX4TySALIUQdUJSdbZRH7Nzpzg4X7NsHRcY0Wl6hoWYQ3NH949umtZRIiN/k19P5fL45jc82prD/RA5xXVsw6+YegBE0y4DMy5dkkIUQQlSLosxM8nfsIG/HDgrsdvJ37DSmVDN5N26Mf6eOBA8bagbDnfBp1VKCFvG7OF3FLE3+lc82prB893GKijW9wxsybUg7RnVp4W4nrzNRF0gGWQgharDinBzyd+4kb9t28rdvJ2/7dgoPHXI/7tOyJf6djIywn5kh9mnatBp7LOqavb9mM2/9IRYkpXEyx0nTen6M62llXE8rbZvIjCWiNMkgn4c92hYGfAg0B4qBd23J9tfs0bbpwF1AyfDoJ2zJ9kXmOo8DdwJFwAO2ZPv35vJrgNcwrtn9ni3ZnmAujwDmAQ2BzcCttmS7s6qOSQghqlJxQQEFyckewfA2nPv2uy+2YWnRgoDOnah/4434d+6Ef8eOMnhOVInMvEL8LF74+3izfNevzFnj4CpbMybEhnFFVGMs3jLgTtRtVZZBtkfbWgAtbMn2zfZoWz1gE3AdMAHItiXbXyrTviMwF+gNtAR+BNqbD+8GhgOpwAbgJluyfac92vYp8IUt2T7PHm17G9hqS7a/da5+SQZZCFET6MJCCvbuJW/bNvK3bSdvx3YKdu9xzzHs3agRAZ0749+5M/5dOhPQuTOWxo2rudficrD/eDYjX/uJGdd3YVxPK6fzCyl0FdMo2K+6uyZqAckgn4ct2X4EOGLezrJH2+xAq3OsMhaYZ0u2FwAH7NG2vRjBMsBeW7J9P4A92jYPGGtubxhws9lmDjAdOGeALIQQl5ouLsZ54IA7GM7fvp385GR0QQEAXiEhBHTuRPAdd+DfuRMBXbpgad5cajnFJZF6Kpf5m1KxeCnuGxZFROMg7h7Ulq7WUABC/OViHuLyc0kG6dmjbeFAd2AdMAC4zx5tuw3YCPzZlmw/hRE8r/VYLZUzAXVKmeV9gEZAhi3Z7iqnfSlKqbuBuwF8ZfoiIUQVc506Rd7WreT/8gt5W7aSt20bxVlZgDG1WkDHjjS46SZ3ZtindWsJhsUlVeAqYvGOY3yyIYXV+06gNcSZA+2UUvz56g7V3EMhqleVFxHZo23BwOfAg7Zk+2mMDG87IAYjw/yy2bS8/w76Nyw/e6HW72qtY7XWsRbLpZ24Y8aMGXTq1ImuXbsSExPDunXrADhw4AB9+vQhKiqKiRMn4nRWvnT6mmuuoX79+lx77bWllmutefLJJ2nfvj02m43XX3/dvfyBBx4gMjKSrl27snnzZvc6c+bMISoqiqioKObMmeNevmnTJrp06UJkZCQPPPAA5ZXinGu7JTIyMvjXv/7lvr98+fKz+l2TOBwOOnfuXO5ju3fvZtSoUURGRmKz2ZgwYQLHjh0765i+/fZbYmNjsdlsREdH88gjj5TazuzZs4mJiSEmJgZfX1+6dOlCTEwM8fHxFfbrqaeeYubMmRfnIMVFpZ1O8n75hfSP/kvaI4+y9+oR7OnXn9R7p3Hi7XdwpacTMmoULWbMoO3XC+mwYT1t/vsRzeIfIzQuzrganQTH4hLZdTSLZ7/eQZ9/LOH+uUkcOJHDA8Oi+OkvQ5k1uUd1d0+IGqNKo0V7tM0HIzj+ny3Z/gWALdl+zOPxfwPfmHdTgTCP1a3AYfN2ectPAPXt0TaLmUX2bF8jrFmzhm+++YbNmzfj5+fHiRMn3IHwY489xkMPPcSkSZO49957ef/995k2bVqltvvoo4+Sm5vLO++8U2r5Bx98QEpKCsnJyXh5efHrr78CRsC2Z88e9uzZw7p165g2bRrr1q0jPT2dZ599lo0bN6KUomfPnowZM4YGDRowbdo03n33Xfr27cuoUaP47rvvGDlyZKn9VbRdTyUB8h//+MffehprhPz8fOLi4njllVcYPXo0AMuWLeO4x6V4AbZv3859991HYmIi0dHRuFwu3n333VJtbr/9dm6//XYAwsPDWbZsGY2ltrRW0FpTmHaYvK1b3NnhfLvdfeENS5MmBMR0o8GE8fh37UpAp054BdX6UjxRB2w6eIq/fbOTLSkZ+Hgrru7YnIm9whgQ2RhvL/mAJkRZVZZBtkfbFPA+YLcl21/xWN7Co9n1wHbz9kJgkj3a5mfOThEFrMcYlBdlj7ZF2KNtvsAkYKEt2a6BZcA4c/0pwFdVdTy/xZEjR2jcuDF+fsbAhsaNG9OyZUu01ixdupRx44yuT5kyhS+//LLS273yyiupV+/sa9m/9dZbPPPMM3h5GU9rU3Oqp6+++orbbrsNpRR9+/YlIyODI0eO8P333zN8+HAaNmxIgwYNGD58ON999x1Hjhzh9OnT9OvXD6UUt912W7n9q2i7nuLj49m3bx8xMTE8+uijAGRnZzNu3Diio6OZPHmyOzu9ZMkSunfvTpcuXbjjjjsoMOszw8PDOXHiBAAbN25kyJAhAKxYscKdie3evTtZWVlkZ2dz5ZVX0qNHD7p06cJXXxkvCYfDgc1m46677qJTp05cffXV5OXlAUa2vFu3bvTr149Zs2aVe84//vhj+vXr5w6OAYYOHXpWtvmf//wnTz75JNHR0QBYLJYL+nBw4sQJxowZQ9euXenfvz/bt28/q81bb71FXFwc+fn57NmzhxEjRtCzZ08GDRrE7t27Abjlllv405/+RP/+/Wnbti0LFiwAIC0tjYEDBxITE0Pnzp35+eefK923y1FRdg45a9dy4u13SPnj/7Fn4BXsu+oqDv/5EU7N+wQsFhpMnkyrmTOJXLaUyJUrsL7xBo3+8AeCeveW4FhUm5Ir3O0+ZpT2BPl5k1Pg4qk4G2sfv5JZk3swqH0TCY6FqEBVZpAHALcC2+zRti3msieAm+zRthiMcggHcA+ALdm+w5yVYifgAv7PlmwvArBH2+4DvseY5u0/tmT7DnN7jwHz7NG2vwNJGAF5jXH11Vfz3HPP0b59e6666iomTpzI4MGDOXnyJPXr16ek3MNqtZKWlgbA//73P1588cWzthUZGcn8+fPPub99+/bxySefsGDBApo0acLrr79OVFQUaWlphIWdScKX7O9cy61W61nLy6po/RYtznwGSkhIYPv27WzZYrwEli9fTlJSEjt27KBly5YMGDCA1atXExsby9SpU1myZAnt27fntttu46233uLBBx+s8HhfeuklZs2axYABA8jOzsbf3x+ABQsWEBISwokTJ+jbty9jxowBYM+ePcydO5d///vfTJgwgc8//5xbbrmF22+/nTfeeIPBgwe7g/iytm/fTs+ePc95/kva/fnPfz5vu4o8/fTT9OnTh4ULF7J48WKmTp3Kxo0b3Y/PnDmTFStWsGDBAnx9fbn77rt57733aNeuHatXr+a+++5j8eLFAPz666+sXr2abdu2MWHCBK6//nr++9//Mnr0aB577DGKiorcHxKEofDwYXI3J5GXlERu0mYKkndBcTEAvhERBA8cSEBMN/y7dsW/fXuUjwxeEjWLq6gYi7cXBa5ips5ez9Udm/PyhG5ENw9h8UODpJxHiEqqylksVlF+nfCic6wzA5hRzvJF5a1nzmzRu+zymiI4OJhNmzbx008/sWzZMiZOnEhCQgJxcXFntS35ozV58mQmT578m/ZXUFCAv78/Gzdu5IsvvuCOO+7gp59+Krd+WCl1wcvLqmy7snr37u0OwGNiYnA4HNSrV4+IiAjatzdm9psyZQqzZs06Z4A8YMAAHn74YSZPnswNN9yA1WqlsLCQJ554gpUrV+Ll5UVaWhrHjhlVPREREcTExADQs2dPHA4HmZmZZGRkMHjwYABuvfVWvv322/MeQ1VZtWoViYmJgPEBa+rUqZRMSzh79mzatGnDF198gcViISMjg7Vr13LjjTe613e5XO7b1113HUopunbt6v6A06tXL+655x7y8/O57rrr6Nat2yU8uppFu1zkJ+8ib/NmcpM2k5e0BdfRo4A5kK5rVxrfew8B3bsT0LUr3qGh1dxjIcpXXKxZtfcEn2xMYd+v2Xz7pyvw9/Hmg9t70aF5iLudBMdCVJ5carqKeXt7M2TIEIYMGUKXLl2YM2cOU6ZMISMjA5fLhcViITU1lZYtWwK/L4NstVrdwdL111/vrnO1Wq2kpJyZCKRkf1arleXLl5daPmTIEKxWK6mpqWe1L29/5W33fEpKTsA4Py6Xq9xgu4TFYqHYzOLl5+e7l8fHxxMXF8eiRYvo27cvP/74I2vXruX48eNs2rQJHx8fwsPD3euU3W9eXh5a60r90+jUqRMrVqyoVLuSko3foux58LzfpUsXtmzZQlpaGm3atEFrTePGjd3Z+bI8j7dkO8OGDWP58uUkJiYyefJkHn/88d/8gay2KTp9mrwtW8hNSiJvcxJ5v/yCNjPolhYtCOzRnYDuPQjo0R3/Dh1Ql3hArxAX6nBGHp9tTOXTjSmkZeTRINCHG3pYyS8sJsDXm55tGlZ3F4WoteRSOFVo165d7Nmzx31/y5YttDFHrA8dOtQd8M6ZM4exY8cCRgZ5y5YtZ/2cLzgGI2O4dOlSwKjPLcnGjhkzhg8//BCtNWvXriU0NJQWLVowYsQIFi9ezKlTpzh16hSLFy9mxIgRtGjRgnr16rF27Vq01nz44Yfu/nmqaLue6tWrR5Y5vdW5REdH43A42Lt3LwAfffSRO6sbHh7Opk2bAPj888/d6+zbt48uXbrw2GOPERsbS3JyMpmZmTRt2hQfHx+WLVvGwYMHz7nf+vXrExoayqpVqwDjA0p5br75Zn7++Wd3dhfgu+++Y9u2baXaPfroo/zjH/9w1wIXFxfzyiuvUFmDBg1y9+HHH3/EarUSZNaxxsbGMmvWLEaPHs3Ro0dp0KABLVq0cNcXFxcXs3Xr1nNu/+DBgzRv3py7776bqVOnkpSUVOm+1SZaa5wpKWR8+SVHnvkr+0ePYXefvqTcfQ8n3/03xVlZ1L/xRlq+/BKRy5YStWwprV55hYa33kJAp04SHIsay+kq5tttR5jyn/UMeGEpr/64m7ZNgnjz5u6sfeJKnr62IwG+3tXdTSFqPfkvUIWys7O5//77ycjIwGKxEBkZ6Z7R4IUXXmDSpEk89dRTdO/enTvvvLPS273iiitITk4mOzsbq9XK+++/z4gRI4iPj2fy5Mm8+uqrBAcH89577wEwatQoFi1aRGRkJIGBgcyePRuAhg0b8vTTT9OrVy8AnnnmGRo2NDIOb731FlOnTiUvL4+RI0e6Z7B4++23Abj33nsr3K6nRo0aMWDAADp37szIkSPLLS8B8Pf3Z/bs2YwfPx6Xy0WvXr249957AfjrX//KnXfeyT/+8Q/69OnjXmfmzJksW7YMb29vOnbsyMiRI8nKymL06NHExsYSExPjHix3LrNnz+aOO+4gMDCQESNGlNsmICCAb775hgcffJAHH3wQHx8funbtymuvvcbJkyfd7bp27crMmTO56aabyM3NRSlV4TGX57nnnuP222+na9euBAcHn3VOBw8e7C7T+eGHH5g3bx7Tpk1j+vTpOJ1ObrnllnNmr5csWcIrr7yCj48PwcHB/Pe//61032oyrTXOffvI3biR3A0byd24EZdZWuMVHExATAz1Rl5DYI8eBHTpIoPnRK2073g2E95ew8kcJy1C/bl/aCTjY8MIaxhY3V0Tos6psktN11RyqWkhaj9dVETBrl3kbthgBMUbN1F06hRgTLUW2CuWgNhYAnvG4hfZDuUtGTVRO32xORWnq5hJvVtTVKx54ottXNOlOYOiZAYKUTPVlUtNS4AshKjxtNNJ3o4dZjC8kbxNmynOzgbAx2olMDaWwF6xBMbGylXpRK2mtWbf8WwimxpTef5hzgayC1zMu7tfNfdMiMqRALmWkgBZiJqvuKCAvKQtZwLiLVvQ5mBL33btjIA4NpbA2J74lKl7F6I2ysh1siApjU82pJB8NIuf/jKUsIaBZOYVEuJvkQ99otaoKwGy1CALIaqdLiwkb9s2ctetI2ftOvKSkoyr0ymFny2a+hPGGwFxz55YGjWq7u4KcVForVmz/yTz1qfw3Y6jOF3FdLOGMuP6zjQI8gUgNEDm2haiOkiALIS45HRREfk77eSuW0vOuvXkbtqEzs0FwM9mo8FNNxHYpw+BsT3xDgk5z9aEqF1OZBcwf1Mq89YfwnEylxB/Czf3bs2E2DA6tpTXuxA1gZRYCCGqnC4upmDPXiMgXruO3A0bKDan//Nt146gPn2MgLh3LywNGlRzb4WoOvmFRfSa8SNZ+S56RzTkpt5hjOzcAn8fGUgq6oa6UmIhAbIQ4qLTWlN46BA5a9YYAfG6de5ZJnzCwgjq24fAPn0J7N0Ln6ZNq7m3QlSt+ZtSWWI/xlu3GJerX7j1MB1bhBDZNLiaeybExVdXAmQpsRBCXBRFmZnkrF1HzurV5Pz8M4Xm1RgtzZoRPOgKAvv0JahPb3xatarmngpRtYqKNT/tOU5seEOC/SzkOV1k5BaSXeAi2M/CmG7nv+KoEKJ6SQZZCPGb6MJC8rZuJefnn8levZr8bduhuBivoCAC+/QhaEB/gvr3xzc8XEbgi8vC0cx8Pt2YwicbjEs/v3BjFyb2al3pS9oLURfUlQyyBMhCiErRWuN0OMhZ/TM5q1eTu349xTk54OVFQJcuBA0YQNCA/gR07YrykZH34vLgKipmxe7jzF1/iKXJv1KsYWBkY27q3ZrhHZvha/Gq7i4KcUlVJkAOj0+8BngN8AbecyTEJZR53A/4EOgJnAQmOhLiHOHxieGAHdhlNl3rSIi79yIfAiAlFkKIcyg6fZqcn42AOHv1alyHjwBGHXHItdcaWeI+ffAODa3mngpxaaVl5PHJhhQ+25jCkcx8Ggf7ce/gdkzsFUabRrU+eSZElQmPT/QGZgHDgVRgQ3h84kJHQtxOj2Z3AqccCXGR4fGJk4AXgInmY/scCXExVd1PCZCFEG5aawp27yZ75UpyVqwkNykJiorwqlePoL59CLr7bqNsonXr6u6qEJecZ6nEo59tZc3+kwyKasJfR3fkSlszfLwlWyxEJfQG9joS4vYDhMcnzgPGAp4B8lhgunl7PvBmeHziJa1TkgBZiMtcUXYOuWvXkL1iJdkrV+I6dgww5iNu9Ic/EDzoCgK6dUNZ5M+FuHyt2H2cJ77YxoL/60/Tev48FdeRev4WwhoGVnfXhKhpLEqpjR7339Vav+txvxWQ4nE/FehTZhvuNo6EOFd4fGImUHKVqIjw+MQk4DTwlCMh7qeL2nuT/McT4jKjtca5f787IM7dtAkKC/EKCiKof3+CBw8i6Ior8GnWrLq7KkS1KSwqZon9GC1CA+gWVp+wBgG0bxZMVr6LpvWQC3oIUTGX1jr2HI+XlwkuOyCuojZHgNaOhLiT4fGJPYEvw+MTOzkS4k7/xr5WSAJkIS4DxU4nuevWkb1sGdkrVlKYlgaAX1QkDW+7leBBgwnsHoPy9a3mngpRvQ6ezGHehhQ+25jKiewCJvUKo1tYfdo2CWb27b2ru3tC1AWpQJjHfStwuII2qeHxiRYgFEh3JMRpoADAkRC3KTw+cR/QHthIBcLjE1sBbfCIeR0JcSvP10kJkIWoo1ynTpG9YgXZS5eRs2oVxbm5qIAAgvr1o9FddxE86Ap8Wsp8rEI4XcX8sPMYH68/yOq9J/H2UgyLbsrNvVszqH2T6u6eEHXNBiAqPD4xAkgDJgE3l2mzEJgCrAHGAUsdCXE6PD6xCUagXBQen9gWiAL2V7Sj8PjEksF9O4Eic7EGJEAW4nLidDjIWrqM7KVLyd28GYqLsTRpQsjo0dQbNpTAvn3x8vOr7m4KUSOkpOcyd/0hPt2YwolsJ63qB/DI1e0ZHxtGsxD/6u6eEHWSWVN8H/A9xjRv/3EkxO0Ij098DtjoSIhbCLwPfBQen7gXSMcIogEGAc+Fxye6MALeex0Jcenn2N11QAdHQlzBhfZT5kEWohbTRUXkbf2F7GVLyVq6DOe+fQD4dehA8LCh1Bs2DP9OnVBeMrpeCDDmLQaweHvxr+V7een7XQyLbsbkvq0ZFNUEby+5oIcQv0dNulBIeHzit8B4R0Jc9oWuKwGyELWMdjrJWbuW04sXk71sOUUnT4LFQlDvXgQPHUbw0KH4WuVyzkKUlZKey/i31/D4qGjGxrQiM7eQHKeLlvUDqrtrQtQZNSxA/hzoBizBrF0GcCTEPXC+daXEQohaoDg/n5xVq9xBcXFWFl5BQQQPHkzwlcMIvuIKvENkVL0QnoqLNSv3HOdktpMbe1ppVT+AgVGNaRFqBMShgT6EBspVH4WowxaaPxdMMshC1FBF2TnkrFzB6cU/kL1yJTo3F+/QUIKvvJJ6Vw8nqH9/vGTWCSHOcjyrgM82pTB3/SFS0vOIbBrMDw8Ncl/kQwhRdWpSBhkgPD4xAGNquF3nbexBMshC1CBFmZlkLVtG1uIfyFm1Cu104t2oEaFjRhNy9dUE9uqF8pGMlxBlaa1Zs/8k/1t3iMU7jlJYpOnbtiF/GRHN1Z2aSXAsxGUoPD5xNPAS4ItxgZEY4DlHQtyY860rAbIQ1awoO5vsJUvIXLSInNU/g8uFpXlz6k+cSMjVwwno0QPl7V3d3RSiRsrMLeSzTSl8vO4Q+0/kEBrgw239wrmpd2simwZXd/eEENVrOsalrZcDOBLitpjTy52XBMhCVIPivDyyV6zgdOIislesQDudWFq2oOFttxEy4mr8u3SRmSeEqIDWmvzCYgJ8vTmUnsvfE+30bNOAl4dGEte1Bf4+8oFSCAGAy5EQlxken+i5rFK1xRIgC3GJaKeT7NWrOb3oW7KXLKE4Nxfvxo2pP2ECIaNGERDTTYJiIc5Da834t9cQ3jiIl8Z3o4s1lCV/Hky7JpItFkKcZXt4fOLNgHd4fGIU8ADwc2VWlABZiCqki4rIXb+ezMREsn74keLMTLxCQwmJiyMkbpRRUyzlE0Kc07bUTH7YeZSHhrdHKcXwjs1oFHzmgjcSHAshKnA/8CTGFG8fA4uBv1VmRQmQhagC+bt2k/nVV5z++v/Zu+/4qKr0j+OfyaSQBEIKvQ5N5lIUpYqCYEFwVHQtWAHBLrrqWsZd29p2dte1ovtbFBfQFcWygjtipawNKYpS7ihtQugthBRSJrm/P2bixpgyCYRJ+b5fr7wy99xz7n2yS8wzZ859zvsE9u4lKiGB5meeQdI556LhkUIAACAASURBVNB8+HBsqj4hUqW8wgDvf7+Df32zlR+2ZREfY+figZ3pkpbADaf1iHR4ItIwtPF7XH8gmCQD4HB7BxPc7rpKSpBFjpLA3r1keb1kzV9AgWlCdDTNR46k5fnn0XzUKKKaaetakeps3JPNa8u28s6qbWQXBOjdtgWPjO/LBSd2JKmZKriISI2863B7z/N7XNsBHG7vSOAFoH91A5UgixyBkvx8sj/7jKz584MVKIqLada/P23vv5+kc8YRnZoa6RBF6r1AcQkfr9/Nq1+n8/Xm/cTaoxjXvx1XD+vKwK4pKtEmIrV1A/BeqNzbScATwDnhDNRGISI1ZFkWh1et4uB775H94UeU5OQQ3a4dLc8/n5bjzyeuhz7+FQlHflExzWLsFBWXMNyziFh7FFcN68qlgzr9Yo2xiDQc9XCjkJOBfwD5gMvvce0NZ5wSZJEwBfbtI+u99zj49jsU+v1EJSTQ4uyzaTn+fBKGDFEFCpEamL5oA2+uzGDx70YRbY9iy75cuqQmYI/SbLFIQ1YfEmSH2/s+vyzn1gfYCWQCHNWNQkynkQjkGz6zuIZxijRYVnExuV98wcG33yZ78RIIBIgfOJD2N9xA0tljiEpIiHSIIg1C1uEi3v12G2P7taN9y3j6dWxJdkGAgkAJ0fYourWqNxNOItLwPXmkF6h0Btl0GlHAZcCVwGCCJTLigL3AB8AMw2duqOzCptPoDMwB2gElof7Pmk4jFXgTcAB+4FLDZ2aaTsMGPEtwbUgeMNnwmd+GrjUJuD906ccMnzk71D4QmAXEh2L6reEzq5wS1wyyhKNw2zYOvvMOWe/+m8Du3dhTU2l54QUkX3QRcd27Rzo8kQZj7fYsXluWzvzVOzhcVMyjF/Tj6mFdIx2WiNSR+jCDXJbD7W1LMI8FWO73uPaEM66qBHkp8CkwH1hr+MySUHsqMBq4Avi34TNfq2R8e6C94TO/NZ1GC2AVcAEwGThg+EyP6TTcQIrhM+81ncY5BOvVnQMMBZ41fObQ0P1WAoMITpevAgaGkurlwG+BZQQT5OcMn7mwqh9YCbJUxioqIvuzRRyc9ya5X30NUVEknnoKyRdfTItRo1SaTSRM+UXFfLBmJ68uS+e7rQdpFhPFBQM6ctWwrvTr2DLS4YlIHapPCbLD7b0U+CvBraZtwAjgbr/H9XZ1Y6taYnGm4TOLyjcaPvMA8A7wjuk0Kq25Y/jMnQTXe2D4zGzTaZhAR2A8MCrUbXYo6HtD7XNCM8DLTKeRHEqyRwGfhO6L6TQ+AcaaTmMJkGT4zK9D7XMIJuBVJsgi5RXt3sPBefM4OG8egb17ie7Qnla33UryhRcS0759pMMTaTAyDuTx2jfpzFuRQWZeEd1bJfLguX24aGAnWsarRJuIHHN/AAaXzho73N7WBCd/a58glybHptPoAWwzfGaB6TRGAccTTGQPVpRAV8R0Gg7gROAboG0oecbwmTtNp9Em1K0jkFFm2LZQW1Xt2ypo/xWbzXY9cD1ArGYBhWAlirxvlpM5dy7Zn34KxcUkjhhBu0f+SPORI7W7nUiYSkosokIP1j358Y/854edjOnTlquGdWV4jzSVaBORSIoqt6RiPxDWE/XhPKT3DjDIdBo9gZnAAoLb9YVVR850Gs1D17jd8JmHTKdRWdeK/itq1aL9142WNQOYAcElFtXFLI1XcXY2WfMXkDl3LoWbNmFv2ZLUSZNIuWwCsV26RDo8kQZldcZBpr3+LS9PGoSzXRJ3jenNfeMM2rXUpjgiUi986HB7PwLmho4nEOZKg3Cy6BLDZwaAC4FnDJ95BxDW586hJRjvAP8yfOa7oebdoaUTpeuUSzP7bUDnMsM7ATuqae9UQbvIrxSmp7Pr0cfYcNoodj/2GFEJCbR/4gl6Ll1C23vuVnIsEgbLsliVfoDlWw4A0DU1gW6tEikMlADQOTVBybGI1Bt+j+tugjWQjwdOAGb4Pa57whkbzgxykek0LgcmAeeF2qpdTBaqSjETMA2f+VSZUwtC1/KEvs8v0z7NdBpvEHxILyu0BOMj4AnTaaSE+o0B7jN85gHTaWSbTmMYwaUbE4Hnw/h5pImwLIu85Ss4MHs2OYsXQ3Q0Lc85h5SrriS+f7W7TIpIyOHCYuav3s6cr9NZv/MQw3uk8fp1w0hJjOXVqUMjHZ6ISIUcbu+f/R7XvcC7FbRVKZwE+RrgRuBxw2duMZ1GN6DCyhXlnAJcDawxncbqUNvvCSbG80ynMRXYClwSOvcBwWUbGwmWebsGgg8Fmk7jUWBFqN8jpQ/sATfxvzJvC9EDegJYhYUcWriQ/bNnU7DexJ6cTNqNN5By+eXEtGlT/QVEBICt+/N4dZmfeSu3kXW4CGe7FjxxYX/GD+gQ6dBERMJxFsFCEGWNq6DtV7STnjQagcxMDr45j8x//YvA3r3E9uhB6qSJtDz/fKKa6WNfkXCUlFh8vnEfc77ys+jHPUTZbIzt245Jwx0MdqTooTsRqVJ9KPPmcHtvAm4GugObypxqAXzp97iuqu4alc4gm05jDZU89AZg+Mzjww9VpO4U7drFgX/OIvOtt7Dy8kg85RTaP/E4iaecou2fRWrIu2Ynt879jlbNY7l1dE+uGNpV64pFpKF5neCqgj8B7jLt2X6P60DFQ36pqo1CSrc6uiX0/dXQ9yuBPMNnPlLjcOsBzSA3HgVbtrB/5kyy5i+AkhKSXOeQNvVamvU+LtKhiTQYRcUl/PH9dfRul8TVw7qSX1TMR+t2MbZfO+KiVe5QRGqmPswgHw1V1UFOBzCdximGzzylzCm36TS+BBpkgiwN3+F169g/4yWyP/4YW2wsKZdcQuqUKcR2qrAMtoiUEyguYf3OQxzfKZkYexTp+/NIjg/WiG8WY2f8AP0uiUjTFs5Deomm0zjV8JlfAJhOYzjQ4N8ZSMOTt2oV+178O7lffklU8+akXXcdqROvJrpVq0iHJtIg7M8p4I0VGfxrWTr7cgr50n06rVvEMfuaIT9v9iEiIuElyFOBV0yn0TJ0fBCYUnchifxS3rffsW/68+R+9TX2tDRa33knKZdfhr1Fi0iHJtIg/LDtILO/Suf9H3ZQGCjhlJ5pPHR+X1ISghU7lRyLSGPicHt7Am39HteX5dpHADv8Htemikf+T7UJsuEzVwEnmE4jCbAZPjOrtgGL1MTh1avZ+/x0cr/8EntqKm3uuYeUyy8jKj4+0qGJ1HsFgWIWrtnFrK/8rM44SEKsnQmDOjPx5K70aqs3lyLSqD1DsLRweYdD586r4NwvVJsgm04jDrgIcADRpVtFN9SH9KT+O/zDD8HE+PPPsaek0Obuu0i5/HKiEhIiHZpIg3C4sJhRTy5m96ECurVK5KHz+nDRwE4kNat2jycRkcbA4fe4fijf6Pe4VjrcXkc4FwhnicV8IAtYBRTUKDyRGijYsIE9Tz1NzuLF2JOTaf27O0m94gqiErXkXaQ6327N5KuN+5h2ei/iY+1MHt6Nvh2SOLVnKy2hEJGmpqralGF9DB1OgtzJ8Jljw4tHpOaKdu5k7/PTyXrvPaISEmh9+29Juepq7M2VGItU5XBhMTF2G9H2KL7YsI9XvtzC1cMctEyI4aZRPSIdnohIhRxu71jgWcAOvOz3uDzlzscBc4CBwH5ggt/j8pc53wVYDzzs97ierOAWKxxu73V+j+ulctedSnDCt1rhJMhfmU6jv+Ez14RzQZFwFWdlsf+llzjw6mtQUkLqxImk3XA90SkpkQ5NpF7bcfAwry5LZ+7yrTx+QX9cx7dnyqnduG5Ed+JjVbtYROovh9trB14guA30NoLJ7AK/x7W+TLepQKbf4+rpcHsvA/4MTChz/mmCG4FU5nbg3w6390r+lxAPAmKBC8OJM5wE+VRgsuk0thBcYmEDLO2kJ7VVUlBA5muvse8fMyjJzqbl+efT+rZbiemo2qsilbEsi1XpmfzzSz8frtuFZVmc1actnVODnxY2jwvnP+ciIhE3BNjo97g2Azjc3jeA8QRnhEuNBx4OvX4bmO5we21+j8tyuL0XAJuBSnd983tcu4HhDrd3NNAv1Oz1e1yLwg0ynP+ijgv3YiJVsSyL7I8/Yc9f/kLR9u0knjaSNnfeSbPevSMdmki9VRAo5j/f72TWV37WbM8iqVk0U0/txtXDutI5VQ+uiki9E22z2VaWOZ5hWdaMMscdgYwyx9uAoeWu8XMfv8cVcLi9WUCaw+09DNxLcPb5rsoCcLi9qaGX34e+ftEeznbT4ZR5K91Rrw1VL3oWqVT+jz+y+/EnyFu+nLjjjqPLrH+SOGxYpMMSqdde/2YrT33yI/tyCunROpFHL+jHRSd1JCFWs8UiUm8FLMsaVMX5ip4atsLs80fgab/HleNwe6uKYVWov63ctUuPu1c1GMIr83Y+8DegA7AH6AqYQN/qxooEMjPZ++yzHJz3FvakJNo99CDJl1yCLVp/4EUq8sO2g3Rv3ZzmcdFE2aB/x5Zcc0o3RvRqhc2mahQi0uBtAzqXOe4E7KikzzaH2xsNtAQOEJxpvtjh9v4FSAZKHG5vvt/jml52sN/j6nakQYaTpTwKDAM+NXzmiabTGA1cfqQ3lsbNKi4m8/W57H3+eUpyc0m58kpa33Iz9uTkSIcmUm/5dh3i/Olf8sj4vkw82cFlQ7pw2ZAukQ5LRORoWgH0cri93YDtwGXAFeX6LAAmAV8DFwOL/B6XBYwo7eBwex8Gcsonx6FzZwMt/B7X2+XarwD2+j2uT6oLMiqMH6TI8Jn7gSjTaUQZPnMxMCCMcdJEHV67Dv+lE9j9+OPE9+tH9/nv0e4Pv1dyLFLOgdxCXli8kb99/CMAznZJPD3hBC44UQ+sikjj5Pe4AsA04COCKxLm+T2udQ639xGH23t+qNtMgmuONwJ3Au4a3uaPwNIK2hcBYW10Z7Os8ss+fsl0Gp8CFwB/AloRXGYx2PCZw2sUaj2RmJho5eZW+uCjHIHinBz2PvMsma+/jj0tlXb33UeLceP0sbBIOebOQ/zzyy28t3oHhYESzjTa8tLEgfpdEZEGz2az5VmWFdGNDBxu7w9+j6vCamtVnSsrnCUW4wnuXX0HcCXBdSDaZlp+ZlkW2R99xO7HnyCwbx8pl19O6ztux96iRaRDE6k3ikssPjV3888vt7Bs8wGaxURx8cBOXDPcQa+2+l0RETmKmjnc3ujQbPXPHG5vDEdxJz0ADJ8ZMJ3G14ATOFSjMKXRKtq9h10PPUTOkiXEGQadXphO/PEqkS1SKju/iDeWZzD7az/bMg/TMTme+8Y5mTC4M8kJsZEOT0SkMXoXeMnh9k7ze1y5AA63NxF4LnSuWuEkyP8FRphOIwX4DFhJcDeTK2sVsjQKlmWRNX8+u5/4E1ZBAW3uuYfUiVerOoVISHGJhT3KxoHcQp5YaDLYkcr9LoMzjbZE28N5/ENERGrpfuAxIN3h9qaH2roQXNv8QDgXCGcN8reGzzzJdBq3AvGGz/yL6TS+M3zmiUcQeMRoDfKRKztrHH/SSbR//DHiuh1xRRWRRsP9zg9k5hXyj6uDpUAzDuRpUw8RaRLqwxrkUg63Nx7oGTrc6Pe4Doc7NpzpPpvpNE4mOGM8tQbjpJGxLItDCxaw6/EngrPG7ntJvfpqbHZ7pEMTiajCQAmfrN/N2H7tsEfZ6NG6Odn5RViWhc1mU3IsIhIBoYR4TW3GhpPo3g7cB/zb8JnrTKfRHVhcm5tJw1WclcXOhx8me+GHxJ90Eh2eeJxYhyPSYYlEVGZuIa8v38qcr/3sPlTAP68ZzOjebbhuZLWbNImISD1W7RKLxkZLLGoub8UKtt9zL4G9e2l9222kTZ2iWWNp0jbtzeGVL7bwzrfbyC8qYUSvVkw9tRsje7UmKkql2kSk6aovSywcbq8N6OT3uDJqMz6craYX8+s9sjF85um1uaE0HFZREXtffJH9/5hBTOdOOOa+Tnz//pEOSyQiLMviy437mfnFZhb/uJfY6CguHNCRKad2o3c7lWkTEalP/B6X5XB73wMG1mZ8OEss7irzuhlwERCopK80ZJs3Q/fgR8NFO3aw/Y47Ofz997T8zW9o94ffE5UY8TeEIhFz42ur+Gjdblo1j+WOM4/jymFdaNU8LtJhiYhI5ZY53N7Bfo9rRU0H1mqJhek0lho+87QaD6wHtMSiEn/6E/z+9/DEE+SMGMmOu+7CKiqi/aOPkHTOOZGOTuSYO5BbyNzlW5lySjfiY+18sGYnOQUBzj+hA81itMRIRKQi9WWJBYDD7V0P9Ab8QC5gA6yjspOe6TRSyxxGEZyqblerSKV++tOf4LHHsIB9zz3HvtlziOvVi47PPavybdLklNYv3rgnh79+9CPOdi04w2jLOf3bRzo0ERGpmXG1HRhOtfpVBDcHWQV8DfyO/5V7k4YulBwH8vPJ6NiJfS2TaZmbi2PwICXH0mRYlsWSH/dw9cxv+OP76wAY7Ehh6d2jOMNoG+HoRESkNvweVzrQGTg99DqP8HLf6meQDZ+pLKmxCiXHBYEAGV0dBKKjabdrF8lZB7H9+c8QEwP33RfpKEXqTEGgmPmrd/DSfzezYU8ObVrEcdpxrQGw2Wx0TasXnxKKiEgtONzeh4BBBJdZ/BOIAV4DTqlubDhLLGKAm4CRoaYlwD8Mn1lUy3ilPti8GX7/e3ISE9nepSv5lsVPGVtx5ucHz+flBdckT5jw84N7Io3FwbxC/vXNVmZ95WdvdgFG+ySeuvQEzj2+A7HR2gZaRKSRuBA4EfgWwO9x7XC4vWGVHQqnisXfCWbcL4aOrw61XVvzOKW+sLp148CVV7FnxQriCgpYtX0bhYEyxUkSEuD++5UcS6Oy+1A+f1+yiXkrM8grLOa041pz/YTuDO+Rhs2m+sUiIo1MYajcmwXgcHvD/lgwnAR5sOEzTyhzvMh0Gt/XNEKpP6yiInY98igHV66kRdeudPjqS/5bUXKs5RXSSOQXFdMsxk52foDXl2/l/BM6cO2IbjjbJUU6NBERqTvzHG7vP4Bkh9t7HTAFeCmcgeF8llhsOo0epQehraaLaxWmRFxJXh4Zt9zCwbfeIu2GG+j44UKi/vAHiI0NdlByLI3MtbNXcue81QD0bNOcFb8/kycvOUHJsYhII+f3uJ4E3gbeAY4DHvR7XM+HMzacGeS7gcWm09hMsH5cV+CaWsYqERTIzCTjhhvJX7uWdo/8kZRLLw2euO8+WLUK3nlHybE0ePlFxSxcu5PxJ3QkKsrGyT3SsJdZPdEyISZywYmIyLG2BognuCv0mnAHhbVRiOk04gg+AWgDfIbPLAhjzCvAucAew2f2C7U9DFwH7A11+73hMz8InbuPYPm4YuA2w2d+FGofCzwL2IGXDZ/pCbV3A94AUgkuvr7a8JmF1cXVVDcKKdy2nYzrrqNoxw46/u1JWpx55i/Oz5o1C/bsYfI990QmQJEjdCC3kFe/TmfO13725xby+nVDGd6jVaTDEhFpUurZRiHXAg8CiwjmsKcBj/g9rleqGxvODDIENwdxhPqfYDoNDJ85p5oxs4DpQPl+Txs+88myDabT6ANcBvQFOgCfmk7juNDpF4CzgG3ACtNpLDB85nrgz6FrvWE6jf8jmFz/Pcyfp0kp2LiRrddMoaSggC6vzCRhYCXbkrdpc2wDEzkKtuzLZeYXm3lr5TYKAiWc4WzDdSO7M7RbavWDRUSkMbsbONHvce0HcLi9acBXwJEnyKbTeBXoAazmf2uPLX6d+P6C4TP/azoNR3XXDxkPvBGamd5iOo2NwJDQuY2Gz9wciuUNYLzpNEzgdOCKUJ/ZwMMoQf6V/J9+Yuvka8AeRdfXXqXZccdVP0ikAViVfoAZ/93Mx+t3ExMVxW9O6si1I7rRs01YFXxERKTx2wZklznOBjLCGRjODPIgoI/hM6tfixGeaabTmEhwd77fGT4zE+gILCvTZ1uoDX75g2wDhgJpwEHDZwYq6P8rNpvteuB6gNjSh9GagHyfj62Tr8EWG0uXWbOI6649X6RxmPb6t/znh50kJ8QwbXRPrj65K21aNIt0WCIiUr9sB75xuL3zCU7ujgeWO9zeOwH8HtdTlQ0MJ0FeC7QDdh6FQP8OPBoK8lHgbwRLblRUgNSi4iobVhX9K2RZ1gxgBgTXINcs5Ibp8Lp1ZEyZii0+nq6zZxHbtWukQxKptfyiYhas3sH4EzsQF23nDKMNQ7qlcvHATiTEhrtSTEREmphNoa9S80Pfq/2osdK/LKbTeJ9g0tkCWG86jeXAzw/nGT7z/JpGafjM3WWu/xLwn9DhNoJ7ZZfqBOwIva6ofR+QbDqN6NAsctn+TV7+Tz+xdcpUohIT6Dp7NrGdO1c/SKQeW5WeyT3v/EBiXDSu49tz4YmdIh2SiIjUc36P64+1HVvV1MuTVZyrFdNptDd8ZulM9IUEZ6cBFgCvm07jKYIP6fUClhOcKe4VqlixneCDfFcYPtMyncZi4GKClSwm8b93BU1a4datbJ06lai4OLrOmUNsJyUS0vDsyspn5hebiY+xc+eY3gzvkcY7N53MSV1SIh2aiIg0AVUlyH8wfOaY2l7YdBpzgVFAK9NpbAMeAkaZTmMAwZlpP3ADgOEz15lOYx6wHggAtxg+szh0nWnARwTLvL1i+Mx1oVvcC7xhOo3HgO+AmbWNtbEo2r2brddMgaIAXV57VcmxNDgb92Tzj6WbeW/1dopLLCYMDn76YbPZGNhVVSlEROTYqLQOsuk0vjV85knHOJ4611jrIAcyM0m/6moCu3bRZdYs4vv3q9H4WbNmATB58uSjH5xINValH+DvSzbzqbmbuOgoJgzuzHUjutM5NSHSoYmISA3UpzrIR6KqGeRk02n8prKThs98tw7ikVooKSxk27RbKcrIoPPLL9U4ORaJhJISi8U/7uH/lm5ihT+TlvEx3HZ6TyYNd5DWPC7S4YmISAPlcHufp4riDX6P67bqrlFVgtyS4E54lVWMUIJcD1iWxc7f/4HDq1bR8emnSBwypPpBIvXApr05TJ29kg4tm/HguX2YMLgziXGqSCEiIkds5ZFeoKq/RumGz5xypDeQurXv+ekc+s9/aH377SSNGxfpcESq9Po3W9myL4c/uPrQq20LXp06hGHd04ixV1TRUUREpOb8Htfsitodbm8z4LxwrlFVglzRzLHUI1nvv8++F1+k5YUXknbD9ZEOR6RCB3ILSUmIwWazsWVfDmu3HyJQXEK0PYoRvVpHOjwREWnEHG6vHRgDXA6cDXwOvFXduKoS5InVDTadhu0o7rAnNZBvmuy8/wESBg+m/R8fxmbT+xmpXzIO5PHS55t5c0UGL00cxMjjWnPvWCfRmi0WEWnSHG7vWOBZghXKXvZ7XJ5y5+OAOcBAYD8wwe9x+R1u7xBCG78RnMh92O9x/buSe4wErgBcBEsHnwJ083tceeHEWNVfqudNp3Gr6TS6lG00nUas6TRON53GbIL1h+UYK87KYtutt2FPTqbj009ha0LbZ0v9t3FPNnfOW82oJ5cwd/lWxg/oQJdQNQolxyIiTVtoRvcFYBzQB7jc4fb2KddtKpDp97h6Ak8Dfw61rwUG+T2uAcBY4B8Ot/dXk70Ot3cb4AG+BPr4Pa6LgMPhJsdQ9QzyWILbQM8NbdRxEGhGMNv/GHja8Jmrw72RHB1WSQnb77mHot276TpnNtGtWkU6JBEAfth2kBcXb+Kj9btoFm1n0skOrhvZjfYt4yMdmoiI1B9DgI1+j2szgMPtfQMYT3AvjFLjgYdDr98GpjvcXlu5BLcZlVeqeAe4AJgAFDvc3vlV9K1QpQmy4TPzgReBF02nEQO0Ag4bPvNgTW4gR9f+GTPIXfpf2j74AAknnhjpcERYlX6AZz7dwOcb9tGiWTTTRvdkskq1iYg0VdE2m61sFYkZlmXNKHPcEcgoc7wNGFruGj/38XtcAYfbmwWkAfscbu9Q4BWgK3C13+MKlA/A73H91uH23g6MJrj2+K9AksPtvRT4wO9x5VT7Q1TXAcDwmUXAzmo7Sp06/P337H1+OknnnEPK5ZdHOhxpwizLosQCe5SNlf5MzJ3Z3DvWyVXDutCiWUykwxMRkcgJWJY1qIrzlZUPDquP3+P6BujrcHsNYLbD7V3o97jyy3f2e1wWsAhY5HB7Ywgu6biM4ORvtR+/a0FgA1GSm8v2u+8hum0b2j38kB7Kk4jZk53POc99wfzV2wGYNNzBF/eO5qZRPZQci4hIdbYBncscdwJ2VNYntMa4JXCgbAe/x2UCuUCVu6M53N7WQLLf41rg97iuKHfvSqkqfwOx64knKMrIoOuc2diTkiIdjjQxhYESftyVTf9OLWndPI5urRJICiXDzWLsEY5OREQakBVAL4fb2w3YTnBW94pyfRYQLATxNXAxsMjvcVmhMRmhZRddgd6Av/wNHG6vDXgImEZwMtjmcHsDwPN+j+uRcIKsdgbZdBrTTKeREs7FpG5kL1pE1jvvknbddSQMHhzpcKQJySsM8MoXWzjtr4u54qVlZOcXYbPZePHKgZzZp22kwxMRkQYmtGZ4GvARYALz/B7XOofb+4jD7T0/1G0mkOZwezcCdwLuUPupwPcOt3c18G/gZr/Hta+C29xOsKzbYL/Hler3uFIIrnM+xeH23hFOnDbLqvqhPtNpPEYwu/+W4KLojxpy7ePExEQrNzc30mGErTg7m82uc7EnJ9Pt7bfqrKTbrFmzAJg8eXKdXF8alqzDRcz5ys8rX24hM6+Iod1SuWV0T0b0aqXlPSIiUimbzZZnWVZiJGNwuL3fAWeVT55Dyy0+9ntc1VY5qHaJheEz7zedxgMEdyG5BphuOo15wEzDZ26qXegSrj1PPUVg7146TX9e9Y6lzu3LKWDmF1t49et0cgoCnO5sw82jejDIkRrp0ERERMIVU9HMEWpXogAAIABJREFUst/j2ht6YK9a4VaxsEynsQvYBQSAFOBt02l8YvjMe2oSsYQvb9UqDs59g9RJE4k//vhIhyONWKC4hD8t9PGvb9IpCJTg6t+em0b1oG+HlpEOTUREpKYKa3nuZ9UmyKbTuI3gQul9wMvA3YbPLDKdRhSwAVCCXAesoiJ2PvQQMR060Pq22yIdjjRS2flFtGgWQ7Q9ig17cnD178Ato3vQvXXzSIcmIiJSWyc43N5DBMvFlV0WbCO4wUi1wplBbgX8xvCZ6WUbDZ9ZYjqNc8ONVGom8403Kdy4iU7TnycqMaJLeaSRmr96O79/dw2f3HkaHZLj+efkwdijtL5YREQaNr/HdcTllSqtYmE6jVTTaaQCzwDZpcdl2jF8pnmkAcivBTIz2Tt9OgknD6P5GWdEOhxpRPz7ctmwOxuAQY5UfnNSJ6LtwaRYybGIiDQmDrf3zAraJoUztqoZ5FX8b1q6/F9OC+geVnRSY/umv0BJdjZt3fepYoAcFRv3ZDN90UYWfL+DUb3b8MrkwXRMjufRC6qsry4iItKQPehwey8C7gKaE1wqXADMrm5gpQmy4TO7HbXwJGwFm7eQ+cYbJE+4lGa9j4t0ONLAmTsPMX3RRj5Yu5Nm0XauHdGda0foV1tERJqE04DfAatDxw/6Pa654QwMq4qF6TR+Q7A4swV8bvjM92oTpVRv3/Tp2GJjaT1tWqRDkQZs7fYsnvtsAx+v303zuGhuOq0HU0/tRlrzuEiHJiIicqyUbhCyieCW1l0dbq/N73FVu59HODvpvQjcCKwB1gI3mk7jhSOLVyqS/9NPHFq4kNSrriI6LS3S4UgDlHEgjymzVnDu81+wbPN+fntGL764dzT3jHUqORYRkaZmGbDQ73GNBQYDHYAvwxkYzgzyaUC/0t3zTKcxm2CyLEfZvuenE5WYSNrUKZEORRqY0nJtSc1i2LAnm7vGHMfE4Q6SmoVVD11ERKQxOtPvcW0F8Htch4HbHG7vyHAGhpMg/wh0AUrLvHUGfqhNlFK5fNMk+5NPaHXLLdiTkyMdjjQg9727hu8zDuK97VRaJsSw9K7RRKkihYiINHGlyXG5tv+GMzacBDkNME2nsTx0PBj42nQaCwAMn3l+uIFK5fa/8k+iEhJInTQx0qFIA/Dt1kyc7VqQEBvNyF6t6NYqgUCJRYzdpuRYRETkCIWTID9Y51E0cUU7d3Logw9Iveoq7ElJkQ5H6rHVGQd5+pOfWPrTXh44tw9TT+3GuP7tIx2WiIhIo1Jtgmz4zKWm02gHDCFYxWKF4TN31XlkTciBOa8CkDrx6ghHIvXV9xkHeebTn1j8415SEmK4d6yTywZ3jnRYIiIi9ZrD7bUDbSmT81a09KK8ahNk02lcS3AWeRHBDUOeN53GI4bPfKX24Uqp4uxsDs6bR9LYscR07BjpcKSeWbMti6c//YlFvj0kJ8Rwz9jeTDrZQWJcWBUaRUREmiyH23sr8BCwGygJNVvA8dWNDeev7N3AiYbP3A9gOo004CtACfJRkPX++5Tk5pI6OaydD6WJ+HFXNn/9yMen5h5axsdw99m9mTTcQXMlxiIiIuH6LdDb73Htr+nAcP7abgOyyxxnAxk1vZH8mmVZHJz3FnF9DJr105a/AiUlFlFRNnZkHWb5lgP87qzjmHyKgxYq1yYiIlJTGUBWbQaGkyBvB74xncZ8gtPS44HlptO4E8DwmU/V5sYC+WvXUuDz0e7hh7DZVHmgKSsusZj2+rd0TUvEPc7JqONa89V9Z2jGWEREpPY2A0scbq8XKCht9Htc1eau4fz13RT6KjU/9L1FTSKUXzs4bx62+HiSzj030qFIhOw+lE/bpGbYo2y0ah5HckJwpthmsyk5FhEROTJbQ1+xoa+whVPF4o+1DEqqUHL4MIe8H5B0zjjszZtHOhw5xrbuz+OZz35i/uodvD/tVPp0SOLRC7TMRkRE5Gjxe1y1zmHDqWKxmODSil8wfObptb2pQM7SpZTk5dHyPO2z0pTszDrM84s2Mm9FBvYoG1NP7Ua7ls0iHZaIiEij4XB7n/F7XLc73N73qSCH9Xtc1SZf4XyGe1eZ182Ai4BA2FFKhQ55P8DeuhUJgwdFOhQ5BvblFPDi4k289k06lmVxxdAuTBvdkzZJSo5FRESOsldD35+s7QXCWWKxqlzTl6bTWFrdONNpvAKcC+wxfGa/UFsq8CbgAPzApYbPzDSdhg14FjgHyAMmGz7z29CYScD9ocs+ZvjM2aH2gcAsIB74APit4TN/9S6hPirOySFn6VKSJ0zAZrdHOhypQ1l5Rcz4fBP//NJPflExFw/sxK2n96JzakKkQxMREWmU/B7XqtD3avPVyoSzxCK1zGEUMBBoF8a1ZwHTgTll2tzAZ4bP9JhOwx06vhcYB/QKfQ0F/g4MDd37IWAQwSnyVabTWGD4zMxQn+uBZQQT5LHAwjDiiriczz7DKiwk6ZxxkQ5F6tgLSzby0uebOe/4Dtx+Zi+6t9Z6cxERkfounCUWqwgmpzaCSyu2AFOrG2T4zP+aTsNRrnk8MCr0ejawhGCCPB6YE5oBXmY6jWTTabQP9f3E8JkHAEyn8Qkw1nQaS4Akw2d+HWqfA1xAA0mQsz/9lOh27YgfMCDSochRVhAoZs5X6ZzQOZkh3VK5fmR3fnNSR5ztkiIdmoiIiIQpnCUW3Y7i/doaPnNn6Lo7TafRJtTekV9uPrIt1FZV+7YK2itks9muJzjbTGxsjap8HHUlhYXkfvkVSeedp9rHjZBlwcwvtnD+gA4M6ZZKq+ZxtGoeF+mwREREmiyH25vo97hyazKm0gTZdBqDgQzDZ+4KHU8k+IBeOvBw6azuUVJRpmjVor1ClmXNAGYAJCYmRnSd8uGVKynJy6P5aadFMgw5SopLLOav3s68lRnMnjKEZjF2vLedSpqSYhERkYhyuL3DgZeB5kAXh9t7AnCD3+O6ubqxUVWc+wdQCGA6jZGAh+B64ixCyWYt7A4tnSD0fU+ofRvQuUy/TsCOato7VdBe7+UsXYotNpbEYUMjHYocAcuy+Mzcjeu5z7lz3vdk5wfYmx3cpEfJsYiISL3wNHA2sB/A73F9D4wMZ2BVCbK9zCzxBGCG4TPfMXzmA0DPWga6AJgUej2J/+3KtwCYaDoNm+k0hgFZoaUYHwFjTKeRYjqNFGAM8FHoXLbpNIaFKmBMLHOtei1nyVIShg4lKkFVDBqqVekHuPQfXzN19kryi4p5/vITeX/aqXRK0f+nIiIi9Ynf48oo11Qczriq1iDbTacRbfjMAHAGoTW8YYwDwHQacwk+ZNfKdBrbCFaj8ADzTKcxleDWf5eEun9AsMTbRoJl3q4BMHzmAdNpPAqsCPV7pEzSfhP/K/O2kAbwgF7Rzp0UpqeTcsXlkQ5FauGn3dn85cMf+dTcTesWcTx6QT8uG9yZGHtV7zNFREQkQjJCyywsh9sbC9wGmOEMrCrRnQssNZ3GPuAw8DmA6TR6ElxmUSXDZ1aWBZ5RQV8LuKWS67wCvFJB+0qgQe3Nm7cimOcnDB4c4Uikpp7+5CeeW7SB5rHR3H12b645xUFCbDhFYERERCRCbiS4z0ZpcYePqSTfLK/Sv/CGz3zcdBqfAe2Bj8tswhEF3HpE4TZReStWENWiBXG9e0c6FAnDgdxC4qKjSIyLpm+HJK49tRs3j+pJSmJkK6GIiIg0ZA63dyzBxNUOvOz3uDzlzscRfO5tIMH1wxP8Hpff4faeRXA1QizB5+Tu9ntciyq7j9/j2gdcWZsYq/xs2PCZywyf+W/DZ+aWafupdJc7qZm85StIGDhQu+c1APtyCjjtL4t5+fMtAIzp244/uPooORYRETkCDrfXDrxAcJO4PsDlDre3T7luU4FMv8fVk+CDdn8Ote8DzvN7XP0JPsv2KlVwuL2zHW5vcpnjFIfb+6tVCRXR4sljpGjPHgrT07W8oh4rDJTw1cZ9ALRqHsetZ/TknP7hbBopIiIiYRoCbPR7XJv9Hlch8AbBDePKGk9wQzmAt4EzHG6vze9xfef3uEqrlq0DmoVmmytzvN/jOlh64Pe4MoETwwlSCfIxcvj77wFIGHhShCOR8izL4oM1Oxnz9FKumvkNW/fnAXD9yB70atsiwtGJiIg0KNE2m21lma/ry52vbBO4Cvv4Pa4AwWff0sr1uQj4zu9xFVQRS5TD7U0pPXC4vamEt4t0eJ3kyOWvWwd2O3FOZ6RDkTJWpR/gca/Jt1sPclzb5rw8aRCdU+MjHZaIiEhDFbAsa1AV58PZ7K3KPg63ty/BZRdjqonlb8BXDrf37dDxJcDj1YwBlCAfM/lr1xHXqxdRzZpFOhQBtuzL5S8f+li4dhetW8Th+U1/Lh7YiWiVbBMREalLlW0CV1GfbQ63NxpoCRwAcLi9nYB/AxP9Htemqm7k97jmONzelcDpBJPu3/g9rvXhBKkE+RiwLIv8detofvroSIfS5B3ILeS5zzbw2rJ0YqOjuP3MXlw3ojuJcfpVEBEROQZWAL0cbm83YDtwGXBFuT6lG8t9DVwMLPJ7XFbogTsvcJ/f4/qyshs43N4kv8d1KLSkYhfweplzqX6P60BlY0spKzgGAjt2UJyZSXy/BlW2uVF66pMfef2brUwY3IU7zuxFmyTN6IuIiBwrfo8r4HB7pxHcLdkOvOL3uNY53N5HgJV+j2sBMBN41eH2biQ4c3xZaPg0grs5P+Bwex8ItY3xe1x7yt3mdeBcYBW/XL5hCx13ry5Om2WVX/bRuCUmJlq5ubnVdzyKDn3yCdtvvQ3Hm28Qf8IJx/Te4Zo1axYAkydPjmgcR1tJicX877fTq00L+nVsyZ5D+Rw8XMRxevhORETkqLPZbHmWZSVGOg6H22sDOvs9rq21Ga8Fl8dA4abgEpm4nj0jHEnTk1dUzGP/MZm7PPj70SapmZJjERGRRs7vcVkE1yrXihLkY6Bg02ai27cnKjHib6iahI17cnjgvbUEiktoHhfNOzcN59HxWt4iIiLSxCxzuL212oBCa5CPgcJNm4jrXu1yFzlCB/MKeebTDby6LJ2EGDuXD+lCnw5JOFrpjYmIiEgTNBq40eH2+oFcQmuQ/R7X8dUNVIJcx6ySEgq2bCF50MBIh9JoFRWX8K9l6Tz96Qay84u4fEgX7jzrONKaV7W5joiIiDRy42o7UAlyHQvs3Il1+DBx3XtEOpRGafGPe3jsP+vZtDeXU3qm8cC5fXC2S4p0WCIiIhIhDre3GXAjwYoXa4CZoR35wqYEuY4V+P0AxHbrFtlAGpmNe3J4zLueJT/upVurRF6eOIgzjDbYbBVtviMiIiJNyGygCPic4CxyH+C3NbmAEuQ6VrR9OwCxncpvMy5HYs32g6xKz+R+l8HEkx3ERut5UxEREQGgj9/j6g/gcHtnAstregElyHWsaPsOsNuJbts20qE0aJZlMesrPzH2KK4a1pXxJ3Rk1HFtSEmMjXRoIiIiUr8Ulb4IbUxS4wsoQa5jRTt2ENO2LbZo/U99JGw2G//9aS/xsXauGtaVqCibkmMRERGpyAkOt/dQ6LUNiA8dl1axqPZhJWVtdaxo+3ZiOmp5RW2k78/Fs9DHfeMMuqQl8MKVJxEfY490WCIiIlKP+T2uI04WtHCzjhXt2KEEuYYOFxbz1Mc/ctbT/2XpT3sxdwXfBCbERushPBEREalzmkGuQ1YgQGDPHmI6tI90KA2CZVksXLuLx70m2w8eZvyADtw3zqBdy2aRDk1ERESaECXIdShw4ACUlBDdunWkQ6n3NuzO5uH31/Hlxv0427XgzeuHMbR7WqTDEhERkSZICXIdKt6/HwB7qhK9ymTnF/HspxuY9ZWfhFg7j4zvyxVDuhBt1+ofERERiQwlyHUosP8AANGtlCBX5kBuIa99k84lgzpx15je2h5aREREIk4Jch0q3r8PgOg0Jchlrd9xCO+aHdx9tpOuaYl8fs/ptG6hxFhERETqB32OXYcC+0JLLFq1inAk9csXG/fyxvIMdh/KB1ByLCIiIvWKZpDrUODAfmyxsUQlJkY6lIiyLIsP1+7CHmVjTN92XHNKNy4d1JnkBG30ISIiIvWPEuQ6VLxvP/ZWaU26dm/GgTwenL+WxT/u5bTjWjOmbzti7FFKjkVERKTeUoJch4qzsrC3TI50GBFRGCjhpc8389xnG4iOsnG/y2DycEekwxIRERGplhLkOlSSk4O9efNIh3HMfb1pP/e/t4ZNe3MZ168dD57Xh/Yt4yMdloiIiEhYlCDXoeKcHGI6dIh0GMfMvpwCnvCavPvddjqnxvPPyYMZ7WwT6bBEREREakQJch0qycnB3qLpzCDf/Nq3fJeRyS2jezBtdC/iY+2RDklERESkxpQg16GS7GyiEht3gpxxII+UxFiax0Xz4Hl9iIuOolfbFpEOS0RERKTWVAe5jliWRXFuLlEtGm+yuD+ngLHP/JdnPvkJgH4dWyo5FhERkQZPM8h1xMrPh0CAqOaNrwbynkP5tElqRlrzOB48rw8jerWOdEgiIiIiR01EEmTTafiBbKAYCBg+c5DpNFKBNwEH4AcuNXxmpuk0bMCzwDlAHjDZ8Jnfhq4zCbg/dNnHDJ85+1j+HFUpyckBwN6IZpDzi4p57rMNvPT5ZuZeN4xBjlQmDO4S6bBEREREjqpILrEYbfjMAYbPHBQ6dgOfGT6zF/BZ6BhgHNAr9HU98HeAUEL9EDAUGAI8ZDqNlGMYf5WKQwlyY9lFb9nm/Yx79nNeXLKJC0/sSM82jXtttYiIiDRd9WmJxXhgVOj1bGAJcG+ofY7hMy1gmek0kk2n0T7U9xPDZx4AMJ3GJ8BYYO6xDbtiVkEBALZmzSIcyZHJLQjgWejj1WXpdElN4F/XDuWUnq0iHZaIiIhInYlUgmwBH5tOwwL+YfjMGUBbw2fuBDB85k7TaZQW0O0IZJQZuy3UVll7vVCaIEfFxUU4ktpbtnk/d7/9PdsyDzPllG7cfXZvlW4TERGRRi9SCfIphs/cEUqCPzGdhq+KvrYK2qwq2n99AZvteoLLM4iNja1prLVSUjqDHNvwEuS8wgB/+fBHZn3lp2taAm9efzJDuqVGOiwRERGRYyIiCbLhM3eEvu8xnca/Ca4h3m06jfah2eP2wJ5Q921A5zLDOwE7Qu2jyrUvqeh+lmXNAGYAJCYmVphEH21WYREAtmOUkB+J977bztMbU8kKRPGSZxE3j+qBd81OJg93cM/Y3iTE1qeVOCIiItKQOdzesQQLMNiBl/0el6fc+ThgDjAQ2A9M8Htcfofbmwa8DQwGZvk9rml1FeMxf0jPdBqJptNoUfoaGAOsBRYAk0LdJgHzQ68XABNNp2EzncYwICu0FOMjYIzpNFJCD+eNCbXVC1ZhaAY5rn4nyO99t5373l1DVsAO2Nh+8DCPeU3uPPM4Hj6/r5JjEREROWocbq8deIFgEYY+wOUOt7dPuW5TgUy/x9UTeBr4c6g9H3gAuKuu44xEFYu2wBem0/geWA54DZ/5IeABzjKdxgbgrNAxwAfAZmAj8BJwM0Do4bxHgRWhr0dKH9irDxrKGuS/fvQjh4uKf9F2uKiY6Ys3RigiERERacSGABv9Htdmv8dVCLxBsCBDWeMJFmyA4IzxGQ631+b3uHL9HtcXBBPlOnXMpwcNn7kZOKGC9v3AGRW0W8AtlVzrFeCVox3j0WAVFgL1e4lFYaCE7QcPV3huRyXtIiIiIlWIttlsK8sczwgtdS1VUZGFoeWu8XMfv8cVcLi9WUAasK8O4q2QPj+vIz8/pFdPZ5A37snhjjdXV3q+Q3L8MYxGREREGomAZVmDqjgfTpGFsAsx1JVIbhTSqFkF9XMG2bIsXv3az7nPf862zDymnOIgPuaXpdviY+zcfXbvyAQoIiIijVllxRcq7ONwe6OBlsAxXUarGeQ6UvqQXlQ9SpD3ZOdzz9s/sOTHvZx2XGv+evHxtElqxvGdknnonVVkBaLomJzA3Wf35oIT601JaREREWk8VgC9HG5vN2A7cBlwRbk+pYUbvgYuBhb5Pa5jOoOsBLmO1Lc1yB+t28V9764htyDAI+P7cvWwrthswU8wLjixIwe//wSAyZMnRzBKERERacxCa4qnEaw8Zgde8Xtc6xxu7yPASr/HtQCYCbzqcHs3Epw5vqx0vMPt9QNJQKzD7b0AGOP3uNYf7ThtlnVME/KIS0xMtHJzc+v8Pnunv8C+6dNxrl+HLSpyK1nyi4p59D/r+dc3W+nXMYlnJgygZ5sWv+o3a9YsQAmyiIiI1J7NZsuzLCsx0nEcKc0g15XSNx62itaZHzu7svKZv3oHN4zszu/G9CY2WsvORURERKqiBLmuhBJkWwQSZMuy+Hrzfk7unoajVSKL7xpF6xb1s5qGiIiISH2j6cQ6YlklEZs9/tTcwxUvfcPH63cDKDkWERERqQElyHXFso55gpwf2hHvDGcb/nbJCZxptD2m9xcRERFpDJQg1xWLY5ogv7F8K6P+uoSdWYeJirJx0cBO2KMiu/5ZREREpCHSGuS6coxmkPOLinlo/jreXJnBiF6tiIu2Vz9IRERERCqlBLmuWFadP6CXcSCPm//1LWu2ZzFtdE/uOOs4zRqLiIiIHCElyHWljh/SW/rTXn77xncUl1i8PHEQZ/bRemMRERGRo0EJch2x6miJRUmJxQuLN/LUpz/Ru20L/u+qgThaNfh63CIiIiL1hhLkulIHD+lZlsWtb3yH94edXDCgA3/6zfHEx2rNsYiIiMjRpAS5rtTBDLLNZuOETi0Z0CmZa0d0i8gmJCIiIiKNnRLkunIUH9L7bmsmeYXFnNKzFdeP7HFUrikiIiIiFVMd5LpylB7SsyyLhxes408LTUpKrKMQmIiIiIhURTPIdeRIH9KzLItAiUWMPYoXrxpIfIydKJVwExEREalzSpDryhE8pBcoLuGB+WvJzC3ihStPomNy/NGNTUREREQqpSUWdaWWM8h5hQFueHUVc5dn0KNNIpo0FhERETm2NINcV2rxkN7+nAKmzF7Jmm0HefSCflw9rGsdBSciIiIilVGCXFdq+JDerqx8rnh5GdszD/P3qwZydt92dRiciIiIiFRGCXIdqclDehkH8rjy5W84kFvIq1OHMqRbah1HJyIiIiKVUYJcV8JMkLfsy+XKl5aRUxDgtWuHMqBz8jEITkREREQqowS5roRZxeKx/6wnP1DC3OuH0bdDy7qPS0RERESqpAS5rlgW4ZSgePKSE9ifW0DPNi2OQVAiIiIiUh2VeasrVgk2Kk6Qd2Xlc/97a8gvKiYlMVbJsYiIiEg9ogS5jlT1kN43W/Yzf/UO0vfnHeOoRERERKQ6SpDrShUJ8vgBHVl692h6t2s6M8d2u50BAwbQr18/LrnkEvLygm8OPvzwQ3r37k3Pnj3xeDxhX8+yLG677TZ69uzJ8ccfz7ffflthv1WrVtG/f3969uzJbbfdFnzjArz11lv07duXqKgoVq5cWaufye/3069fv1qNrel94uPjGTBgAH369OHGG2+kpKSkwr5Llizh3HPPrdH1Z82axY4dO6rtM23atBpdt1RBQQETJkygZ8+eDB06FL/fX2G/yv4tbNmyhaFDh9KrVy8mTJhAYWEhAE899RR9+vTh+OOP54wzziA9Pf3nMaX/3gYMGMD5559fq7hFRKTpUoJcV8o9pFdSYnHfuz+w9Ke9AKQmxkYosMiIj49n9erVrF27ltjYWP7v//6P4uJibrnlFhYuXMj69euZO3cu69evD+t6CxcuZMOGDWzYsIEZM2Zw0003VdjvpptuYsaMGT/3/fDDDwHo168f7777LiNHjjxqP2NNBQKBsPv26NGD1atX88MPP7B+/Xree++9oxZHOAnykZg5cyYpKSls3LiRO+64g3vvvfdXfar6t3Dvvfdyxx13sGHDBlJSUpg5cyYAJ554IitXruSHH37g4osv5p577vn5eqX/3lavXs2CBQvq7GcTEZHGSQlyXSn3kN6zn21g7vIM1u84FMGg6ocRI0awceNGli9fTs+ePenevTuxsbFcdtllzJ8/P6xrzJ8/n4kTJ2Kz2Rg2bBgHDx5k586dv+izc+dODh06xMknn4zNZmPixIk/J5aGYdC7d+8q73HzzTf/nFxdeOGFTJkyBQgmfPfffz8QTOyuu+46+vbty5gxYzh8+DAAmzZtYuzYsQwcOJARI0bg8/kAmDx5MnfeeSejR4/m3nvvJTc3lylTpjB48GBOPPHEan/+6Ohohg////buP7qK+szj+PtpogiIZP2BBwi7AUObBGKiEgQrVLAVNAp2m5R0qdIWRddfrbb2xLbuUs+yokVEQT3HIx6hYg2GpbJmi8qPIirSQEERI6IYFbClBkRSAjXw7B8z9zqEJAQkubnweZ2Tkzvf+c7Md+6D1yff+8zMBbz77rtN9qmtraWoqIisrCzGjh0bnzW/6667KCgooH///kyYMAF3p7y8nFWrVjF27Fjy8/Opq6ujsrKSCy64gLy8PAYOHMiuXbsA2Lp1KyNHjqRv374HJKOH8uyzzzJu3DgAioqKWLx4cXxMMU39W3B3lixZQlFREQDjxo2Lx3DYsGF06tQJgEGDBrF58+YWj0lERKQ5SpBby/4vLtJb9s7feHDJRr5zbjrXf6NPggeWWPX19fzhD38gNzeXLVu20KtXr/i69PR0tmzZAsCtt94a/4o8+hP76r25bWO2bNlCenp6s32aM3ToUJYvXx7fV2xG8+WXX2bIkCEAbNy4kRtvvJH169eTlpbGvHnzAJgwYQLTp09n9erVTJkyhRtuuCG+33feeYdFixZx3333MWnSJIYPH05lZSVLly7l9ttv5+9//3uTY9q9ezeLFy8mNze3yT5r1qxh2rRpvPXWW2zatIlXXnkFgJtuuonKykqSlsLRAAARB0lEQVTefPNN6urqeO655ygqKmLAgAHMmTOHtWvXkpKSwpgxY3jggQd4/fXXWbRoER07dgRg7dq1lJWVsW7dOsrKyvjoo48AGDNmTKOxmj17dvy9i8UqNTWVrl27UlNTc8CYm4pnTU0NaWlppKamHtDe0MyZM7n00kvjy3v27GHAgAEMGjToqM62i4jI8UG3eWs1QQ3yX3bu4daytXy1Wxf+68r+2GE8fvpYUldXR35+PhDMII8fP77R2dLY+3P//fc3u7+GM5DRbQ+nT3OGDBkSTzRzcnLYsWMHH3/8MStWrODBBx+kpqaG3r17x8/rvPPOo7q6mtraWl599VWKi4vj+9q7d2/8dXFxMSkpKQC88MILLFiwgClTpgBBYvfhhx+SnZ19wFjee+898vPzMTNGjx59QDLY0MCBA+N/GOTn51NdXc2FF17I0qVLuffee9m9ezfbt2+nX79+XHHFFQdsu2HDBrp3705BQQEAp5xySnzdxRdfTNeuwb26c3Jy+OCDD+jVqxdlZWXNvo9fJlYt2fbJJ59k1apVLFu2LN724Ycf0qNHDzZt2sTw4cPJzc3lrLPOanacIiIiMUqQW4m742b8Yv466v6xj4fGnkPHE1MSPayEidWERqWnp8dnIQE2b95Mjx49gGAGeenSpQftp6SkhNLS0ma3je4/+rV7Y32a07NnT3bs2MHChQsZOnQo27dvZ+7cuZx88sl06dKFmpoaOnToEO+fkpJCXV0d+/fvJy0t7aDzjencuXP8tbszb968Q5Z7xGqQW6LhmOrr69mzZw833HADq1atolevXkycOJE9e/YctK27N/lHRGP7hWAGecOGDQf1v+2227j66qvjsUpPT6e+vp6dO3dy6qkHPk69qXiefvrpfPrpp9TX15OamnpQDBctWsSkSZNYtmzZAeOL9enTpw8XXXQRa9asUYIsIiItlvQJclVW9kjgASAFeCz77aqW3wqhNTksO/VrLHl7G78qzNa9jhtRUFDAxo0bef/99+nZsydPP/00Tz31FHDoGeRRo0YxY8YMSkpKWLlyJV27dqV79+4H9OnevTtdunThtdde4/zzz2f27NncfPPNhzXGwYMHM23aNJYsWUJNTQ1FRUXxetimnHLKKfTu3ZtnnnmG4uJi3J033niDvLy8g/qOGDGC6dOnM336dMyMNWvWcM455xzWGFsilgyffvrp1NbWUl5eHj+PLl26xOuMs7Ky2Lp1K5WVlRQUFLBr1654iUVTDjWDPGrUKGbNmsXgwYMpLy9n+PDhByXhTf1bMDOGDRtGeXk5JSUlzJo1i9GjRwNBKcl1113HwoUL6datW3xfO3bsoFOnTnTo0IFPPvmEV1555bBqpkVEpHVllFYckLtVTy6c3GB9B2A2cB5QA4ypnlxYHa67AxgP7ANuqZ5c+HxrjDGpa5CrsrJTgIeAS4Ec4HtVWdk5iR1VoH6/81jPC8jpfgo/uCAj0cNpl1JTU5kxYwYjRowgOzub7373u/Tr169F21522WX06dOHzMxMrr32Wh5++OH4uljJA8AjjzzCNddcQ2ZmJmeddVa8NGH+/Pmkp6ezYsUKCgsLGTFiRKPHGTJkCPX19WRmZnLuueeyffv2eP1xc+bMmcPMmTPJy8ujX79+TV58d+edd/L5559z9tln079/f+68884Wnf/hSktL49prryU3N5crr7wyXkIBwYWD119/Pfn5+ezbt4+ysjJuvvlm8vLy+Na3vtXoTPPhGD9+PDU1NWRmZjJ16tR4HfnWrVu57LLLgOb/Ldxzzz1MnTqVzMxMampqGD9+PAC33347tbW1FBcXH3A7t6qqKgYMGEBeXh7Dhg2jtLSUnJx28bEgInLcyyitOCh3yyitaPghPR7YUT25MBO4H7gn3DYHKAH6ASOBh8P9HXXWWI1fsqjKyh4MTMx+u2pEuHwHQPbbVXc3tU3nzp29uYugjpYnfnYvE1P7MXPcAC7OPrPVj/dlPfHEE0CQLImIiIgcCTPb7e6dm1qfUVoxGJhYPblwRLh8B0D15MK7I32eD/usyCitSAX+ApwBlEb7Rvsd7fNI6hlkoCfwUWR5c9iWcKf5HkbUVDHsa90O3VlERETk+NCS3C3ep3pyYT2wEzithdseFcleg9zY1UQHTYmb2QRgAsCJJ7bNAzq++cPvMLx2F1/5SnLctUIzx8ll3bp1XHXVVQe0dejQgZUrVyZoRCIiIgCkmln0EbWPuvujkeWW5G5N9WlR3nc0JHuCvBnoFVlOBw56JFgYmEchKLFoi4F17N+yWlqRI5Gbm9viu1qIiIi0oXp3H9DM+pbkbrE+m8MSi67A9hZue1Qke4JcCfStysruDWwhKNz+t8QOSURERESaUAn0zSitaC53WwCMA1YARcCS6smFnlFasQB4KqO0YirQA+gL/Kk1BpnUNcjZb1fVAzcBzwNVwNzst6vWJ3ZUIiIiItKYsKb4gNytenLh+ozSirsySitGhd1mAqdllFa8C9zGFxfnrQfmAm8BC4EbqycX7muNcSb1XSyORFvdxUJERETkeHOou1gki6SeQRYREREROdqUIIuIiIiIRChBFhERERGJUIIsIiIiIhKhBFlEREREJEIJsoiIiIhIhBJkEREREZEIJcgiIiIiIhHH3YNCzGw/UNdGh0sF6tvoWHL0KG7JRzFLTopbclLckk9bxqyjuyf9BOxxlyC3JTNb5e4DEj0OOTyKW/JRzJKT4pacFLfko5gdvqTP8EVEREREjiYlyCIiIiIiEUqQW9ejiR6AHBHFLfkoZslJcUtOilvyUcwOk2qQRUREREQiNIMsIiIiIhKhBFlEREREJEIJcisxs5FmtsHM3jWz0kSPRwJm9riZbTOzNyNtp5rZi2a2Mfz9T2G7mdmDYQzfMLNzEzfy45uZ9TKzpWZWZWbrzezHYbti106Z2Ulm9iczez2M2a/D9t5mtjKMWZmZnRi2dwiX3w3XZyRy/Mc7M0sxszVm9ly4rLi1c2ZWbWbrzGytma0K2/QZeYSUILcCM0sBHgIuBXKA75lZTmJHJaEngJEN2kqBxe7eF1gcLkMQv77hzwTgkTYaoxysHvipu2cDg4Abw/+mFLv2ay8w3N3zgHxgpJkNAu4B7g9jtgMYH/YfD+xw90zg/rCfJM6PgarIsuKWHIa5e37knsf6jDxCSpBbx0DgXXff5O7/AJ4GRid4TAK4+0vA9gbNo4FZ4etZwJWR9tkeeA1IM7PubTNSiXL3j939z+HrXQT/4+6JYtduhe99bbh4QvjjwHCgPGxvGLNYLMuBi83M2mi4EmFm6UAh8Fi4bChuyUqfkUdICXLr6Al8FFneHLZJ+3Smu38MQSIGdAvbFcd2KPwK9xxgJYpduxZ+Tb8W2Aa8CLwHfOrusUfeRuMSj1m4fidwWtuOWELTgJ8D+8Pl01DckoEDL5jZajObELbpM/IIpSZ6AMeoxv561v30ko/i2M6Y2cnAPOAn7v5ZMxNVil074O77gHwzSwPmA9mNdQt/K2btgJldDmxz99VmdlGsuZGuilv783V332pm3YAXzeztZvoqboegGeTWsRnoFVlOB7YmaCxyaH+NfbUU/t4WtiuO7YiZnUCQHM9x9/8JmxW7JODunwJ/JKgfTzOz2ORMNC7xmIXru3JwOZS0vq8Do8ysmqA8cDjBjLLi1s65+9bw9zaCP0gHos/II6YEuXVUAn3Dq35PBEqABQkekzRtATAufD0OeDbSfnV4te8gYGfsqyppW2FN40ygyt2nRlYpdu2UmZ0RzhxjZh2BbxLUji8FisJuDWMWi2URsMT1JKs25+53uHu6u2cQ/L9ribuPRXFr18yss5l1ib0GLgHeRJ+RR0xP0mslZnYZwV/dKcDj7j4pwUMSwMx+B1wEnA78FfhP4PfAXOCfgQ+BYnffHiZlMwjuerEb+KG7r0rEuI93ZnYhsBxYxxd1kb8gqENW7NohMzub4KKgFILJmLnufpeZ9SGYmTwVWAN83933mtlJwG8J6su3AyXuvikxoxeAsMTiZ+5+ueLWvoXxmR8upgJPufskMzsNfUYeESXIIiIiIiIRKrEQEREREYlQgiwiIiIiEqEEWUREREQkQgmyiIiIiEiEEmQRERERkQg9SU9Ejilmto/gdnCpwPvAVeGDKtolM7sSOBvYBxSHzbkE5wDwOHAu8Jy7l7f9CA/NzCYCte4+pYn1lwMF7v6fbTowEZEjpBlkETnW1Ll7vrv3J7gv642tdaDIk8W+jJ8DD7v7pHDc+XxxDvnu/uBROEaiVRA8na1TogciItISSpBF5Fi2AugZWzCz282s0szeMLNfh22dzazCzF43szfNbEzYfp6ZLTOz1Wb2fORxrX80s/82s2XAL82s2sy+Eq7rZGYfmdkJZnaWmS0Mt19uZlkNB2dmXwX2uvsnLTiXoWb2qpltMrOicHszs9+E414XGftFZvZc5DgzzOwH4evJZvZW+B5MCduuMLOVZrbGzBaZ2Zlh+0Qzezw8501mdktkn780sw1mtgj4WqT9lsj+nwYIn6z2R+DyFpyniEjCqcRCRI5JZpYCXEzwiGrM7BKgLzAQMGCBmQ0FzgC2unth2K+rmZ0ATAdGu/vfwsRzEvCjcPdp7v6NsP+5wDcIHsV7BfC8u39uZo8C17v7RjM7H3gYGN5gmF8H/tzCU+oOXAhkETwmthz4VyAfyCN4OmSlmb3UzHtyKvBtIMvdPfYoaOBlYFDYdg3BrPZPw3VZwDCgC7DBzB4hKAkpIXh6Wmp4DqvD/qVA7/Apa7H9A6wChhA81UtEpF1Tgiwix5qOZrYWyCBI2l4M2y8Jf9aEyycTJMzLgSlmdg9Bne9yM+sP9AdeDJ7ISgrwceQYZQ1ejyFIkEuAh83sZOAC4Jlwe4AOjYy1O/C3Fp7X7919P/BWbIaXIGH+nbvvA/4azmoXAJ81sY/PgD3AY2ZWAcRmmdOBsnCW/ESC2u2YCnffC+w1s23AmQSJ7nx33w1gZgsi/d8A5pjZ7wke4x6zDejRwnMVEUkolViIyLGmLqzj/ReCZC9Wg2zA3ZHa3kx3n+nu7wDnEVwUd7eZ/UfYd32kb667XxI5xt8jrxcAl4azs+cBSwg+Wz+NbJ/v7tmNjRU4qYXntTfy2hr8bqieAz/fTwJw93qCGfR5wJXAwnD9dGCGu+cC1zUYU/S4+/hiYsWbOHYh8BDBe7E6Uqd9EsH5ioi0e0qQReSY5O47gVuAn4UlE88DPwpndzGznmbWzcx6ALvd/UlgCsEdIzYAZ5jZ4LDvCWbWr4nj1AJ/Ah4gmIHe5+6fAe+bWXG4vZlZXiObVwGZX+I0XwLGmFmKmZ0BDA3H8gGQY2YdzKwrQakJ4bl3dff/A35CUJ4B0BXYEr4e18LjftvMOppZF4LSEsJa7F7uvpSgTCONYKYe4KvAm1/iXEVE2oxKLETkmOXua8zsdaDE3X9rZtnAirDsoRb4PkGC+hsz2w98Dvy7u/8jvBDuwTDBTAWmAeubOFQZ8AxwUaRtLPCImf0KOAF4Gni9wXYvAfeZmYUXsh2u+cDgcL8O/Nzd/wJgZnMJyh028kVZSRfgWTM7iWD2+dawfSJBOcgW4DWgd3MHdfc/m1kZsJYgGV8erkoBngzfMwPuj9xibxhwxxGco4hIm7Mj+0wWEZGjwcweAP7X3RcleiytJayZfsrdL070WEREWkIJsohIAoXJ4/nuvuCQnZOUmRUAn7v72kSPRUSkJZQgi4iIiIhE6CI9EREREZEIJcgiIiIiIhFKkEVEREREIpQgi4iIiIhEKEEWEREREYn4fw4gd4G3NOPTAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 720x360 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"R0 = 40 #thousand xDAI\n",
|
|
"kappa = 4 #leverage\n",
|
|
"P0 = 1/100 #initial price\n",
|
|
"S0 = kappa*R0/P0\n",
|
|
"p0 = R0/S0\n",
|
|
"phi = .01\n",
|
|
"\n",
|
|
"#initial value of conservation function\n",
|
|
"V0 = invariant(R0,S0,kappa)\n",
|
|
"\n",
|
|
"reserve = np.arange(0,500,.05)\n",
|
|
"supp = np.array([supply(r,kappa, V0) for r in reserve])\n",
|
|
"price = np.array([spot_price(r,kappa, V0) for r in reserve])\n",
|
|
"\n",
|
|
"fig, ax1 = plt.subplots(figsize=(10,5))\n",
|
|
"\n",
|
|
"color = 'tab:red'\n",
|
|
"ax1.set_xlabel('Reserve (Thousands)')\n",
|
|
"ax1.set_ylabel('Supply (Thousands)', color=color)\n",
|
|
"ax1.plot(reserve, supp,'-', color=color)\n",
|
|
"ax1.tick_params(axis='y', labelcolor=color)\n",
|
|
"\n",
|
|
"ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis\n",
|
|
"\n",
|
|
"color = 'tab:blue'\n",
|
|
"ax2.set_ylabel('Price in xDAI per CIC token', color=color) # we already handled the x-label with ax1\n",
|
|
"ax2.plot(reserve, price,'-.', color=color)\n",
|
|
"ax2.tick_params(axis='y', labelcolor=color)\n",
|
|
"\n",
|
|
"ax1.vlines(R0,0,S0, alpha=.5)\n",
|
|
"ax1.scatter(R0,S0, color='red', marker='D')\n",
|
|
"# ax1.text(R0+.02*reserve[-1], .9*supp[-1], \"Initial Value R0=\"+str(int(100*R0)/100)+\" million Reserve Units\")\n",
|
|
"# ax1.text(R0+.02*reserve[-1], .70*supp[-1], \"Initial Value S0=\"+str(S0)+\" million Tokens\")\n",
|
|
"ax1.text(-.4, .9*supp[-1], \"R0=\"+str(int(100*R0)/100)+\" thousand xDAI\")\n",
|
|
"ax1.text(-.4, .80*supp[-1], \"S0=\"+str(S0)+\" thousand CIC Tokens\")\n",
|
|
"\n",
|
|
"#ax1.hlines(S0,0,R0)\n",
|
|
"\n",
|
|
"# ax2.text(R0+.02*reserve[-1], price[25], \"Initial Value P0=\"+str(spot_price(R0,kappa,V0)))\n",
|
|
"# ax2.text(R0+.02*reserve[-1], price[25]/10, \"where P_hatch=\"+str(p0))\n",
|
|
"ax2.text(R0+.04*reserve[-1], price[25], \"P0=\"+str(spot_price(R0,kappa,V0))+\" where P_hatch=\"+str(p0))\n",
|
|
"ax2.scatter(R0,spot_price(R0,kappa,V0), color=color)\n",
|
|
"\n",
|
|
"plt.title('Bonding Curve with Conservation Function V = S^'+str(kappa)+'/R')\n",
|
|
"fig.tight_layout() # otherwise the right y-label is slightly clipped\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The figure above represents the base case as determined by the originally suggested values by the stakeholder."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4E9X6wPHvoS1bC2VfCwYo0LAW2RUQ5SJolMUNFFkEUUCE6x6vFwV+6o2KekVQRJRNFLhwFbUoKLIqyFoqkChboAVEllKgha7n98dMctM90JZSeD/Pk4fMzJkz70wS+ubknRmltUYIIYQQQghhKFXcAQghhBBCCHE1kQRZCCGEEEIIH5IgCyGEEEII4UMSZCGEEEIIIXxIgiyEEEIIIYQPSZCFEEIIIYTwIQmyEMVEKTVRKfWZ+by+Uuq8UiqguOO6GimlBimlVuaxvLtSKu5KxlTS5HcMSzrz89OwuOMobEqpakqpV5RSNxV3LEJcTyRBFsKHUsqtlLpg/rGNV0pFKaXqFfV2tdaHtdYhWuv0ouhfKdVBKbVcKXVGKXVaKbVZKfVIUWyrKGitF2itb/dMK6W0Uiq8IH0qpXoppdYppc4ppU4opdYqpfoUPNrip5SymMco0DMv6zEsxG11V0plmJ8Zz+Obwt5Olm2uUUo96jvP/PwcKOTtrFBKTc5hfl+l1J++x/cy+m6ulFpp/j9zRim1TSl1Z5Y2wUAU0BP4VinVJo/+XjFf879lmV9aKXVSKRViHreL5mt0Uin1X6VU7cvdByGuZZIgC5Hd3VrrEKA2cBx4v5jjKRClVGfgJ2AtEA5UBUYDd1xmfyV+lFspdR/wH2AeEAbUBF4G7i7OuDyUoST9/3zUTFA9j6viOBaCOcBgpZTKMn8wsEBrnVaAvr8BfsB479UAxgFnPQuVUkHAUmAP0A3jM/t1TqPkSqlGwH3AsRy20w2I1lqfN6fHmv+/hQMhwJQC7IMQ16yS9B+wEFeU1voisARo5pmnlApVSs0zRxwPKaX+6UlklFLDlFIblFJTzFGhg0qpO3zWbWCOUp5TSv0AVPNZlmnEzxzp+T+l1M9m+5VKKd/2Q8ztn1JKTTBHvjONHPl4C5irtX5Da31SG7ZprR/wjdt3Bd8RWqXUHKXUh+YIdCLwojl6FuDTvr9SKsZ8XkopZVdK7TfjW6yUqpJTYObxuNd83sXc7p3m9N+UUtFZY1RKrTNX32mOhA3w6e8ZpdRfSqljuY2Qm8nOO8D/aa1naa0TtNYZWuu1WuuRPvvwT/MY/2W+5qFZXquhSqnD5kjcSz79d1BKbVVKnVVKHVdKveOzrJNS6hdzxHCnUqq7z7I1SqnXlFI/A0nAP5RSW7PE/pRS6mvzuU0ptcPcTqxSaqJPU88xOmMeo85ZX2el1E1KqS1KqQTz35t8luX5/vOX+d551Wc6UymM+b59VikVY8axSClV1md5X6VUtLmP+5VSvZVSrwFdgWnmvk0z2/q+Zy/7c5rFV0AVc3uemCoDd2F8ubos5rFsAHystU4xHz9rrT3vcYWRnB8Ehpvvz0XAk8A3SqmaWbqcBrwApOSwuTuB5Vlnaq3PmPsXebn7IcS1TBJkIXKhlCoPDAA2+cx+HwgFGgK3AEMA30SsI/A7RvL7JvCJ+ccO4HNgm7ns/4Ch+YTwkNl3DaA08KwZVzPgA2AQxih3KFA3j33ojJHoF8RDwGtABYwRp0TgtizLPzefjwP6YRyfOkA8MD2XftcC3c3n3YAD5nqe6bVZV9BadzOftjZHKxeZ07X437EYAUw3k5msmgL1yPuYDDMft2K81iEYSYivLmZfPYCXlVJWc/57wHta64pAI2AxgFKqLsbP5a9iJF3PAkuVUtV9+hwMPIZxnN8HmiqlGvss9z3OiRjvv0qADRitlOpnLvMco0rmMdroG7j5hSUKmIrxi8I7QJRSqmqWbWV7/xWBB4DeGAljK4zjjlKqA0YS+hzGPnYD3Frrl4D1mCOhWuuxOfRZkM+pl9b6AsbrNyRLvC6t9U4zTrv5hSfHRy77fArYB3ymlOqXNeE1v8QO0lqP1lprn/lfaa2ba62Pe+Yppe4HUrTW2ZJg050Yr3Um5mt9jxmHECILSZCFyO4r8w/bWYzav7fAW1owAHhRa31Oa+0G3sZIajwOaa0/NmuJ52IksDWVUvWB9sAErXWy1nodxk+seZmttf7D54+0Z6TnPuAbrfUGrXUKRmmAzqWPyhif85x+er0Uy8wRrgxzZP0L4EEApVQFjD/CX5htHwde0lrHaa2TgYnAfSrnes21ZE6I/+UzfQs5JMh5SAUma61TzWThPEYCm5UnCczrmAwC3tFaHzB/mn4RGJhlHyZprS+YidJOoLVPHOFKqWpa6/Naa88XrIeB5Vrr5eZx/AHYinHsPOZorXdrrdO01gnAMv53nBsDEcDXAFrrNVrr38y+YjCO/y34xwbs1VrPN7f1BeAic4lJbu+/nNTJkhg+4GccAFO11ke11qcxPhOe7YwAPtVa/2Du4xGttSu/zgryOc2ly7nA/Uqpcub0EHMeAFprh9a6Um6PnDo0k95bAU9sx5RRD984p/Z57GsI8Drw91yWNwSCtNa/+8yeqpRKAE5ifEF48lK2KcT1QhJkIbLrZ/5hKwOMBdYqpWph/DEpDRzyaXuIzKO3f3qeaK2TzKchmCOpWuvELOvm5U+f50lmP5h9xWbZzqlc+ogHMjASgIKIzTL9OXCPUqoMxijUdq21Z39uAL70GUFzAunknIBsBJqYI2iRGCOG9cyfoDvwv1IBf5zKUhPqe8wytTP/zeuY1CH76xxI5n3I7fUZATQBXGbpwl3m/BswEi3f0cUuWeLI6Tg/aD5/CPjK875SSnVUSq02ywgSgFH4lO3kI+v+efYxx/cyuR9Lj6NZEsPFfsaR13bqAfsvoR+PgnxOszHLHk4Afc2Esz3/G8W/bOYXyLFa60YY741ELr1sYxIwX2t9MJflNrKXV4zTWodijNZXxqjBF0JkIQmyELnQWqdrrf+Lkdx1wRhxScX4Y+ZRHzjiR3fHgMrKOCvdd93LcQyfP2rmyFbVnBqaf/w3Avfm0V8iUN6nv1o5dZWl3z0YSccdZP7ZH4wk744sCVNZrXW242TGtw0YD+wyR8R/AZ4G9mutT+YR9+X63Ywxr2NylOyvcxrGSZt50lrv1Vo/iFGa8AawxHzdYzGSGd/jEqy1dviunqW7lUA1pVQkRqLse5w/xxhNrmcmPDMAT5lAbr8o5LZ/nn305718KTK9tzDKYPwVi1GikpO89q8gn9PczMMYOR4MrMxS4vAPlfkKHpke/nSutY7FKENqcYlx9QDGKeOcgD8xvlQsVkq9YC7PsbzC3OZvGOU+03MqLxHieicJshC5UIa+GKMsTvPn2MXAa0qpCkqpGzASuc/y68scXd0KTFLGZZe6cPlXTFgC3K2Mk6xKY4wi5fUH7nlgmFLqOU+NqVKqtVJqobl8J9BcKRVpniA10c84PseoN+6GcUUIjxkYx+gGc1vVzeOYm7WYI/Xm9Jos0zk5jlFfesnMn7efBiYopR5RSlVUxkl5XZRSM81mXwBPKePESs/P2Iu0H1ctUEo9rJSqrrXOADw1qOkY75O7lXF5uQClVFllnLSW6wieub0lGGU+VTCueuBRATittb5o1us+5LPsBMYvB7kdo+UYI/cPKaUClXGiYzPg2/z27xJFA3cqpaqYX7xyLAXIxSfAI0qpHubrU1cpFWEuy/X1L8jnNA/zgL8BI/EprzC397rOfAWPTI+cOlNKVVZKTVJKhZv7Vg0YTubzHfzRAyOpjjQfRzFKnKabX5w7YHyecjMX44vcNXF5QyEKkyTIQmT3jTnycxbjxLShWuvd5rInMUbFDgAbMJLET/3s9yGMk4NOA69wmWfBm7E8CSzEGE0+B/wFJOfS/heME+puAw4opU4DMzF/etVa/wFMBn4E9pr75Y8vME6w+ynLSO97GCObK5VS5zD+6HfMo5+1GMneulymczIRmHsZ9a4AaK2XYNSpDsdIKo5jjKYtM5t8Csw3YzgIXMT/Ws3ewG7zPfQeMFBrfdEcJewL/AMjgY3FOAEtv/+HP8dIzv6TJUEfA0w2j/HLmCcDmvuXhPHe/dk8Rp2y7P8pjCsxPINRcvI8cFcRjNjPx/gC5sYYDV+UZ+vMMW7GOLHuXSAB433hGRV+D6OuPV4pNTWH1QvyOc0pFjfGLxvBmDXgBZQCWDA+c2eBXRif32GXGNcprfWfngfGF7F4s26+B7DRPGcgt/VTME7UnHA5OyHEtUxpnd8vcUKIq5k5wnkGaJxHLaIQ4jqilPoAo2zpg+KORYiSSEaQhSiBlFJ3K6XKm7WtU4DfMEbphBACjPKWL4s7CCFKKhlBFqIEUkrNwrjcm8KobR6T5VJOQgghhLhMkiALIYQQQgjhQ0oshBBCCCGE8JHTna1KjFKlSuly5crl31AIIYQQQhS5pKQkrbUu8QOwJTpBLleuHImJifk3FEIIIYQQRU4pdaG4YygMJT7DF0IIIYQQojBJgiyEEEIIIYQPSZCFEEIIIYTwIQmyEEIIIYQQPiRBFkJk8tprr9G8eXNatWpFZGQkv/76KwAHDx6kY8eONG7cmAEDBpCSkuJ3n71796ZSpUrcddddmeZrrXnppZdo0qQJVquVqVOneuePGzeO8PBwWrVqxfbt273rzJ07l8aNG9O4cWPmzp3rnb9t2zZatmxJeHg448aNI6drvOfVL8CpU6eIjIwkMjKSWrVqUbduXe/0H3/8QYsWLfze5+IQEhJS4D7Wr19P8+bNiYyM5MKFzOfa/PnnnwwcOJBGjRrRrFkz7rzzTv744w/cbnemY7N582a6detG06ZNiYiI4NFHHyUpKSlTX9HR0SxfvjzfeCZOnMiUKVMKvF9CCHEpJEEWQnht3LiRb7/9lu3btxMTE8OPP/5IvXr1AHjhhRd46qmn2Lt3L5UrV+aTTz7xu9/nnnuO+fPnZ5s/Z84cYmNjcblcOJ1OBg4cCMB3333H3r172bt3LzNnzmT06NEAnD59mkmTJvHrr7+yefNmJk2aRHx8PACjR49m5syZ3vW+//77bNvLrV+PqlWrEh0dTXR0NKNGjeKpp57yTpcuXdrv/S3JFixYwLPPPkt0dDS+l9HUWtO/f3+6d+/O/v372bNnD6+//jrHjx/PtP7x48e5//77eeONN/j9999xOp307t2bc+fOZWrnb4IshBDFQRJkIYTXsWPHqFatGmXKlAGgWrVq1KlTB601P/30E/fddx8AQ4cO5auvvvK73x49elChQoVs8z/88ENefvllSpUy/iuqUaMGAMuWLWPIkCEopejUqRNnzpzh2LFjrFixgp49e1KlShUqV65Mz549+f777zl27Bhnz56lc+fOKKUYMmRIjvHl1q+/0tPTGTlyJM2bN+f222/3jrBGR0fTqVMnWrVqRf/+/b1Je/fu3dm6dSsAJ0+exGKxALB79246dOhAZGQkrVq1Yu/evQD069ePtm3b0rx5c2bOnOndbkhICC+99BKtW7emU6dO3qT04MGDdO7cmfbt2zNhwgRv+2PHjtGtWzciIyNp0aIF69evz7Yvq1atok2bNrRs2ZLhw4eTnJzMrFmzWLx4MZMnT2bQoEGZ2q9evZqgoCBGjRrlnRcZGUnXrl0ztZs+fTpDhw6lc+fOACiluO+++6hZs6a3TUpKCi+//DKLFi0iMjKSRYsWcfr0afr160erVq3o1KkTMTEx2WL++OOPueOOO7hw4QL79++nd+/etG3blq5du+JyuQAYNmwY48aN46abbqJhw4YsWbLE72MihBAekiALIbxuv/12YmNjadKkCWPGjGHt2rWAUXpQqVIlAgONS6eHhYVx5MgRwBhx9JQh+D48yXRe9u/fz6JFi2jXrh133HGHN1E8cuSId+Tad3t5zQ8LC8s2P6vc1vfX3r17eeKJJ9i9ezeVKlVi6dKlAAwZMoQ33niDmJgYWrZsyaRJk/LsZ8aMGYwfP57o6Gi2bt3qjf3TTz9l27ZtbN26lalTp3Lq1CkAEhMT6dSpEzt37qRbt258/PHHAIwfP57Ro0ezZcsWatWq5e3/888/p1evXkRHR7Nz504iIyMzbf/ixYsMGzaMRYsW8dtvv5GWlsaHH37Io48+Sp8+fXjrrbdYsGBBpnV27dpF27Zt8z1G/rQrXbo0kydPZsCAAURHRzNgwABeeeUV2rRpQ0xMDK+//jpDhgzJtM60adP45ptv+OqrryhXrhyPPfYY77//Ptu2bWPKlCmMGTPG2/bYsWNs2LCBb7/9Frvd7tcxEUIIX0V6oxBnhNUNnAPSgTSry9nOGWGtAiwCLIAbeMDqcsY7I6wKeA+4E0gChlldzu059SuEKBohISFs27aN9evXs3r1agYMGIDD4cBms2Vrq5QCYNCgQdlGG/2VnJxM2bJl2bp1K//9738ZPnw469evz7F+WCl1yfOz8rddbho0aOBNrNq2bYvb7SYhIYEzZ85wyy23AMbo+v33359nP507d+a1114jLi6Oe+65h8aNGwMwdepUvvzySwBiY2PZu3cvVatWpXTp0t767bZt2/LDDz8A8PPPP3uT9MGDB/PCCy8A0L59e4YPH05qair9+vXLlgz+/vvvNGjQgCZNmnhjnj59On//+9/9PhaFbcOGDd59ue222zh16hQJCQkAzJ8/n7CwML766iuCgoI4f/48v/zyS6bjnJyc7H3er18/SpUqRbNmzbyj7fkdEyGE8HUlRpBvtbqckVaXs505bQdWWV3OxsAqcxrgDqCx+XgM+PAKxCaEyCIgIIDu3bszadIkpk2bxtKlS6lWrRpnzpwhLS0NgLi4OOrUqQMUbAQ5LCyMe++9F4D+/ft7f1YPCwsjNjbW286zvbzmx8XFZZuf0/ZyWt9fntITMI6T53jkJjAwkIyMDMAYtfV46KGH+PrrrylXrhy9evXip59+Ys2aNfz4449s3LiRnTt30qZNG+86QUFB3kQ+63ZzSvC7devGunXrqFu3LoMHD2bevHmZluf0RSE/zZs3Z9u2bYXWLqu8vry0aNECt9vtfY0zMjKoVKmStz48Ojoap9PpXc/3dfL0m98xEUIIX8VRYtEX8Jx6Phfo5zN/ntXl1FaXcxNQyRlhrV0M8Qlx3fr999+9ZQ5g1NbecMMNKKW49dZbvfWcc+fOpW/fvoAxguybqHgenrZ56devHz/99BMAa9eu9Y5o9unTh3nz5qG1ZtOmTYSGhlK7dm169erFypUriY+PJz4+npUrV9KrVy9q165NhQoV2LRpE1pr5s2b543PV279FkRoaCiVK1f21rTOnz/fO5pssVi8yaLv8Thw4AANGzZk3Lhx9OnTh5iYGBISEqhcuTLly5fH5XKxadOmfLd98803s3DhQoBMJRGHDh2iRo0ajBw5khEjRmS7WkdERARut5t9+/Zlizk3t912G8nJyd7yDoAtW7Z4y3A8xo4dy9y5c71XPwH47LPP+PPPPzO1q1ChQqYT97p16+bdhzVr1lCtWjUqVqwIQJs2bfjoo4/o06cPR48epWLFijRo0ID//Oc/gJEE79y5M8/48zsmQgjhq6gTZA2sdEZYtzkjrI+Z82paXc5jAOa/Ncz5dYFYn3XjzHlCiCvk/PnzDB06lGbNmtGqVSv27NnDxIkTAXjjjTd45513CA8P59SpU4wYMcLvfrt27cr999/PqlWrCAsLY8WKFQDY7XaWLl1Ky5YtefHFF5k1axYAd955Jw0bNiQ8PJyRI0fywQcfAFClShUmTJhA+/btad++PS+//DJVqlQB8NbQhoeH06hRI+644w7AqPedMWNGnv0W1Ny5c3nuuedo1aoV0dHRvPzyywA8++yzfPjhh9x0002cPHnS237RokW0aNGCyMhIXC4XQ4YMoXfv3qSlpdGqVSsmTJhAp06d8t3ue++9x/Tp02nfvr23HAGMBDMyMpI2bdqwdOlSxo8fn2m9smXLMnv2bO6//35atmxJqVKlMp18lxOlFF9++SU//PADjRo1onnz5kycODHbCHzNmjVZuHAhzz77LE2bNsVqtbJ+/Xpvsutx6623smfPHu9JehMnTmTr1q20atUKu92e6RJ+AF26dGHKlCnYbDZOnjzJggUL+OSTT2jdujXNmzdn2bJlecaf3zER4lr064FTLN0Wl39DkY26nJ/a/OWMsNaxupxHnRHWGsAPwJPA11aXs5JPm3iry1nZGWGNAv5ldTk3mPNXAc9bXc5Mv9UppR7DKMGgdOnSbX3rzoQQOZszZw5gnOEvhBDi2pe8dy/H33uPX+4fy4BuTS/pfIuCUEolaa2Dr8jGilCRjiBbXc6j5r9/AV8CHYDjntIJ89+/zOZxQD2f1cOAo1n71FrP1Fq301q385xRL4QQQgghDAvW7eXXZyZwMXon90ZUuWLJ8bWkyBJkZ4Q12BlhreB5DtwO7AK+BoaazYYCnt/FvgaGOCOsyhlh7QQkeEoxhBBCCCFE/j5et5+Xlv/B4nKNqPvO2wTVrJH/SiKbohyCrQl86YywerbzudXl/N4ZYd0CLHZGWEcAhwHPdXqWY1zibR/GZd4eKcLYhBBCCCGuKTPW7sfxnYuuR3byz9vDCe7QobhDKrGKLEG2upwHgNY5zD8F9MhhvgaeKKp4hBBCCCGuVdNX7+OtFb9z66nfeaXKCWoOf7G4QyrRpIhXCCGEEKIEm7pqL+/88Af9Iuvg+FsngsqWlbrjApJbTQshMgkICCAyMpIWLVpw9913c+bMGe+yuXPn0rhxYxo3bpztMlz+WLJkCUoptm7d6p33r3/9i/DwcJo2beq9/Juvjh07EhkZSf369alevbr3RiRut5uQkJDL28krxGKxZLq82+VwuVzey5Pt37/fr3U8r2Hz5s1p3bo177zzjveGJR7jx4+nbt26mebPmTOHsWPHFiheIcSVo7XmnR/+4J0f/sBW8SJT+jenbLWqBISU+ItIFDtJkIUQmZQrV47o6Gh27dpFlSpVmD59OgCnT59m0qRJ/Prrr2zevJlJkyYRHx/vd7/nzp1j6tSpdOzY0Ttvz549LFy4kN27d/P9998zZswY0tPTM63366+/Eh0dzeTJkxkwYID3RiQWi6VQ9vdq99VXX9G3b1927NhBo0aN/FrH8xru3r2bH374geXLlzNp0iTv8oyMDL788kvq1avHunXriip0IUQR0lrz9so/mLpqLzZ1nNHzJpC8Y0dxh3XNkARZCJGrzp07c+TIEQBWrFhBz549qVKlCpUrV6Znz558//33fvc1YcIEnn/+ecqWLeudt2zZMgYOHEiZMmVo0KAB4eHhbN68+ZJifOmll2jdujWdOnXi+PHjgHHXtB49etCqVSt69OjB4cOHAeM60L53tPOMQB87doxu3bp5R849d8UbPXo07dq1o3nz5rzyyive9SwWC6+88go33ngjLVu2xOVyAXDq1Cluv/122rRpw+OPP+69zXFiYiI2m43WrVvTokULFi1alG0/oqOj6dSpE61ataJ///7Ex8ezfPly/v3vfzNr1ixuvfXWTO0PHTpE48aNOXnyJBkZGXTt2pWVK1dm67dGjRrMnDmTadOmeeNZvXo1LVq0YPTo0XzxxReXdLyFEFePi6np9K+Swpgvp1Bj9OMEd+qY/0rCL5IgCyFylJ6ezqpVq+jTpw8AR44coV69/12qPCwszJs8DxgwwFv64PuYN28eADt27CA2Npa77ror0zby6tMfiYmJdOrUiZ07d9KtWzfvbZDHjh3LkCFDiImJYdCgQYwbNy7Pfj7//HN69epFdHQ0O3fuJDIyEoDXXnuNrVu3EhMTw9q1a4mJifGuU61aNbZv387o0aOZMmUKAJMmTaJLly7s2LGDPn36eBPz77//njp16rBz50527dpF7969s8UwZMgQ3njjDWJiYmjZsiWTJk3izjvvZNSoUTz11FOsXr06U/sbbriBF154gVGjRvH222/TrFkzbr/99hz3r2HDhmRkZPDXX8Zl57/44gsefPBB+vfvz7fffktqaqo/h1sIcRXQWnPiXDJKKZ6qlcSj816hwi1dqS7lUYVKEmQhRCYXLlwgMjKSqlWrcvr0aXr27AlATnfd9JwEsmjRIm/pg+9jyJAhZGRk8NRTT/H2229nWz+vPv1RunRpb9Ldtm1b3G43ABs3buShhx4CYPDgwWzYsCHPftq3b8/s2bOZOHEiv/32GxUqVABg8eLF3HjjjbRp04bdu3ezZ88e7zr33HNPtu2uW7eOhx9+GACbzUblypUBaNmyJT/++CMvvPAC69evJzQ0NNP2ExISOHPmDLfccgsAQ4cO9av04dFHH+XcuXPMmDHDm6TnxnOsU1JSWL58Of369aNixYp07Ngxx5FnIcTVaeqqfdw5dT3HT5/nmP1FytatQ9233kIFBBR3aNcUSZCFEJl46lcPHTpESkqKtwY5LCyM2NhYb7u4uDjq1KkD5D2CfO7cOXbt2kX37t2xWCxs2rSJPn36sHXr1jz79EdQUJA3oQ4ICCAtLS3Hdp42gYGB3pPStNakpKQA0K1bN9atW0fdunUZPHgw8+bN4+DBg0yZMoVVq1YRExODzWbj4sWL3j7LlCmT43ZzSvCbNGnCtm3baNmyJS+++CKTJ0/2ex/zkpSURFxcHADnz5/Ptd2BAwcICAigRo0afP/99yQkJNCyZUssFgsbNmyQMgshSpA7W9biwfb1qFE5mLCp7xE2fRoBFSsWd1jXHEmQhRA5Cg0NZerUqUyZMoXU1FR69erFypUriY+PJz4+npUrV9KrVy8g7xHk0NBQTp48idvtxu1206lTJ77++mvatWtHnz59WLhwIcnJyRw8eJC9e/fSoRAubH/TTTexcOFCABYsWECXLl0Ao3Z427ZtgFH/7CktOHToEDVq1GDkyJGMGDGC7du3c/bsWYKDgwkNDeX48eN89913+W63W7duLFiwAIDvvvvOexLj0aNHKV++PA8//DDPPvss27dvz3asK1eu7K19nj9/vnc0OS8vvPACgwYNYvLkyYwcOTLHNidOnGDUqFH8zgnVAAAgAElEQVSMHTsWpRRffPEFs2bN8r4eBw8eZOXKlSQlJeW7PSFE8UjP0HwbcxStNeE1QhhV9TxKKco2a0aZ8PDiDu+aJNdBFkLkqk2bNrRu3ZqFCxcyePBgJkyYQPv27QF4+eWXqVKlSoH6b968OQ888ADNmjUjMDCQ6dOnE1AIPxNOnTqV4cOH89Zbb1G9enVmz54NwMiRI+nbty8dOnSgR48eBAcbl0Jas2YNb731FkFBQYSEhDBv3jwaNGhAmzZtaN68OQ0bNuTmm2/Od7uvvPIKDz74IDfeeCO33HIL9evXB+C3337jueeeo1SpUgQFBfHhhx9mW3fu3LmMGjWKpKQkGjZs6I05N2vXrmXLli38/PPPBAQEsHTpUmbPns0jjzziLZNJTU0lMDCQwYMH8/TTT5OUlMSKFSv46KOPvP0EBwfTpUsXvvnmG7+PrxDiyklNz+DZ/+xkWfRRKo0oTfNtP/LnxEmEfTCdCrfdVtzhXbNUTjWAJUVwcLBOTEws7jCEuOrNmTMHMK7iIIQQomRITktn3Bc7WLH7OM/1asojoWc5NHQYwZ07Ue/DD6/KumOlVJLWusRfiFlGkIUQQgghrjIXU9MZ9dk21vx+gpfvasbgxsEcvO8RgurUpu6UKVdlcnwtkQRZCCGEEOIqkpicxqNzt7Lp4Cn+dU9LBrYL49BDg8hITKL+J5/ISXlXgCTIQgghhBBXibMXU3lk9haiY8/wzgOt6d8mDIAqQ4dAYCBlmzQp5givD5IgCyGEEEJcBeITUxjy6WZcf55l2oNtuKNlbVL/+ougGjWoeMcdxR3edUUu8yaEEEIIcRU4dzGNhAupzBzcjjta1ubcmjXs/1tPEjduLO7QrjsygiyEEEIIUYziE1OoVD6I+lXL8+PTt1A6sBTJ+/Zx9JlnKRMeTrnIyOIO8bojI8hCCCGEEMUkPjGFu6dt4M0VvwNQOrAUafHxxI4egypXjrDp0yhVrlwxR3n9kRFkIYQQQohiUql8EPe0qcvfmtUEQKemcuTvT5H255/cMH8eQbVrF3OE1ydJkIUQQgghrrDf4hIoE1SKJjUr8PTtTf+3ICCA8m1vJLR/v2u2tMJij+oNvAcEALPcDpsjy/IywDygLXAKGOB22NzmslbAR0BFIANo73bYLhZ2jFJiIYQQQghxBW3cf4oHP97EP/77G753NM5ITkaVKkX1ceOo1K9fMUZYdCz2qABgOnAH0Ax40GKPapal2Qgg3u2whQPvAm+Y6wYCnwGj3A5bc6A7kFoUcUqCLIQQQghxhfy45zhDZ2+mdmhZpj10I0opABI3/cr+nrdz0eUq5giLXAdgn9thO+B22FKAhUDfLG36AnPN50uAHhZ7lAJuB2LcDttOALfDdsrtsKUXRZCSIAshhBBCXAFf7TjC459tw1qrAosf70yt0LIApBw+zJHx4ylVsQJBYWHFHGWBBSqltvo8HsuyvC4Q6zMdZ87LsY3bYUsDEoCqQBNAW+xRKyz2qO0We9TzRbMLUoMshBBCCFHk5m108/Ky3XRuWJWPh7YjpIyRgqWfPUvsqNEA1PvgAwJCQooxykKRprVul8dylcM87WebQKAL0B5IAlZZ7FHb3A7bqsuKNA8ygiyEEEIIUUS01ry/ai8vL9tNz2Y1mf1Ie29yrFNTiRs/npTYWOq+P5XS9esXc7RXRBxQz2c6DDiaWxuz7jgUOG3OX+t22E66HbYkYDlwY1EEKSPIQgghhBBFQGvNq1FOPtlwkHva1OXN+1oRGPC/sUmdlkap8sHUnjyZ4A4dijHSK2oL0Nhij2oAHAEGAg9lafM1MBTYCNwH/OR22LTFHrUCeN5ijyoPpAC3YJzEV+hkBFkIIYQQoggopShfOoBhN1mYcn/rzMlxejqlypUjbNr7VOp/bV6xIidmTfFYYAXgBBa7HbbdFnvUZIs9qo/Z7BOgqsUetQ94GrCb68YD72Ak2dHAdrfDFlUUcSrfy4uUNMHBwToxMbG4wxDiqjdnzhwAhg0bVqxxCCHE9SA5LZ24+As0qh7ivYyb52oVAGdXruTkjBnU/+gjAqtXL64wi4RSKklrHVzccRSUjCALIYQQQhSif365iwdmbOTsxVSUUpmS4wu//cbR51+gVFBpSlWoUIxRirxIDbIQQgghRCF64tZwujSuRsWyQZnmpx49SuyYMQRWrUrYB9MpVbZsMUUo8iMjyEIIIYQQBRR7Ool3fvgDrTWWasH0jcx8ad/08+eJHTUafTGZeh/NILBq1WKKVPhDRpCFEEIIIQrAeewsQz/dTHJaBve3DaNelfLZ2mScPw8BAYS992/KhIcXQ5TiUkiCLIQQQghxmTYdOMXIuVsJLhPIf0Z1zpYce07SC6pViwZL/oMKCCiOMMUlkhILIYQQQojL8P2uYwz5dDM1Q8uydMxNNKmZ/aS7+HnzOPL3p8hITpbkuASRBFkIIYQQ4hJ9tukQYxZsp3mdivzn8c7UrVQuW5uz36/guOMNyMhABcqP9iWJvFpCCCGEEH7SWvPeqr38+8e93BZRg+kP3Ui50tlHhpO2bePo889TLjKSOm+9KaPHJYwkyEIIIYQQfpq+eh///nEv994YhuPelgQFZP8xPvnAAWLHPEFQnTpyObcSShJkIYQQQgg/3XNjGEopxnRvlOkGIL7SExIIrF6NejNmEFi58hWOUBQGqUEWQgghhMhDwoVU3l+1l/QMTZ1K5Xji1vAck2Odng5A+TZtaLhsGaXDwq50qKKQSIIshBBCCJGHH/YcZ+pPe9l1JCHXNjo1ldjRozk54yMAqTku4aTEQgghhBAiB8lp6ZQJDOC+tmG0qV+JRtVDcmyntebYxIkkrltPhZ49r3CUoijICLIQQgghRBY/7ztJ97fW4Dx2FiDX5Bjg5AcfkLD0v1QbM5rK999/pUIURUgSZCGEEEIIH//dHsfQTzdTsWwQoeWC8mx7Zul/Ofn+NEL79aPak09eoQhFUZMSCyGEEEIIjFKJ6av3MWXlH3RuWJUZg9vmmyCDJrhbV2r/3+Rcr2ohSh5JkIUQQghx3UtLz2DCsl18sTmWfpF1ePO+1pQOzP2H9ozkZEqVKUOle+8l9J57JDm+xhR5guyMsAYAW4EjVpfzLmeEtQGwEKgCbAcGW13OFGeEtQwwD2gLnAIGWF1Od1HHJ4QQQojrW2JyGmM/387q308wpnsjnuvVNM+EN3nvXg4/OpLar71GSJebJTm+Bl2JGuTxgNNn+g3gXavL2RiIB0aY80cA8VaXMxx412wnhBBCCFFk/jp3kYEzN7H2jxO81r8Fz/eOyDPhTT16lMOPjkRnpFPacsMVjFRcSUWaIDsjrGGADZhlTivgNmCJ2WQu0M983tecxlzew2wvhBBCCFEkftl3in1/nefjIe0Y1DHvhDctPp7DIx4lIymJ+rNmyY1ArmFFXWLxb+B5oII5XRU4Y3U508zpOKCu+bwuEAtgdTnTnBHWBLP9ySKOUQghhBDXmXMXU6lQNoh+berSuVFValYsm2f7jKQkYh97nNSjR6n/ySzKNm16hSIVxaHIRpCdEda7gL+sLuc2n9k5jQhrP5b9rwOlHlNKbVVKbU1LS8thFSGEEEKI3K394wRd3lhNdOwZgHyTYwBVpgzlWrem7rvvUL5du6IOURSzohxBvhno44yw3gmUBSpijChXckZYA81R5DDgqNk+DqgHxDkjrIFAKHA6a6da65nATIDg4OBsCbQQQgghRF5a1KnIbRE1uKFK+Xzb6owM0uPjCaxalVr/fOkKRCeuBkU2gmx1OV+0upxhVpfTAgwEfrK6nIOA1cB9ZrOhwDLz+dfmNObyn6wupyTAQgghhCiw5LR0Zq7bT2p6BlVDyvDugEgqB5fOcx2tNcdf/xcH772PtPj4KxSpuBoUx530XgCedkZY92HUGH9izv8EqGrOfxqwF0NsQgghhLjGxCemMPiTzby+3MX6vSf8Xu/UjBnEf/YZFXv3JqBSpSKMUFxtrsiNQqwu5xpgjfn8ANAhhzYXAbmBuRBCCCEKzYET5xk+ZwtHEy7y3sBIbouo6dd6pz9bwIn3phLatw81nn9OrnV8nZE76QkhhBDimrTpwClGfbaNUkrxxciOtL2hil/rnVu1iuOvvkpIjx7UfvVVVKni+MFdFCdJkIUQQghxzVm6LQ77f2OoX6U8s4d1oH7V/E/I8yjfoQNVRgyn+rhxqKCgIoxSXK0kQRZCCCHENSMjQ/Puj3/w/k/7uDm8Kh8MaktoOf+S3As7d1KmSRMCKlSg5nPPFXGk4momvxkIIYQQ4poxc/0B3v9pHwPa1WPOIx38To6Ttm3j0NBhHH/zzSKOUJQEMoIshBBCiGvGgx3qU7FsEA92qOf3iXUXdu0m9vFRBNWuTfWxY4s4QlESyAiyEEIIIUq0PUfP8sSC7VxMTSe0XBAPdazvd3KcvG8fsY8+SkDFitSf/SmBVasWcbSiJJARZCGEEEKUaIdPJ7HjcDzHEi7SoFqw3+tprTny3POooCDqz5lNUK1aRRil8LDYo3oD7wEBwCy3w+bIsrwMMA9oC5wCBrgdNrfFHmUBnMDvZtNNbodtVFHEKAmyEEIIIUocrTW7j56lRd1QereoxS1NqlOudMAl9aGUou7bUyA9ndL16xdRpMKXxR4VAEwHegJxwBaLPeprt8O2x6fZCCDe7bCFW+xRA4E3gAHmsv1uhy2yqOOUBFkIIYQQJcrF1HSeWxLDd78dI2pcV5rWqnBJyXHayZMkfPMtVYYNpUzDhkUYqchBB2Cf22E7AGCxRy0E+gK+CXJfYKL5fAkwzWKPuqw7tVjsUR0ACz45r9th+zy/9SRBFkIIIUSJcfzsRUbO28pvRxJ4rldTmtQMuaT1006f5vAjj5ASd4QKPW6TkePCF6iU2uozPVNrPdNnui4Q6zMdB3TM0oe3jdthS7PYoxIAT3F4A4s9agdwFvin22Fbn1sgFnvUHKAZEA2km7M1IAmyEEIIIa4NO2PP8Nj8rZy7mMZHD7fl9uaXVjOcFh/P4UeGk3I4lnoffSTJcdFI01q3y2N5TiPB2s82x4D6boftlMUe1Rb4ymKPau522M7msq1OQDO3w5aRb9RZyFUshBBCCHHVWxZ9hAc+2khgqVIsHX3TJSfH6QkJHB4xgpSDBwmbPp3gTlkHLcUVEgfU85kOA47m1sZijwoEQoHTboct2e2wnQJwO2zbgP1Akzy2tRuodjlBygiyEEIIIa5avnfG62CpwocP30jVkDKX3M+FmN9IOegm7P2phHS5uQgiFX7aAjS22KMaAEeAgcBDWdp8DQwFNgL3AT+5HTZtsUdVx0iU0y32qIZAY+BAHtsKBZwWe9QmINkz0+2w3ZNfkJIgCyGEEOKq9fzSGJZsi2NAu3r8X78WlA68tB+/tdYopQjp2oXwH3+Q6xwXM7OmeCywAuMyb5+6HbbdFnvUZGCr22H7GvgEmG+xR+0DTmMk0QDdgMkWe1QaRk3xKLfDdjqPzf3rcuNUWmct+yg5goODdWJiYnGHIcRVb86cOQAMGzasWOMQQohLteb3v9h/IpHhN1v8vvmHR0ZSEnFjx1Jp4EAq3n57EUUofCmlkrTW/l+MuohZ7FFhQGO3w7baYo8qCwS4HbZ8k0epQRZCCCHEVWXD3pPM3+gGoHvTGozo0uDSk+OLF4kd8wSJm36FtLTCD1Jc9Sz2qOEY5RqzzFn1gWX+rCsJshBCCCGuKou2xrLg18OkpF3yxQcAyEhOJu6JsST9+it1HP+i4p13FnKEooQYh3Eli7MAboftD6CmPytKgiyEEEKIYnchJZ0/Ey4C4LinJUtG33TJ9cYAOiWFuCefJPHnn6n96quE9ulT2KGKkuOi22FL8UyYd/Hzi5ykJ4QQQohiFRefxGPztqGBb5/sQnCZAqQnQUGUadiICj17UunefC9WIK5tP1vsUc8DZS32qFuBJ4Bv/VlREmQhhBBCFJtf9p9k7Oc7SE3P4L2BkQSUuqw7CpNx4QJpJ05Qun59atpfKOQoRQn1PPAY4ALGY1w5Y4Y/K0qCLIQQQogrTmvN7J/dvLbcSYNqwcwc3JaG1S/tttEeGUlJxI4eQ4rbTaPvllOqfPlCjlaUUC3dDtuHwIeeGRZ71B3Ad/mtKDXIQgghhLiiLqam88x/djL52z30iKjBl2NuuvzkODGR2MdHkbRlCzWefUaSY+HrU4s9qplnwmKPuh+Y7M+KMoIshBBCiCvm6JkLPD5/G78dSeCpvzXhydvCKXWZZRXp5xOJHfU4F7bvoM6bbxJ6l62QoxUl3APAYos9aiDQBRgB+HVBbBlBFkIIIcQVcSzhAn2mbeDgyUQ+HtKO8X9rfNnJMcDJ99/nwo5o6r49RZJjkY3bYduHcRvrr4AHgZ5uhy3en3XzHUF2RljLAncBXYE6wAVgFxBldTl3X27QQgghhLi+1KpYloHt69OvTV3Ca1xeSYWv6uOeJOSWbgTfdFMhRCeuFRZ71A7A91bRlcx/N1jsUbgdthvz6yPPBNkZYZ0I3A2sAX4F/gLKAk0Ah5k8P2N1OWMuOXohhBBCXPPOXkxl4rLdPHFbOI2qh/Bsr6YF6i/97FlO/PvfVH/6GQJCgiU5Fjm5r6Ad5DeCvMXqck7MZdk7zghrDYzb9gkhhBBCZHP+Yhob9p2kS+NqNLrME/E80uLjOTxiBMl791GhV2+CO3YopCjFtcTtsO33PLfYo1pg1B8DrHc7bH5VP+RZg2x1OaOyznNGWEs5I6wVzeV/WV3Orf6HLIQQQojrwS/7TpKRoalTqRxrnuvOPTeGFai/1ON/cWjwYFL2H6De9GmSHIt8WexRY4HFGIO59TFO2Bvjz7p+naTnjLB+7oywVnRGWIOBPcDvzgjrc5cbsBBCCCGuTSlpGUz8ejcPzfqVJdviAChfumAXzUo9coRDgweTdvQY9WbOJKRbt8IIVVz7HgM6uB22f7gdtn8AHYFR/qzo71UsmlldzrNAP2A5RhY++HIiFUIIIcS16c+EiwycuZE5v7gZ0aUB/W+sWyj96vR0VOkg6n/6iYwci0uhgFSf6VRzXr78/UoX5IywBmEkyNOsLmeqM8Kq81tJCCGEENeHX/afZNwXO0hKSWfaQ224q1WdAveZeuwYgbVqUbp+fRouW4YKCCiESMV1ZD6wyWKPWmpO9wfm+rOivyPIHwFuIBhY54yw3gCcvcQghRBCCHGN0VozY+1+Hp71K6Hlglj2xM2Fkhxf+G0XB/v15+QHHwBIciz8ZrFHBQK4HbY3McoskjAuUzzK7bBN8acPv0aQrS7nVGCqz6xDzgjrrZcWrhBCCCGuJQlJqTy3ZCcr9xznzpa1ePO+1oSUKfhNepO2biX28VEEVK5MaJ8+hRCpuM5sBm4EcDtsW4Atl9pBftdBfjqf9d+51A0KIYQQ4trwyte7+Mn1F/+0WRnRpQFKXf5d8TzOb/iZuLFjCapdm/qzPyWoVq1CiFRcZwr8Rszva14F89+mQHvga3P6bmBdQTcuhBBCiJJFa82F1HTKlw7EfoeVITdZuLF+5ULpOz0hgSPjx1P6hhuo/+knBFatWij9iutOdYs9KtdBXrfDlu8Ab54JstXlnATgjLCuBG60upznzOmJwH8uKVQhhBBClHjPLN7JifPJzH2kA7VCy1IrtGyh9R0QGkrdqe9RrnlzAipVyn8FIXIWAIRQgJFkfwuF6gMpPtMpgOVyNyqEEEKIkqljwyqcSUrNv6GftNac+ngWQbVrEXr33YTcfHOh9S2uW8fcDtvkgnTgb4I8H9jsjLB+CWiMy2TMK8iGhRBCCHH101rz2a+HqVg2kL6RdRnQvn7h9Z2RwV9vvsXpOXMI7duX0LvvLrS+xXWtwDXIfl3mzepyvgYMB+KBM8AjVpfz9YJuXAghhBBXr3MXU3nyix1M+GoXK3cfL9S+dWoqx178B6fnzKHyoEHU/pekFaLQ9ChoB5dyLZZo4JhnHWeEtb7V5Txc0ACEEEIIcfXZfTSBsZ/v4PDpJJ7v3ZRR3RoVWt86LY24ceM5v3o11Z4cS7UxYwrlChhCALgdttMF7cOvBNkZYX0SeAU4DqRjDF1roFVBAxBCCCHE1UNrzRebY5n4zW4qlw/ii5Gd6NCgSqFuQwUGUiaiKSHdulL5wQcLtW8hCoO/I8jjgaZWl/NUUQYjhBBCiOKTcCGVf/z3N6J+O0bXxtV4d0Ak1ULKFFr/aSdOkHbqFGUjIqgxfnyh9SuEL4s9Khyo6XbYfs4yvytw1O2w7c+vD38T5Fgg4dJDFEIIIURJEBN3htGfbef42Yu80DuCx7s1pFSpwit7SDl0iMMjH4P0dBp9/x0qKKjQ+hYii38D/8hh/gVzWb5ng/qbIB8A1jgjrFFAsmem1eWUO+kJIYQQ14DAUqUoVzqAxaM6F9qNPzwuxMQQO2o0ZGRQ76MZkhyLomZxO2wxWWe6HbatFnuUxZ8O/E2QD5uP0uYjX84Ia1mMu+2VMbezxOpyvuKMsDYAFgJVgO3AYKvLmeKMsJbBuHRcW+AUMMDqcrr9jE8IIYQQl+j42Yt8G3OMEV0a0KxORVb8vRsBhThqDHBu9WqOPPU0gdWqUe/jmZRp0KBQ+xciB3ndvaacPx34lSB77qh3iZKB26wu53lnhDUI2OCMsH4HPA28a3U5FzojrDOAEcCH5r/xVpcz3BlhHQi8AQy4jO0KIYQQwg+Lt8TywZr93N6sJvWqlC/05FhrzZmlSykTHk69GR8SWK1aofYvRC62WOxRI90O28e+My32qBHANn868PcqFtWB54Hm+GTlVpfzttzWsbqcGjhvTgaZDw3cBjxkzp8LTMRIkPuazwGWANOcEVZl9iOEEEKIQpCclk7s6QuE1whhdPdG3N26DvWqlC/UbWityTh/noAKFaj75pugNaWCgwt1G0Lk4e/AlxZ71CD+lxC3w6iC6O9PB/6WWCwAFgF3AaOAocCJ/FZyRlgDzMDCgenAfuCM1eVMM5vEAXXN53UxTgbE6nKmOSOsCUBV4KSfMQohhBAiDwdOnOfJL3Zw8nwya569lXKlA7BUK9zEVaemcmzCy1z8/Xcsny+gVPnCTb5FyWexR/UG3gMCgFluh82RZXm2slu3w+b2WV4f2ANMdDtsU7L273bYjgM3WexRtwItzNlRboftJ39j9OtOekBVq8v5CZBqdTnXWl3O4UCn/FayupzpVpczEggDOgDWHJp5Rohz+l0n2+ixUuoxpdRWpdTWtLS0HFYRQgghhC+tNUu2xXHX+xs4cuYC/9e3BeVKBxT6dtLPJxL7+CgSvvqKCn/rgSqbVymouB5Z7FEBGIOmdwDNgAct9qhmWZqNAOLdDls48C5G2a2vd4Hv8thGFYs9qgqwE2OQdwEQ7TM/X/6OIKea/x5zRlhtwFGMpNcvVpfzjDPCugYjqa7kjLAGmqPIYWZfYIwm1wPinBHWQCAUyHYnFK31TGAmQHBwsJRfCCGEEHlIuJDKhK928fXOo3RsUIV/D4ykdqhf5yldktS//iL28VEk//EHtV97jUr33lPo2xDXhA7APrfDdgDAYo9aiFFmu8enTbayW4s9SrkdNm2xR/XDuLpaYh7b2IYxyOq5sZ2HZ7phfkH6myC/6oywhgLPAO8DFYGn8lrBrFtONZPjcsDfML4BrAbuw7iSxVBgmbnK1+b0RnP5T1J/LIQQQly+jftP8cziaI6fS+aZnk0Yc2t4oZ+I5/HnhJdJOXSIejM+JKRr1yLZhrgmeEtqTXFAx9zauB22NIs9KgGoarFHXQBeAHoCz+a2AbfDVuBLpfh7FYtvzacJwK1+9l0bmGvWIZcCFltdzm+dEdY9wEJnhPVVYAfwidn+E2C+M8K6D2PkeKCf2xFCCCGEj5S0DN7+4XdmrjuApWowS0ffRGS9SkWyLa01SilqTphA+pkzlGvRvEi2I0qMQKXUVp/pmeav/x7+lNTm1mYS8K7bYTtvsUflGoDFHtULqOB22JZkmf8QcMLtsP2Q1w6A/1exeBN4FeMOJN8DrYG/W13Oz3Jbx+pyxgBtcph/AGN4Pev8i8D9/sQjhBBCiNztjDvDzHUHGNi+Hv+0NSO4jL8/GF+a+EWLSdqyhTpvvkHpsLoQVjf/lcS1Lk1r3S6P5Z6SWg/fctusbeIs9ijfstuOwH0We9SbQCUgw2KPuuh22KZlWX8SOd8t7yfgS6BwEmTgdqvL+bwzwtrfDPp+jFKJXBNkIYQQQlw5Wmt2xiUQWa8S7S1VWPH3bjSpWaFotpWezl9T3ub07NkEd+uKTkmRE/KEv7YAjS32qAbAEYyKgYeytMlWdut22DTgrd2x2KMmAudzSI4ByrsdtmxXW3M7bH9a7FF+XbbF36tYeO4JeSfwhdXlzHbynBBCCCGKz+yf3dzzwc/sOXoWoMiS44ykJOLGjef07NlUHjSIeh98QClJjoWf3A5bGjAWWAE4gcVuh223xR412WKP6mM2+wSj5ngfxg3m7Je4mbLmyHMmFntUEH7eSU9pnf95cM4IqwPoh1Fi0QFjWPtbq8uZtaj6igoODtaJiXmdxCiEAJgzZw4Aw4YNK9Y4hBCFLykljfKlAzmfnEZUzFEeaFcPpYrmRDyAw8NHkLhpEzVffJEqgx8usu2IkkkplaS1Lta7wljsUQ74f/buPDyq6n78+HuWTCaZ7HtIAkNIYC47sioCIiLqKCgu4IZWq3Wl1VYZa+veduy3dfu5FUFRa7XuaEdxQ6oiyCLINgNhGSALCdn3ZJb7+2NCjAhkSElmgM/reebJ3Dvn3POBh2f8eHLO55AO3Oa2Wxva7pmAp4Byt906r7NnBDWDrLicNuBUYJTicnoIlNaY0dXAhRBCCPG/aWz18vv3NnLhM8tp9viIidQza3Tvbk2OAZJv+hXZzz4jybEIZ38ASoHdZptjrcpzZLoAACAASURBVNnmWAu4CRxy94dgHhDsJr05Hd53/OiVYCMVQgghxLHx/Z4qfvfmD+yqaOCGCbl0c05M3Zdf0rpzJ8nXX49pzM/22QsRVtqWcdjMNseDBE5zhkDt5aZgnxHsJr3RHd4bgSnA90iCLIQQQvSYVq+fJ7/YxnPLdpARZ+S168dyWl5Kt42nqiqVLy2i7G9/wzhwIIlXX43WYOi28YQ4ltoS4o1d6RtsHeTbO163HRryalcGFEIIIcTRc5bUcuebP+AsqeXSkdn88YKBxBkjOu/YRf6WFvbd/0Dg2Ohp0+j1lz9LcixOGl0tjNgI5B/LQIQQQgjxc16fn/lf7+Txz7YRH2XghTmjmDowvVvHVP1+9lx/PU1r1pIy93ZSbr6529c2C3EsmW0ODZDttlv3dtr4EIJdg/whP55yogMU4M2uDCiEEEKI4P13237+umQr5w3J4JELh5Bk6v5ZXI1WS/yMGSTNmUPc2Wd3+3hCHGtuu1U12xzvAyO70j/YGeS/dXjvBXYrLmdhVwYUQgghxJH5/SpbS+tQMuM405LGGzeOY2zfpG6fxa35jwNNpIG4qVNJvFQOtxXHvZVmm2O0225dfbQdg12D/F+nRUnnx816BUc7kBBCCCGC8/jn23jh65188dszyEqIYlxucreOp/r97H/iSSrmz8c0aSKxZ50lSyrEiWAycJPZ5nATKFGsAVS33Tq0s47BLrG4DPg/YFnbw/+f06Lcpbicb3c1YiGEEEL8SFVVGloD9YyvGteHnMRoesV3/wl1vvp6iu+6m/ovvyThssvI+MO9khyLE8W5Xe0Y7FHT9wKjFZfzGsXlnEPgNL0/dnVQIYQQQvyopKaJ6xat5pcvr8bvV0mPM3LZ6O49EQ8CybF79mzqv/qK9Pv+SMaDD6CRShXiBOG2W3cDOcCZbe8bCTL3DXYNslZxOcs6XFcEO4AQQgghDk1VVd5cs5dH/uPE4/dz9zRLj46vi4khdvJkTH8Yj2ncuB4dW4juZrY57gdGAQOAl4AI4J/A+M76BpsgL3FalE+A19uuZwEfHX2oQgghhAAorGrknnc38nVBOeNyk3j04qH0STZ1+7iq30/5888TO2UKxgEDSPvtb7t9TCFC5CJgBIHD7XDbrcVmmyM2mI7BbtK7y2lRLiaQcWuA+YrL+V4XgxVCCCFOWn6/ymur9mD/yAnAwxcO5soxvdFqu3/dr6+mhqK776bhv1+htrRiHDCg28cUIoRa28q9qQBmmyPo/wMN+qAQxeV8B3inC8EJIYQQAthT0cjd7/zAyp2VTMhP4S8zh5CdGN0jYzdv3Urhbbfj2bePjAfuJ2HWrB4ZV4gQetNsc/wDSDDbHDcA1wEvBNMx2CoWM4FHgTQCM8gaQFVczriuxSuEEEKcfJZsLmFzUS2PXjyEy0Z1/ya8A5o2bmT3nGvQxcbS55WXiR4xokfGFSKU3Hbr38w2x1SgFugP3Oe2Wz8Lpm+wM8h/BS5QXE5nF2MUQgghTko799ezr6aZ0/JSuG58X2YMzyI9rvvLt3VktFhIvOwykn95PfrU1B4dW4gQ2whEETgRemOwnYKtRFEqybEQQghx9Oa9s4E/Lt6E36+i12l7LDn27t9P0e/uwltVhSYigvR7bJIci5OK2eb4JbAKmAlcQuBkveuC6XvEGeS2pRUAa5wW5d/A+0DLgc8Vl/PdLkUshBBCnMA2FdXQKyGKJJOBv14yDJNB1yOb8A5o+G4VRb/7Lf66euIvupCY8Z1WtRLiRHQXMMJtt1YAmG2OZOBb4MXOOna2xOKCDu8bgbM7XKuAJMhCCCFEm8ZWL49/to2F3+xizqlmHpg+iL4p3V+67QDV76di/gvsf+opDH360HvBQowD+vfY+EKEmUKgrsN1HbA3mI6dJchrFZfz6a5GJYQQQpwsvtq2n3vf38jeyiYuH9ObO6b2fGJa/uxzlD/9NHHnnUfGQw+hi+m55FyIMFQEfGe2ORYTmNidAawy2xx3Arjt1scO17GzBPk6QBJkIYQQ4jAq6lt4xOHkvXVF5KaY+PeN4xibm9yjMah+PxqtlsQrLiciM4P4mTN7rEKGEGFsR9vrgMVtPzs9LCToOshCCCGE+JGqqry3roiH/7OF+hYvc8/M45bJeRgjdD0aQ+XLL1P/5TJ6L3gBfVISCRdf3GPjCxHO3Hbrg13t21mCPNRpUWoPcV/qIAshhDhp+fwq1y1azX+37eeU3gnYLx5K//SgTrA9djHU1lJy773UffY5sVPPQm1tRRMR0aMxCHGi6ixB3qi4nFJNXAghhCAwY6vRaNBpNQzOimOKksZVY/v0aIUKgKaNmyi64w48+/aRfo+NxDlzZEmFEMeQLLEQQgghgrCnopFb/rWWBy4YxChzEndNs4QkDtXvp/geG6rPR59XX5FT8YToBp0lyG/1SBRCCCFEmDowa5wcY8Cg09LY6gtJHN6KCrQmE1qjkewnn0SfnIwuISEksQgRzsw2x/8jULXikNx269zOntHZSXo6p0VJOtyHTotyptOinN/ZIEIIIcTxRlVV3l5byGX/WEGL14cpUs87N5/GxP49fxpd/fLl7JxxIWV/+zsAkf36SXIsxOGtAdYe4dWpzmaQNwAfOi1KM/A9sB8wAvnAcOBz4M9diVwIIYQIVwWlddz7/iZW7apkRO8Eqho8ZMTrenydr9rayv6nnqJiwUIMef1IuPTSHh1fiOOR2259+VD3zTaHkZ8egndYR0yQFZdzMbDYaVHygfFAJlAL/BO4UXE5m44qYiGEECKMNbX6eGppAS98tRNTpJ6/zBzCrFE5Pb4JD6C1sJCiO39L84YNJMyaRbptHtqoqB6PQ4jjmdnm0BE4CfpyYBrwNUEsIQ5qk57ichYABf9LgEIIIUQ4+8JZyn2LN1NU3cTFp2Tz+/MsJMdEhiwe1ePBW1ZG1hNPEHfOtJDFIcTxyGxzTASuAKzAKgITvX3ddmtjMP2lioUQQoiTWlF1Ew9+sJlPt5SSnxYTkpPwDvDV11OzeDGJV1xBZN++5H36CRqDISSxCHG8MtschcAe4DngLrfdWme2OXYFmxyDJMhCCCFOchsLq/m6oJx551i4/vS+GPSd7V/vHo1r1lA8z4anpIToU07BqCiSHAvRNe8AFwKzAJ/Z5ljMEapaHEpovgWEEEKIEPpyaxn/+m4PANMGZfDfu8/g5jP6hSQ5VltbKfv7Y+y+eg7odPR57Z8YFaXH4xDiROG2W38NmIHHgMnANiDVbHNcZrY5YoJ5RlAzyE6L0p/ANHW64nIOdlqUocB0xeV8pEuRCyGEECH01pq97K5oZNboHHRaDWmxxpDFsveWW2n45hsSLr2EdJsNrckUsliE6Almm+Mc4ElAByxw2632gz6PBF4BRgIVwCy33eo22xxjgPltzTTAA2679b1DjeG2W1VgKbDUbHNEAOcCs4FngZTOYgz2f5VfAO4BPACKy7mhbRAhhBAi7DW2evnbJ1vZXlYHwJ8vGsJ7t4xHF4LqFBA4DU/1BQ4cSZpzNdnPPkPmww9LcixOeG1VJZ4hkLAOBC432xwDD2p2PVDltlvzgMeBR9vubwJGue3W4cA5wD/MNscRJ3vNNkcqkOC2Wz9w261XADnBxBnsGuRoxeVc5bT85Fc+3iD7CiGEECGhqiofbdzHnxxbKK5pJtaoJy8tloTo0K3t9ZSWUnLP74keO5aUX91IzMSJIYtFiBAYA2x32607Acw2xxvADGBLhzYzgAfa3r8NPG22OTQHbbIzcph1xWabQwPcD9xGYDJYY7Y5vMD/c9utDwUTZLAzyOVOi9LvQCBOi3IJUBJkXyGEEKLHbSut44oXvuPWf31PfLSBN391Kr+a1C+kMdV+/DE7p8+gcd069MmHPahWiOOZXqPRrOnwuvGgz7OAvR2uC9vuHbKN2271AjVAMoDZ5hhrtjk2AxuBm9o+P9hvCJR1G+22W5PcdmsiMBYYb7Y57gjqDxFMI+BWAms+LE6LUgTsAq4Msq8QQgjRY2qbPTzxWQEvr3ATE6nn4RmDuHxMb/S60O1L91ZWsu+hh6lbsgTj0KFk/fVRDGZzyOIRoht5VVUddYTPD7Wu6eCZ4MO2cdut3wGDzDaHArxstjk+dtutzQe1nQNMddut5QduuO3WnWab4yrgUwLLNo4o2G+L3YrLeRaQClgUl/N0xeXcHWRfIYQQotv5/Cqvr9rDmX9bxkvf7uKyUTl8+bszuPpUc0iTYwBPYSH1y5aR+pvfYP7Xa5Ici5NZIT9dB5wNFB+uTdsa43igsmMDt93qBBqAwYcYI6Jjctyhz34gIpggg51B3uW0KEuAfxPYESiEEEKElYr6Fh76cAuDesXx0rVjGJIdH9J4vFVV1H+5jISZFxE1dCh5S79AnyTLKsRJbzWQb7Y5+gJFBIo+XHFQmw+Aa4AVwCXAUrfdqrb12eu2W71mm6MPMABwH2KM1iOMf6TP2gWbIA8ALiCw1GKh06L8B3hDcTm/CbK/EEIIccy5yxt45/tC7pzan7Q4Ix/ePp5+qTFoNKGpTnFA3eefU/LAg/hrajCNG0tEr16SHAtBYE2x2ea4DfiEQJm3F91262azzfEQsMZtt34ALAReNdsc2wnMHB+onHY6YDPbHB7AD9xyqJliYJjZ5qglsFSj4/INDYHNfZ3SqOpRHSyC06IkEqhdd6XicuqO0C6HQA27DAJ/iPmKy/mk06IkEZiJNhPI+i9TXM4qp0XRtD33PKARuFZxOb8/Uiwmk0ltaGg4qviFOBktWrQIgGuvvTakcQhxrL323W7+5HDyn9tPJzc1qPr/3cpXXc2+P/2Z2g8/JFJR6GX/C8YBA0IdlhA9RqPRNKqqetzXKwx6UZbTokxyWpRnge8JZN+XddLFC/xWcTkVYBxwq9OiDARswBeKy5kPfNF2DYF6ePltrxsJHEwihBBCtPP6/Pxz5W7eW1cIwKxROSy764ywSI5Vj4dds2ZR+/HHpNx2G33f/Lckx0KEkNnmOOsQ964Jpm+wJ+ntAtYDbwJ3KS5np9O2istZQlspOMXlrHNaFCeBsh0zgDPamr0MLAPmtd1/RXE5VWCl06IkOC1KZttzhBBCnOS+KSjn4f9sYWtpHecOzuCiEdnoddqQnoIH4KupQRsXhyYigrTf/AaD2SxHRQsRHu4z2xwXA78DYoAFQAuB/POIOk2QnRZFB7ykuJxBFVY+zDPMwAjgOwLHVR9InEucFiWtrdnh6uJJgiyEECexnfvr+fNHTj53lpGTFMXzV53CtEEZoQ4LVVWp/eADSv9iJ/339xA/fTpx554b6rCEED+aBPyWwCQvwH1uu/X1YDp2usRCcTl9wOSuRua0KDHAO8BvFJez9ghNg6mLh0ajufFA8WmvVw7zE0KIE1V5fQt/fH8TUx//ipU7K7Gda+GzOyZxzuDMkG/Cay0sYu8vb6B4ni0wYzzw4JNyhRBh4MABITsIzBz3aTtlr1PBVrH41mlRniawua59eUVnm+icFiWCQHL8muJyvtt2u/TA0gmnRckEytruB1MXD1VV5xM4tASTyXR0OwyFEEKEPY/Pz/PLdvD8f3fQ7PVzxZjezJ2ST2psZKhDA6D6nXfZ98gjaDQa0v/4BxIvvxyNNrR1loUQh7QSsLvt1hfNNkcU8CiwHDits47BJsgHHtRxmYUKnHm4Dm1VKRYCTsXlfKzDRwdq29nbfi7ucP82p0V5g0C2XyPrj4UQ4uSj02j43FnKhPxU7jpnAP3CYANeR7qEeKLHjCbz/vuJ6NUr1OEIIQ7vLLfdugfAbbc2AXPNNsfEYDoedZm3YDktyunA1wTOyva33f49gXXIbwK9gT3ApYrLWdmWUD8NnEOgzNsvFJdzzZHGkDJvQgRHyryJcLduTxWPOJy8MGcUSSYDja1eog3BzuF0L39LC+XPP482OpqUG24AAuuPQ73MQ4hwdKKUeQu2ikU68Gegl+JynttWru1UxeVceLg+bYeIHO7bY8oh2qsEDiIRQghxkvD6/Oh1WmKNeqobWymubiLJZAib5Ljh22/Z9+BDtO7eTcKll7bfl+RYiBNbsN9Ai4CXgHvbrrcRWI982ARZCCGEOJy9lY389ZOt+P0qz1x5CnlpsXx2xyS02vBIPL3791Nqf5Rah4OI3r3JWbCAmNPHhzosIUQPCTZBTlFczjedFuUeAMXl9Dotiq8b4xJCCHECKq9v4Zkvt/PPlbvRaTX88vRc/H4VrVYTNskxgKe0jLovviDl1ltJvvEGtJHhsUFQCHF0zDaHDkinQ857YF3ykQSbIDc4LUoybWXXnBZlHFDThTiFEEKchGqbPSz4aicLv9lFk8fHJSOzuXPqADLiQ3vIR0dNGzfRsGIFKTfeQNTgQeR9uRR9YmKowxJCdJHZ5rgduB8o5cf9cCowtLO+wSbIdxKoMtHPaVGWA6nAJUcfqhBCiJNJs8fHKyvcPLtsB9WNHs4bksGdUweQlxY+lSl8dXXsf/wJql5/HX1KComzZ6GLi5PkWIjj36+BAW67teJoOwaVICsu5/dOizIJGEBg491WxeX0HO1gQgghTh4en59pT3zF7opGJvZP5a6zBzAkOz7UYbVTVZVax0eUPmrHV1FJ4pVXkvrruehiY0MdmhDi2NhLF1c8BFvF4lJgieJybnZalD8ApzgtyiOdHRQihBDi5OL3q3yzvZwJ+SlE6LT8ckIu+WkxjMtNDnVoP+OrrKTkvvuIzM0l57nniRo8KNQhCSGOrZ3AMrPN4SBwkh4Abrv1scN3CQj26J8/Ki5nXVtt42nAy8BzXYlUCCHEievddUXMeXEVq3ZVAnD1uD5hlRz7qqupeGkRqqqiT07G/No/Mf/7DUmOhTgx7QE+AwxAbIdXp4Jdg3ygYoUVeE5xORc7LcoDRxmkEEKIE9DKnRU0tfqYbEnjgmGZGCO0jDYnhTqsn1B9Pqrfeov9jz+Br66O6NGjiRo8CKOihDo0IUQ3cdutD3a1b7AJcpHTovwDOAt41GlRIgl+9lkIIcQJaNWuSh7/bBsrdlYwPCeByZY0IvU6zh8aXscvN65dy75H/kSL00n06NGk/+FejAMGhDosIUQ3MdscT7jt1t+YbY4PaavA1pHbbp3e2TOCTZAvI3AE9N8Ul7PaaVEygbuOKlohhBAnhLW7K3n8swK+2V5OSkwkfzx/IFeO7R3qsA5J9Xgouusu8KtkPf4YseecI6fgCXHie7Xt59+6+oBgq1g0Oi1KGXA6UAB4234KIYQ4SazbU8Xjnxfw1bb9JJsM3HuewlXj+hBl0IU6tJ/wNzdT/eZbJMyehdZgIOe55zDk5KCNjg51aEKIHuC2W9e2/fxvV58RbBWL+4FRBMq8vQREAP8E5NxNIYQ4wVU1tHLnm+v5cut+EqMjsJ1rYc6pfYg2BPtLyJ6h+v3UOj6i7LHH8JaUoE9LI+6cabKcQghx1IL9drsIGAF8D6C4nMVOiyKFIoUQ4gRW1dBKoslAXFQEDa0+7po2gGtOMxMTGV6JMQTWGZfaH6V540aMAwfSy27HNHZMqMMSQhyngt1o16q4nCo/HjVt6r6QhBBChNqzy7Yz+e/LqG32oNNq+PeN47h1cl5YJseqqlL617/iLSsj0/4XzG+/JcmxEKKd2eY46rw12G+6N9uqWCQ4LcoNwHXAgqMdTAghRPj6fk8VqTGR5CRFMzE/FY9XRde2oS3cNrb5amqoeOEFkn7xC/TJyWT9/TH0yUloo6JCHZoQIkyYbY7TCOSrMUBvs80xDPiV2269pbO+Qc0gKy7n34C3gXcIrEO+T3E5n+p6yEIIIcKBqqqs3FnBVQu+Y+az3zL/q50ADM6K59dn5WMKsxlj1eOh8pVX2XH2NCoWvkjDt98CYMjOkuRYCHGwxwkccFcB4LZbfwAmBtMx6G8+xeX8jMBpJDgtis5pUa5UXM7Xjj5WIYQQoaaqKl8VlPP00gJWu6tIiYnk3vMUrgjTcm0ANQ4H+598Cs+ePUSfOo70efMwWiyhDksIEcbcdutes83R8ZbvcG07OmKC7LQoccCtQBbwAYEE+VYCNZDXA5IgCyHEccTvV/ncWcrTX25nQ2ENmfFGHpw+iFmjczBGhFe5toPVf/EF2qgocv7xPKaJE8Nu2YcQIuzsbVtmoZptDgMwF3AG07GzGeRXgSpgBfBLAomxAZihuJzrux6vEEKInvbD3mrmvbMB1746eidFY585hJmnZGPQh+fBqE0//EDZE0+Qfs89GPv3J+PBB9GaTGi04RmvECLs3AQ8SWCitxD4lMBEb6c6S5BzFZdzCIDToiwAyoHeistZ1/VYhRBC9JRWr5/qplbSYo0kRhtQVXh81jAuGNoLvS48E82WnTvZ//gT1H32GbqkJDzFxRj790cXK9VFhRDBc9ut5cCVXenb2bej58AbxeX0AbskORZCiOODqqpc9OxybO9sBKB3cjRLfjOBi0Zkh21yvO9Pf2bnBdNpWL6clNtuo9+nnxJ7xhmhDksIcRwy2xwvm22OhA7XiWab48Vg+nY2gzzMaVFq295rgKi2aw2gKi5nXJciFkII0S3217Xw9tpCbpyYi06r4caJuSREG9o/D8d1u96qKnQJCWg0GnSxsSReeQUpN92EPikp1KEJIY5vQ912a/WBC7fdWmW2OUYE0/GICbLicob3jg0hhBAA7K5oYP5XO3lrbSEen5/R5kRGmZOYMTwr1KEdlreqisqFC6l87V9kP/UkMRMmkDr39lCHJYQ4cWjNNkei226tAjDbHEkEWcEtvApcCiGEOCqbimp4/r87+GhjCXqtlotHZnHDhFxyU2NCHdph+aqrqXhpEVWvvoq/qYm4C87H0KdPqMMSQpx4/g58a7Y53m67vhT4UzAdJUEWQojjjKqqfLujguf/u4OvC8qJjdRzw8Rcrh/fl7Q4Y6jDOyJVVXFfeRWtO3cSd+45pNx6K5H9+oU6LCFEDzLbHOcQqC6hAxa47Vb7QZ9HAq8AIwkc8jHLbbe6zTbHVMBOoKJaK3CX225derhx3HbrK2abYw1wJoHlwTPdduuWYGIMz10aQgghDuu219dx5YLvcO2rw3auheX3nMk95yphmxz76huoWLQItbUVjUZDum0efd9/n6zHHpPkWIiTjNnm0AHPAOcCA4HLzTbHwIOaXQ9Uue3WPAKn4T3adr8cuMBttw4BriFQjvhQY8S1/UwC9gH/InB2x762e52SGWQhhAhz1Y2tvLF6L3NO7UO0Qc/5QzKZkJfChSOywvpwD19tLVWvvUblopfx1dQQ2bcvMZMmETNhQqhDE0KEzhhgu9tu3QlgtjneAGYAHWd2ZwAPtL1/G3jabHNo3Hbrug5tNgNGs80R6bZbWw4a41/A+cBaQO1wX9N2ndtZkJIgCyFEmPL7VbRaDdvL6rF/7KJviolpgzI4d0hmqEM7In9rK+XPPkvVP1/DX19PzKRJpNx2K1FDhoQ6NCFE99NrNJo1Ha7nq6o6v8N1FrC3w3UhMPagZ7S3cdutXrPNUQMkE5hBPuBiYN0hkmPcduv5ZptDA0xy2617uvSH6EonIYQQ3UNVVb7bVcmCr3eRGW/k4QsHM7JPIkt/OymsN94B+Fta0EZGoomIoOGrrzGNH0/Kr27EOPDg354KIU5gXlVVRx3h80PVmlSPpo3Z5hhEYNnF2YcbxG23qmab4z0C65iPmiTIQggRBlq9fj7aWMKCb3ayqaiWJJOBX07oCwRqF4dzcuwpLqZiwUJqP/mEfh850MXH0+f1f6GNjAx1aEKI8FMI5HS4zgaKD9Om0Gxz6IF4oBLAbHNkA+8Bc9x2645OxlpptjlGu+3W1UcbpCTIQggRQpUNrby+ag+vrtjNvtpm8tJi+MvMIVwU5uuLAVrdbspfeIGaxR+ARkPChReier0AkhwLIQ5nNZBvtjn6AkXAbOCKg9p8QGAT3grgEmBp24xwAuAA7nHbrcuDGGsycJPZ5nADDbStQXbbrUM76ygJshBChMCeikae/KKADzcU0+r1c3peCn+5eAiT8lPRasPvtLuDeYqL2XGeFU1EBImzZ5N8/XVEZIb32mghROi1rSm+DfiEQJm3F91262azzfEQsMZtt34ALAReNdsc2wnMHM9u634bkAf80Wxz/LHt3tluu7XsMMOd29U4Nap68LKP44fJZFIbGhpCHYYQYW/RokUAXHvttSGN42TX6vVT0+QhNTaSnfvrmf70ci4akcWcU/uQnx4b6vCOSFVVGr7+muatW0m54QYAqt58k9jJk9GnpoY4OiFEuNBoNI2qqppCGYPZ5jACNxFIpjcCC912q/doniEzyEII0QNUVWX609/QJzmaf1w9itzUGFbfexZRhvBeRqG2tlLz0UdULnyRloICIrKzSZozB21kJImXXRbq8IQQ4lBeBjzA1/xYb/nXR/MASZCFEKIbqKrK93uq+PCHEu47fyBarYYbJ+aSEvPj2txwT44bVq2i+O55ePftIzI/n16P2ok791w0BkOoQxNCiCMZ2HaYCGabYyGw6mgfIAmyEEIcQ80eHx/+UMzLK9xsKqolNlLPVeN6k5cWy8xTskMdXqc8paX4GxqJzO2LITsbQ18zmQ89iGnCBDSa8F8bLYQQBGaPgfY1z0f9AEmQhRDiGNheVsdr3+3hnbWF1DZ7yU+L4eELBzNzRBamyPD/qm3asIHKl1+h9pNPMI0dS++FC4jo1Ys+L70U6tCEEOJoDTPbHLVt7zVAVNv1gSoWcZ09IPy/tYUQIkz5/CqOjSW8tnI33+2qJEKn4ZzBmVwxpjfjcpOOixnXumXLqHjueZp++AFtTAxJV11F4lVXhjosIYToMrfd+j+vX5MEWQghjlJts4c4YwQa4O+fbsWvqsw7x8Klo7J/ssY4XHmrqtCZTGgMBloKCvBWV5F+773EX3QRupiQbj4XV5z7ZQAAIABJREFUQoiwIAmyEEIchaeXFvDicjff2s7EGKHjXzeMIzPOeFzULm4pKKDylVep+eADMh95mPgLLiDpmmtIvv56NFptqMMTQoiwIQmyEEIcQWFVI2+u3suMEVn0S41hXG4yPj94/YEa8lkJUSGO8MhUv5+6Tz+j6o03aFy5Ek1kJPHTp2McNBgArVSkEEKIn5EEWQghDtLs8fHZllLeXLOXb7aXA5Aeb6RfagyjzEmMMieFOMLO+Rsb0UZHg0ZD+TNP42toIPWOO0i47FL0iYmhDk8IIcKaJMhCCNFmS3Etb67Zy/vri6hu9JCVEMXcM/O5ZGQ2OUnRoQ6vU6qq0rhyJVX/ep2GVavIX/oFWpOJnH/8A316OhpdeNddFkKIcCEJshDipPfO2kIWfetmY1ENBp2WqYPSmTUqh/F5KeiOg7XFvtpaat57j6rX36DV7UaXkEDCJRejegKlQCN69QpxhEIIcXzptgTZaVFeBM4HyhSXc3DbvSTg34AZcAOXKS5nldOiaIAngfOARuBaxeX8vrtiE0Kc3Pz+wCl3I/skotFoWLe3Co/Pz/0XDOTC4VkkmsJ/Xa6qqqiNjWhNJjxFRZT+xU7U8OH0+uujxE6bhjYy/KtpCCFEuOrObcuLgHMOumcDvlBcznzgi7ZrCJyTnd/2uhF4rhvjEkKcpFQ1sLHuww3FXPL8CtburgLgD9aBfPzrCfxifN+wT469lZVUvLSInedfwL6HHgLAqCjkfuTA/MbrxE+fLsmxEEL8j7otQVZczq+AyoNuzwBebnv/MnBhh/uvKC6nqricK4EEp0XJ7K7YhBAnj/oWL2+t2cvl81fy0nI3AGcp6Tx22TAG9YoHwBihC/tDPRpWraLwN3dQMOkMyh59FF1MDKbx49s/j8zNDWF0QghxYunpNcjpistZAqC4nCVOi5LWdj8L2NuhXWHbvZIejk8IcQLw+VWWby/n3e8LWbJ5H80eP+bkaGLajnw2ReqZeUp2iKPsnKe4GH1GBhqtlvqlX9K4ciVJV1xBwiUXE5mfH+rwhBDihBUum/QONXWjHrKhRnMjgWUYGKR+pxCig6376nj3+0LeX19EaW0LcUY9F5+SzcxTsjmld0LYzxID+JubqV+6lOp336Nh+XJ6L1yA6bTTSLnlZlLvvEPqFgshRA/o6QS51GlRMttmjzOBsrb7hUBOh3bZQPGhHqCq6nxgPoDJZDpkEi2EOPk8/J8tLPxmF3qthjMGpPHABVlMtqRhjDg+Spv5amsp+7//o/bjJfjr69FnZpJy880Y+vUDQBcXF+IIhRDi5NHTCfIHwDWAve3n4g73b3NalDeAsUDNgaUYQghxKNtK6/jLR04emjGYnKRopihp5CRGccGwXiTHHB+b1Fp376a1sJCY8ePRRkfTsGoVsWedRfyFM4geM0aOfxZCiBDpzjJvrwNnAClOi1II3E8gMX7TaVGuB/YAl7Y1/4hAibftBMq8/aK74hJCHJ9avD6Wbd1PksnAaHMSpkg920rr2VPZSE5SNKf1S+G0fimhDrNTvpoaaj9eQs3ixTStW4c+M5O8pV+g0evp9/HHkhQLIUQY0Bwoe3Q8MplMakNDQ6jDECLsLVq0CIBrr702pHEcLa/Pz4qdFXywvpglm/dR1+xlxvBePDl7BBAo23Y8rCs+oPKVVyn7v/9D9Xgw9OtH/IUziL/gAiIyMkIdmhBCHBMajaZRVVVTqOP4X4XLJj0hhAACSe/3e6r58Idi/rOhhPL6FmIi9UwblMH04b0Y3y+5vW04J8eqx0PDyu+odThIvv46IvPziezfn4TZs4mfMQPjoIFhHb8QQpzMJEEWQoSN11ft4dll29lb2YRBr2WKJY3pw3odN5vtVL+fprVrqfnoI+qWfIKvqgptbCwxkycTmZ+PadxYTOPGhjpMIYQQnZAEWQgRMoVVjbz23R5umtiP+OgIvH6Vvikx/HpKf84elE6cMSLUIXZKVVV81dXoExNRm5rYc8ONAMSeOZk4qxXThAlSmk0IIY4zkiALIXqMqqpsLKrBFKmnX2oM5fWtzP9qJ2P7JnHGgDSuHteHq8f1CXWYnVJVleZNm6j79FNqP/kUXWwsfd95G63JRO+FCzBaLGhNx/0SPCGEOGlJgiyE6FaqqvJDYQ0fbSzho40lFFY1ccXY3vz5oiEMy45n9b1nkWQ6fmZYq956i/LnnsNbXAJ6PaaxY4k779z2DYPRI0eGOkQhhBD/I0mQhRDHnN+vsr6wmo82lPDxpn0UVTcRodNwel4Kc6fkc/bAdCCwyS6ck2PV66Vx9WpqP/2UlJtvJiItDU1EBMYBFmJvn0vs5DPQJSSEOkwhhBDHmCTIQohj6pkvt/Pyt27K6low6LRMyE/hjqn9maqkEx99HKwpbm2l/ttvqfv0M+q/+AJfTQ2aqChiJ08mIi2NhAsvJOHCC0MdphBCiG4kCbIQ4n+yfm81r67YzV9mDsGg1+Lzq4zsk8jZg9KZohwfG+28lZX4amqI7NsXb1U1hTfdjDYmhpjJk4k9eyoxp5+ONioq1GEKIYToIZIgCyGOSlltM585Szk1N5nc1BjK61r477Yydlc0kJ8ey9wp+aEOsVOqqtK6axf1S5dSt/RLmtavJ2bCBHL+8TwR6Wn0+eerGIcOleoTQghxkpIEWQjRqR376/l0cymfbtnHuj3VANx7nkJuagxnDEjlu9+fhU4b3odedDx1r2jur6n77DMAIgcqpNx0E7FnTWlvGz1qVEhiFEIIER4kQRZC/Eyr18+qXZUsdZXx5dYydpUHjnQfmh3P787uz9mDMshPiwFAr9OGMtQj8paX07B8OfVffU3jmjX0W/Ix2qgoYqdNI/rUcYF1xZmZoQ5TCCFEmJEEWQgBQLPHhzFCh6qqTHlsWftpdqf1S+YX482cpaTTK+H4WIfb8N0qyv76V5o3bwZAl5REzIQJ+Orq0EZFEX++NcQRCiGECGeSIAtxkuq45ODh/2zhc2cpy353BhqNhtvPzCcp2sBpeclEG8L7a8JTWkbDN19T//U3JFx8MTETTkcbY0ITGUnqr+dimjAR40AFjTZ8Z7qFEOJkYrY5zgGeBHTAArfdaj/o80jgFWAkUAHMctutbrPNkQy8DYwGFrnt1tu6K8bw/i+fEOKYqm/x8k1BOV+2LZ348PbTSY8zMrZvEoltRz1H6DRcNion1KEekb+lhfKnn6b+q69p2boVAH1aGjFnTAIgatAgzP96LZQhCiGEOASzzaEDngGmAoXAarPN8YHbbt3Sodn1QJXbbs0z2xyzgUeBWUAz8EdgcNur20iCLMQJzO9X2Vxcy1fl0exoiOCRBz/F61eJNeqZ2D+VxlYfAGcPyuDsQRkhjvbQVJ+P5i1baFixEo1OR/L116ExGKh1fEREdjapv72TmIkTiezfv31GXAghRNgaA2x32607Acw2xxvADKBjgjwDeKDt/dvA02abQ+O2WxuAb8w2R153BykJshAnoJKaJuwfu/imoJyKhlbAREakhxsm5jIxP5VR5kQiwnhzHUCNw0HdkiU0fLcKf20tAKYJEwIJskZDv0+WoIkI/xrLQghxktFrNJo1Ha7nq6o6v8N1FrC3w3UhMPagZ7S3cdutXrPNUQMkA+XdEO8hSYIsxAnA71f5v0+3kpti4tJROcRE6vluZyUT+6cysX8KRWu/IEavcu05llCHekie4mIaV6+m8ft1ZNx/HxqtlsbVq2nevIXYs6diOvVUTOPGoU9Obu8jybEQQoQlr6qqR6qVeahf9aldaNOtJEEW4jijqioFZfUs315ObZOXX5+Vj1arYcWOCpo9gSUTscYIVtxzZvuSg0U/9Oj3SlCaNm6k6p+v0bhmDZ6iIgB0CQkk33ADhuws0u+5B83998uyCSGEOLEUAh03umQDxYdpU2i2OfRAPFDZM+EFSIIsxHFgb2Uj3+4oZ/n2Cr7dUUF5fQsAloxY5k7JQ6PR8M7Np/3ksI5wSSxVVaV1x47ADPHqNSRdM4eoYcPwVVZS//XXRI8aRdI11xA9ZnRgHXFbtQltZGSIIxdCCNENVgP5ZpujL1AEzAauOKjNB8A1wArgEmCp226VGWQhBKzaVcm73xeyfEc5eyubAEiJiWR8XjKn9UvmtH4p5CRFt7cPt5PsvOXl7HvwIRrXrMFXVQUEKk3EnjONKMB0+unkL/8mbBJ5IYQQ3a9tTfFtwCcEyry96LZbN5ttjoeANW679QNgIfCq2ebYTmDmePaB/mabww3EAQazzXEhcPZBFTCOCY2qht+vXoNlMpnUhoaGUIchxDGxq7yBl791c8sZ/UiLM7Jo+S7+/tk2xuUmM75fMqflpZCfFtOlhHLRokUAXHvttcc2aMBbVUXT+vU0rVtP07p1RI08hbTf/Aa1tZWdM2cSNXgI0aNHET16NBE5OZIQCyHECUyj0TSqqmoKdRz/K5lBFiIEqhpaWe2uZNWuSs4YkMbp+Sk0tHh5Y/UezlLSSYszMntMb64a1yesjnJW/X685eVEpKUB4L7qKprWrA18qNdjVBT0SUkAaAwG+v3nP6EKVQghhOgySZCF6AFldc2s2lXZ/nLtqwPAoNeSEW/k9PwUBmbG8cP9ZxOp1wFgjNCFMmQgMDvcvGEDTRs3BWaJf/gBXVIieZ98AkDMhInETJpE9PDhGAcPRht1fBxFLYQQQhyJJMhCdBO/X+Xe9zfx3c4KdpYHlgJFG3SM7JPI+UMzGdM3mWE58e0JsVarIVIbuqTYV1dH8+bNNG/eQtIvrkWj1VL2979T8/Y7oNEQmZdH3HnnETViePsx1Sm/ujFk8QohhBDdRRJkIf5HB5JFgMc+3UppbQuPXjIUrVbDjv319E0xMWt0DmNzkxnUKy6sDuhoXLeO6jfeoGnjJlp37my/Hzv1LAy9e5N01VUkzJiBceBAtKbjfkmZEEIIERRJkIU4SvUtXn7YW83a3VWs3V3F9rJ6vrp7MjqtBq9fxddh4+ubvzo1hJEG+OrqiN2zh+jSMopdW2l2uci47z6iTxmBr6KC+m+/JWrwEOIvOB/j4CEYBw9Cn5gIgNESngeLCCGEEN1JEmQhjkBVVQqrmtqT4bW7q3Dtq8WvgkYDA9JjmTQglcZWL7HGCO4O4Ul1qqriLSuj2enEkJVFZH4+TZs34774Ega2talPScGoKKD6AYg580zyp0yRyhJCCCFEB1LmTYgOmj0+NhbV0D89lvioCF5Z4ea+xZsBMBl0jOidyMg+gdfw3gnEGUNz3PGBZR3+1lbKn3qK5i1Oml0ufJWBg4aSf3k9ab/7Hf6mJipffoWviwppTE/nyttuC0m8QgghTg5S5k2I45zX56egrJ4f9lajZMYxLCcBZ0ktlz6/gueuPIVzh2Ryel4KD184mJG9ExmQERuSwzha9+yheetWWgoK2l9Rw4bR609/QhMRQfXixehTU4mZfAZGZSBGxULkgMBMtjYqipSbfkVNWx1kIYQQQnROEmRxUjiwVGL93mp+2FvND4XVbCqqpcnjA+DmM/oxLCeBgb3iWDBnFKPMgTW4uakx5KbG9Eh83tLSQAK8rQDV7yPlhhsAKLz1VloKtoNGQ0RODpH5+UQNHgwEjpPOX7YMjS70JeGEEEKIE4UkyOKE1OzxYYzQ4fX5ufHVtazfW01lQysQqD08uFccs8fkMDwngWHZCfRJDhzZHKnXcdbA9G6Ly9/aSqvbjbekhJhJkwDY98ifqHn3XfyNje3tIi2W9gQ5/d4/oDVFE9mvH9ro6J89U5JjIYQQ4tiSBFkc1w7MDJfUNDOmb+AEt8vnr8QYoeWlX4xBr9Oi1cAUSxrDchIYnpPAgIzYbi+15q2qQhcfj0arpXbJEmree5+WXbvwFBaC3w9aLQPWr0NrMBCZl0f8zJkYcvtizM8nMj8fXUJC+7NM48Z2a6xCCCGE+ClJkMVxw+9XcVc0sKm4ls1FNWwqrmFTUS01TR7ioyJYf99UNBoN04f3+sla4QXXjD7msRzY3KrRaGjeto26Tz+jdc9uPLv30Lp7N77qavp9/jmG7Cy85RV4SkowDhxI/PlWDH1zMeT2bZ/5TZw965jHJ4QQQoiukwRZhKVmj49IvRaNRsPbawv59+o9bCmupaE1sGbYoNNiyYzlvCEZDOoVz+Cs+Pa+l4/pfUxj8ZaXU//V14EEeM8eWnfvoXXPHnKee5boUaNo3b6d8meeQZ+ZgaF3H2KnTsWQm4s2OnDsctJVV5J01ZXHNCYhhBBCdB9JkEVI+f0qRdVNOEtqGWVOIslk4K01e7n7nQ189/sppMUaqWv24FfhkpHZDMqKZ3CvePLTY47ZMgl/QwP1y5fjKSrGU1QUeBUXk3LLLcRNO5vWPXsp+f3vQacjIisLQ+/exA8bhi4+kJTHTJkSWC4RGXlM4hFCCCFEaEmCLHpMbbOHrfvqcJXU4mz7ua20nvoWLwD/uHok0wZlMCQ7nrln5qNtO7ziF+P78ovxfbs8rurxUPfllz9NgIuKSLjkYpLmzMFXW0vR3F8DoDWZiMjOJqJXr/YNccZBA+n3yRIievVCE/HzuseSGAshhBAnFkmQxTHn8fnZWFRDakwkOUnRbCmu5YZX1lBU3dTeJs6ox5IZx8WnZGHJjMOSEYslIw4AS0Zc+/vDUVUVtaUFrdEIQPXbb+MpLsZTsg9v6T48+0qJmTSJ9Hl3g0ZD0R13gs+HNiaGiKwsIrKz0aekAKBPS6Pvu+8QkZWFNi7uZ6fKaSMjMfTpcyz/ioQQQggRxiRBFl1W1dBKQVk9BWV1FJTWM7BXHJeNyqHF62fms99y17QB3Do5j/S4SEb2SeTKcb1RMuKwZMaSEWc87PHGqteLt6IStbmpPTGtWPgiLdu24SktxVtSgqe0FNO4ceQ8/xwA+//f03j370eflkZEejqR+fkYcgOzzhq9nr7vvktERvohE2CNTodx4ECEEEIIIUASZBGkb7eXU1BWz/a2hHh7WT3l9a3tn0cbdFw5NrA5LiZSz8vXjcGSEQtAckwkT10+An9DA979+/EW7KFu/35Uj4f46dMBKH30rzSsWIF3//7AccmqSqTFQu777wFQt3QpnpJiItIziByoEDN5MsZBPya1fd99J1BWTX/of9LGAf275e9FCCGEECceSZAFANWNrZTVtdA/PZDU/vkjJ61ePw9MHwTAXW9voKi6idhIPfnpMUyxpJOXGk1+ehz5GbEklRfh2b6dytfW4ausYkBVJb6GRnjUDkDxvHnULP7gJ2PqEhLaE2SNXk9EZiZRQ4eiT0lBn5ZKRFZ2e9s+/3z1sDPOAPrk5GP69yGEEEKIk5ckyCeRplYf7ooGdpUHXjv3N7CrvJ5d5Q1UNXpIMUWw4vrB+GpqaCwsoqWxBX9TLtqoKJ6w+NAvXUZCYQn+1VX4Kivx1dQwYM1qtKYoSv/xLpUvvdQ+li4+Hl1SEqrHgyYigtipUwMHYKSkoE9NRZ+Sij4ttb192m/vPGLsR0qOhRBCCCGOJUmQTyCqqqL6fKj19Xy/rYTlOyq43ToUXVwc8xYt59+u6p+0T/E20q93CucOySRz7zbi3llIwWtONMCBqr2e6R8RmduXvJYqKnc40SYmEpGfjy4pEX1iEm3nZZB09VXEX3Qh+qQkdAkJP1vqEHvWWd3/FyCEEEIIcQxIghxGVI8HX309/vp6/HV1+OrqMfTpTURGBp7SMmree5em2nqK6zzsbfRT2KqlcthYSgxxuAvL2VPVxHNL/05mQwWf9pvIgsHnMyt9PZlnTmRcRD2RWz4my1tHH20LOZF+YuJMZPzq90Tm59PsiqDBZEUXfwXa+Hh08fHok5IwZGcBkDjrMhJnXXbY2CN69eLnBdCEEEIIIY4/mgNH5h6PTCaT2tDQEJKxVZ8Pf1MToEEXY0L1+Whatw5/Y2Pg1RD4aRyoED1yJL76ekrtdtQDnzU14W9sJPGKK0iYeRGtbjc7zjkXFdAAlZGxrMgczAWXT2XANZezeMkaHvp4K5XGOFTNjwdkGLXQOzWGnCgNqcU7uTKxkazkWFpi4oiIjyNhxDD0bUsdgEPW8RUnvkWLFgFw7bXXhjQOIYQQJzaNRtOoqqop1HH8r8JqBtlpUc4BngR0wALF5bSHOKSf2HHuefhqavA3NqI2NwOQcPlsMu+/H/x+dl919c/6JF13HdEjRwJQ//U31MckUhaXyn5TL0rj46kqMrD/lTUUVTZQOPNRfpvRxPRsA+X+aJ5e42XYgHwGADkD+nJGtZas5Bj6JEXTJzma3knRpMZGdlifO/GwsUtiLIQQQggRnLBJkJ0WRQc8A0wFCoHVTovygeJybgltZD+KHjMGNKCNNqGNjkYbHd1eP9en1WF4bgF6YxTpyTG0RETxzPpyJlgySAd2NapcMGEeLV7/T5+5X0eWp4GsxCiG90li0ClZJPRJYozXx8qpHlJjA6e0ndI3mVP6SqUGIYQQQojuFjYJMjAG2K64nDsBnBblDWAGEBYJst+v4p5zO/tqm9hX08K+mib21Tazb00z+5Z+zv66FvwqXDUujkdO7Y/e5+eVFzeRkhzHBAXS4ozMObUPGfFRZCVEkZ0Y+JkQHXHICg2Reh0Z8boQ/EmFEEIIIU5u4ZQgZwF7O1wXAmNDFMvPaDTwi0WraPYEZoBjjXoy4oxkxBvpnx5LZryR9Hgjg3vFA6DXaXE+dE578htnjOBeq5zWJoQQQggR7sIpQT5Uoduf7SDUaDQ3AjcCGAyG7o6p47i89suxJEQbyIgzYors/K9OaveKcCGb84QQQojgaTtv0mMKgZwO19lA8cGNVFWdr6rqKFVVR+kPc6xwdxnZJ4l+qTFBJcdCHK90Oh3Dhw9n8ODBXHrppTQ2NgKwZMkSBgwYQF5eHnZ78PtnVVVl7ty55OXlMXToUL7//vtDtlu7di1DhgwhLy+PuXPncqDCzltvvcWgQYPQarWsWbOmS38mt9vN4MGDu9T3aMeJiopi+PDhDBw4kJtuugm/33/ItsuWLeP8888/qucvWrSI4uKffS3+rM1tt912VM89oKWlhVmzZpGXl8fYsWNxu92HbHe4fwu7du1i7Nix5OfnM2vWLFpbA8fRP/bYYwwcOJChQ4cyZcoUdu/e3d7nwL+34cOHM73tZE0hhAi1cEqQVwP5TovS12lRDMBs4INO+gghjrGoqCjWr1/Ppk2bMBgMPP/88/h8Pm699VY+/vhjtmzZwuuvv86WLcFtD/j4448pKCigoKCA+fPnc/PNNx+y3c0338z8+fPb2y5ZsgSAwYMH8+677zJx4uGrtHQ3r9cbdNt+/fqxfv16NmzYwJYtW3j//fePWRzBJMj/i4ULF5KYmMj27du54447mDdv3s/aHOnfwrx587jjjjsoKCggMTGRhQsXAjBixAjWrFnDhg0buOSSS7j77rvbn3fg39v69ev54AP5yhdChIewSZAVl9ML3AZ8AjiBNxWXc3NooxLi5DZhwgS2b9/OqlWryMvLIzc3F4PBwOzZs1m8eHFQz1i8eDFz5sxBo9Ewbtw4qqurKSkp+UmbkpISamtrOfXUU9FoNMyZM6c9sVQUhQEDBhxxjFtuuaU9ubrooou47rrrgEDC94f/3979B2dV3Xkcf3+XVKSCREvtgGEaILRARAIEFl1DCW4FSSt2NxRmGaEVoRa1tW4d07V2qTvsRAcRf1Sd7eIWlK5RqJUxpVqQUrWgwQYE5Tc8WsCpNfxYUgMY/O4f9+TxJj7PkyDBEPi8Zu7kPueee59zc785c3Luuff8+MdA1LCbPn06+fn5XHHFFdTV1QGwY8cOxo4dy9ChQykqKmLz5s1ANCzllltuobi4mNtuu42//e1vXHvttQwbNozBgwc3e/5ZWVlceumlbN++PW2e2tpaSktL6devH5MnT072mt95550MGzaMiy66iBkzZuDuLF68mLVr1zJ58mQKCgqoq6ujqqqKSy+9lEGDBjF8+HAOHToEwN69exk7dix9+/Zt1BhtzjPPPMPUqVMBKC0tZcWKFTR9V366WHB3XnjhBUpLSwGYOnVq8hoWFxfz2c9+FoARI0awe/fuFpdJRKQtnDINZID+mzf9pv/mTV/qv3lTn/6bN81u6/KInMnq6+tZtmwZAwcOZM+ePfTs+dEIqJycHPbs2QPAD37wg+Qt8vjScOs9074N9uzZQ05OTsY8mYwcOZIXX3wxeayGHs2XXnqJoqIiALZt28YNN9zAG2+8QXZ2NkuWLAFgxowZPPDAA7z22mvMmTOHmTNnJo+7detWli9fzj333MPs2bMZPXo0VVVVrFy5kltvvZVMExW9//77rFixgoEDB6bNU11dzbx583jzzTfZuXMnL7/8MgA33ngjVVVVbNy4kbq6Op599llKS0spLCxk0aJFrFu3jg4dOjBx4kTuu+8+1q9fz/Lly+nUqRMA69ato6Kigg0bNlBRUcGf/xw9/zxx4sSU12rhwoXJ313DtcrKyqJr167U1NQ0KnO661lTU0N2djYNQ9/SXcP58+dz5ZVXJj8fPnyYwsJCRowY0aq97SIiJ0KDaUWkkbq6OgoKCoCoB3natGkpe0sbHkK99957Mx4v1WydTR9gbUmeTIqKipINzQEDBrB//37eeecdVq9ezf33309NTQ29evVKntfQoUNJJBLU1tbyxz/+kQkTJiSPdeTIkeT6hAkT6NAhet3i888/z9KlS5kzZw4QNezefvtt+vfv36gsO3bsoKCgADNj/PjxjRqDTQ0fPjz5j0FBQQGJRILLLruMlStXcvfdd/P++++zb98+8vPz+frXv95o3y1bttC9e3eGDRsGwLnnnpvcdvnll9O1a/RGnQEDBvDWW2/Rs2dPKioqMv4eT+RatWTfxx9/nLVr17Jq1apk2ttvv02PHj3YuXMno0ePZuDAgfTp0ydjOUWkfcstq2xFr5wBAAAODklEQVQ0MVyivKS8yfaOwEJgKFADTEyUlyTCth8B04BjwPcS5SXPnYwyqoEsIo00jAmNy8nJSfZCAuzevZsePXoAUQ/yypUrP3acSZMmUVZWlnHf+PHjt91T5cnkwgsvZP/+/fz2t79l5MiR7Nu3jyeffJLOnTvTpUsXampq6NixYzJ/hw4dqKur48MPPyQ7O/tj59vgnHM+mi3V3VmyZEmzwz0axiC3RNMy1dfXc/jwYWbOnMnatWvp2bMns2bN4nCYuTPO3dP+E5HquBD1IG/ZsuVj+W+55RamTJmSvFY5OTnU19dz8OBBzj///EZ5013Pbt26ceDAAerr68nKyvrYNVy+fDmzZ89m1apVjcrXkKd3796MGjWK6upqNZBFTmO5ZZUfmxgut6xyaaK8JP5gyzRgf6K8JC+3rHIScBcwMbescgDRM2r5QA9geW5Z5ZcS5SXHWrucp9QQCxE5NQ0bNoxt27axa9cujh49yhNPPJF848C9996bfMgqvpSVlQFw1VVXsXDhQtydNWvW0LVrV7p3797o+N27d6dLly6sWbMGd2fhwoWMHz/+uMp4ySWXMG/ePEaOHElRURFz5sxJDq9I59xzz6VXr1489dRTQNToXL9+fcq8Y8aM4YEHHkj2lFZXVx9X+VqqoTHcrVs3amtrWbx4cXJbly5dkuOM+/Xrx969e6mqqgLg0KFDzT5MWFFRkfJaTZkyBYiu1YIFCwBYvHgxo0eP/lgjPF0smBnFxcXJ8i5YsCB5Daurq/nOd77D0qVLueCCC5LH2r9/f7LH/r333uPll19mwAC9L17kNDcc2J4oL9mZKC85CjRMDBc3HlgQ1hcDl+eWVVpIfyJRXnIkUV6yC9gejtfq1EAWkWZlZWXx4IMPMmbMGPr37883v/lN8vPzW7TvuHHj6N27N3l5eUyfPp2HHnooua1hyAPAww8/zHXXXUdeXh59+vRJDk14+umnycnJYfXq1ZSUlDBmzJiU31NUVER9fT15eXkMGTKEffv2NdtABli0aBHz589n0KBB5Ofnp3347o477uCDDz7g4osv5qKLLuKOO+5o0fkfr+zsbKZPn87AgQO5+uqrk0MoIHpw8Prrr6egoIBjx45RUVHBTTfdxKBBg/jqV7+asqf5eEybNo2amhry8vKYO3duchz53r17GTduHJA5Fu666y7mzp1LXl4eNTU1TJs2DYBbb72V2tpaJkyY0Oh1bps2baKwsJBBgwZRXFxMWVmZGsgi7V+Wma2NLTOabE81MdyF6fIkykvqgYPA51q4b6uwVOPG2otzzjnHMz0kIyIiIiKfHjN7393PSbc9t6xyAjAmUV5yXfh8DTA8UV5yUyzPGyHP7vB5B1FP8Z3A6kR5yeMhfT7wm0R5yZLWPg/1IIuIiIjIp6UlE8Ml8+SWVWYBXYF9Ldy3VeghPRGRk2jDhg1cc801jdI6duzIK6+80kYlEhFpU1VA39yyyl7AHqKH7v6lSZ6lwFRgNVAKvJAoL/HcssqlwC9zyyrnEj2k1xd49WQUUkMsRERERKRVNDfEAiC3rHIcMI/oNW+PJspLZueWVd4JrE2UlyzNLas8G3gMGEzUczwpUV6yM+x7O3AtUA/cnCgvWXZSzqM9N5DN7EOgrq3L0YwsoosokoriQzJRfEgmig/JpK3io5O7t/shvO26gdwemNlady9s63LIqUnxIZkoPiQTxYdkovg4Me2+hS8iIiIi0prUQBYRERERiVED+eT7r7YugJzSFB+SieJDMlF8SCaKjxOgMcgiIiIiIjHqQRYRERERiVEDWUREREQkRg3kFjKzR83sXTPbGEs738x+Z2bbws/zQrqZ2f1mtt3MXjezIbF9pob828xsaix9qJltCPvcb2b26Z6hnIg08THLzPaY2bqwjItt+1G41lvMbEwsfWxI225mZbH0Xmb2SoibCjM769M7OzkRZtbTzFaa2SYze8PMvh/SVX9IpvhQ/SGY2dlm9qqZrQ/x8dOQnvKamlnH8Hl72J4bO9Zxxc0Zz921tGABRgJDgI2xtLuBsrBeBtwV1scBywADRgCvhPTzgZ3h53lh/byw7VXgkrDPMuDKtj5nLSccH7OAH6bIOwBYD3QEegE7iGYT6hDWewNnhTwDwj5PApPC+iPAd9v6nLW0ODa6A0PCehdga4gB1R9aMsWH6g8thL/pzmH9M8AroV5IeU2BmcAjYX0SUPFJ4+ZMX9SD3ELu/gei6Q7jxgMLwvoC4OpY+kKPrAGyzaw7MAb4nbvvc/f9wO+AsWHbue6+2qNIXhg7lrQDaeIjnfHAE+5+xN13AduB4WHZ7u473f0o8AQwPvQGjgYWh/3jsSanOHd/x93/FNYPAZuAC1H9IWSMj3RUf5xBQj1QGz5+JixO+msar1cWA5eHGDiuuDnJp9UuqIF8Yr7g7u9AVMkBF4T0C4E/x/LtDmmZ0nenSJf278Zwm/zRhlvoHH98fA444O71TdKlnQm3OwcT9QKp/pBGmsQHqP4QwMw6mNk64F2if4x3kP6aJuMgbD9IFAPHGzdnPDWQT45U4//8E6RL+/Yw0AcoAN4B7gnpio8zkJl1BpYAN7v7/2XKmiJN8XGaSxEfqj8EAHc/5u4FQA5Rj2//VNnCT8VHK1ED+cT8JdzeJPx8N6TvBnrG8uUAe5tJz0mRLu2Yu/8lVGwfAj8nqtjg+OPjPaLb7FlN0qWdMLPPEDV+Frn7r0Ky6g8BUseH6g9pyt0PAL8nGoOc7pom4yBs70o0/O944+aMpwbyiVkKNDxJPhV4JpY+JTyNPgI4GG6hPgdcYWbnhdtlVwDPhW2HzGxEGCs0JXYsaacaGj/BN4CGN1wsBSaFp417AX2JHrKqAvqGp5PPInrAYmkYV7oSKA37x2NNTnHhb3o+sMnd58Y2qf6QtPGh+kMAzOzzZpYd1jsB/0g0Tj3dNY3XK6XACyEGjituTv6ZtQNt/ZRge1mA/yW6zfUB0X9c04jG9awAtoWf54e8BvyMaJzQBqAwdpxriQbHbwe+HUsvJKoAdwAPEmY51NI+ljTx8Vi4/q8TVTjdY/lvD9d6C7E3DhC9wWBr2HZ7LL03UWW2HXgK6NjW56ylxbFxGdEty9eBdWEZp/pDSzPxofpDC8DFQHWIg43ATzJdU+Ds8Hl72N77k8bNmb5oqmkRERERkRgNsRARERERiVEDWUREREQkRg1kEREREZEYNZBFRERERGLUQBYRERERiVEDWUTaPTO73czeCNPyrjOzvz8J35Ews27Hkb+Tma0ys0GhTOvMbJ+Z7Qrry81slJk929plbS1mlmtmGzNsP8vM/hCbsEBE5LSgSk1E2jUzuwT4GjDE3Y+ERuxZbVwsiN5Z/Ct3X080XTBm9gvgWXdfHD6ParPStQJ3P2pmK4CJwKK2Lo+ISGtRD7KItHfdgffc/QiAu7/n7nuhca+vmRWa2e/D+iwze8zMXjCzbWY2PaSPCj2iT5vZm2b2iJk1qifN7D/M7Puxz7PN7HspyjWZls1Y1tnMFpvZZjNbFGZWw8wuN7NqM9tgZo+aWcdmzukrsZ7qajPrYmadzWyFmf0pHGd8yJtrZpvM7Oeh5/35MEsXZjbUzNab2Wrghth55pvZq+H4r5tZ37Dp1+FcRUROG2ogi0h79zzQ08y2mtlDZvaVFu53MVACXAL8xMx6hPThwL8CA4E+wD812W8+YSrX0HieRJPe0zBla293T7SgHIOBm4EBRLNj/YOZnQ38Apjo7gOJ7vZ9t5nj/BC4wd0LgCKgDjgMfMPdhwDFwD0NDXCiqWZ/5u75wAHgn0P6/wDfc/dLmhz/euC+cPxCohkjIZrda1gLzlNEpN1QA1lE2jV3rwWGAjOAvwIVZvatFuz6jLvXuft7wEqihjHAq+6+092PEU0hflmT70sANWY2GLgCqHb3mibH7kbU6GyJV919t7t/SDTNcC7wZWCXu28NeRYAI5s5zsvA3NCbne3u9UTTVv+nmb0OLAcuBL4Q8u9y93Vh/TUg18y6hn1XhfTHYsdfDfybmd0GfNHd6wDC7+momXVp4fmKiJzy1EAWkXbP3Y+5++/d/d+BG/moN7Sej+q5s5vuluZzuvS4/wa+BXwbeDTF9roU35fOkdj6MaLeYkuTF9Kck7uXA9cBnYA1ZtaPaOjD54Ghoef3L7F90n1vqvPF3X8JXEV0bs+Z2ejY5o5EvdUiIqcFNZBFpF0zsy/HxsNC9EDcW2E9QdS7DB81mhuMN7OzzexzwCigKqQPN7NeYfjEROClFF/7NDCWaGjBc003uvt+oEMYKvFJbCbq0c0Ln68BGnp1E6Q4JzPr4+4b3P0uYC3QD+gKvOvuH5hZMfDFTF/q7geAg2bW0GueHFtsZr2Bne5+P7CUaIgK4ff3V3f/4BOeq4jIKUcNZBFp7zoDC8JDda8TjeWdFbb9FLjPzF4k6iWNexWoBNYA/9HwYB/RUIJyorG1u4gaw424+1GiYRlPhiEGqTxPk+EZLeXuh4l6p58ysw3Ah8AjzZzTzWa20czWE/XyLiMaG11oZmuJGrubW/D13wZ+Fh7Sq4ulTwQ2mtk6osb3wpBeDPzmE5ymiMgpy9xT3k0TETltmdksoNbd5zRJHwX80N2/1sz+fwf8CZjg7tvS5BkM3OLu17RKoU9RZvYr4EfuvqWtyyIi0lrUgywichzMbACwHViRrnEM4O7VwEoz6/CpFe5TFt7W8Ws1jkXkdKMeZBERERGRGPUgi4iIiIjEqIEsIiIiIhKjBrKIiIiISIwayCIiIiIiMWogi4iIiIjE/D+C5e6F3HZpcgAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 720x360 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, ax1 = plt.subplots(figsize=(10,5))\n",
|
|
"\n",
|
|
"cp = 100\n",
|
|
"color = 'tab:red'\n",
|
|
"ax1.set_xlabel('Supply (Thousands)')\n",
|
|
"ax1.set_ylabel('Reserve (Thousands)', color=color)\n",
|
|
"ax1.plot(supp[cp:], reserve[cp:],'--', color=color)\n",
|
|
"ax1.tick_params(axis='y', labelcolor=color)\n",
|
|
"\n",
|
|
"ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis\n",
|
|
"\n",
|
|
"color = 'tab:blue'\n",
|
|
"ax2.set_ylabel('Price in xDAI per CIC Token', color=color) # we already handled the x-label with ax1\n",
|
|
"ax2.plot(supp[cp:], price[cp:],'-.', color=color)\n",
|
|
"ax2.tick_params(axis='y', labelcolor=color)\n",
|
|
"\n",
|
|
"ax1.vlines(S0,0,reserve[-1], alpha=.5)\n",
|
|
"ax1.text(S0*1.02, reserve[-1], \"S0=\"+str(int(100*S0)/100)+\" Thousands of CIC tokens\")\n",
|
|
"ax1.text(S0*1.02, .95*reserve[-1], \"R0=\"+str(R0)+\" Thousands of xDAI\")\n",
|
|
"#ax1.hlines(S0,0,R0)\n",
|
|
"\n",
|
|
"ax2.text(S0*1.02, price[3], \"P0=\"+str(spot_price(R0,kappa,V0))+\" where P_hatch=\"+str(p0))\n",
|
|
"\n",
|
|
"\n",
|
|
"plt.title('Bonding Curve with Conservation Function V= S^'+str(kappa)+'/R')\n",
|
|
"fig.tight_layout() # otherwise the right y-label is slightly clipped\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#given V0 and kappa\n",
|
|
"#sweep the reserve\n",
|
|
"reserve = None\n",
|
|
"reserve = np.arange(.01,100,.01)\n",
|
|
"price = np.array([spot_price(r,kappa, V0) for r in reserve])\n",
|
|
"\n",
|
|
"#realized price for withdrawing burning .1% of tokens (without fee)\n",
|
|
"burn_price=[withdraw(supply(r,kappa,V0)/1000, r,supply(r,kappa,V0), kappa, V0, 0)[1] for r in reserve]\n",
|
|
"\n",
|
|
"#realized price for depositing .1% more Xdai into the reserve (without fee)\n",
|
|
"mint_price=[mint(r/1000, r, supply(r,kappa,V0), kappa, V0, 0)[1] for r in reserve]\n",
|
|
"\n",
|
|
"#realized price for withdrawing .1% of the Xdai from the reserve (without fee)\n",
|
|
"withdraw_price=[withdrawR(r/1000, r, supply(r,kappa,V0), kappa, V0, 0)[1] for r in reserve]\n",
|
|
"\n",
|
|
"#realized price for depositing .1% more Xdai into the reserve (with fee)\n",
|
|
"mint_price_fee=[mint(r/1000, r, supply(r,kappa,V0), kappa, V0, phi)[1] for r in reserve]\n",
|
|
"\n",
|
|
"#realized price for withdrawing .1% of the Xdai from the reserve (with fee)\n",
|
|
"withdraw_price_fee=[withdrawR(r/1000, r, supply(r,kappa,V0), kappa, V0, phi)[1] for r in reserve]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#from IPython.display import Image\n",
|
|
"#Image(filename='slippage.jpeg')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pdf = pd.DataFrame({'reserve':reserve, 'spot_price':price, '.1% mint_price':mint_price,'.1% withdraw_price':withdraw_price,'.1% mint_price w/fee':mint_price_fee,'.1% withdraw_price w/fee':withdraw_price_fee })"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>reserve</th>\n",
|
|
" <th>spot_price</th>\n",
|
|
" <th>.1% mint_price</th>\n",
|
|
" <th>.1% withdraw_price</th>\n",
|
|
" <th>.1% mint_price w/fee</th>\n",
|
|
" <th>.1% withdraw_price w/fee</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0.01</td>\n",
|
|
" <td>0.000020</td>\n",
|
|
" <td>0.000020</td>\n",
|
|
" <td>0.000020</td>\n",
|
|
" <td>0.000020</td>\n",
|
|
" <td>0.000020</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>0.02</td>\n",
|
|
" <td>0.000033</td>\n",
|
|
" <td>0.000033</td>\n",
|
|
" <td>0.000033</td>\n",
|
|
" <td>0.000034</td>\n",
|
|
" <td>0.000034</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>0.03</td>\n",
|
|
" <td>0.000045</td>\n",
|
|
" <td>0.000045</td>\n",
|
|
" <td>0.000045</td>\n",
|
|
" <td>0.000046</td>\n",
|
|
" <td>0.000046</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>0.04</td>\n",
|
|
" <td>0.000056</td>\n",
|
|
" <td>0.000056</td>\n",
|
|
" <td>0.000056</td>\n",
|
|
" <td>0.000057</td>\n",
|
|
" <td>0.000057</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>0.05</td>\n",
|
|
" <td>0.000066</td>\n",
|
|
" <td>0.000067</td>\n",
|
|
" <td>0.000066</td>\n",
|
|
" <td>0.000067</td>\n",
|
|
" <td>0.000067</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" reserve spot_price .1% mint_price .1% withdraw_price \\\n",
|
|
"0 0.01 0.000020 0.000020 0.000020 \n",
|
|
"1 0.02 0.000033 0.000033 0.000033 \n",
|
|
"2 0.03 0.000045 0.000045 0.000045 \n",
|
|
"3 0.04 0.000056 0.000056 0.000056 \n",
|
|
"4 0.05 0.000066 0.000067 0.000066 \n",
|
|
"\n",
|
|
" .1% mint_price w/fee .1% withdraw_price w/fee \n",
|
|
"0 0.000020 0.000020 \n",
|
|
"1 0.000034 0.000034 \n",
|
|
"2 0.000046 0.000046 \n",
|
|
"3 0.000057 0.000057 \n",
|
|
"4 0.000067 0.000067 "
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"pdf.head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.axes._subplots.AxesSubplot at 0x1a1c2a2390>"
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEKCAYAAAA8QgPpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3XlcVFX/wPHPYRgGEETFDUUE13JBRFLRQMs1M8200swscyvT1uen9bhl2qNlPbmVmbu5hhuaCy64oCiCaCpuqKiACyogICAw5/fHjDyIIKMiA3Lerxcv5t4599zvHcf5cufce75CSomiKIqiPCoLcwegKIqilEwqgSiKoiiPRSUQRVEU5bGoBKIoiqI8FpVAFEVRlMeiEoiiKIryWFQCURRFUR6LSiCKoijKY1EJRFEURXksluYOoDBUrFhRurq6mjsMRVGUEiUsLOyGlLLS427/TCQQV1dXQkNDzR2GoihKiSKEuPgk26uvsBRFUZTHohKIoiiK8lhUAlEURVEeyzMxBpKXjIwMoqOjSUtLM3coioK1tTXOzs5otVpzh6IoheaZTSDR0dHY29vj6uqKEMLc4SilmJSSmzdvEh0djZubm7nDUZRCY9JXWEKIzkKI00KISCHEqDye1wkhVhqfPyiEcDWu7yCECBNCHDP+fjnHNs2M6yOFENOF8VNeCFFBCLFNCHHW+Lv84xxYWloajo6OKnkoZieEwNHRUZ0NK8+cAhOIEEIDzAJeARoAfYQQDXI1+xCIl1LWAf4LTDGuvwG8JqVsDPQHluTY5jdgMFDX+NPZuH4UsENKWRfYYVx+LCp5KMWFei8qzyJTzkCaA5FSyvNSyrvACqB7rjbdgUXGx35AOyGEkFKGSyljjetPANbGsxUnoKyUMlgaauouBl7Po69FOdYriqIohSArJYWIWX5P3I8pYyDVgcs5lqOBFvm1kVJmCiESAUcMZyD39ATCpZTpQojqxn5y9lnd+LiKlPKKsa8rQojKph6MoiiKkr+0mKscnbOFU1Fakm2cnrg/U85A8jr3lo/SRgjREMPXWkMeoc+HByXEYCFEqBAiNC4u7lE2LVHWrVtHREREofQVGhrKiBEjCqUvRVFKjvjQ4+z89HeWjDlA6DUXhI0NDpX2PnG/ppyBRAM1ciw7A7H5tIkWQlgCDsAtACGEM7AWeE9KeS5He+d8+rwmhHAynn04AdfzCkpKOQeYA+Dl5fVIyackWbduHV27dqVBg9zDTo8mMzMTLy8vvLy8CikyRVGKM6nXE71hF0c2nCFauKLX1KWi7XVuVNnCyiq7uaR78otwTenhEFBXCOEGxAC9gXdytfHHMEgeDPQCdkoppRCiHPA38LWUcl/2gRmSQ5IQoiVwEHgPmJGrr8nG3+sf9+Du+XbDCSJibz9pN/dpUK0s415r+NA2KSkpvPXWW0RHR5OVlcWYMWMYOXIkb7/9NoGBgQAsW7aMOnXqcPHiRQYMGEBcXByVKlViwYIFREdH4+/vz+7du5k4cSKrV6+mdu3aD+ynbdu2eHh4EBISwu3bt5k/fz7Nmzdn/PjxxMbGEhUVRcWKFRk8eDBTp05l48aNJCcnM3z4cEJDQxFCMG7cOHr27ElAQADjxo0jPT2d2rVrs2DBAuzs7Ar1tVMU5enJunOHMws388+BeG7Y1sLCwo3KZWKIqLqeZZXOclujoWZGGYZUfYvhjHyifRWYQIxjGp8AWwENMF9KeUIIMQEIlVL6A/OAJUKISAxnHr2Nm38C1AHGCCHGGNd1lFJeBz4CFgI2wGbjDxgSxyohxIfAJeDNJzpCM9qyZQvVqlXj77//BiAxMZGRI0dStmxZQkJCWLx4MZ999hkbN27kk08+4b333qN///7Mnz+fESNGsG7dOrp160bXrl3p1avXQ/eVkpLC/v372bNnDwMGDOD48eMAhIWFERQUhI2NDbt27cpu/9133+Hg4MCxY8cAiI+P58aNG0ycOJHt27dTpkwZpkyZws8//8zYsWOfzgukKEqhSb9yjaNztnDyvCXJNk5YWeuoaH+U/dVX8Xu5JCTgnlWF3u6f08XjNYQQTz+BAEgpNwGbcq0bm+NxGnl80EspJwIT8+kzFGiUx/qbQDtT4jJVQWcKT0vjxo356quvGDlyJF27dsXHxweAPn36ZP/+/PPPAQgODmbNmjUA9OvXj//7v/97pH3d69PX15fbt2+TkJAAQLdu3bCxsXmg/fbt21mxYkX2cvny5dm4cSMRERG0bt0agLt37+Lt7f1IcSiKUrRuHz9D2PzdRCZU5K5VDeysE7BzDGRL9XUcLwO2eomvRQOGtP+WhtWeL9R9P7N3ohcH9erVIywsjE2bNvH111/TsWNH4P57AvK7P+BR7xvI3f7ecpkyZfJsL6V8YBspJR06dGD58uWPtG9FUYqWlJJr24M57HeUS3pXsjS1cbS+zo3KK1lWfQ+xVpZUyrTgbft2DOs8jvK2Dk8lDjWZ4lMUGxuLra0t7777Ll999RWHDx8GYOXKldm/7/2F36pVq+wzgqVLl/Liiy8CYG9vT1JSUoH7utdnUFAQDg4OODg8/A3TsWNHZs6cmb0cHx9Py5Yt2bdvH5GRkQDcuXOHM2fOPMohK4ryFMmMDM4t/ps1H8xhtd8doqhDBZur3Ko5g2kvfMfvbvuxEfZ85jKEgPfDGP3Gz08teYA6A3mqjh07xr/+9S8sLCzQarX89ttv9OrVi/T0dFq0aIFer8/+a3/69OkMGDCAH3/8MXsQHaB3794MGjSI6dOn4+fnl+cgOhi+gmrVqlX2IHpBRo8ezbBhw2jUqBEajYZx48bxxhtvsHDhQvr06UN6ejoAEydOpF69eoX0iiiK8jgyEm8T8ccmjv+TRoKtC5ZWNahoG8GBGn8xp0I8AE2yqtK32b/o6N65gN4KjzDcCF6yeXl5ydwVCU+ePMnzzxfu932F4V71xIoVKxZan23btmXq1KnqEt1irri+J5XiK/ViNOG/B3Aq1o5U64rY6JOwdDjKNtc1HLHLwlYvaalpwEftv+O5avUfuX8hRJiU8rE/ONQZiKIoSjFzK+QfwpYEc+GOExlaV8pa3yTNcR1/ue4k2kpQMVPwZpl2DOsyDkfbx5pvtlCoBFLEoqKiHnvbYcOGsW/fvvvWffrpp/ddnqsoSslkuPFvN+EbThNj4YZe1MZRF0tUlWUsdT5GkqUFtTJsGFG9L++/NAytxvy1ZVQCKUFmzZpl7hAURSlkWWlpnFm0mWP7bxJnY7jxr7zuHIdrrGFu5avogSZZVejT5Ate8ehq7nDvoxKIoiiKGaTfuMWx3zcRcQaSbKphZaWlrM1BdrqtJdQhFRu9xEc8x5B239LQ2Tz3shVEJRBFUZQilHzqPGHzdnL2RgXSddUoo0tAa7+Z9XW2ctFa4pgp6Gnbhk86f0tFe0dzh/tQKoEoiqIUget7QglbHsbFDGeyLGvhoLtCYsUNLHcLIdHSAtcMHR879WZgu0+LxfiGKVQCURRFeUqkXs/ltYEc/juSWMtaIGpRzuoCEdX8mescRRbgnlmJPu6f08WjW4mrXKnuRC8iM2fOpE6dOgghuHHjf3W2Vq9eTcOGDfHx8eHmzZsAnDt3jt69e+fXlUlMqf2RkJDAr7/++kT7yWngwIGFVrtEUUqyrPR0Ts1Zx6oPFrBhm+CqZU3K6o5xrN54/tNiBlurR9Fa1OXPdsv4c+AuXm3avcQlD1A3EhaZ8PBwypcvT9u2be+7kbBVq1Zs3bqVFStWkJaWxvDhw+nTpw8TJkygbt26TzWmqKgounbtmj1z75PIyspCo9EUQlTPruL2nlQKX0ZCIsfn/M3xE1nctqmOVVYKlraH2VzXn5P2dymfCb5lWjHi1UlUti+8m4kfl7qR0BSbR8HVY4XbZ9XG8Mpkk5s3bdo0z/UWFhakp6dz584ddDode/fuxcnJ6aHJw87OjmHDhrF9+3bKly/P999/z//93/9x6dIlfvnlF7p168auXbuya3+MHz+eS5cucf78eS5dusRnn33GiBEjGDVqFOfOncPDw4MOHTrw448/PrCvXbt2MXbsWBwdHTl9+jS+vr78+uuvWFhYYGdnxxdffMHWrVv56aefGD16dPYd8Vu2bOGbb74hKyuLihUrsmPHDlJSUhg+fDjHjh0jMzOT8ePH0717d5NfQ0UprlIvxRL++1ZOxdiRal0VW6sENHYbWVVvG1d1UC3Dkg8ce/Jxx1FYW1mbO9xCUzoSSDE2btw4OnXqRLVq1fjzzz9566237ptmPS8pKSm0bduWKVOm0KNHD0aPHs22bduIiIigf//+dOvW7YFtTp06RWBgIElJSdSvX5+PPvqIyZMnc/z4cY4cOfLQ/YWEhBAREUHNmjXp3Lkza9asoVevXqSkpNCoUSMmTJhwX/u4uDgGDRrEnj17cHNz49atWwBMmjSJl19+mfnz55OQkEDz5s1p3759vjMGK0pxl/jPKcLm7yUyqQoZ2prYW10ntfxSltY9SJJGUD+jDP1rDeKdFz/AQjx7IwalI4E8wplCUevQoQMdOnQAYNGiRXTp0oXTp08zdepUypcvz7Rp07C1tb1vGysrKzp3NkyY1rhxY3Q6HVqtlsaNG+d7p/urr76KTqdDp9NRuXJlrl27ZnKMzZs3p1atWoCh7khQUBC9evVCo9HQs2fPB9ofOHAAX19f3NzcAKhQoQIAAQEB+Pv7M3XqVADS0tK4dOmS+lpHKVGklFwPDCFs5REu6l3Qa2rjYBnF2aoLmFvzLFJAk6zKvOc5knaNO5k73KfKpAQihOgMTMNQkXCulHJyrud1wGKgGXATeFtKGSWEcAT8gBeAhVLKT4zt7YGcFd2dgT+llJ8JId4HfsRQPhdgppRy7mMeX4lx584dFi1axNatW+nYsSPr169n2bJlLF26lEGDBt3XVqvVZg+4WVhYoNPpsh9nZmbm2f+9NgAajSbfdnnJr9aItbV1nuMeedUaubd+9erV1K//6JO+KYq5yawsLq7eweEtF7iqrQXSjbKWZwipuZZAp+tY6yUvWtRjSLsJNHJ+oFbeM6nABCKE0ACzgA5ANHBICOEvpcx5uc2HQLyUso4QojcwBXgbSAPGYKg8mP2KSimTAI8c+wgD1uTob+W9ZFNa/PDDD3z66adotVpSU1MRQmBhYcGdO3ee2j5NrTUSEhLChQsXqFmzJitXrmTw4MEPbe/t7c2wYcO4cOFC9ldYFSpUoFOnTsyYMYMZM2YghCA8PDzfsSFFKS6y0tI4vcBQY/ymjSsajQtlLEPZVtefo+WTKZcJ3XQtGdHle6qUrWTucIuUKV/KNQcipZTnpZR3gRVA7pHP7sAi42M/oJ0QQkgpU6SUQRgSSZ6EEHWBytx/RvJM6NKlC7GxsYCh3oezszPR0dG4u7szcODA7HaxsbGEhoZmDyh/+eWXtGzZkkWLFvHOO+88tfgcHR1p3bo1jRo14l//+le+7by9vRk1ahSNGjXCzc2NHj16PLTfSpUqMWfOHN544w2aNGnC22+/DcCYMWPIyMjA3d2dRo0aMWbMmEI9HkUpTBm3Egj7z1KWDllN4FEHkqwqorXaxvpm3zC1+TLi7FJ5v/zrBPQ7xKTef5S65AEmXMYrhOgFdJZSDjQu9wNa5DxDEEIcN7aJNi6fM7a5YVx+H/DK66xCCDEWKCul/CpH2/8AccAZ4HMp5eWHxVgSLuMtqXJezaU8GfWeLBnuREUT/vs2Tl21J01XAdusW9wuu5NVzwdxWyupd9eW1+sPoK/PoBI/MF4Ul/HmdXdL7qxjSpv89Ab65VjeACyXUqYLIYZiOLN5+YGghBgMDAZwcXExcVeKoih5iw8/yeGFe4lMdiJTWxM7y1gSKsxjbt1/0AuJR2Yl+nmOpH3joqv4V9yZkkCigRo5lp2B2HzaRAshLAEH4FZBHQshmgCWUsqwe+uklDdzNPkDw3jKA6SUc4A5YDgDKfgwlIc5duwY/fr1u2+dTqfj4MGDtG3b1jxBKUoRuLbrEKHLD3NJXxO9pg72mrMcr7aBzTUvotNLWos6DG0/sdQMjD8KUxLIIaCuEMINw5VRvYHcX8z7A/2BYKAXsFOadot7H2B5zhVCCCcp5RXjYjfgpAn9KE+ocePGBd4PoijPCikll9fv4rD/WWK1biDdKGMRwd5a6zhY5SblsqCbVXOGv/I9VctVMXe4xVaBCURKmSmE+ATYiuEy3vlSyhNCiAlAqJTSH5gHLBFCRGI488ieyEkIEQWUBayEEK8DHXNcwfUW0CXXLkcIIboBmca+3n+C41MURckmMzM5tzSA8MBYrlvXQmPpgrVFCJue28jpcslUzbDgPYfXGNZlDLZWNuYOt9gz6T4QKeUmYFOudWNzPE4D3sxnW9eH9Fsrj3VfA1+bEpeiKIopstLSODX3b44eSiLexgWttipayx2sbrCV2DLpuN214tPqH/L+S59gqSkd91cXBvVKKYryzMpIuM2x2X9z7KSeZBsndFoN6PxZ3GgXiVZZNLhrz5D6X9KjRe8SORuuuZXsa9BKkKKczj3ntOrff/999vqoqCgaNSp4INDUdkVp9uzZLF682NxhKCVE2pXrBI9dxJLPthIcVYUsrRWpZVbwm/dY/mi6nboWjsx8YRorB+3njZZ9VPJ4TOoMpIi0bt2arl27PnBF008//cSBAwdYsWIFy5YtY/jw4YwePZrvvvvusfc1d+7/Zn75/vvv+eabbx67r5wyMzOxtCz6t0xmZiZDhw4t8v0qJU/yuYuEzd7OmZuO3LWqga1lLLfKz2NV/WPopJ6WohYftZtEoxqNzR3qM0GdgRSRpk2b4urq+sD6nNO5a7XaAqdzX7VqFV988QUA06ZNy57k8Ny5c7z44osA2TVHRo0aRWpqKh4eHvTt2xcw1O0YNGgQDRs2pGPHjqSmpgIQFhZGkyZN8Pb2ZtasWdn7W7hwIW+++SavvfYaHTt2JDk5mXbt2uHp6Unjxo1Zv349YJiKZfr06QB8/vnnvPyy4dadHTt28O677+b7utjZ2fHll1/i6elJu3btiIuLyz6Gb775hjZt2jBt2jTGjx+fPQljZGQk7du3p0mTJnh6enLu3DkAfvzxR1544QXc3d0ZN25cQf8kyjMkPvwk20b8wdL/HON4khtaixtcrDKdn1+cwqa6R3nF0p213bcw631/lTwKUak4A5kSMoVTt04Vap/PVXiOkc1HPnE/jzqdu6+vb3bdjr179+Lo6EhMTAxBQUH4+Pjc13by5MnMnDkz+/LcqKgozp49y/Lly/njjz946623WL16Ne+++y4ffPABM2bMoE2bNg9MaxIcHMw///xDhQoVyMzMZO3atZQtW5YbN27QsmVLunXrhq+vLz/99BMjRowgNDSU9PR0MjIy8owrp5SUFDw9Pfnpp5+YMGEC3377LTNnzgQMFRN3794NwPjx47O36du3L6NGjaJHjx6kpaWh1+sJCAjg7NmzhISEIKWkW7du7NmzB19fX9P/MZQSx3APRziX9C7oLdwoI04R7rKBfdVjccyEN8u0ZcSrkyhnW9bcoT6TSkUCKc4edTr3qlWrkpycTFJSEpcvX+add95hz5497N27lzfeeKPA/bm5ueHhYZjHslmzZkRFRZGYmEhCQgJt2rQBoF+/fmzevPm+GO9NyS6l5JtvvmHPnj1YWFgQExPDtWvXaNasGWFhYSQlJaHT6fD09CQ0NJS9e/dmn5nkxcLCInuurHffffe+Y7i3PqekpCRiYmKy5+OytjYU5wkICCAgICB7csbk5GTOnj2rEsgzSEpJtP9uQv3PcMXSDaQr1uIo2+pt5HjFW1TP0PChYy8+6jQKnVZXcIfKYysVCaQwzhSetkeZzt3b25sFCxZQv359fHx8mD9/PsHBwfz0008F7if3tO6pqan5Tr9+T86CT0uXLiUuLo6wsDC0Wi2urq6kpaVlP16wYAGtWrXC3d2dwMBAzp0790jzP+WMI69CU/ndnyql5Ouvv2bIkCEm70spWWRmJpHLthG+M5Y4azc0FjXQiv2sbbiZyw4p1LlrzVcuH/Num8FoLFR55aKgxkCKiUeZzt3X15epU6fi6+tL06ZNCQwMRKfT4eDg8EBbrVZLRkbGQ/ddrlw5HBwcCAoKAgxJIj+JiYlUrlwZrVZLYGAgFy9ezDMuHx8fZs+ejYeHx0OTk16vx8/PD4Bly5Zlj+Pkp2zZsjg7O7Nu3TqA7PGjTp06MX/+fJKTkwGIiYnh+vXrD+1LKRn06elEzF7H8g//JGC/jnhtFYTFVpY3G8N0bz/K21oyudEE1g46RP+XPlLJowiVijMQc+nSpQtz586lWrVqTJ8+nR9++IGrV6/i7u6e/Rz8bzr3e9/z35vOvVy5ctkflDn5+Phw+fJlfH190Wg01KhRg+eeey7PGAYPHoy7uzuenp5MmjQp31gXLFjAgAEDsLW1pVOn/Kuo9e3bl9deew0vLy88PDzu26+Pjw+TJk3C29ubMmXKYG1t/dDxDzCcZZw4cYJmzZrh4ODAypUrH9oeYMmSJQwZMoSxY8ei1Wr566+/6NixIydPnsTb2xswDM7/+eefVK5cucD+lOIp604qJ+b8zdHwVG7bVMdKC5lWa1nkHsRdywy8sqox0HscLeu1NneopVaB07mXBGo695LLzs4u+6zhWafek6bJuJ3MsdkbOBYBydZV0GXGE2+/laWNDqK1yKKlqMuwjv/huWp5/9GkmK4opnNXFEV56u7euEX4r5uIOG/FHesqWGviSLBbxMpGRyijz6KjtgkjXv0B5wrVzR2qYqQSiFIkWrRoQXp6+n3rlixZUmrOPpT8pV25zuFZm4mIsSNdVw0bzRWulJvL+ueOU04ved3amxFd/0NFO0dzh6rkohKIUiQOHjxo7hCUYiblwmVCf9vGmRsVDHeNW1zkQsVlbK1zhkpZgnfsOzD81QnYWT94NZ5SPKgEoihKkbp96jyH5uwkMrEKmVpXbEQkJ6rNY69LFNUyNQys2JOhnb5W93CUACqBKIpSJOKPnOLQvCDOp1Yjy7IWNkRwoMZGQp1jcM3Q8qnzAD54eYS6DLcEUQlEUZSnKm7/UQ4tOcjFTBf0Fq5Yy38IrLWJiCrXqH/XltG1v+Ct1u+rGXFLIJMSiBCiMzANQ0XCuVLKybme1wGLgWbATeBtKWWUEMIR8ANeABZKKT/Jsc0uwAlINa7qKKW8nl9fj32EiqKYxdUdIRxaeZTL1ATc0MowNjy3hQsVbtI4w4Epjb+ji+fr5g5TeQIF3okuhNAAs4BXgAZAHyFEg1zNPgTipZR1gP8CU4zr04AxwFf5dN9XSulh/Ll323B+fZVoRVkPBCA0NJQRI0Y8tE1CQgK//vrrE+0np5x1SJ62IUOGsG/fPk6dOoWHhwdNmzbNnpVXMR8pJTGbglj74R+sXnWby7igkQdY1+hbZr74J45lLfi1+XSWDQxSyeMZYMpUJs2BSCnleSnlXWAF0D1Xm+7AIuNjP6CdEEJIKVOklEEYEomp8uzrEbYvllq3bs327dupWbPmfevv1QN57733WLZsGcAT1wMB8PLyeugkhlC4CSQrK4u5c+fSoEHuvy2ejoMHD9KyZUvWrVtH9+7dCQ8Pp3bt2kWyb+VBUkou++9h7YdzWbc+jasWzggCWeExjt9br6KWnT2L2ixiwYc78Xn+JXOHqxQSUxJIdeByjuVo47o820gpM4FEwJSLthcIIY4IIcbkSBIm9SWEGCyECBVChN6rIVGcFVY9EDDcvT1y5EiaNWtG+/btCQkJoW3bttSqVQt/f38Adu3aRdeuXQHDVOgDBgzIbnMvsYwaNYpz587h4eHxwBTu9+zatQtfX1969OhBgwYNGDp0KHq9PjuOsWPH0qJFC4KDg7PrkABs2bIFT09PmjRpQrt27QDD1O0DBgzghRdeoGnTptm1RHL6+OOPs4+hR48eDBgwAIB58+YxevRowHBHd7169di6dSu//PILc+fO5aWXDB9Kf/75J82bN8fDw4MhQ4aQlZUFGGbr9fb2xtPTkzfffFPdf1JIpJRcXLOT1QPm4b8pk+ua6kixjcWe41jQcj0eZZxY2WkNswdsxsOtmbnDVQqZKWMgef31n3v+E1Pa5NZXShkjhLAHVgP9MIx9mNSXlHIOMAcMU5k8bEdXv/+e9JOFWw9E9/xzVC2ESn+PWg8EDB/Ebdu2ZcqUKfTo0YPRo0ezbds2IiIi6N+/P926dXtgm1OnThEYGEhSUhL169fno48+YvLkyRw/fjy7Xkh+QkJCiIiIoGbNmnTu3Jk1a9bQq1cvUlJSaNSoERMmTLivfVxcHIMGDWLPnj24ublx69YtACZNmsTLL7/M/PnzSUhIoHnz5rRv3/6+WXd9fX3Zu3cv3bp1IyYmhitXrgAQFBSU/bXe5s2b6dy5M126dGHo0KHY2dnx1VdfcfLkSVauXMm+ffvQarV8/PHHLF26lC5dujBx4kS2b99OmTJlmDJlCj///DNjx44t+B9IyZOUkqi/dhC6OYrrulpoLJ3IEptZ/MJu0N7hRctGfPbqVGpUcDZ3qMpTZEoCiQZq5Fh2BmLzaRMthLAEHIBbD+tUShlj/J0khFiG4auyxY/TV0n2qPVAAKysrOjcuTMAjRs3RqfTodVqady4MVFRUXnu59VXX0Wn06HT6ahcuTLXrl0zOcbmzZtnVz7s06cPQUFB9OrVC41GQ8+ePR9of+DAAXx9fXFzcwPIriUSEBCAv79/dmXBtLQ0Ll26dN/8UD4+Pvzyyy9ERETQoEED4uPjuXLlCsHBwdlnTlu3bmXBggUP7HfHjh2EhYXxwgsvAJCamkrlypU5cOAAERERtG5tmHTv7t272ZMuKo9G6vWcX7mdsK3RxFm7YqmpSobFRhZ57kVjmUpbnSdfdJ1KFQc1iWVpYEoCOQTUFUK4ATFAb+CdXG38gf5AMNAL2CkfMkujMTGUk1LeEEJoga7A9sfpyxSFcabwtD1KPRCtVpt9yaOFhUV2jQ8LCwsyMzPz7D93HZD82uUl9xDUvWVra2s0mgev2c+vvoiUktWrV1O/fv1891W9enXi4+PZsmV5LN0TAAAgAElEQVQLvr6+3Lp1i1WrVmFnZ4e9vT137twhISGBatWq5dl///79+c9//nPf+g0bNtChQweWL19u0vEqD5JZWZxbFkDYjivcsHbF0rIS6Rp/FjQLQqdJo5NNSz59bYqabqSUKXAMxDgO8QmwFTgJrJJSnhBCTBBC3PuuZB7gKISIBL4ARt3bXggRBfwMvC+EiDZewaUDtgoh/gGOYEhMfxTU17PsUeqBFBZ7e3uSkpIKbBcSEsKFCxfQ6/WsXLmywJod3t7e7N69mwsXLgBkf4XVqVMnZsyYkV0UKjw8PN/tf/nll+y6IlOnTs2eFj4wMDB7vCO3du3a4efnl10H5NatW1y8eJGWLVuyb98+IiMjAUOyPnPmTIHHrRgSx+mFm1jx4RK27tORYFmRO5Zr+b3lONZ57qCbQws29Qnmuz5zVfIohUy6D0RKuQnYlGvd2ByP04A389nWNZ9u8xxRe1hfJc3TqgdSWBwdHWndujWNGjXilVdeya61npu3tzejRo3i2LFj2QPqD1OpUiXmzJnDG2+8gV6vp3Llymzbto0xY8bw2Wef4e7ujpQSV1dXNm7c+MD2Pj4+BAQEUKdOHWrWrMmtW7eyE8jmzZvp1atXnvtt0KABEydOpGPHjuj1erRaLbNmzaJly5YsXLiQPn36ZE/oOHHiROrVq/coL1epos/I4MziLRzee4t46xpoNeVIslrNqhf2U5ZM3izXnhFdJ1FGZ1twZ8ozS9UDUR5q165dTJ06Nc8PenPw9PTk4MGDaLVac4fyyErCe1J/9y6nFmwhPDiBBGtntBmJxNlvxc/9IBX0WbxS8VU+6TIeays1T9WzQNUDUUqVw4cPmzuEZ5I+PZ2IeZs4EpJMonV1rDQZ3LRewZrmIVTWSz6o3IOhnb7BSmtl7lCVYkQlEAWAY8eO0a9fv/vW6XQ6Dh48SNu2bc0TlPLUZaWnEzHnb8LDUkmydsLKIovrtktZ1yiUanrBkGq9GdThKyw16qNCeZB6VyiA4XLggu4HUZ4d+vR0TvyxifDQO8bEkckVuyVsaBBGjSxLPnX5gP4vD1cz4yoPpRKIopQi+rt3iZj7N+EhKdy2roaVRQYx9kvY2CCMWplW/Kv2x/T1HaJmxlVMohKIopQC+rt3OblgM+HBtw1jHBZZxNr9ycYGodTKsuLfdT/jrdYfqMShPBKVQBTlGabPyOD0gi2E7U8g0bo6Wk0GV8osZUPzQ9TKsmJ0/S/o1aq/ShzKY1EJRFGeQYb7OLYStveW4XJczV2u2i7Hv1EItVXiUAqJKbPxKoWgKOuB5KzL8f3332evj4qKolGjRgVub2q7ojR79mwWL15cJPtavnw5kyZNIj09nfbt2+Ph4cHKlSuLZN9PSmZlcXrBJlYMWs6OQ7akaMpw3WYFs1p/x4nnjzC6/hesHhjCm6oCoFII1BlIEWndujVdu3Z94JLYe/VAVqxYwbJlyxg+fPgT1wO5d4c7GBLIN4U0F1hmZiaWlkX/lsnMzGTo0KFFtr8tW7YwYsQIwsPDycjIKBFXp0m9nrNLthIaeN1457g9cdYrWdf8ILWytIyu/zm9Wr2nkoZSqEpFAtm76gw3Lhdu/YeKNezwecv0qTCaNm2a5/qc9UB0Ol2B9UBWrVrFgQMH+Pnnn5k2bRrTpk3j/PnznDt3jv79+xMUFETbtm2ZOnUqfn5+pKam4uHhQcOGDZk0aRJZWVkMGjSI/fv3U716ddavX4+NjQ1hYWEMGDAAW1vb++a6WrhwIX///TdpaWmkpKTg7+9P9+7diY+PJyMjg4kTJ9K9e3d++OEHrK2tGTFiBJ9//jlHjx5l586d7NixgwULFvDnn3/meTx2dnYMGTKEwMBAypcvz4oVK6hUqRJt27alVatW7Nu3j27dupGUlJQ9bXtkZCRDhw4lLi4OjUbDX3/9Re3atfnxxx9ZtWoV6enp9OjRg2+//faRXzspJUeOHMHZ2ZnWrVsTFxeHh4cHq1evJiEhgS+++ILk5GQqVqzIwoULcXJy4ty5cwwbNoy4uDhsbW35448/eO6550x+bzwJqdcTuWwboTuucEvnglbjwA3dX6xrHmxMHF/Qs1U/lTiUp0J9hWVm9+qBbN++nT59+jBx4kTGjBmTb/t79TIA9u7di6OjIzExMQQFBWXPF3XP5MmTsbGx4ciRIyxduhSAs2fPMmzYME6cOEG5cuVYvXo1AB988AHTp08nODj4gX0GBwezaNEidu7cibW1NWvXruXw4cMEBgby5ZdfIqW8L67Q0FCSk5PJyMjIM66cUlJS8PT05PDhw7Rp0+a+D/2EhAR2797Nl19+ed82ffv2ZdiwYRw9epT9+/fj5OREQEAAZ8+eJSQkhCNHjhAWFsaePXse+bULDw+nSZMmVKlShblz5+Lj48ORI0dwcXFh+PDh+Pn5ZSfbf//73wAMHjyYGTNmEBYWxtSpU/n444/zPd7CYkgcAaz8cDEBQVpuW5Tjps6P31p/yz+NQhn93JesHnSIXq3VWYfy9JSKM5BHOVMoao9aD6Rq1aokJyeTlJTE5cuXeeedd9izZw979+7ljTfeKHB/bm5ueHh4ANCsWTOioqJITEwkISGBNm3aANCvXz82b958X4z3anpIKfnmm2/Ys2cPFhYWxMTEcO3aNZo1a0ZYWBhJSUnodDo8PT0JDQ1l7969Dy2ta2Fhwdtvvw3Au+++e98x3FufU1JSEjExMdkTOlpbWwOGWiMBAQHZZ3rJycmcPXsWX1/fR3rttmzZwiuvvPLAfk+fPs3x48ez/62ysrJwcnIiOTmZ/fv38+ab/5v/896EjU+DlJILf+3k0OZL3NDVxFJTnltWq1nrtR83acno5wxnHIpSFEpFAikJHqUeiLe3NwsWLKB+/fr4+Pgwf/58goOD+emnnwrcT+66IKmpqfnW77gnZ8XApUuXEhcXR1hYGFqtFldXV9LS0rIfL1iwgFatWuHu7k5gYCDnzp17pAkEc8aRc7/35Df5p5SSr7/+miFDhjy0/4Jeu4CAgOyzstz9N2zY8IEztNu3b1OuXLmnPk5iqDm+l4PrI7lu5YqlxpF47VrWeO2jlrTk3w1U4lCKnvoKq5h4lHogvr6+TJ06FV9fX5o2bUpgYCA6nQ4HB4cH2mq1WjIyMh6673LlyuHg4EBQUBBA9tddeUlMTKRy5cpotVoCAwO5ePFinnH5+Pgwe/ZsPDw8Hpqc9Ho9fn5+ACxbtqzAWiNly5bF2dk5e5r7e+NHnTp1Yv78+dm1zmNiYrLrguT0sNcuMTGRzMxMHB0frGtRv3594uLishNIRkYGJ06coGzZsri5ufHXX38Bhg/6o0ePPvQYHlXs9oOsHTiPDZszuWlRmURLf+a0HE+4+wFGN/gCv0EhKnkoZmFSAhFCdBZCnBZCRAohHijwJITQCSFWGp8/KIRwNa53FEIECiGShRAzc7S3FUL8LYQ4JYQ4IYSYnOO594UQcUKII8afgU9+mObRpUsXYmMN1X+nT5+Os7Mz0dHRuLu7M3Dg/w7rXj2Q7t27A/+rB7Jo0SLeeSd38UdDvYzLly/j6+uLRqOhRo0a+X7wDh48GHd3d/r27fvQWBcsWMCwYcPw9vbGxsYm33Z9+/YlNDQULy8vli5det9gsY+PD1euXMHb25sqVapgbW390PEPMJxlnDhxgmbNmrFz506T6pQvWbKE6dOn4+7uTqtWrbh69SodO3bknXfewdvbm8aNG9OrV688i2U97LXbtm0b7du3z3OfVlZW+Pn5MXLkSJo0aYKHhwf79+8HDAl33rx5NGnShIYNG7J+/foCj8EU14KOsH7wXNb+lcQ1i2rcEZtZ8MK3HGoSxKjnP2X1oEO80erdQtmXojyOAuuBCCE0wBmgA4Z65YeAPlLKiBxtPgbcpZRDhRC9gR5SyreFEGWApkAjoJGU8hNje1ughZQyUAhhBewAvpdSbhZCvA943WtrClUPpOSys7PLPmswt4EDBzJw4EBatmz5VPo39T15MzSC4Hn7uZRVE0EWaWIPfh47cbS8y9t1h/JOm0FqYFwpFEVRD6Q5ECmlPG/c4QqgOxCRo013YLzxsR8wUwghpJQpQJAQok7ODqWUd4BA4+O7QojDgPPjHoSiFIac98+YQ/zxSA7O3sWFuzWQuJApg/Brsg17XSqD3D6gf7vhKnEoxYopCaQ6cDnHcjTQIr82UspMIUQi4AjcoABCiHLAa8C0HKt7CiF8MZz5fC6lvJznxkqJ0aJFiweuTlqyZEmxOfswp9tnL3Hw1+1EJjuht3AF/QHWNA7Aqkwi79boy4cdvlTTqivFkikJJK8/eXJ/72VKmwc7FsISWA5Mv3eGA2wAlksp04UQQ4FFwMt5bDsYGAzg4uJS0K4UMzt48KC5Qyh2Ui5eIWTmFk7HVybL0hULfSgbGmxGb3+TN5x6MaTzN6qQk1KsmfLujAZq5Fh2BmLzaRNtTAoOwC0T+p4DnJVS/nJvhZTyZo7n/wCm5LWhlHKOcXu8vLzyTFYFXZ6qKEUl51hj6rWbHJr2N6eulSNDWxNL/VG21t7MnfJX6FqpGx93GadKxyolgikJ5BBQVwjhBsQAvYHclwb5A/2BYKAXsFMWMDovhJiIIdEMzLXeSUp5xbjYDThpQowPsLa25ubNmzg6OqokopiVlJKbN29ipdGwf/yfnLhUhrtWzmj1EQTW3MTNypd5pXwnRry2AWutruAOFaWYKDCBGMc0PgG2AhpgvpTyhBBiAhAqpfQH5gFLhBCRGM48sqeSFUJEAWUBKyHE60BH4Dbwb+AUcNj4AT9TSjkXGCGE6AZkGvt6/3EO7N4ls3FxcY+zuaIUHilJi7nFP2vjSNZXQysj2ee8kGinc7xSth2fdvPDVmdbcD+KUswUeBlvSZDXZbyKYm76u3c5PmcTh0PTSLGujFX6Jfa5bOScyyk62PnwebcfsLexN3eYSilWFJfxKoryCKRez9mlAYTsuEGidTWsRCrHK8zjaO2jtLP24pceQZSzLWfuMBXliakEoiiFRErJpQ1BHFgbyQ1dTbQaG6LKLGX3CyG0sXyetd23U6VcVXOHqSiFRiUQRSkE1/YcZv/icGIt3dBoKnLdag2bvYJooanBylfW4Va1trlDVJRCpxKIojyBW0dPE/z7Xi5m1kSIaiSJzazz2om7ZXnmdVhI45oe5g5RUZ4alUAU5TEkn48meHoAkSnVkMKFdIJY6xGAm5Ul//X5L97P+RbciaKUcCqBKMojSL12k5BfNnIqzpFMjQtSH4p/481UKJPGGK9/06FpN3OHqChFRiUQRTFBxu0kQqdt4PgFW+5a1UCjP0ZAvb+xKH+TIQ0+o2drVY9DKX1UAlGUh9Dfvcs/v27g8FE9qbqqaOU59jnPJ7HKJd6qNYD3XlYz5Cqll0ogipIHKSWRS7dxcPt1Eq2roSWGI5V+J8rlJK879WRol7Vqhlyl1FMJRFFyidkWwv7lJ7huVROthQ3n7P/kcLMQulToyIxui9V8VYpipBKIohjdOnqGfbP3cklfE41FZeIs17G92R7a2jZhfY99ONg+WHNeUUozlUCUUu/O5avs/2ULZ29XRYoapIpdbGgWgIe1Eyte88e5oqo3oyh5UQlEKbUyEpM49F9/jl+2J0PrgtQfwr/R37jYa5jZbjaN3TzNHaKiFGsqgSiljv7uXY7N/puw8ExSdU5o9KcJrOmPtmI8Xzcfz0tNOps7REUpEVQCUUoNKSXnVuzgQMBVEnWGK6vCK/3G9RqR9Ht+OG/6DDB3iIpSoqgEopQKsTtD2b/0GNe0NbEUNlyw+5OjnqH0dH6bwZ1XYmFhYe4QFaXEMSmBCCE6A9MwVCScK6WcnOt5HbAYaAbcBN6WUkYJIRwBP+AFYKGU8pMc2zQDFgI2wCbgUymlFEJUAFYCrkAU8JaUMv4JjlEpxRIizhM0cxcXs1zQiMrcsPRnT9NdtK/gy4bXD6lLchXlCRSYQIQQGmAW0AGIBg4JIfyllBE5mn0IxEsp6wghegNTgLeBNGAM0Mj4k9NvwGDgAIYE0hnYDIwCdkgpJwshRhmXRz7+ISqlUfqNeA78tIGTcRXRW9Qgld1sarqVFmXr8tfrO6lgX8HcISpKiWfKGUhzIFJKeR5ACLEC6A7kTCDdgfHGx37ATCGEkFKmAEFCiDo5OxRCOAFlpZTBxuXFwOsYEkh3oK2x6SJgFyqBKCbSp9/lyKwNhB+DNJ0z6I+w+Xl/XMvbMv/VFbhWqWXuEBXlmWFKAqkOXM6xHA20yK+NlDJTCJEIOAI3HtJndK4+qxsfV5FSXjH2dUUIUdmEGJVSTkrJ+b8CCd4caxwgv8RBpyXoq11n9Iv/oeXzbcwdoqI8c0xJIHnNFCcfo82TtH+wAyEGY/gKDBcXdaNXaXb94HGC5oZwReOKpYUt5+yXENk0nP4NRtBTXVmlKE+NKQkkGqiRY9kZiM2nTbQQwhJwAG4V0KdzPn1eE0I4Gc8+nIDreXUgpZwDzAHw8vJ6pOSjPBuSL15h/3+3EHmnGgIn4jWb2NNkJ69Vf5UfX/0DjUZdZKgoT5Mp/8MOAXWFEG5ADNAbeCdXG3+gPxAM9AJ2Sinz/VA3JockIURL4CDwHjAjV1+Tjb/Xm344SmmQkZzCoZ/Xc/yiHRmWNcjQH2Sr+0a8HOvh12MXZW3LmjtERSkVCkwgxjGNT4CtGC7jnS+lPCGEmACESin9gXnAEiFEJIYzj973thdCRAFlASshxOtAR+MVXB/xv8t4Nxt/wJA4VgkhPgQuAW8WxoEqJZ8+K4uT8zcTsj+FO7qqhjvIXddStYolv3VdhmtlN3OHqCilinjIiUKJ4eXlJUNDQ80dhvIURW89SNDKk9y0ckGbfo2wautJqXmJ4b6TaaHqjyvKYxFChEkpvR53e/UlsVKs3T5zkb3TdhCV6YLGogKxur840fQA/RqMoKfPB+YOT1FKNZVAlGIpIzmFkB/XcTzGgUxNDe7I3ezy2EznGp2Z0PWQGiBXlGJA/S9UihUpJacWbuHAntvc0TlhkXWSnfXWUN+pCst67lBFnRSlGFEJRCk2ru47yt75h7murYkWyT+Ov5NV8xoTO83g+ZqNzR2eoii5qASimN2dmOsETd1EZEo1hEVlrmvXcbzJPgZ4/h+vtnjb3OEpipIPlUAUs9GnpRM2bT3hZ3RkWDqToT/ArsYbaefagb9eO6SmWFeUYk4lEMUszvvtImhjDEnWTljqz7GvxmpcapZj0RtbcChTztzhKYpiApVAlCJ16+hZds/aS6yFK5YW1kTaL+S250X+3WkaDWt6mDs8RVEegUogSpHISExi/5R1RMRVBKqRKDZzuNlu3m/2OV1b9jF3eIqiPAaVQJSnSkrJqUVbCd59m1Rddcg6wu4Ga3mxjg8rX9uv7udQlBJM/e9VnpobYafY9Vsw1yxroiWLfyrOwr6OZHbPdVSwdzR3eIqiPCGVQJRClx6fxP4pazl1szKIqtzU+HPmhYN8+vIPvPCcj7nDUxSlkKgEohQaKSUR8zZzYF8KaTpnZNZh9jZcxyuNXmdsp1/MHZ6iKIVMJRClUFwPiWDX7weJ09ZESwL/VJpJpXq2zO21GXsbe3OHpyjKU6ASiPJE0m8lsm/yOk4nVAWLqsRZruNykyN80XkaDd2amjs8RVGeIpVAlMcipSRi7iYO7L9Dmq4G+sxQghv608PrPca3mW7u8BRFKQImzRUhhOgshDgthIgUQozK43mdEGKl8fmDQgjXHM99bVx/WgjRybiuvhDiSI6f20KIz4zPjRdCxOR4rkvhHKpSWG6En+GvgQvYFWZDFnf5p9J0EjtEsmDEDt5sM9jc4SmKUkQKPAMRQmiAWUAHIBo4JITwN5alvedDIF5KWUcI0RuYArwthGiAobxtQ6AasF0IUU9KeRrwyNF/DLA2R3//lVJOffLDUwpTRsodDkxey/GrFcDCiRuWa4n1jGDka7Op5VTX3OEpilLETPkKqzkQKaU8DyCEWAF0B3ImkO7AeONjP2CmEEIY16+QUqYDF4w105sDwTm2bQeck1JefJIDUZ6u82v3smf9ZVKsnSDzHw42XENP7w8Z13qGuUNTFMVMTEkg1YHLOZajgRb5tZFSZgohEgFH4/oDubatnmvb3sDyXOs+EUK8B4QCX0op43MHJYQYDAwGcHFxMeEwlMeRFBVL4JTNXJZuWFpYcabcHCq42zLnzQCstdbmDk9RFDMyJYGIPNZJE9s8dFshhBXQDfg6x/O/Ad8Z230H/AQMeKATKecAcwC8vLxyx6M8IX1mJuHT/AmLsCTD0oU7cjtnPPfz+Wu/0EBNeqgoCqYlkGigRo5lZyA2nzbRQghLwAG4ZcK2rwCHpZTX7q3I+VgI8Qew0YQYlUJ0Ze9Rds4PJ0HngmXWeQ67reKlll34V/td5g5NUZRixJQEcgioK4RwwzDY3Rt4J1cbf6A/hrGNXsBOKaUUQvgDy4QQP2MYRK8LhOTYrg+5vr4SQjhJKa8YF3sAxx/tkJTHlR5/mz2T1nD2djUsNI7E6paR1SKBX972w962rLnDUxSlmCkwgRjHND4BtgIaYL6U8oQQYgIQKqX0B+YBS4yD5LcwJBmM7VZhGHDPBIZJKbMAhBC2GK7sGpJrlz8IITwwfIUVlcfzylNweul2grbHk6ZzQZ95kLBGWxj6yne88LyvuUNTFKWYElKW/OEDLy8vGRoaau4wSqSkqFi2/+dvYkVttOnX+Kf6Shq1aMKQruMxXEinKMqzSggRJqX0etzt1Z3opZRer+foLH8OhQsyLV1JZitXWxxjbO/5VC5X1dzhKYpSAqgEUgrdPHqWbdP2cNPKDUt9FP/U+JWu7d9npPcUc4emKEoJohJIKZKVfpcDU1Zz7JIDUlONG5Z+ZL50m//2XouNztbc4SmKUsKoBFJKxO4KZ/vCYyRZO2ORGcE/z69lQLfxvPC8KvCkKMrjUQnkGZdxO5ldE1Zx9rYzFppyxNguonKHKszqsQ0LC5Pm0lQURcmTSiDPsAvrgwhce5lUa1f0mSGccg/k896zcKtax9yhKYryDFAJ5BmUHn+b7eNWEpXuhqWFlgvlfsOzvS/D2281d2iKojxDVAJ5xpxfu5fA9TGkWdcmI3MvUV7hjH5vAeXsyps7NEVRnjEqgTwj0m4lsn3sSi5m1MLSQsN5x5m89GpPPms1ztyhKYryjFIJ5Blwbs0edvlfIc26DhlZe4hpfpxv31uEna29uUNTFOUZphJICZZ2M4GAsau4nFkLrYXgQoUZdOrRj89eGG/u0BRFKQVUAimhIlftYvem66RZ1+Fu1m6uep/hu35LsbFWNwQqilI0VAIpYdLjk9gyeinRWfXQCsklxxl0efND2nh8a+7QFEUpZVQCKUEubTnI9hXnSbWuR0bmbm60vsCE/ivQaXXmDk1RlFJIJZASIDM1nR1jFnPutisaCysul/uVru8M5EV3ddahKIr5mDSXhRCisxDitBAiUggxKo/ndUKIlcbnDwohXHM897Vx/WkhRKcc66OEEMeEEEeEEKE51lcQQmwTQpw1/i7VNzBcO3CCP4euIDK5NjLjMDFefoz7djEvunc2d2iKopRyBSYQIYQGmIWhfnkDoI8QokGuZh8C8VLKOsB/gSnGbRtgqE7YEOgM/Grs756XpJQeuQqajAJ2SCnrAjuMy6WOPjOTXeMXs2beZdK0Fbhuu4A6Q92Y8PFyNXOuoijFgilfYTUHIqWU5wGEECuA7hjK1N7THRhvfOwHzBSGcnbdgRVSynTggrHkbXMMtdPz0x1oa3y8CNgFjDQhzmdGfEQUf/+wjUTr2mgyIrjcZBcjh8ylrG05c4emKIqSzZQEUh24nGM5GmiRXxtjDfVEwNG4/kCubasbH0sgQAghgd+llHOM66tIKa8Y+7oihKj8CMdTokkpCZ3ux+F/rNFrnUmwXEH9/s0Y+pKfuUNTFEV5gCkJJK/C2LkLqefX5mHbtpZSxhoTxDYhxCkp5R4T4jHsUIjBwGAAFxcXUzcrttLi4vH/ejlxls+hzbpAdJ2NfPbRb1RS5WUVRSmmTBlEjwZq5Fh2BmLzayOEsAQcgFsP21ZKee/3dWAthq+2AK4JIZyMfTkB1/MKSko5R0rpJaX0qlSpkgmHUXxFbTrA0n9tJU5TjzS5GateN5j09VqVPBRFKdZMSSCHgLpCCDchhBWGQXH/XG38gf7Gx72AnVJKaVzf23iVlhtQFwgRQpQRQtgDCCHKAB2B43n01R9Y/3iHVvzpMzLZOnIOm9bdJtNCyxXH33l97ADe71qqhnwURSmhCvwKyzim8QmwFdAA86WUJ4QQE4BQKaU/MA9YYhwkv4UhyWBst+r/27vzKCmrM4/j3x+9sLhh1HgUiGDABT0iTg8xSmI0OtGMGTLRJHjc4hJMRg2SZdSc5LgkOmIUkhzRCSqJCSAgKhJ0NCoasyjSKGME7LGPK8QAcUEWobdn/ngvQ03bTRdF00VX/T7ncKj31n1vPe97btXT73Yv2QX3JuDiiGiWtC9wf3adnUpgekQ8nD7yBmCWpAuAN4Avd+L27jTW1L3BA9c/wtreg+nRsJg1I+u49rwZ9Kio6HhlM7OdgLIDhe6tpqYmamtrO664k3juF3NY+Kxo6dGTd3vdyzHnj+Izw08tdlhmVmYkLWr1GMU28ZPoXajh/fXM/d4UVuowqpqXs/Lj8/j2ZZN9e66ZdUtOIF1k5cJlPHTLQjb0Poympvnsfnpfrj51VrHDMjMrmBNIF3jmpzNY/OJuUPUR3t71Ts4a90MO7HdIscMyM9suTiA7UOP6D5jz7dtZpcOpanqNt4c9xfcvvYvKSu92M+v+/Eu2g6x+/n+Y99M/s6H34TQ3PsF+Zw5gzEm/KnZYZmadxglkB3jmlpksXrwLVO3Nmj6/5MzvXSr3Te4AAA3DSURBVMUB+w0udlhmZp3KCaQTNW9s4P7LbmUlR1DV9Dprjvgjl4/9JRUV3s1mVnr8y9ZJ3n9lBfdf8yDreh8BDU+x71kDGHPincUOy8xsh3EC6QR1v32Sp+77O409D2B91XS+etXlHLDfkGKHZWa2QzmBbKdHr5nMyysOoFKwtv80xl15B9VV1cUOy8xsh3MCKVDjho3c+63beLtyGFWb6qg6aSWXn/XrYodlZtZlnEAK8E7d6zxw3WNs6DOMaHyMw8cexzFHfbPYYZmZdSknkG1U9+CTPHXv2zT13J8NvaZx3vjr2HsPz9thZuXHCWQbPHnzr1j20r70ADYOvI/vXDHZw6+bWdlyAslDS0sLc8ZN5K2Nw6hufIPq41dw0bm3FzssM7OicgLpQOO6Dcy85Bes6TWcyk2LGHzhgRw/8vxih2VmVnT5TGmLpJMl1Umql3RFG+/3lDQzvb9A0sCc965M5XWSPpfKBkh6QtIySUskjc2pf7WkFZIWp3+f3/7NLMy79W8y9d+ms6bXMFqaH+KkH3+B40eeVqxwzMx2Kh0egUiqACYBJwHLgYWS5kbE0pxqFwDvRsRgSaOB8cBXJQ0lm972MGB/4DFJB5FNb/udiHguzY2+SNKjOW1OjIibOmsjC/Han2p57PZ6Gnv2p6H33Vx0/UT69N61mCGZme1U8jkCGQHUR8QrEdEAzABGtaozCrgrvZ4NfFbZhOejgBkRsSkiXgXqgRER8VZEPAcQEWuBZUC/7d+czvH8zHk8MmUFTRV9aOo3h8smTHbyMDNrJZ8E0g94M2d5OR/+sf+/OhHRBKwB9spn3XS6aziwIKf4EkkvSJoiac+2gpI0RlKtpNrVq1fnsRn5mT9xCs88VoFaNlE9/M9cevV/kuVCMzPLlU8CaevXM/Kss9V1Je0K3AtcFhHvp+LbgI8DRwJvATe3FVRETI6Imoio2Weffba+BXl64MoJLHtpAJWNK9nr83/j/Etu6JR2zcxKUT53YS0HBuQs9wf+2k6d5ZIqgT2Ad7a2rqQqsuQxLSLu21whIlZufi3pdmBevhtTqJaWFu659Eb+3jyC6o1LOejC/TnuU1/b0R9rZtat5XMEshAYImmQpGqyi+JzW9WZC5ybXp8OzI+ISOWj011ag4AhwLPp+sidwLKImJDbkKT9chb/FXhxWzdqW7S0tDDjG1nyqNr4LMf+4GiO+9SXduRHmpmVhA6PQCKiSdIlwCNABTAlIpZIuhaojYi5ZMngN5LqyY48Rqd1l0iaBSwlu/Pq4oholjQSOBv4i6TF6aO+HxEPATdKOpLsVNdrwEWduL3/T0tjE9MvmsCa6hFUbvoDp/zH2QzY78Ad9XFmZiVF2YFC91ZTUxO1tbXbtE7zpkamXvRz1vUaTo/Gx/nKTWPZa8+P7qAIzcx2PpIWRURNoeuX5ZPoDes2MP3iyazvPRw1/xdn//yH7LrL7sUOy8ysWym7BNK0YSPTL/4F63sPQ/yWCyfdQHV1z2KHZWbW7ZRVAmluaGTqNyexvvdwejCPr99yI5WVVcUOy8ysWyqbBNLc2MTUMT9jfe+j6NHyEF+/dbyTh5nZdshrMMXurqWlhaljbmZdr6OoaH6YCydd7+RhZradyiKBTPvGdazr+Y9UNj7G+ZN+RFVVdbFDMjPr9kr+FNbd467l/R4jqd74NGdMusIXzM3MOklJJ5D7rxnPOxuOoefGF/nCjef4Vl0zs05UsgnkqanT+NvyI+jZ8DqfvvI49t13QMcrmZlZ3koygbz634t56fGeVGgDQ8/em4MOGVbskMzMSk7JXUTftHYt829eQHPlruw57GWOObH13FdmZtYZSi6B3D1uAhv7DKFqt8f58tgPTd9uZmadpKROYc35yc2srziWnhuf5vxJngzKzGxHKpkE8trSJaxaNojqllWc9IMv0aOiotghmZmVtJI5hTX/J3NorNqdj35iJQcMPrTY4ZiZlby8EoikkyXVSaqX9KELC2nGwZnp/QWSBua8d2Uqr5P0uY7aTDMfLpD0cmqzw8fG16xexQfVn6BXw58Y9c1x+WySmZltpw4TiKQKYBJwCjAUOEPS0FbVLgDejYjBwERgfFp3KNnshIcBJwO3SqrooM3xwMSIGAK8m9reqsZ1orJpHSdccVpHVc3MrJPkcwQyAqiPiFciogGYAbS+N3YUcFd6PRv4bJr3fBQwIyI2RcSrQH1qr8020zonpDZIbX6xowBbevSiqnoBgw4+PI/NMTOzzpBPAukHvJmzvDyVtVknIpqANcBeW1m3vfK9gPdSG+191oeI4MRvn5PHppiZWWfJJ4GojbLWE6m3V6ezyj8clDRGUq2kWsU6PjbEF87NzLpSPglkOZA7kFR/4K/t1ZFUCewBvLOVddsr/zvQN7XR3mcBEBGTI6ImImr2Hrh/HpthZmadKZ8EshAYku6Oqia7KD63VZ25wLnp9enA/IiIVD463aU1CBgCPNtem2mdJ1IbpDYfKHzzzMxsR+nwQcKIaJJ0CfAIUAFMiYglkq4FaiNiLnAn8BtJ9WRHHqPTukskzQKWAk3AxRHRDNBWm+kjLwdmSPox8Hxq28zMdjLK/ujv3mpqaqK2trbYYZiZdSuSFkVETaHrl8yT6GZm1rWcQMzMrCBOIGZmVhAnEDMzK4gTiJmZFaQk7sKStBaoK3YcO4m9yR7INO+LXN4XW3hfbHFwROxW6MqlMqFU3fbcilZKJNV6X2S8L7bwvtjC+2ILSdv1/INPYZmZWUGcQMzMrCClkkAmFzuAnYj3xRbeF1t4X2zhfbHFdu2LkriIbmZmXa9UjkDMzKyLdfsEIulkSXWS6iVdUex4uoqkAZKekLRM0hJJY1P5RyQ9Kunl9P+exY61q0iqkPS8pHlpeZCkBWlfzExTB5Q8SX0lzZb0UuofnyzXfiFpXPp+vCjpbkm9yqlfSJoiaZWkF3PK2uwLyvw8/Za+IOmojtrv1glEUgUwCTgFGAqcIWlocaPqMk3AdyLiUOBo4OK07VcAj0fEEODxtFwuxgLLcpbHAxPTvngXuKAoUXW9nwEPR8QhwDCyfVJ2/UJSP+BbQE1EHE42dcRoyqtf/Ao4uVVZe33hFLI5m4YAY4DbOmq8WycQYARQHxGvREQDMAMYVeSYukREvBURz6XXa8l+JPqRbf9dqdpdwBeLE2HXktQf+GfgjrQs4ARgdqpSFvtC0u7Ap0nz6EREQ0S8R5n2C7Jn3XqnWU77AG9RRv0iIp4im6MpV3t9YRTw68g8QzY77H5ba7+7J5B+wJs5y8tTWVmRNBAYDiwA9o2ItyBLMsBHixdZl/op8O9AS1reC3gvIprScrn0jQOB1cAv0+m8OyTtQhn2i4hYAdwEvEGWONYAiyjPfpGrvb6wzb+n3T2BqI2ysrqtTNKuwL3AZRHxfrHjKQZJpwKrImJRbnEbVcuhb1QCRwG3RcRwYD1lcLqqLenc/ihgELA/sAvZaZrWyqFf5GObvzPdPYEsBwbkLPcH/lqkWLqcpCqy5DEtIu5LxSs3H3am/1cVK74udCzwL5JeIzuNeQLZEUnfdOoCyqdvLAeWR8SCtDybLKGUY784EXg1IlZHRCNwH3AM5dkvcrXXF7b597S7J5CFwJB0V0U12QWyuUWOqUukc/x3AssiYkLOW3OBc9Prc4EHujq2rhYRV0ZE/4gYSNYH5kfEmcATwOmpWrnsi78Bb0o6OBV9FlhKGfYLslNXR0vqk74vm/dF2fWLVtrrC3OBc9LdWEcDazaf6mpPt3+QUNLnyf7arACmRMR1RQ6pS0gaCfwB+Atbzvt/n+w6yCzgY2RfoC9HROuLaCVL0meA70bEqZIOJDsi+QjwPHBWRGwqZnxdQdKRZDcTVAOvAOeR/bFYdv1C0jXAV8nuWnweuJDsvH5Z9AtJdwOfIRuBeCVwFTCHNvpCSrK3kN21tQE4LyK2Othit08gZmZWHN39FJaZmRWJE4iZmRXECcTMzAriBGJmZgVxAjEzs4I4gZiZWUGcQMw6kB6s6tTvSs6T0GbdlhOIWRskDUxzadwKPAecLelpSc9JuieNQYakGyQtTfMn3JTK9pF0r6SF6d+xqfxqSZMl/Q74dZqT4rCcz3xS0j9I2iXN47AwDYhYFiNMW/fjBwnN2pBGOH6FbOykerJxlE6JiPWSLgd6kj21+zRwSESEpL4R8Z6k6cCtEfFHSR8DHomIQyVdDXwBGBkRH0gaB/SNiKvSmES/j4iDJF0PLI2IqZL6As8CwyNifZfuBLMO+DDarH2vR8QzabTfocCfstEeqCZLHO8DG4E7JD0IzEvrnQgMTXUBdpe0W3o9NyI+SK9nAY+SDS/xFeCeVP5PZINDfjct9yIbdiJ3siyzonMCMWvf5r/4BTwaEWe0riBpBNkgfaOBS8hGAu4BfDInUWyum9smEbFC0tuSjiAbr+minM87LSLqOndzzDqXr4GYdewZ4FhJgwHS6K4Hpesge0TEQ8BlwJGp/u/Ikgmp/pGtG8wxg2wirD0i4i+p7BHg0jS4HZKGd+rWmHUSJxCzDkTEauBrwN2SXiBLKIcAuwHzUtnvgXFplW8BNenC+lLgG1tpfjbZ0cusnLIfAVXAC5JeTMtmOx1fRDczs4L4CMTMzAriBGJmZgVxAjEzs4I4gZiZWUGcQMzMrCBOIGZmVhAnEDMzK4gTiJmZFeR/AXABrqvnXRWVAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"pdf.plot(x='reserve')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pdf['mint_slippage'] = (pdf['.1% mint_price']-pdf['spot_price'])/pdf['spot_price']\n",
|
|
"pdf['withdraw_slippage'] = (pdf['spot_price']-pdf['.1% withdraw_price'])/pdf['spot_price']\n",
|
|
"pdf['mint_slippage_fee'] = (pdf['.1% mint_price w/fee']-pdf['spot_price'])/pdf['spot_price']\n",
|
|
"pdf['withdraw_slippage_fee'] = (pdf['spot_price']-pdf['.1% withdraw_price w/fee'])/pdf['spot_price']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([[<matplotlib.axes._subplots.AxesSubplot object at 0x1a1c979780>,\n",
|
|
" <matplotlib.axes._subplots.AxesSubplot object at 0x1a1c99fb70>]],\n",
|
|
" dtype=object)"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEVCAYAAADpbDJPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XucHFWd9/HPl3CViwQiI4RAQAKKRBEi4IPAKC43L6ArGh6UizzGC3h5bVCDPgqC7LLuIgvPyl028VGQiCIBgxDQAeQxXAJIuAhEiCYkJmDCZUBZAr/njzoDRae7p2emp7sz5/t+vfo11VWnqk7VnO5f16lT5ygiMDOz/KzV7gyYmVl7OACYmWXKAcDMLFMOAGZmmXIAMDPLlAOAmVmmHACaQNI2knoljWrhPkPSDmn6fEnfbNW+beRI5Xb7OssXSnrfALb3SrnsJOXjkPR1SRe3O0+dYO12Z2AkiIg/Axs1klbSeOAxYJ2IWNWk/X+2Gdux/ETEK+VW0nRgcUT87/blaPhFxD+3Ow+dwlcAZtYSrbxCtsY4ANSRLhu/IuleSc9J+oGkLknXSnpW0g2SRksany59107r9Ug6TdKtKd31ksakzd6c/j6VLr/fVWf/O0i6SdLTkp6UdHmNdNMlfSdNd0tanC5zn0zHcGRF2vMlzUl5u0nStqXlZ0taJOkZSfMk7VNatoGkGZJWSnpQ0lclLS4t30rSzyQ9IekxSV8czHm3oZN0rKSrS+8XSJpZer9I0q59VTaSpgBHAl9N5fLq0uZ2TZ+BpyVdLmn90na+ImmppCWSPlWRh+mSzpM0W9JzwHskvV/S3al8LZJ0Sin9DElT0/TYlLfPp/c7SFohSXWOeYykayQ9ldLeImm17zhJp0j6UZru++xOScewtC8PpbRXpON+VtJdkt5eWj5N0h/Tsgckfbi0bJSkM9Pn8DFJJ1R8T7w+facslfS4pO+o1UEyIvyq8QIWAnOBLmAssBy4C3gHsB7wa+BkYDwQwNppvR7gj8COwAbp/Rlp2WvS9rP/y4BvUATq9YF3l5YFsEOang58J013A6uA76U87gc8B+xUSvsssG9afjbw29J2PwFsTlE9OBX4C7B+WnYGcBMwGtgauJeiyoCUx3nAt4B1ge2BR4ED2/1/zPGVzv9T6f+yJfAn4PHSspVpWdVyVPEZuB3YCtgMeBD4bFp2ELAM2AXYELi0yvaeBvYuleFuYGJ6/7a0/mEp/aeAq9P0/0yfoctLy67q55j/BTgfWCe99gFUOo73pelTgB+l6fEpz5elY5gIPFGR9kXgo2mbJ/JqFS7A4encrAV8PH3WtkzLPgs8kD4ro4EbeO33xC+AC9J+t0jn+TOtLCe+Aujf/4mIZRHxOHALcFtE3B0RLwBXUgSDav4rIh6OiL8BM4FdB7HvF4Ftga0i4u8R8dsBrPvNiHghIm4Cfgl8rLTslxFxczqGbwDvkjQOICJ+FBF/jYhVEXEmRZDYKa33MeCfI2JlRCwGzilt853AGyLi1Ij474h4FLgImDyI47YhSuf/WYpytx9wHfC4pDen97dExMsNbu6ciFgSESuAq3m1LH+MopzfFxHPUXxZVroqIm6NiJdTGe6JiPnp/b0UX7z7pbQ3AfukX+37At+lCB6kNDf1k88XKYLdthHxYkTcEumbtgHfjojnImI+8F/AEaVl8yLiioh4keKH1frAXgAR8dN0bl6OiMuBR4A9Sufn7IhYHBErKX5AASCpCzgY+HLa73LgLFr8eXEA6N+y0vTfqryvdfP3L6Xp5+ukq+ergIDbJd1feYldx8r0gezzJ4pfKX0W9U1ERC+wom+5pKmpeudpSU8Brwf6qq+2Kq9bMb0tsFW6/H4qrft1iqsna4+bKH5x75umeyi+SBv5Mi2rVZYry8OfqqxbXo6kPSX9JlUTPk3xK3kMQET8EeilCDD7ANcASyTt1GCe/w1YAFwv6VFJ0xo5uCr5rPd5eRlYzKufl6Mk3VMq87vQ+OdlHWBpad0LKK4EWsYBoPUa7n41Iv4SEZ+OiK2AzwDnqrEmdqMlbVh6vw2wpPR+XN+EpI0oLu2XpPr+r1H8chkdEZtSXML31bsupbicXW07FIX7sYjYtPTaOCIOaexobRj0BYB90vRN1A8AA+0aeCmvLQPbNLDNS4FZwLiIeD1FlU25Xv8miuqWddNV903AURRVKPfUy0xEPBsRUyNie+CDwD9J2r/BY6k8jlqfl7UoPgNL0r2zi4ATgM3T5+U+Gv+8vACMKX1eNomItzaY36ZwAGi9J4CXKeph65J0uKS+ArSS4sP0UoP7+bakddOX+geAn5aWHSLp3ZLWBU6jqNZaBGxMcf/gCWBtSd8CNimtNxM4ScWN77EUBb/P7cAzkr6m4mbxKEm7SHpng/m15rsJeA+wQaqyu4Wi3n5z4O4q6ZfRQLksmQkcI2lnSa+juB/Wn42BFRHxd0l7UNT1V+b5BF5tLNEDfIHiPlXdsi/pA+lmsYBnKD4rjX5evinpdZLeChwLlBtc7C7pI+nm7ZcpvrjnUtTdB8XnBUnHUlwB9JkJfCnd0N6U4scVABGxFLgeOFPSJpLWkvQmSfvRQg4ALRYRzwOnA7emS7+96iR/J3CbpF6KX01fiojHGtjNXygCxhLgxxQ37f5QWn4pxYd1BbA7ResPKOqJrwUeprgM/juvvWw9leLy9zGKG1pXUHwYSB/OD1Jcvj8GPAlcTFGFZG0QEQ9TVKnckt4/Q3Fj/tYaX6Y/AHZO5fIXDWz/WuA/KBpDLEh/+/N54FRJz1I0GJhZsfwmiiDRFwB+C7yu9L6eCRTlshf4HXBuRPQ0sF7ffhcANwL/HhHXl5ZdRXGDdyXwSeAj6R7DA8CZaV/LKG4g31pa7yKKL/l7KQLubIofWH3n/iiKBhMPpG1fQXEPo2X67pDbCCGpm6KFw9Y1lk+nSQ/7SPocMDkiWvqrxaxZ1M+DmamZ6g4R8Ykm7Otg4PyI2LbfxC3iKwBrmKQtJe2dLld3omgmemW782XWiVJV6CGS1k5VpifTYZ8XB4A2U/FQVm+V1/ntzlsV61K0VHiW4nL/KuDctubIsqLiAcdqn5dr2523KgR8m6J6526KZyi+1dYcVXAVkJlZpnwFYGaWqY7uDXTMmDExfvz4lu/3ueeeY8MNN+w/YRs4bwM3b968JyPiDe3OR6PaVe47SaeWpXYZ6PlotMx3dAAYP348d955Z8v329PTQ3d3d8v32wjnbeAkVXtCtWO1q9x3kk4tS+0y0PPRaJl3FZCZWaYcAMzMMuUAYGaWKQcAM7NMOQCYmWXKAcDMLFMOAGZmmXIAMDPLlAOAmVmmOvpJ4NyMn/bLftNMnbiKY0rpFp7x/uHMktmwqlXmK8t5mct88/gKwMwsUw4AZmaZcgAwqyBpnKTfSHpQ0v2SvpTmnyLpcUn3pNchpXVOkrRA0kOSDizNPyjNWyBpWjuOx6wW3wMwW90qYGpE3CVpY2CepDlp2VkR8e/lxJJ2BiYDbwW2Am6QtGNa/H3gH4DFwB2SZqXBxM3azgHArEJELAWWpulnJT0IjK2zyqHATyLiBeAxSQuAPdKyBRHxKICkn6S0DgDWERwAzOqQNB54B3AbsDdwgqSjgDsprhJWUgSHuaXVFvNqwFhUMX/PGvuZAkwB6Orqoqenp2nH0MmmTlxVdX7XBrWX5XJuynp7e4fluB0AzGqQtBHwM+DLEfGMpPOA04BIf88EPkUx+HeloPo9tqqDcEfEhcCFAJMmTYpcBkOp1dRz6sRVnDm/+tfTwiO7hzFHnWm4BshxADCrQtI6FF/+P46InwNExLLS8ouAa9LbxcC40upbA0vSdK35Zm3nVkBmFSQJ+AHwYER8rzR/y1KyDwP3pelZwGRJ60naDpgA3A7cAUyQtJ2kdSluFM9qxTGYNcJXAGar2xv4JDBf0j1p3teBIyTtSlGNsxD4DEBE3C9pJsXN3VXA8RHxEoCkE4DrgFHAJRFxfysPxKweBwCzChHxW6rX68+us87pwOlV5s+ut55ZO7kKyMwsUw4AZmaZcgAwM8uUA4CZWaYcAMzMMuUAYGaWKQcAM7NM+TkAM1ujNDJ0ajUeSnJ1vgIwM8uUA4CZWaYcAMzMMuUAYGaWqX4DQJ0BsjeTNEfSI+nv6DRfks5Jg2DfK2m30raOTukfkXT08B2WmZn1p5FWQLUGyD4GuDEizpA0DZgGfA04mKI/9AkUw9+dB+wpaTPgZGASRXe689IA2SubfVA5GUyLCLeGMDNo4AogIpZGxF1p+lmgb4DsQ4EZKdkM4LA0fSjwwyjMBTZNA2kcCMyJiBXpS38OcFBTj8bMzBo2oOcAKgbI7oqIpVAECUlbpGRjWX0g7LF15lfuo+2DYw/XAMz9qTUIdlm9wbIbNVzH1q7zZmaD03AAqDJAds2kVeZFnfmvndEBg2MP1wDM/ak1QHZZvcGyGzVcg2q367yZ2eA01Aqo2gDZwLK+MVLT3+Vpfq0BsusNnG1mZi3WSCugqgNkUwxu3deS52jgqtL8o1JroL2Ap1NV0XXAAZJGpxZDB6R5ZmbWBo3UJdQaIPsMYKak44A/A4enZbOBQ4AFwPPAsQARsULSacAdKd2pEbGiKUdhZmYD1m8AqDNANsD+VdIHcHyNbV0CXDKQDJqZ2fDwk8BmZplyADAzy5QDgJlZphwAzMwy5QBgZpYpBwAzs0w5AJiZZcoBwMwsUw4AZmaZcgAwM8uUA4BZBQ+DarlwADBbXd8wqG8B9gKOl7QzxbCnN0bEBODG9B5eOwzqFIphUCkNg7onsAdwcl/QMOsEDgBmFTwMquViaENLmY1wrRgGNe2n7UOhtkOt4U2bMfRppTX5nA7XcKsOAGY1tGoYVOiMoVDbodYwqM0Y+rTScA2F2grDNdyqq4DMqvAwqJYDBwCzCh4G1XLhKiCz1XkYVMuCA4BZBQ+DarlwFZCZWaYcAMzMMuUAYGaWKQcAM7NMOQCYmWXKAcDMLFMOAGZmmXIAMDPLlAOAmVmmHADMzDLlAGBmlin3BTRMxtfo59zMrFP4CsDMLFMOAGZmmXIAMDPLlAOAmVmmHADMzDLVbysgSZcAHwCWR8Quad4pwKeBJ1Kyr0fE7LTsJOA44CXgixFxXZp/EHA2MAq4OCLOaO6hmFk7ueXbmqeRK4DpwEFV5p8VEbumV9+X/87AZOCtaZ1zJY2SNAr4PnAwsDNwREprZmZt0u8VQETcLGl8g9s7FPhJRLwAPCZpAbBHWrYgIh4FkPSTlPaBAefYzMyaYigPgp0g6SjgTmBqRKwExgJzS2kWp3kAiyrm71lto5KmAFMAurq66OnpGUIWB6e3t3fI+506cVVzMlOha4Ohb3u4zmkzzpuZtc5gA8B5wGlApL9nAp8CVCVtUL2qKaptOCIuBC4EmDRpUnR3dw8yi4PX09PDUPd7zDDVh06duIoz5w/tAe6FR3Y3JzMVmnHezKx1BvVNEhHL+qYlXQRck94uBsaVkm4NLEnTteabmVkbDKoZqKQtS28/DNyXpmcBkyWtJ2k7YAJwO3AHMEHSdpLWpbhRPGvw2TYzs6FqpBnoZUA3MEbSYuBkoFvSrhTVOAuBzwBExP2SZlLc3F0FHB8RL6XtnABcR9EM9JKIuL/pR2NmZg1rpBXQEVVm/6BO+tOB06vMnw3MHlDuzMxs2Lg76AwN9oGdhWe8v8k5MbN2clcQZmaZcgAwM8uUA4CZWaYcAMzMMuUAYFaFpEskLZd0X2neKZIel3RPeh1SWnaSpAWSHpJ0YGn+QWneAknTWn0cZvU4AJhVNx33gmsjnJuBmlXhXnAtBw4AZgMzYnvBHapm9oDbjF5vK62J57TPcPW06wBg1rgR3QvuUDWzB9xm9Hpbabh6wW2F4epp1wHArEHuBddGGt8ENmuQe8G1kcZXAGZVuBdcy4EDgFkV7gXXcuAqIDOzTDkAmJllygHAzCxTDgBmZpnyTWAzy8JgRsIb6aPg+QrAzCxTDgBmZplyADAzy5QDgJlZphwAzMwy5QBgZpYpBwAzs0w5AJiZZcoBwMwsUw4AZmaZcgAwM8uUA4CZWaYcAMzMMuUAYGaWKQcAM7NMOQCYmWXKAcDMLFP9BgBJl0haLum+0rzNJM2R9Ej6OzrNl6RzJC2QdK+k3UrrHJ3SPyLp6OE5HDMza1QjVwDTgYMq5k0DboyICcCN6T3AwcCE9JoCnAdFwABOBvYE9gBO7gsaZmbWHv0GgIi4GVhRMftQYEaangEcVpr/wyjMBTaVtCVwIDAnIlZExEpgDqsHFTMza6HBDgrfFRFLASJiqaQt0vyxwKJSusVpXq35q5E0heLqga6uLnp6egaZxcHr7e0d8n6nTlzVnMxU6Npg+Lbdn/7OSTPOm5m1zmADQC2qMi/qzF99ZsSFwIUAkyZNiu7u7qZlrlE9PT0Mdb/HTPtlczJTYerEVZw5v9n/tsYsPLK77vJmnDcza53BtgJalqp2SH+Xp/mLgXGldFsDS+rMNzOzNhlsAJgF9LXkORq4qjT/qNQaaC/g6VRVdB1wgKTR6ebvAWmemZm1Sb91CZIuA7qBMZIWU7TmOQOYKek44M/A4Sn5bOAQYAHwPHAsQESskHQacEdKd2pEVN5Y7ljjh6k6x8ysnfoNABFxRI1F+1dJG8DxNbZzCXDJgHJnZmbDxk8Cm1XhByAtBw4AZtVNxw9A2gjnAGBWhR+AtBw4AJg17jUPQAJNewDSrB3a80SR2cgy5AcgO+EJ+KFq5hPq7XzivaxT/g/D9ZS9A4BZ45ZJ2jJ1f9LoA5DdFfN7qm24E56AH6pmPv3ezifey/p7+r1Vhuspe1cBmTXOD0DaiNL+EGvWgfwApOXAAcCsCj8AaTlwFZCZWaYcAMzMMuUAYGaWKQcAM7NMOQCYmWXKAcDMLFMOAGZmmXIAMDPLlB8Es4b1NzTm1ImrVusPZuEZ7x/OLJnZEDgAmNlqPA52HlwFZGaWKQcAM7NMOQCYmWXKAcDMLFMOAGZmmXIAMDPLlAOAmVmmHADMzDLlAGBmlikHADOzTDkAmJllygHAzCxTDgBmZplyADAzy5S7gzYzq2Ew3WKvSWNg+ArAzCxTDgBmZpkaUgCQtFDSfEn3SLozzdtM0hxJj6S/o9N8STpH0gJJ90rarRkHYGZmg9OMK4D3RMSuETEpvZ8G3BgRE4Ab03uAg4EJ6TUFOK8J+zYzs0EajiqgQ4EZaXoGcFhp/g+jMBfYVNKWw7B/MzNrwFBbAQVwvaQALoiIC4GuiFgKEBFLJW2R0o4FFpXWXZzmLS1vUNIUiisEurq66OnpGWIWB663t/c1+506cVXL81BL1wadlZ+yanlrx//PzBoz1ACwd0QsSV/ycyT9oU5aVZkXq80ogsiFAJMmTYru7u4hZnHgenp6KO/3mEE0BRsuUyeu4sz5ndl6t1reFh7Z3Z7MmFm/hlQFFBFL0t/lwJXAHsCyvqqd9Hd5Sr4YGFdafWtgyVD2b9YObvxgI8WgA4CkDSVt3DcNHADcB8wCjk7JjgauStOzgKPSB2Iv4Om+qiKzNZAbP9gabyh1CV3AlZL6tnNpRPxK0h3ATEnHAX8GDk/pZwOHAAuA54Fjh7Bvs05zKNCdpmcAPcDXKDV+AOZK2lTSlv7xY51g0AEgIh4F3l5l/l+B/avMD+D4we7PrIOMyMYPZe1uaNDJjR36Mxz/u8qGKc3SmXcTh0mj/XpMnbiqo278WscZkY0fytpd/ju5sUN/hqPhQ2XDlGZxVxBmA+TGDzZSOACYDYAbP9hIsmZeY5m1jxs/2IjhAGA2AG78YCOJq4DMzDLlAGBmlikHADOzTDkAmJllyjeBbViN9EG1zdZkvgIwM8uUA4CZWaYcAMzMMuUAYGaWKQcAM7NMOQCYmWXKAcDMLFN+DsBshBvMsxiWB18BmJllygHAzCxTDgBmZplyADAzy5QDgJlZptwKyMysidakHnB9BWBmlikHADOzTDkAmJllygHAzCxTDgBmZplaY1sBuX8TM7Oh8RWAmVmmHADMzDK1xlYB2ci1Jj1IY7Ym8xWAmVmmHADMzDLlAGBmlqmW3wOQdBBwNjAKuDgizmh1HsxaqVll3k2frdlaGgAkjQK+D/wDsBi4Q9KsiHiglfkwaxWXeWtEf8F96sRVHFMlzVAbP7S6CmgPYEFEPBoR/w38BDi0xXkwayWXeetYra4CGgssKr1fDOxZTiBpCjAlve2V9FCL8vaKL8IY4MlW77cRzlt1+te6i3dqUTaq6bfMQ2eU+07SyeW8HWqdjzrlfttGttvqAKAq8+I1byIuBC5sTXaqk3RnRExqZx5qcd4GTtKd7dx9lXmx2owOKPedpFPLUrsM1/lodRXQYmBc6f3WwJIW58GslVzmrWO1OgDcAUyQtJ2kdYHJwKwW58GslVzmrWO1tAooIlZJOgG4jqJJ3CURcX8r89CgTr4Ud94Grm35WoPKfKfp1LLULsNyPhSxWnWkmZllwE8Cm5llygHAzCxT2QYASetLul3S7yXdL+nbVdIcI+kJSfek1/9qYf5GSbpb0jVVlq0n6XJJCyTdJml8q/LVQN7aec4WSpqf9rta008Vzknn7V5Ju7Uqb9a4euUrR/2V66HIeTyAF4D3RkSvpHWA30q6NiLmVqS7PCJOaEP+vgQ8CGxSZdlxwMqI2EHSZOBfgY93SN6gfecM4D0RUesBooOBCem1J3AeVR7Ksrbrr3zlqF65HrRsrwCi0JverpNeHXFHXNLWwPuBi2skORSYkaavAPaXVO2Bo3bkrZMdCvww/e/nAptK2rLdmbJXreHla42TbQCAVy417wGWA3Mi4rYqyf4xVRdcIWlcleXD4T+ArwIv11j+SvcCEbEKeBrYvDVZ6zdv0J5zBkUAv17SvNS1QqVq3TKMbUnOrFGNlK/c9FeuBy3rABARL0XErhRPZ+4haZeKJFcD4yPibcANvPqre9hI+gCwPCLm1UtWZd6wX700mLeWn7OSvSNiN4qqnuMl7VuxvC3nzRrTYPnKUX/letCyDgB9IuIpoAc4qGL+XyPihfT2ImD3FmRnb+BDkhZS9Bz5Xkk/qkjzSvcCktYGXg+s6IS8temc9e17Sfq7HLiSoifOMnfL0NkaKfvZaaBcD1q2AUDSGyRtmqY3AN4H/KEiTbl++EMUN6aGVUScFBFbR8R4im4Dfh0Rn6hINgs4Ok1/NKUZ9l+yjeStHecs7XdDSRv3TQMHAPdVJJsFHJVaA+0FPB0RS1uRP+tfg2U/Kw2W60HLuRXQlsCMNGDHWsDMiLhG0qnAnRExC/iipA8Bqyh+YR/TrsxW5OsHwP+VtCDla3K78lUlb+06Z13Alele+NrApRHxK0mfBYiI84HZwCHAAuB54NgW5c1ssKqW62Zt3F1BmJllKtsqIDOz3DkAmJllygHAzCxTDgBmZplyAKhC0iWSlktqSnMrSb+S9FRl51aSfizpIUn3pX2u0+D2+u3ILqU7q9Qp28OSnqpYvomkxyX9Z2nex9NTvPdL+m5p/j9JeiAtu1HStqVltY7vvZLuSsc3Iz2zgKQ3S/qdpBckndjIMTdK0kclhSSPJztAOZR7SS+Vls0qzd9ORceKj6joaHHdBrb13ZSPB1V0Mqg0/3RJiyT1UkHSx9Ln6H5JlzZy3A2emxNTuR8zoBUjwq+KF7AvsBtwX5O2tz/wQeCaivmHUDydKuAy4HNV1p0OdFfME7BRml4HuA3Yq588fIFiNKryvLOBS4H/TO83B/4MvCG9nwHsn6bfA7wuTX+OosO3msdH8eNiEbBjen8qcFya3gJ4J3A6cGIT/28bAzcDc4FJ7S5Ha9orh3IP9NZINxOYnKbPr5GnV7YF/A/gVopR3kYBv+vLL7AXRTPz3or1JwB3A6PT+y2adJ7HUYw49ydgzEDW9RVAFRFxMxVP1kp6U/pFM0/SLZLePIDt3Qg8W2X+7EiA2ymeTG1kexED78juCIoPGwCSdqdoY3x9Kc32wMMR8UR6fwPwj2mfv4mI59P8ueW81ji+zYEXIuLh9H5OaVvLI+IO4MXKTEr6RPqVd4+kC9JzGo06Dfgu8PcBrGNJDuW+mvTL/b0UHStC8cPnsH62FcD6wLrAeikvy1I+50b1Bww/DXw/IlamdMtLefiKpDvSFXbVK5s6zqLoP2nAbfodABp3IfCFiNgdOBE4t1kbTpfAnwQafsBDjXVk15d2W2A74Nfp/VrAmcBXKpIuAN4saXyqrjmM13ad0Oc44Np+svgksE6pKuajNbZVzudbKLq13juKPppeAo7sZz99674DGBcR7kO+uUZMuU/Wl3SnpLmS+r7kNweeiqJjRajSSWDltiLid8BvgKXpdV1E9PfU+47AjpJuTfs/KG37AIqrgz2AXYHd1WB/Pyoeunw8In7fSPpKOT8J3DBJG1Fc8v1Ur/a6vF5a9hGK6o1Kj0fEgQ3u4lzg5oi4JW3zQIo+/gG2Ad6d6hNfiIg9oejIDthVRXcWV0raJSJq1d1OBq5I6wB8HpgdEYtKx0NErJT0OeByit4Y/x/FVcErJH0CmATsV++AIiJUjFVwlqT1KK40VtVbh6LKYHfgjpSvDSg+6Ej6IUX1RKVzKS7Zz6KNT2qPRCOw3ANsExFLJG0P/FrSfOCZKutW/pp+zbYk7QC8hVevXuZI2jddRdWyNsUXfXda7xYVHVAekF53p3QbpXQ3S7oBeGOVbX2D4qr6G2ndQXEAaMxaFL8Qdq1cEBE/B34+2A1LOhl4A/CZ0javo6jTQ9J0YHpE9FRbPyKektRD0ZFdvQ/C8aX37wL2kfR5isK2rqTeiJgWEVdT9OiJiq5nX/nwSHofRYHbL17t8K2m9Ctpn7TuARS/gOoRMCMiTqqyraNqriS9HtgF6ElfVG8EZkn6UEQ0dQSlzIy0ck+82rHao2n9dwA/oxgbYu10FVCtk8DKbX0YmNtXJSXpWoq6/3oBYHFa50XgMUkPUXzRC/iXiLigynG+r9bGJE2kuCr5fSr3WwN3SdojIv5SJx+vcBVQAyLiGYp/2OHwytCCbx/qdlUMl3ggcERENNz/uRroyK6UdidgNMVNKgBNhluHAAABoklEQVQi4siI2CaKTrdOpBgkZVpKv0X6O5riSuHi9P4dwAXAh8p1l/3ks29b6wFfo/ilXs+NwEdL622mUmujWiLi6YgYExHj0zHNTfn0l/8QjLRyL2l0Kouk1jJ7Aw+kexG/oaimhKKjxavqbYuiscR+ktZOVVn70X/Hh7+gaEzRt/8dgUcpgt6n0hUXksb2fQbqiYj5EbFFqdwvBnZr9Mu/byN+rX5X/TKKer0X00k9jiLS/gr4PfAA8K0BbO8W4Angb2l7B6b5q4A/Avek12rbpHpriLdRXC7eS/Hr51ulZadSfPn1vT8FOKNO3o4htQIqHfsD6TW5NP8GiptcfXmd1cDx/RvFh+Ih4Mul9G9M6Z4BnkrTm6RlH0/bvxeYRz+tPGocUw9uBeRyX1HuKaqz5qdjmU9qlZaWbU9xQ3oB8FNgvX62NYriB9GD6bx8r7Tsu+l4X05/T0nzBXwvpZ9f8fn6Upo3nyLQvGkQ/7+FDLAVkDuDMzPLlKuAzMwy5QBgZpYpBwAzs0w5AJiZZcoBwMwsUw4AZmaZcgAwM8vU/wcXN5IPN7G6LQAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEVCAYAAADpbDJPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuYXVV9//H3h4T7RW4yDUkgWCMWiaJGwB8ooyiXIKK2IBSFAG1KBQtPoy1eQRGLVbRQFYwSiBUEiqVEDYVAmYDWQAC5JEQ0QjQhkYAJlwFFAt/fH2sdsnNyZs6ZmTPnnMz+vJ7nPLPP2re196y9v3utvc/aigjMzKx8Nml3BszMrD0cAMzMSsoBwMyspBwAzMxKygHAzKykHADMzErKAaAGSbtJ6pU0qoXrDEmvzsOXSPpMq9bdTEouk7RG0p3tzk+Z5DL7qn7GL5X0rgEs7+Uy2UmK2yHpk5K+0+48DZakL0h6QtLv2rH+0e1YaaeLiN8C2zQyraQJwCPAphGxtknrP7UZy2mTA4F3A+Mi4tl2Z6ZMIuLlMivpcmB5RHy6fTkafhHxxXbnYbAkjQemA7tHxKp25ME1AGu23YGlPvmPbK2sHY9guwO/b9fJH4CIKM0HWAp8HLgfeBa4FOgCbgCeAW4GdgAmAAGMzvP1AOcCP83T3QTsnMf9Nk/bmz9v7Wf9rwbmAU8BTwBXF8YF8Oo8fDnwhTzcDSwHPpnnWQocX5jvcuASYG7O2zzSFUVl/IXAMuBp4G7gbYVxWwKzgDXAYuCfSFeNlfG7Aj8AHifVcv6hzv49Bfgj8GLeF5/L6e8B7gWeBP4PeP1g11HGD3AS8MPC9yXANYXvy4B9KmUImAa8APwp/x9+WCj/H8vl/yngamCLwnI+DqwEVgAn1yiTFwNz8rHzLuAI4Oe5bC0DziksaxYwPQ+Pzcv6SOE4WA2on23eGfhRLjOrgduBTQrb8a48fA7wvTw8Ia9nWt6GlZU8FKa9Nm/3M8A9wBsK488Cfp3HPQi8vzBuFHAB6Rh8BDid9c8RryCdT1YCjwJfAEb1s33vAv4AvJT/R5fn9P3zMfIkcB/QXZhnQOtoqGy1u3C3+EBaCswnnfTHAqtyIXgjsDnwv8DZ1A4AvwZeQzpp9gDnVxW60Q2s//vAp0g1ry2AAwvj+gsAa4Gv5jweRDoA9yxM+wzw9jz+QuAnheV+CNiJ1Nw3Hfgd+aAHzicFjB2AcaQTw/I8bhNSwPgssBnwKuBh4NA62zi1av1vyvt5v3wQnZj/D5sPdh1l++T98mTeX2OA3wCPFsatyeNqlqGq8n8nKejuSAr6p+ZxhwGPAXsDWwNX1ljeU8ABhfLbDUzK31+f539fnv5k1gWevyYdP1cXxl1fZ5v/hXRhs2n+vI0cMKgfAL6ft2ES6cKiOO0LwF/lZX6Mdc23AEfnfbMJ8EHScTYmjzuVFBTGkY6Xm1n/HPHfwLfyenfJ+/nv6mxjN+tfcI0Ffg9MyXl4d/7+ysGuo96njE1A/x4Rj0XEo6Srijsi4ucR8TxwHSkY1HJZRPwyIv4AXEO64hqoF0jVvl0j4o8R8ZMBzPuZiHg+IuYBPwaOKYz7cUTclrfhU8Bbc/siEfG9iPh9RKyNiAtIJ94983zHAF+MiDURsRy4qLDMt5AK3ucj4k8R8TDwbeDYAW7z3wLfiog7IuLFiJgFPE+60mnWOka0vF+eIZW5g4AbgUclvTZ/vz0iXmpwcRdFxIqIWA38kHXl+BhSGV8YqfnunBrzXh8RP42Il3L57YmIB/L3+0kn3oPytPOAt0nahHRx8q+k4EGeZl6dfL5ACna7R8QLEXF75LNgAz4XEc9GxAPAZcBxhXF3R8S1EfEC6aJqC1JZJCL+M++blyLiauBXwL6F/XNhRCyPiDWkiycAJHUBhwNn5vWuAr7GwMvxh4A5ETEn52EucBcwpYnrWE8ZA8BjheE/1Pje183f4l365/qZrj//BAi4U9IiSSc3ON+aWL9N/TekK5WKZZWBiOglVZl3BZA0XdJiSU9JepJUjdw5T75rcd6q4d2BXSU9WfmQmqG6GsxzcTnTq5YzPq+7Wesog3mkK8a35+Ee0om0kZNpUV/luLos/KbGvMXxSNpP0q2SHpf0FOkqeWeAiPg1qWljH9LV+4+AFZL2bDDPXyY1dd0k6WFJZzWycTXy2d+x8hKpebVyrJwg6d5CWdybxo+VTYGVhXm/RbpKH4jdgaOrjocDyYGwSetYj58CGrqGu1ONiN+RroiRdCBws6TbImJJnVl3kLR1IQjsBiwsjB9fGZC0Dal6v0LS24B/Bg4GFkXES5LWkIIQpLbEcaSq7XrLIRXwRyJiYqPb14dlwHkRcV71CElvbdI6ymAecCSwB/BFUpPQ8cBbga/XmH6g3fyuZP3//24NLPPKvO7DI+KPkv6NdSfMSp7/CtgsIh6VNA84gdSEcm9/mYmIZ0hNltMlvQ64VdKCiLilgW0ZD/yisB0rqsYBkGsn40jHyu6k2ufBwM8i4kVJ97LhsbLBckhl/HnSfcGhPAm4DPiPiPjb6hGSxjRpHespYw2g2R4n3cjp8/nrCklHS6oUojWkA+rFBtfzOUmb5ZP6e4D/LIybIulASZuRblbfERHLgG1J9w8eB0ZL+iywXWG+a4BPSNpB0ljSja2KO4GnJf2zpC0ljZK0t6S3NJjfim8Dp+arRUnaWtIRkrZt4jrKYB7wDmDL3Fx3O6ndfifSjdhqj9FAmSy4BpgqaS9JW5HuhdWzLbA6n/z3JbX1V+f5dOC2/L0H+CjpHlG/5V7SeyS9WpJIN5lfpPFj5TOStsqB4yTSTd+KN0v6gKTRwJmkk+p8Urt6kI4VJJ1EqgFUXAOcIWmspO1JF1YARMRK0oMhF0jaTtImkv5c0kEMzPeAIyUdmo+FLSR1SxrXxHWsxwFgiCLiOeA84Ke5arZ/P5O/BbhDUi8wGzgjIh5pYDW/IwWMFcAVpBt3vyiMv5J0wK4G3ky6MoTUVnwD8EtSVfiPrF91/TypCvwI6abWtaQDgnyAHkmqwj9CevrhO6QmpIZFxF2kWs/X8zYsId0obto6yiAifklqUrk9f3+adMP8p32cTC8F9spl8r8bWP4NwL+RHoRYkv/W8xHg85KeId3Iv6Zq/DxSkKgEgJ8AWxW+92ciqUz2Aj8DvhkRPQ3MV1nvEuAW4CsRcVNh3PWkG7xrgA8DH8j3GB4kPeXzM1LwnER66q/i26QT8P2kgDuHdHFV2fcnkB5keDAv+1pS003D8kXbUaRm0MdJx+rHWXeeHvI6qlXuqluHktRNesphXB/jL6dJP/iR9PfAsRExpKsKs3ao96NMSeeQnmr6UBPWdThwSUTsPtRltZNrACUmaYykA3J1ck9Sm+t17c6XWafJTZRTJI3OzaVnMwKOFQeAJlPqx6e3xueSdueths1ITxI8Q6ryXw98s95Mkm7oYxs/Ocz5tRFEqR+fWuXohnbnrQYBnyM1vfyc9BuKz9adqcPPB24CMjMrKdcAzMxKqqN/B7DzzjvHhAkT2p2Nlz377LNsvfXW7c5G221s++Huu+9+IiJe2e58NKrTyn27bWzlrZX62jeNlvmODgATJkzgrrvuanc2XtbT00N3d3e7s9F2G9t+kFTrV60dq9PKfbttbOWtlfraN42WeTcBmZmVlAOAmVlJOQCYmZWUA4CZWUk5AJiZlZQDgJlZSTkAmJmVlAOAmVlJOQCYmZVUR/8SuGwmnPXjAc+z9PwjhiEnZq3RSJmfPmktUwvTucw3T90agKTxSi9+Xqz0IvMzcvo5kh5VeonyvZKmFOb5hKQlkh6SdGgh/bCctkQDe8mzmZk1WSM1gLXA9Ii4J7/H9W5Jc/O4r0XEV4oTS9oLOBZ4HbAr6cXnr8mjvwG8m/QawgWSZudXsZmZWYvVDQD5ZcQr8/AzkhYDY/uZ5Sjgqoh4HnhE0hJg3zxuSUQ8DCDpqjytA4CZWRsM6B5AfufmG4E7gAOA0yWdANxFqiWsIQWH+YXZlrMuYCyrSt+vxjqmAdMAurq66OnpGUgWh1Vvb++w5mf6pA1eY1pXO/bPcO8HM2uNhgOApG2AHwBnRsTTki4GzgUi/70AOJn06rRqQe37DRu8jiwiZgAzACZPnhyd1A3scHdLO3UwN4GP725+Rupw97zWToN5WAJ887iWhgKApE1JJ/8rIuK/ACLiscL4bwM/yl+XA+MLs48DVuThvtLNzKzFGnkKSMClwOKI+GohfUxhsvcDC/PwbOBYSZtL2gOYCNwJLAAmStpD0makG8Wzm7MZZmY2UI3UAA4APgw8IOnenPZJ4DhJ+5CacZYCfwcQEYskXUO6ubsWOC0iXgSQdDpwIzAKmBkRi5q4LWZmNgCNPAX0E2q368/pZ57zgPNqpM/pbz4zM2sddwVhZlZSDgBmZiXlAGBmVlIOAGZmJeUAYGZWUg4AZmYl5QBgZlZSDgBmZiXlAGBmVlIOAGZmJeUAYGZWUg4AZmYl5QBgZlZSDgBmZiXlAGBmVlIDeim8dZ7BvB/V70btn6TxwHeBPwNeAmZExIWSdgSuBiaQXoJ0TESsyW/NuxCYAjwHTI2Ie/KyTgQ+nRf9hYiY1cptMeuPawBmG1oLTI+IvwD2B06TtBdwFnBLREwEbsnfAQ4nvfp0IjANuBggB4yzgf2AfYGzJe3Qyg0x648DgFmViFhZuYKPiGeAxcBY4CigcgU/C3hfHj4K+G4k84Ht8zuzDwXmRsTqiFgDzAUOa+GmmPXLAcCsH5ImAG8E7gC6ImIlpCAB7JInGwssK8y2PKf1lW7WEXwPwKwPkrYBfgCcGRFPp6b+2pPWSIt+0mutaxqp+Yiuri56enoGnN+N0fRJa+tO07VlY9PVMxL3aW9v75C2ywHArAZJm5JO/ldExH/l5MckjYmIlbmJZ1VOXw6ML8w+DliR07ur0ntqrS8iZgAzACZPnhzd3d21JhtxpjbwEMP0SWu54IGhn6qWHt895GV0mp6eHoZSVtwEZFYlP9VzKbA4Ir5aGDUbODEPnwhcX0g/Qcn+wFO5iehG4BBJO+Sbv4fkNLOO4BqA2YYOAD4MPCDp3pz2SeB84BpJpwC/BY7O4+aQHgFdQnoM9CSAiFgt6VxgQZ7u8xGxujWbYFafA4BZlYj4CbXb7wEOrjF9AKf1sayZwMzm5c6sedwEZGZWUg4AZmYl5QBgZlZSDgBmZiXlAGBmVlIOAGZmJeUAYGZWUg4AZmYlVTcASBov6VZJiyUtknRGTt9R0lxJv8p/d8jpknSRpCWS7pf0psKyTszT/yq/KMPMzNqkkRqAX45hZjYC1Q0AfjmGmdnINKC+gPp7OYakprwco5P7RR9q39v1NKPP80YMdRuGez+YWWs0HABa9XKMTu4Xfah9b9fTSN/ozTDUftGHez+YWWs09BRQfy/HyOMbfTlGrXQzM2uDRp4C8ssxzMxGoEaagPxyDDOzEahuAPDLMczMRib/EtjMrKQcAMzMSsoBwMyspBwAzMxKygHAzKykHADMzEpqQH0BWeMmtKhbBzOzwXINwMyspBwAzMxKygHAzKykfA/AzJrC9702Pq4BmJmVlAOAmVlJOQCYmZWUA4CZWUk5AJiZlZQDgJlZSTkAmJmVlAOAmVlJOQCY1SBppqRVkhYW0s6R9Kike/NnSmHcJyQtkfSQpEML6YfltCWSzmr1dpj1xwHArLbLgcNqpH8tIvbJnzkAkvYCjgVel+f5pqRRkkYB3wAOB/YCjsvTmnUEdwVhVkNE3CZpQoOTHwVcFRHPA49IWgLsm8ctiYiHASRdlad9sMnZNRsUBwCzgTld0gnAXcD0iFgDjAXmF6ZZntMAllWl71droZKmAdMAurq66OnpaXK2h9/0SWuHZbldWzZn2RvjPq2nt7d3SNvlAGDWuIuBc4HIfy8ATgZUY9qgdhNr1FpwRMwAZgBMnjw5uru7m5Dd1po6TJ3BTZ+0lgseGPqpaunx3UPPTIfp6elhKGXFAcCsQRHxWGVY0reBH+Wvy4HxhUnHASvycF/p1mKD6a106flHDENOOodvAps1SNKYwtf3A5UnhGYDx0raXNIewETgTmABMFHSHpI2I90ont3KPJv1xzUAsxokfR/oBnaWtBw4G+iWtA+pGWcp8HcAEbFI0jWkm7trgdMi4sW8nNOBG4FRwMyIWNTiTTHrkwOAWQ0RcVyN5Ev7mf484Lwa6XOAOU3MmlnTuAnIzKykHADMzErKAcDMrKTqBgD3iWJmNjI1UgO4HPeJYmY24tR9Csh9opiZjUxDeQy0dH2iDKTfjeHqF6UZhrpPh9r/iJl1hsEGgFL2iTKQfjeGq1+UZhhqnyhD7X/EzDrDoAKA+0QxM9v4DeoxUPeJYma28atbA3CfKGZmI1MjTwG5TxQzsxHIvwQ2MyspBwAzs5JyADAzKykHADOzknIAMDMrKQcAM7OScgAwMyspvxO4hCYMsp+ipecf0eScmFk7uQZgZlZSDgBmZiXlAGBmVlIOAGZmJeUAYGZWUg4AZmYl5QBgZlZSDgBmZiXlAGBmVlIOAGZmJeUAYGZWUg4AZmYl5QBgZlZSDgBmZiXlAGBmVlIOAGZmJeUAYFaDpJmSVklaWEjbUdJcSb/Kf3fI6ZJ0kaQlku6X9KbCPCfm6X8l6cR2bItZXxwAzGq7HDisKu0s4JaImAjckr8DHA5MzJ9pwMWQAgZwNrAfsC9wdiVomHUCBwCzGiLiNmB1VfJRwKw8PAt4XyH9u5HMB7aXNAY4FJgbEasjYg0wlw2Dilnb+J3AZo3rioiVABGxUtIuOX0ssKww3fKc1lf6BiRNI9Ue6Orqoqenp7k5b4Hpk9YOy3K7thy+ZdfT6f+H3t7eIeXRAcBs6FQjLfpJ3zAxYgYwA2Dy5MnR3d3dtMy1ytSzfjwsy50+aS0XPNCeU9XS47vbst5G9fT0MJSy4iYgs8Y9lpt2yH9X5fTlwPjCdOOAFf2km3UEBwCzxs0GKk/ynAhcX0g/IT8NtD/wVG4quhE4RNIO+ebvITnNrCO4CcisBknfB7qBnSUtJz3Ncz5wjaRTgN8CR+fJ5wBTgCXAc8BJABGxWtK5wII83ecjovrGslnb1A0AkmYC7wFWRcTeOW1H4GpgArAUOCYi1kgScCHpYHgOmBoR9+R5TgQ+nRf7hYiYhVmHiojj+hh1cI1pAzitj+XMBGY2MWtmTdNIE9Dl+HloM7MRp24A8PPQZmYj02DvAZTyeeiBPHPbrueWh1Nl24f67LGZdYZm3wQe0c9DD+SZ2+F6JrqdKs9ED/XZYzPrDIN9DNTPQ5uZbeQGWwOoPA99Phs+D326pKtIN3yfyk1ENwJfLNz4PQT4xOCzbWbDacIIrMHahhp5DNTPQ5uZjUB1A4CfhzYzG5ncFYSZWUm5K4gGVNpDp09aOyKf7jGzcnINwMyspBwAzMxKygHAzKykHADMzErKN4HNzPowmB/ELT3/iGHIyfBwDcDMrKQcAMzMSsoBwMyspBwAzMxKygHAzKykHADMzErKAcDMrKQcAMzMSsoBwMyspBwAzMxKygHAzKykHADMzErKAcDMrKQcAMzMSsoBwMyspBwAzMxKygHAzKykHADMzErKAcDMrKQcAMzMSsovhbeGVV6QPX3SWqY2+LLsjekF2Y2StBR4BngRWBsRkyXtCFwNTACWAsdExBpJAi4EpgDPAVMj4p525NusmmsAZoPzjojYJyIm5+9nAbdExETglvwd4HBgYv5MAy5ueU7N+uAAYNYcRwGz8vAs4H2F9O9GMh/YXtKYdmTQrJqbgMwGLoCbJAXwrYiYAXRFxEqAiFgpaZc87VhgWWHe5TltZXGBkqaRagh0dXXR09MzvFtQx/RJa9u6/qKuLTsrP/W08n/X29s7pPUNKQC4LdRK6oCIWJFP8nMl/aKfaVUjLTZISEFkBsDkyZOju7u7KRkdrEbv8bTC9ElrueCBjedadenx3S1bV09PD0MpK81oAnJbqJVKRKzIf1cB1wH7Ao9Vmnby31V58uXA+MLs44AVrcutWd+G4x6A20JtxJK0taRtK8PAIcBCYDZwYp7sROD6PDwbOEHJ/sBTlaYis3Ybar1qxLeFwrr2x42tLXK4DGQ/dML/r8m6gOtSiyajgSsj4n8kLQCukXQK8Fvg6Dz9HFKz5xJS0+dJrc+yWW1DDQAjvi0U1rWHbmxtkcNlIPuhle2hrRARDwNvqJH+e+DgGukBnNaCrJkN2JCagNwWama28Rp0AHBbqJnZxm0o7RluCzUz24gNOgC4LdTMbOPmriDMzErKAcDMrKQcAMzMSsoBwMyspBwAzMxKygHAzKyk3K+B2Qg3oYO6drbO4hqAmVlJOQCYmZVUqZqAXBU2M1vHNQAzs5JyADAzKykHADOzkirVPQAzs+E2mHuNS88/YhhyUp9rAGZmJeUAYGZWUg4AZmYl5QBgZlZSDgBmZiXlAGBmVlIOAGZmJeUAYGZWUg4AZmYl5V8C27DamH4VaVY2rgGYmZWUA4CZWUk5AJiZlZQDgJlZSTkAmJmVlAOAmVlJOQCYmZWUfwdgtpEYzG8qbOMw2P/t5YdtPaT1trwGIOkwSQ9JWiLprFav36zVXOatU7W0BiBpFPAN4N3AcmCBpNkR8eBAl+WrIdsYNLPMmzVbq5uA9gWWRMTDAJKuAo4CfDDYy0ZY9xEu89axWh0AxgLLCt+XA/sVJ5A0DZiWv/ZKeqhFeavrH2Bn4Il256PdOnE/6Ev9jt69RdmopW6Zh84u9+3WieWtU7zjS33um4bKfKsDgGqkxXpfImYAM1qTnYGRdFdETG53PtrN+2FA6pZ56Oxy324ub30b6r5p9U3g5cD4wvdxwIoW58GslVzmrWO1OgAsACZK2kPSZsCxwOwW58GslVzmrWO1tAkoItZKOh24ERgFzIyIRa3MwxC5ip54PzRoBJT5TuDy1rch7RtFbNAcaWZmJeCuIMzMSsoBwMyspBwAGiRpqaQHJN0r6a5256ddJG0v6VpJv5C0WNJb250nG/kkvUHSz/Ix+ENJ27U7T51C0j6S5lfOTZL2bXhe3wNojKSlwOSIKPUPUiTNAm6PiO/kp1q2iogn250vG9kkLQA+FhHzJJ0M7BERn2l3vjqBpJuAr0XEDZKmAP8UEd2NzOsagDUsX3W9HbgUICL+5JO/tciewG15eC7wl23MS6cJoFIjegUD+J2JA0DjArhJ0t35Z/tl9CrgceAyST+X9B1JQ+uP1qwxC4H35uGjWf/HdWV3JvBlScuArwCfaHRGNwE1SNKuEbFC0i6kK5CPRsRt9eYbSSRNBuYDB0TEHZIuBJ52VdyaQdLNwJ/VGPUp4CHgImAn0g/p/iEidmph9tqqzr45GJgXET+QdAwwLSLe1dByHQAGTtI5QG9EfKXdeWklSX8GzI+ICfn724CzIqJju+K0kUfSa4DvRUTDNztHMklPAdtHREgS8FRENHST3E1ADZC0taRtK8PAIaQqaalExO+AZZL2zEkH426NrQVyzRtJmwCfBi5pb446ygrgoDz8TuBXjc7oV0I2pgu4LgVXRgNXRsT/tDdLbfNR4Ir8BNDDwEltzo+Vw3GSTsvD/wVc1s7MdJi/BS6UNBr4I+u6Fa/LTUBmZiXlJiAzs5JyADAzKykHADOzknIAMDMrqVIEAEkzJa2S1JRHNyX9j6QnJf2oKv0KSQ9JWpjXuWkz86jkIklLJN0v6U1V47eT9Kikr+fv2+YOoiqfJyT9Wx43VdLjhXF/U1jOl/I2LJT0wUL6pZLuy+u+VtI2Of0fJT2Y02+RtHtOf0fV+v8o6X153Dsl3ZPXMSs/wTBokraS9OPcSd0iSecPZXkj1UZyLJyR51sk6cw+pvl4oVwtlPSipB0ljZd0q1JHhYsknVGY55x8fFTmm5LTN5N0mVJHc/dJ6q7avvvysi6RNCqnfzmXtfslXSdp+5x+fFWZf0nSPnnceZKWSeodwC7ubz9tIenOQv4+N+CFRMSI/5D6r3kTsLBJyzsYOBL4UVX6FNJLwAV8H/j7GvNeDnQPJo95+Tfk5e8P3FE1/kLgSuDrfcx/N/D2PDy11nTAEaRfOo8GtgbuArbL47YrTPdV0o/AAN5B6hQO4O+Bq2ssd0dgNbAV6cJjGfCaPO7zwClD/J9sBbwjD28G3A4c3u6y12mfTjoW+lje3qTf2GyVy+DNwMQ68xwJ/G8eHgO8KQ9vC/wS2Ct/P4fUoVz1/KcBl+XhXfJxskn+Xin7An4AHJu/HwKMzsNfAr5UY7mTgIcL3/fP+ett0r4XsE0e3hS4A9h/IMsoRQ0gUpcNq4tpkv48R/e7Jd0u6bUDWN4twDM10udEBtxJegH4oPNYw1HAd/Mq5gPbSxqTt+fNpN8r3FRrRkkTSYX79jrr2Iv0s/K1EfEscB9wWM7j03lZArYk9Y9ERNwaEc/l+edTe7v/CrghT7cT8HxE/DKPe7lzL6Uf3c2UtECpv6Gj6uSXnIfnIuLWPPwn4J4+8lFqG8Gx8BekX5s/FxFrgXnA++vMcxwpyBARKyPinjz8DLAYGFtn/r2AW/I8q4Angcn5+9N5mtGkC4tKmb8p5w/6LvMv5yvPMz8iVlZPJOmVkn6Qy/wCSQfUyW9leRERldrEpvkzoOf6SxEA+jCD1J/Pm4GPAd9s1oJzdffDQLN/LDaWdOVcsRwYq/TryAuAj/cz73GkK/NiAfnLQnNOpXOt+4DDc5PKzqSr+5c73pJ0GfA74LXAv9dYzymkWkq1Y1l3MDwBbKrUtxCk4FBZx6dIV3Nvyev+sgbY4Vyujh9JPqitrk46FhYCb5e0k6StSDWJPjt+y9McRro6rx43AXgj6cq44vRc5mdK2iGn3QccJWm0pD2AN7N+mb8RWEUKdNfWyMbJ1C7zH6QQAPpxIak757eQLoS+08A8lbyNknRvzt/ciLij3jxFpfwlsFLb9f8D/jNdzAKweR73AVKTRLVHI+LQBlfxTeC2iLg9L/NQUjURYDfgwNwO+HxE7DeQrNdIC+AjwJyIWFbYnmrHkg7Eih8C34+I5yWdCswC3hkRN0l6C/B/pJ4/fwZUrnRWQ/7RAAADv0lEQVSIiJNyO+i/kwr4y7/IlPQh0pXTQRTkWsok0ovRiYiQdCzwNUmbk2otlXUcArxX0sfy9y2A3fL+qnWQARwSESvyukaTDrqLIuLhvnaGJW04FvanjxNcROwdEYslfYlUK+wlnZzX1po+OxL4aURU12q2IQWFMwtX8RcD55KOmXNJF00nAzNJNY+7gN+Qyn6xzB8qaQvgClJXC3ML6/lUnvaKqvXvBzwXEY3ca3kXsFdh/2+n1PXM6+hnX+W/LwL75Iue6yTt3eA6X15QKT7ABHK7J6nv7JVDXF43Ve2eOf1s4L/JbYg1xl9OjXsA1XnsY/y3gOMK3x8itSleAfwWWEq6un4aOL8w3RuAX/az3FGkDqRqjbsSmFIj/aDi9udCvBjYpca0ZwAz+ln/IcA1efhuYM8h/F9mkk7+bS9znfrplGOhwWV/EfhIP+OvA/66Km1T0sXGPzayD2qM+z/yfYOq9BMp3DfL339Gvv9VNe3XgE/2sfzequ9PAFs24f96NjXucfT3KWUTUKQrgkckHQ0vP13zhqEuV+lJmkNJJ+mXhrq8GmYDJ+T87k86aa+MiOMjYrdIvXR+jHSf4KzCfOu1Rea8jil8fS/p5F2pUu6Uh18PvJ70HgRJenVOF+nK6xf5+xtJwem9kdpQq9Vaf6Vzr82Bf2Zd5143Ah/N66gsuyGSvkB6IUbNJ0dsQ514LBTKxm7AB+ijGUXSK0gXItcX0kR6YdHiiPhq1fTFMv9+coeOublz6zz8bmBtRDwoaZvCPbbRpOaoSpk/jFRu3xvr7n9V1rMJ6Z0FVzW4yTcBpxfm36eRmfK9g8rTR1uSLsJ+0eA6k6FGnY3hQypAK4EXSO3mpwB7kNol7yP1aPnZASzvdlLzyB/y8g7N6WuBXwP35s8Gy6Tvp4A2yGNOPxU4NQ8L+EZexwOkV1RWL2cqVU/3kDpte21V2r8Ai/L231oZT2pyeTB/5gP75PRNgJ/m9S4k1ToqT0jcDDxW2O7ZhfVMAB6l6ioQ+DIp6DxEqqZX0rckBZPKeja4suzjfzKOVLVfXMjH37S77HXap5OOhTrLfDDn5+BC+svHQqGsX1U174G5HNxfWPeUPO4/crm6n3QxNaZQRh/KZedmYPec3gUsyNMvIjV7Vp78WUK6H1dZxyWFPHSTbmRXb9e/5n30Uv57Tk7fGbg6r+fB4rLq7KfXAz/P8y0cyD6ufNwZnJlZSZWyCcjMzBwAzMxKywHAzKykHADMzErKAcDMrKQcAMzMSsoBwMyspP4/+cTB4UxLRpAAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 2 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"pdf[['mint_slippage', 'withdraw_slippage']].hist()\n",
|
|
"pdf[['mint_slippage_fee', 'withdraw_slippage_fee']].hist()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stderr",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:43: RuntimeWarning: invalid value encountered in double_scalars\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"#given V0 and kappa\n",
|
|
"R = 40\n",
|
|
"S = supply(R,kappa,V0)\n",
|
|
"p = spot_price(R,kappa,V0)\n",
|
|
"#sweep the transaction fraction\n",
|
|
"TXF = np.logspace(-6, 1, num=5000)\n",
|
|
"\n",
|
|
"#realized price for withdrawing txf of Xdai\n",
|
|
"withdraw_price2=[withdrawR(R*txf, R,S, kappa, V0, 0)[1] for txf in TXF]\n",
|
|
"withdraw_price2_fee=[withdrawR(R*txf, R,S, kappa, V0, phi)[1] for txf in TXF]\n",
|
|
"\n",
|
|
"#realized price for depositing txf more Xdai into the reserve\n",
|
|
"mint_price2=[mint(R*txf, R,S, kappa, V0,0)[1] for txf in TXF]\n",
|
|
"mint_price2_fee=[mint(R*txf, R,S, kappa, V0,phi)[1] for txf in TXF]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pdf2 = pd.DataFrame({'tx_fraction':TXF, 'spot_price':p*np.ones(len(TXF)), 'mint_price':mint_price2,'withdraw_price':withdraw_price2, 'mint_price_fee':mint_price2_fee,'withdraw_price_fee':withdraw_price2_fee })"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.axes._subplots.AxesSubplot at 0x1a1caf0be0>"
|
|
]
|
|
},
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEPCAYAAABcA4N7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xd8VFX6+PHPk04NkAAiQRKllyTSW0BFioKAigsqiLpWxPrVBde1rD91UdlFsbOLCC4oqKuii4iIrARQCNJBmgQInSSklynn90cmMYTMZEImuUl43q/XvGbuveee89zLME9uO0eMMSillFLu+FkdgFJKqepNE4VSSimPNFEopZTySBOFUkopjzRRKKWU8kgThVJKKY80USillPJIE4VSSimPNFEopZTySBOFUkopjwKsDqA8wsPDTWRkpNVhKKVUjbJx48bTxpim57t+jUoUkZGRJCQkWB2GUkrVKCJysCLr66knpZRSHmmiUEop5ZEmCqWUUh7VqGsUpbHZbCQlJZGbm2t1KMpiISEhREREEBgYaHUoStUqNT5RJCUl0aBBAyIjIxERq8NRFjHGkJycTFJSElFRUVaHo1StUuNPPeXm5hIWFqZJ4gInIoSFhemRpVKVoMYfUQCaJBSg3wOlSsq2ZbM7dXeF66nxRxRKKaVKt/HEZm775rYK1+NVohCR4SKyW0T2ici0UpYHi8gi1/KfRSTSNb+XiGx2vbaIyPXe1lnbLFmyhOnTp3ssk5iYyMKFC33W5rXXXsuZM2d8Vp9Sqmb54bdNPqmnzEQhIv7AW8A1QCfgZhHpVKLYH4FUY0wbYCbwsmv+dqCHMSYWGA68JyIBXtZZq4waNYpp0zznQ18lCmMMTqeTpUuX0qhRowrXp5Sqmbae2onTVvHfAG+uUfQC9hljfgMQkY+B0cDOYmVGA8+5Pn8KvCkiYozJLlYmBDDlqLPc/vrVDnYeTa9IFefodHFDnr2us8cyiYmJDB8+nAEDBvDTTz8RExPDHXfcwbPPPsvJkydZsGABO3fuJCEhgTfffJPbb7+dhg0bkpCQwPHjx3nllVcYO3Ys06ZNY9euXcTGxjJp0iQeffTRc9r64IMP+Pzzz8nLy+PAgQPccsstPPvssyQmJnLNNddw5ZVXsm7dOr744gsGDRpEQkIC4eHhzJ8/nxkzZiAiREdH8+GHH3Lq1Cnuu+8+Dh06BMBrr71G//79fbr/lFLWOZy1lwBbqwrX402iaAkcLjadBPR2V8YYYxeRNCAMOC0ivYH3gdbARNdyb+qsUfbt28cnn3zC7Nmz6dmzJwsXLiQ+Pp4lS5bw0ksvMWbMmLPKHzt2jPj4eH799VdGjRrF2LFjmT59OjNmzODrr7/22Nb69evZvn07devWpWfPnowYMYLw8HB2797N3Llzefvtt88qv2PHDl588UXWrFlDeHg4KSkpADz88MM8+uijDBgwgEOHDjFs2DB27drl2x2jlLJEli2LbOdxLg7pxdYK1uVNoijtVhLjbRljzM9AZxHpCMwTkW+8rLOgYpF7gHsALrnkEo+BlvWXf2WKioqia9euAHTu3JnBgwcjInTt2pXExMRzyo8ZMwY/Pz86derEiRMnytXWkCFDCAsLA+CGG24gPj6eMWPG0Lp1a/r06XNO+ZUrVzJ27FjCw8MBaNKkCQArVqxg587fD+LS09PJyMigQYMG5YpHKVX9bD25C8TQsUlHllewLm8SRRJQ/NglAjjqpkySiAQAoUBK8QLGmF0ikgV08bLOwvVmA7MBevToUWoyqQ6Cg4OLPvv5+RVN+/n5YbfbPZY3pnybVfI20MLpevXqlVreGFPqraNOp5N169ZRp06dcrWvlKr+fjxYcCG7b0QMr1ewLm/uetoAtBWRKBEJAsYDS0qUWQJMcn0eC6w0xhjXOgEAItIaaA8kelnnBadBgwZkZGSUWe67774jJSWFnJwcvvjiizKvKwwePJjFixeTnJwMUHTqaejQobz55ptF5TZv3lyB6JVS1cnmEztw2uvTL7LiPRWUmSiMMXZgCvAtsAtYbIzZISLPi8goV7E5QJiI7AMeAwpv7xkAbBGRzcDnwGRjzGl3dVZ4a2q46OhoAgICiImJYebMmW7LDRgwgIkTJxIbG8uNN95Ijx49PNbbuXNnnnrqKQYNGkRMTAyPPfYYALNmzSIhIYHo6Gg6derEu+++69PtUUpZ52DmHvxsEUQ0rlvhuqS8pz2s1KNHD1Ny4KJdu3bRsWNHiyKqeh988EHR3VPqXBfa90Gp0mTbsum9oA/NnCP4/s6/ISIbjTGe/6L0QJ/MVkqpWmbryZ0ghk5hvrnBp1b09VQbffvtt0ydOvWseVFRUXz++efcfvvt1gSllKoRVh4oOPMSd0k3n9SniaKaGjZsGMOGDbM6DKVUDfTLia04baEMvPRSn9Snp56UUqqWOZS5mwBbay4KDfFJfZoolFKqFjmTe4YcTtKybjuf1amJQimlapGfjxY8DxXTtKvP6tREoZRStcj/En/BGOHKKN9cyAZNFJWucEyIM2fOnNVZ36pVqxg5cmSZ63tbrio988wzrFixwuowlFKl2HpqG878pvRu3dJndWqiqGSFY0KUTBQVVVr/UVXB4XDw/PPPc/XVV1vSvlLKPWMMR3P3UNdEElo30Gf11q7bY7+ZBse3+bbOi7rCNe5HpnvllVcICQnhoYce4tFHH2XLli2sXLmS77//nrlz5xIfH09CQgLTpk1j//79xMbGMmTIEEaMGEFmZiZjx45l+/btdO/enX//+9+ICMuWLeORRx4hPDycbt1+P3x87rnnOHr0KImJiYSHh/PSSy8xceJEsrKyAHjzzTfp168fkydPZvjw4YwaNYrrr7+exo0b8/777zNnzhwOHDjACy+8cM52FI6p0bt3bzZt2kS7du2YP38+devWJTIykjvvvJPly5czZcoUli1bxsiRIxk7diwbNmzg4YcfJisri+DgYL7//nvq1q3LtGnTWLVqFXl5eTzwwAPce++9vv13UUqd43jWcWyk065+B5/Wq0cUFTRw4EBWr14NQEJCApmZmdhsNuLj44mLiysqN336dC677DI2b97Mq6++CsCmTZt47bXX2LlzJ7/99htr1qwhNzeXu+++m6+++orVq1dz/Pjxs9rbuHEjX375JQsXLqRZs2Z89913/PLLLyxatIiHHnronJiOHDlS1JV4yZhK2r17N/fccw9bt26lYcOGZx0BhYSEEB8fz/jx44vm5efnM27cOF5//XW2bNnCihUrqFOnDnPmzCE0NJQNGzawYcMG/vnPf3LgwIGK7GallBfiDxX0GNu9eYxP661dRxQe/vKvLN27d2fjxo1kZGQQHBxMt27dSEhIYPXq1cyaNYu//e1vbtft1asXERERAMTGxpKYmEj9+vWJioqibdu2AEyYMIHZs2cXrTNq1KiibsFtNhtTpkxh8+bN+Pv7s2fPHgDi4uKKElCnTp1ITU3l2LFjrFu3jlmzZrmNp1WrVkU90U6YMIFZs2bx+OOPAzBu3Lhzyu/evZsWLVrQs2dPABo2bAjA8uXL2bp1K59++ikAaWlp7N27l6ioivdiqZRy73+HEjBOf666LNqn9dauRGGBwMBAIiMjmTt3Lv369SM6OpoffviB/fv3l9k5XfExKfz9/YuuO5Q2dkSh4mNOzJw5k+bNm7NlyxacTichIQUP17Rs2ZLU1FSWLVvGwIEDSUlJYfHixdSvX9/joETuxrko2W4hd+NcGGN444039MlyparYjpStmLwIYiOa+rRePfXkAwMHDmTGjBkMHDiQuLg43n33XWJjY8/6EfV2rIkOHTpw4MAB9u/fD8BHH33ktmxaWhotWrTAz8+PDz/8EIfDUbSsb9++vPbaa0UxzZgxw+NpJ4BDhw6xbt26onYHDBhQZqxHjx5lw4YNAGRkZGC32xk2bBjvvPMONpsNgD179hRdR1FKVY58Rz7J+ftp7N+OkEB/n9aticIH4uLiOHbsGH379qV58+aEhISc86McFhZG//796dKlC0888YTbukJCQpg9ezYjRoxgwIABtG7d2m3ZyZMnM2/ePPr06cOePXvO+qs/Li4Ou91OmzZt6NatGykpKWUmio4dOzJv3jyio6NJSUnh/vvv91g+KCiIRYsW8eCDDxITE8OQIUPIzc3lrrvuolOnTnTr1o0uXbpw7733WnaXllIXii0nt2PETucmvj3tBDoehXJJTExk5MiRbN++3epQKkS/D+pC9WL823y8/x2e7rqIP3TrdNYyHY9CKaUUG45twpkfxqA2vukxtji9mH2BSU5OZvDgwefM//7772v80YRSFypjDIeydxLsaE/zhr7pMbY4TRQXmLCwMDZv3mx1GEopHzqccRgb6bRv4JsR7UrSU09KKVXDrTywHoB+LbtXSv2aKJRSqob78VACxhHM0La+fSK7kCYKpZSq4Xaf2Qp5renYolGl1K+JooosWbKE6dM9dzGSmJjIwoULfdZmYRfnvpCXl8fVV19NbGwsixYt8kmdSqmKy8jPIN2RRIvgDvj7ue/VoSL0YnYVGTVqFKNGjfJYpjBR3HLLLRVqyxiDMYalS5dWqJ7iNm3ahM1m0wvhSlUza5I2gBgub+a7gYpK0iMKH0hMTKRDhw7cdddddOnShVtvvZUVK1bQv39/2rZty/r16/nggw+YMmUKALfffjsPPfQQ/fr149JLLy3qPG/atGmsXr2a2NhYZs6cWWpbH3zwAaNHj2b48OG0b9+ev/71r0UxdOzYkcmTJ9OtWzcOHz5MZGQkp0+fBmD+/PlER0cTExPDxIkTATh16hQ33ngjPXv2pGfPnqxZs6bUNk+ePMmECRPYvHkzsbGx7N+/n40bNzJo0CC6d+/OsGHDOHbsGAD79+9n+PDhdO/enbi4OH799Vff7Wil1Dm+2bcG4/Tn2nZ9Kq2NWnVE8fL6l/k1xbc/TB2adGBqr6llltu3bx+ffPIJs2fPpmfPnixcuJD4+HiWLFnCSy+9xJgxY84qf+zYMeLj4/n1118ZNWoUY8eOZfr06cyYMYOvv/7aY1vr169n+/bt1K1bl549ezJixAjCw8PZvXs3c+fOPWeApB07dvDiiy+yZs0awsPDSUlJAeDhhx/m0UcfZcCAARw6dIhhw4axa9euc9pr1qwZ//rXv4pis9lsTJw4kS+//JKmTZuyaNEinnrqKd5//33uuece3n33Xdq2bcvPP//M5MmTWblyZZn7Tyl1fjaf2ojJvYQ+URdVWhu1KlFYKSoqiq5dCwYz79y5M4MHD0ZE6Nq1K4mJieeUHzNmDH5+fnTq1IkTJ06Uq60hQ4YQFhYGwA033EB8fDxjxoyhdevW9Olz7l8VK1euZOzYsYSHhwPQpEkTAFasWFE0VgVAeno6GRkZHnuYhYLuxbdv386QIUOAglHvWrRoQWZmJmvXruWmm24qKpuXl1eubVNKeS8zP5MU2280C7zW5x0BFudVohCR4cDrgD/wL2PM9BLLg4H5QHcgGRhnjEkUkSHAdCAIyAeeMMasdK2zCmgB5LiqGWqMOVmRjfHmL//KUrzLcD8/v6JpPz+/UjvEK16+vP1tuesOvLSuwAvrL607cKfTybp164rGt/CWMYbOnTsX9TRbKD09nUaNGul1DKWqyNojCSCGbs0r5/mJQmVeoxARf+At4BqgE3CziHQqUeyPQKoxpg0wE3jZNf80cJ0xpiswCfiwxHq3GmNiXa8KJYnawNuuyL/77jtSUlLIycnhiy++KBpsyJ3BgwezePFikpOTAYpOPQ0dOpQ333yzqJy3P/Dt27fn1KlTRYnCZrOxY8cOGjZsSFRUFJ988glQkFC2bNniVZ1KqfJbujceY/wZ2a5vpbbjzcXsXsA+Y8xvxph84GNgdIkyo4F5rs+fAoNFRIwxm4wxR13zdwAhrqMPVYro6GgCAgKIiYlxezEbYMCAAUycOJHY2FhuvPFGevTw3Clk586deeqppxg0aBAxMTE89thjAMyaNYuEhASio6Pp1KkT7777rldxBgUF8emnnzJ16lRiYmKIjY1l7dq1ACxYsIA5c+YQExND586d+fLLL73ceqVUeW0+tRGT04o+US0qtZ0yuxkXkbHAcGPMXa7piUBvY8yUYmW2u8okuab3u8qcLlHPfcaYq13Tq4AwwAF8BrxgyghGuxkvuOspISHhrCMB9bsL7fugLlxZtiz6LOhHE/sw/nfXKx7LVkU346U9wVHyB91jGRHpTMHpqHuLLb/VdUoqzvWaWGrjIveISIKIJJw6dcqLcJVSqvYruD7hpHuznpXeljcXs5OAVsWmI4CjbsokiUgAEAqkAIhIBPA5cJsxZn/hCsaYI673DBFZSMEprvklGzfGzAZmQ8ERhXebVfN9++23TJ169sX5qKgoPv/8c26//fZKa3fu3Lm8/vrrZ83r378/b731VqW1qZQqv2/2rsEYf65t17vS2/ImUWwA2opIFHAEGA+UfHR4CQUXq9cBY4GVxhgjIo2A/wJPGmOKnuZyJZNGxpjTIhIIjARWVHhrapFhw4YxbNiwKm/3jjvu4I477qjydpVS5fPLyQ04c1rR79KLK72tMk89GWPswBTgW2AXsNgYs0NEnheRwj4p5gBhIrIPeAyY5po/BWgDPC0im12vZkAw8K2IbAU2U5CA/unLDVNKqdoqLS+NZNt+mgV0oW5Q5T8O51ULxpilwNIS854p9jkXuKmU9V4AXnBTbeXe+KuUUrXUysQ1IIZ+F/erkva0ryellKphvtq7CuMIZkynyuvfqThNFEopVYMYY9iesgHJbUu3S8KqpE1NFJWscEyIM2fOnNVZ36pVqxg5cmSZ63tbrio988wzrFjhu3sPnnjiCTp37swTTzzhszqVqq0Oph8kx5wmqv7lBPhXzU+4dgpYyQrHhEhMTOTtt99m8uTJPqnXbrcTEFD1/3wOh4Pnn3/ep3W+9957nDp16qz+r5RSpftq7/8AuDpyQJW1qUcUFfTKK68wa9YsAB599FGuuuoqAL7//nsmTJhQNCbEtGnT2L9/P7GxsUV/OWdmZjJ27Fg6dOjArbfeWtQ54LJly+jQoQMDBgzgP//5T1Fbzz33HPfccw9Dhw7ltttuIzExkbi4OLp160a3bt2KutGYPHkyS5YsAeD666/nzjvvBGDOnDn85S9/KXU7CsfUmDRpEtHR0YwdO5bs7GwAIiMjef755xkwYACffPIJt99+e9EYGhs2bKBfv37ExMTQq1cvMjIycDgcPPHEE/Ts2ZPo6Gjee+89t/tv1KhRZGVl0bt3bxYtWuR2jIysrCzuvPNOevbsyeWXX65dg6gL1srEeJz5jRnVKbrK2qxVRxTHX3qJvF2+HY8iuGMHLvrzn90uHzhwIH//+9956KGHSEhIIC8vD5vNRnx8PHFxccTHxwMwffp0tm/fXtTx3qpVq9i0aRM7duzg4osvpn///qxZs4YePXpw9913s3LlStq0acO4cePOam/jxo3Ex8dTp04dsrOz+e677wgJCWHv3r3cfPPNJCQkMHDgQFavXs2oUaM4cuRI0aBC8fHxjB8/3u227N69mzlz5tC/f3/uvPNO3n77bR5//HEAQkJCirZl2bJlAOTn5zNu3DgWLVpEz549SU9Pp06dOsyZM4fQ0FA2bNhAXl4e/fv3Z+jQoURFRZ3T5pIlS6hfv37RfrnllltKHSPjxRdf5KqrruL999/nzJkz9OrVi6uvvtptj7lK1UZ2p50DWVsIsV9OZHj9KmtXjygqqHv37mzcuJGMjAyCg4Pp27cvCQkJrF69mri4OI/r9urVi4iICPz8/IiNjSUxMZFff/2VqKgo2rZti4gwYcKEs9YZNWpUUbfgNpuNu+++m65du3LTTTcVjS0RFxfH6tWr2blzJ506daJ58+YcO3aMdevW0a+f+9vpWrVqVdQT7YQJE4oSA3BOwoKCxNKiRQt69izoQqBhw4YEBASwfPly5s+fT2xsLL179yY5OZm9e/d6sTcLxsiYMmUKsbGxjBo1qmiMjOXLlzN9+nRiY2O54ooryM3N5dChQ17VqVRtsfnkVhzk0DXsvLttOi+16ojC01/+lSUwMJDIyEjmzp1Lv379iI6O5ocffmD//v1ldk5X/Jy8v79/0bgVpY0dUaj4X9AzZ86kefPmbNmyBafTSUhICAAtW7YkNTWVZcuWMXDgQFJSUli8eDH169f3OCiRu3EuSrZbyN04F8YY3njjjfN6stzdGBnGGD777DPat29f7jqVqi0+2fkdxvhxXdtBVdquHlH4wMCBA5kxYwYDBw4kLi6Od999l9jY2LN+RL0da6JDhw4cOHCA/fsLusX66KOP3JZNS0ujRYsW+Pn58eGHH+JwOIqW9e3bl9dee60ophkzZpR5hHPo0KGiMSY++ugjBgzwfLGsQ4cOHD16lA0bNgCQkZGB3W5n2LBhvPPOO9hsNgD27NlDVlZWmdsO7sfIGDZsGG+88UbRdZxNmzZ5VZ9StcnaY6tx5rRmaMdzT+NWJk0UPhAXF8exY8fo27cvzZs3JyQk5Jwf5bCwMPr370+XLl083gYaEhLC7NmzGTFiBAMGDKB169Zuy06ePJl58+bRp08f9uzZc9Zf/XFxcdjtdtq0aUO3bt1ISUkpM1F07NiRefPmER0dTUpKCvfff7/H8kFBQSxatIgHH3yQmJgYhgwZQm5uLnfddRedOnWiW7dudOnShXvvvbfUUf5K426MjKeffhqbzUZ0dDRdunTh6aef9qo+pWqL41nHOWM/SMug7jQICazStsscj6I60fEoKk9iYiIjR45k+/btVodSIfp9ULXVu7/8m7e2vcyEiDeYOviKcq1bFeNRKKWUstg3v63Emd+Em6Kr9kI21LKL2apsycnJDB48+Jz533//faUeTWzbto2JE88emyo4OJiff/650tpUqrbIsedwIHMz9ez9uLRp1d0WW0gTxQUmLCys6AJxVeratasl7SpVG6w+/BNGbPRq3t+S9vXUk1JKVXOf7foO4wzipi5Ve1tsIU0USilVjRlj+OX0WiSnLX0vvciSGDRRKKVUNbbt1HZyTTLtGvQlKMCan2xNFEopVY0t2P5fjPFjbMfy93TgK5ooqoEvvviiqJ+mikpISOChhx7ySV1KKWsZY/jxyEpM9mWM7HKZZXFooqgGfJUo7HY7PXr0KOr2XClVs+1J3UOm8xiX1u1b5U9jF6eJooKysrIYMWIEMTExdOnShUWLFhEZGcnUqVPp1asXvXr1Yt++fQAcPHiQwYMHEx0dzeDBgzl06BBr165lyZIlPPHEE8TGxhb18VTSFVdcwSOPPEK/fv3o0qUL69evB84do6L4iHiZmZnccccddO3alejoaD777DMAli9fTt++fenWrRs33XQTmZmZVbCnlFLltXD7UowRbuhg3WknqGXPUaxevIfTh337oxfeqj5xf2jndvmyZcu4+OKL+e9//wsUdNQ3depUGjZsyPr165k/fz6PPPIIX3/9NVOmTOG2225j0qRJvP/++zz00EN88cUXjBo1ipEjRzJ27FiPsWRlZbF27Vp+/PFH7rzzzqIH5IqPUbFq1aqi8v/v//0/QkND2bZtGwCpqamcPn2aF154gRUrVlCvXj1efvll/vGPf/DMM89UcE8ppXxt5eEVOHMiGdO1g6Vx6BFFBXXt2pUVK1YwdepUVq9eTWhoKAA333xz0Xthj6zr1q3jlltuAWDixIlnjffgjcI6Bw4cSHp6OmfOnAHOHqOiuBUrVvDAAw8UTTdu3JiffvqJnTt30r9/f2JjY5k3bx4HDx4s51YrpSpbYloiZ+yHaBXcm8b1giyNpVYdUXj6y7+ytGvXjo0bN7J06VKefPJJhg4dCpw9loO78SU8jTvhTfnCaXejvJU2XoQxhiFDhnjsvlwpZb2PdxScpRjd1trTTqBHFBV29OhR6taty4QJE3j88cf55ZdfAFi0aFHRe9++fQHo168fH3/8MQALFiwoGu/B27EqCuuMj48nNDS06OjFnZJjO6SmptKnTx/WrFlTdN0kOzubPXv2lGeTlVJVYOmBb3BkX8LY2C5Wh6KJoqK2bdtGr169iI2N5cUXX+Qvf/kLAHl5efTu3ZvXX3+dmTNnAgVjLcydO5fo6Gg+/PBDXn/9dQDGjx/Pq6++yuWXX+72YjYUnDrq168f9913H3PmzCkztr/85S+kpqbSpUsXYmJi+OGHH2jatCkffPABN998M9HR0fTp04dff/XtOONKqYrZk7KHVPtBWgUNoFmDEKvD0fEoKkNkZCQJCQmEh4f7rM4rrriCGTNm0KNH1XcxXJNUx++DUuX151UvsyRxIf/X/t/c0bdrheurkvEoRGS4iOwWkX0iMq2U5cEissi1/GcRiXTNHyIiG0Vkm+v9qmLrdHfN3ycis6S8J+yVUqoWMsbw/eFlmOy23BBr7d1Ohcq8mC0i/sBbwBAgCdggIkuMMcWfEPsjkGqMaSMi44GXgXHAaeA6Y8xREekCfAu0dK3zDnAP8BOwFBgOfOObzbJWYmLiea/7wAMPsGbNmrPmPfzww2fd9qqUqr02nthEtvM07etfT2gd6x6yK86bu556AfuMMb8BiMjHwGigeKIYDTzn+vwp8KaIiDFmU7EyO4AQEQkGmgANjTHrXHXOB8ZQSxJFRbz11ltWh6CUstDcLf/BOAOZePkIq0Mp4s2pp5bA4WLTSfx+VHBOGWOMHUgDwkqUuRHYZIzJc5VPKqNOr9Wk6yyq8uj3QNV0NqeNdcdXItmduaZzpNXhFPEmUZR27aDk/0iPZUSkMwWno+4tR52F694jIgkiknDq1KlzloeEhJCcnKw/Ehc4YwzJycmEhFh/h4hS52vlwf9hI4NuTa4iJNDf6nCKeHPqKQloVWw6AjjqpkySiAQAoUAKgIhEAJ8Dtxlj9hcrH1FGnQAYY2YDs6HgrqeSyyMiIkhKSqK0JKIuLCEhIURERJRdUKlq6l+bF+G0N+Cu/tdaHcpZvEkUG4C2IhIFHAHGA7eUKLMEmASsA8YCK40xRkQaAf8FnjTGFF2hNcYcE5EMEekD/AzcBryNf3YvAAAcJ0lEQVRxPhsQGBhIVFTU+ayqlFLVxqnsU/yatp46eVfR/9JmVodzljJPPbmuOUyh4I6lXcBiY8wOEXleREa5is0BwkRkH/AYUHgL7RSgDfC0iGx2vQr3wP3Av4B9wH70QrZS6gI2f9unIE7GXDYGP7/q9bRAjX/gTimlajpjDAMWDCc1I4jvb1lMi9BzO/msiCp54E4ppVTlSTi+kXTHUS4NudLnScIXNFEopZTF3v3lI4wjmLsvH2N1KKXSRKGUUhY6k3uGhNM/4J/djWu6RFodTqk0USillIU+2LYYJzaGt76RoIDq+ZNcPaNSSqkLgMPpYNHuj3FkR/HggDirw3FLE4VSSlnk+4P/I9Nxio51ryGicV2rw3FLE4VSSlnk7V/m4bSF8nC/G6wOxSNNFEopZYEDaQfYn/kLDfLjiGtTvZ7ELkkThVJKWWDm+n9hnAFM6voHqvu4bZoolFKqip3OOc2qo0uRzB5M7FXxoU4rmyYKpZSqYu/8Mg+ncTA66mbqB3vTN6u1NFEopVQVyrJl8fm+xTizOvPQoH5Wh+MVTRRKKVWF5m1bhI1sBjb7A80a1IyBtjRRKKVUFcl35DNvx3wc2VH86YohVofjNU0USilVRRbu/JRsZzJd693IpU3rWx2O1zRRKKVUFchz5PHO5vewZ7fmL1eNtjqcctFEoZRSVWDBjsVkO1OIqTeOrhGNrA6nXDRRKKVUJcu15/Luln9iz4rimatHlb1CNaOJQimlKtm8bR+R40ylW8PxdLo41Opwyk0ThVJKVaL0/HRmb5uNPasNzw65zupwzosmCqWUqkT/WP8Oec4sBjS5nXbNG1gdznnRRKGUUpXkSOYR/rP/Y5wZ3Xn+mqFWh3PeNFEopVQleW71qzidwrjL7qZFaB2rwzlvmiiUUqoSbDqxiZ9Ofk9AxhX83+BeVodTIZoolFLKx+xOO39a9SxOWygP9binRvQQ64kmCqWU8rH3t33I8dwDNLeNY1Kf9laHU2GaKJRSyodOZJ3gnc1vY89szz9GTMDfr3qPXucNrxKFiAwXkd0isk9EppWyPFhEFrmW/ywika75YSLyg4hkisibJdZZ5apzs+tVvQeNVUopLzz144vYnHaGt7iP2EsaWx2OT5SZKETEH3gLuAboBNwsIp1KFPsjkGqMaQPMBF52zc8FngYed1P9rcaYWNfr5PlsgFJKVRff/PYtP5/8gYD0oTw3fJDV4fiMN0cUvYB9xpjfjDH5wMdAya4PRwPzXJ8/BQaLiBhjsowx8RQkDKWUqrWSc5J5Zs3zOHJa8uygKYTWDbQ6JJ/xJlG0BA4Xm05yzSu1jDHGDqQBYV7UPdd12ulpEan5J/KUUhckYwzT/vccOfYsetafzJiYCKtD8ilvEkVpP+DmPMqUdKsxpisQ53pNLLVxkXtEJEFEEk6dOlVmsEopVdW+2v9ffjqxioC04fxjzDBq29+93iSKJKBVsekI4Ki7MiISAIQCKZ4qNcYccb1nAAspOMVVWrnZxpgexpgeTZs29SJcpZSqOofTD/Pc2udxZF/CC1dNIax+sNUh+Zw3iWID0FZEokQkCBgPLClRZgkwyfV5LLDSGOP2iEJEAkQk3PU5EBgJbC9v8EopZaV8Rz73LX+EfDsMavwoI6Nr1ymnQmU+LmiMsYvIFOBbwB943xizQ0SeBxKMMUuAOcCHIrKPgiOJ8YXri0gi0BAIEpExwFDgIPCtK0n4AyuAf/p0y5RSqpK9uG4Gh7L20CjrbmbceoXV4VQar54rN8YsBZaWmPdMsc+5wE1u1o10U21370JUSqnq55vflvGf/R/hSB3AP8fdTr0a3k2HJ/pktlJKldPO5J08ufop7NmtebLP43Rs0dDqkCqVJgqllCqH0zmnufvbB7DZ6nBN02lM6H2p1SFVOk0USinlpRx7Dncvm0JaXhqXOR9i+ph+te5W2NJoolBKKS/YnDamrHiMfWk7qZs2kbm3jCYo4ML4Cb0wtlIppSrAGMOTPz7D+hPxkHw9H46/q1Y+L+FO7b1Mr5RSPmCM4W8/v8K3B7/GkTyE+Tc+TPuLGlgdVpXSRKGUUm4YY5j+8yt8tPvf2FL78dY1f6JHZBOrw6pymiiUUqoUxhhe+OlvLN7zEbaUfky/4mkGd7zI6rAsoYlCKaVKsDvtPLPmeb767XNsKXG8cuVTjIot2Wn2hUMThVJKFZNty+bB7x9l/Ym12JKv4h9XT+Xa6IutDstSmiiUUsrlVPYp7vr2fn5L24vz1I28fd39XNWhudVhWU4ThVJKAZtObuLBFY+SlpdOQPIfmX/zJLpGhFodVrWgiUIpdUEzxrBg1wJe3TADe34jwrMf5993jqFVk7pWh1ZtaKJQSl2wUnNTeWbNX1mV9D32jI4MbPQgf7+tL/VrcU+w50P3hlLqgvRj0o/8+cenSctPI//0NTze6x7uirvsgui7qbw0USilLigpuSnM2PAPvvrtSxy5zWmc/X/MumkE3VtfeA/SeUsThVLqguA0Tj7b+xkzNswk25ZFXvIgro+6k2dGRNfqQYd8QfeOUqrWW3d0HTM2zGTPmV3Ys6JokjuFl64bwqB2Ta0OrUbQRKGUqrW2ndrG3xNeY+PJ9RhbIxzJ47m3203cd8VlhAT6Wx1ejaGJQilVqxhjWHd0Hf/a9j4bTvwMjnrknR7JsFbX88T1XbgkTG97LS9NFEqpWiHHnsPyxOXM3T6P/Wl7wd6AvJTh9Gt6HVMnxtb6ca0rkyYKpVSNtjN5J5/t+Yyv9v+XHEcWzrxm2FJuZHCra7j/5vZERzSyOsQaTxOFUqpGMcaw78w+lh9czje/fcvBjANgArGldSEwuw83dozjrhsv01NMPqSJQilV7eU58th0chNrj67lu8SVJGUeBCPYsyOxZ4yma+ggbh3QkWu7tqBOkF6k9jVNFEqpaiffkc/O5J1sObWFtUfWseFEAjZnHhj/guSQPoaour25rnN7ro1uwWVN61sdcq2miUIpZSmb08bBtIPsPbOXrae2sunkFnan/Ird2AAw+c2wZXbHZLcjOrwbV3ZsxTVdLuJSTQ5VRhOFUqpKZNmyOJxxmMMZhzmUfoi9Z/ayK3kPh9ITi5ICJhBHTkscOX1x5FxC63odGRB1KXH9m9LnsjDtrM8iXu11ERkOvA74A/8yxkwvsTwYmA90B5KBccaYRBEJAz4FegIfGGOmFFunO/ABUAdYCjxsjDEV3iKlVJXLtmVzOuc0p3JOcSr7VMF7zilOZJ3gYPphDqcfJt125uyV7I2w5zbHkdsPZ95FNPCLoEuzdvRo25TLL2lE7CWNaBgSaM0GqbOUmShExB94CxgCJAEbRGSJMWZnsWJ/BFKNMW1EZDzwMjAOyAWeBrq4XsW9A9wD/ERBohgOfFOxzVFKlZfTOMm155JtzybHllPwbv/9PSM/g7S8NNLy0kjPTyc9L50zeWmk5p7hTF4aaXlnyHFknVuxCQBHQ+x5TXDmt8PYmuDMD6OefzMuqd+KDs2b0b5dAzpc1JD2FzWgaYPgqt945RVvjih6AfuMMb8BiMjHwGigeKIYDTzn+vwp8KaIiDEmC4gXkTbFKxSRFkBDY8w61/R8YAxlJIq8nCwO7Fh31ryig5ASPQMXHZqc02NwYXnvVjBuypfZbollpviSYnWddRDltnvjYuXPquesgEqvnxIHaa5l7uaXnF1mPSUPAsuo/5z5AFJKPYULSovFzW4qtW5P5T1tq7t/i1JmG1N6eSMGJ+AUg1PAicFpnDiNE4dx4MSJ0+kseDfnvhzGUer84stsThs2h63g3fXKd+SfNW1z2Mhz5JPvsJHvKptrzyXXnkOuI4d8Z17p21rKjhRTF+Oog8NeB+Ooi3E0xThaY+wNcdobgL0hoUFhNKvblIsaNOGixnW4pEldLmlSl9ZhdWnVpC6hdfQooabxJlG0BA4Xm04CersrY4yxi0gaEAac9lBnUok6W5YVSN7h0+x7cK4XIStV/RTmJaefa1pcSUwK8o+/693PNc8pBesUljOlTDsEnH6C009wiOD0w/Xuh0MEhwThkGAcfoJT/HCKHw4/P+zih80/AJsEYPMrfAVh9wskXwKxSxBO/2AC/IMI9g+hbkAd6gYFUycokDqBftQN8qdOiD8hgf7UDQqgYZ1AGoQEUC/IH3+/UrJpqgNSMzhMxlk/Jqpm8CZRlPanVcm/xbwpc17lReQeCk5R0Sq8HXvajfdQrVKqkL/r5ZZxvZze1mhzvQrYgUzX6+T5BKhqDG8SRRLQqth0BHDUTZkkEQkAQoGUMuqMKKNOAIwxs4HZANFdu5oxT0SVVqrURso+kVNyfvnqcduulL6o8OTLueWl1PMg7svjprzHht2faymxjrgtX7Sg1Llu55uS9Z91zqyUen5f59wzOq755/yruD2P5IaHv2O83E9lljfOgnWcTtdnJzgdBZ8LX4XLTPH5joI6na534/h9PZy/L3PaC16OfHDYfn93Fk4XzisoY+z5mPw8TH4+zrw8THY2JjcXZ14ezjwbTrvgtINxCMYuOO1+OB2CI98Ph01w5vnhsPvjsPnjzKP0BOPvh3/jUALCmxHQvDmBF7ckMKIlQRERBLZsSUCzZoi/PhBX1aa8V7H1vUkUG4C2IhIFHAHGA7eUKLMEmASsA8YCKz3dwWSMOSYiGSLSB/gZuA14o6xAgoKDaXlZaYlCKVUhTifYsiE/C2xZBe/52ZCfATlnICf1rJfJTsGkp+BITcF+Ohlbei72HD/s2f7Yc45hP7kH26FAcjL9yXb83owEBBDYqiUhHTsT3KEDIR3aE9y+AwHNmuoQpNVYmYnCdc1hCvAtBUey7xtjdojI80CCMWYJMAf4UET2UXAkUXR+SEQSgYZAkIiMAYa67pi6n99vj/0GveNJKev4+UFw/YKXF1yXUfADAoE6eZmQeQLSj0LGccg4BulHMCkHsB/aT37SMfLTDbYMf/IyMsj5MZH0pUuL6vNv0oi63XtQt0cP6nTrTkjHDkiAPjNRXUhNenShR48eJiEhweowlFLl5XRAWhKk/Aan98KJbTgSt5K7dx95yYac5EBykkOwZRZc6ZeQYOr17k39K6+k/qBBBLZoYfEG1GwistEY0+O819dEoZSyjMMOKfvhyC9w+CdsO9aQs+cwWSeDyTpepyhxBLe9jIYjRtJw5EiCIiLKqFSVpIlCKVW7ZCXDobWYPcvJ37CCzH1pZCTVIed0EAB1YroSeuNYQq+7Dr86dSwOtmbQRKGUqr2MgePbYPdSbGsWkbblJGkH65KfFoBfg3o0umkcTW69hcCWZT6GdUHTRKGUujAYA0d/wWxZRM53i0nZDhlJdcDPj0bXX0/45MkEXnyx1VFWS5oolFIXnvws2LoI24p3SF5znDP764OfP43Gj6fpgw/iHxpqdYTVSkUThZ8vg1FKqSoRVA963Eng1PVc9Oq7XHZ7KKGt00ldsID9Q4dw5j+fY5xeP3KuyqCJQilVc4lAhxEEPr6WFi/PJOoGf4ICkjn25z9zaNJEbMePWx1hraCJQilV8/n5QZcbCXl2Pa2fu42LemWQs2kjv40cQfq3y62OrsbTRKGUqj2C6iJDnqXxjO+IuqURQUFnOPLww5x89RWMw1H2+qpUmiiUUrVPs44E/+l/RD51E43aZJE8Zy5J99+LM6uUAZZUmTRRKKVqp4BgZMR0Lnrp7zTvmUXm6jUcmjQBR3q61ZHVOJoolFK1mkTfRJO/fU7Lq+zk7NzFoQk3Y09NtTqsGkUThVKq9ovoTsPn/kurIYa8/ftJuut2nDk5VkdVY2iiUEpdGJq2o/4zS7n4SiFnx26OPPQAxm63OqoaQROFUurCEXYZDZ/+jOa98slcvY6Tr063OqIaQROFUurC0rwTTf46j0Ztc0iZt4CM71ZYHVG1p4lCKXXhiYqj+dQnCGmSz9E//R+2o0etjqha00ShlLog+fWfTMtJPTC2XI5NfYSa1EFqVdNEoZS6MIkQNGk2zXoJWRu2kfbZp1ZHVG1polBKXbhCQmn8+AzqhOdx8m8v4sjIsDqiakkThVLqgiadRtJ87OU4svJIfnOm1eFUS5oolFIXvDqT/k5oZC4pCxZhO3bM6nCqHU0USinVOJKmk0ZjHA6S3/y71dFUO5oolFIKCBz1NKFRNs4s+Ub7gipBE4VSSgHUCyNs7FCMzUnq3PesjqZa0UShlFIuwddPpd5FeZz55BMd6KgYTRRKKVWocSSN+rfDnppN1rq1VkdTbWiiUEqpYur/4R78g5ykzdfTT4W8ShQiMlxEdovIPhGZVsryYBFZ5Fr+s4hEFlv2pGv+bhEZVmx+oohsE5HNIpLgi41RSqmK8us8kgaRTjJ/2oQzP9/qcKqFMhOFiPgDbwHXAJ2Am0WkU4lifwRSjTFtgJnAy651OwHjgc7AcOBtV32FrjTGxBpjelR4S5RSyhcCgqjfrxvOfCfZa9dYHU214M0RRS9gnzHmN2NMPvAxMLpEmdHAPNfnT4HBIiKu+R8bY/KMMQeAfa76lFKq2qp3zXgkwEnGko+tDqVa8CZRtAQOF5tOcs0rtYwxxg6kAWFlrGuA5SKyUUTucde4iNwjIgkiknDq1CkvwlVKqYrx6ziUes3sZCf8YnUo1YI3iUJKmVeyP153ZTyt298Y042CU1oPiMjA0ho3xsw2xvQwxvRo2rSpF+EqpVQFBdWjTruLyD+ZiT0lxepoLOdNokgCWhWbjgBKjvJRVEZEAoBQIMXTusaYwveTwOfoKSmlVDVSt1t3ALJ/1ttkvUkUG4C2IhIlIkEUXJxeUqLMEmCS6/NYYKUpGAVkCTDedVdUFNAWWC8i9USkAYCI1AOGAtsrvjlKKeUbIf2Hg58hd813VodiuYCyChhj7CIyBfgW8AfeN8bsEJHngQRjzBJgDvChiOyj4EhivGvdHSKyGNgJ2IEHjDEOEWkOfF5wvZsAYKExZlklbJ9SSp0Xv8heBDewk7dnt9WhWE5q0vB/PXr0MAkJ+siFUqpqHLmmHTln6tFm3SarQ6kQEdlYkccQ9MlspZRyI6hlGLbUXJy5uVaHYilNFEop5UbgxQV389tPnLA4EmtpolBKKTcCWxQkCtvRIxZHYi1NFEop5UZAy4K7++2H91kcibU0USillBsBLS8FwH70oMWRWEsThVJKueHX5CIAnOlnLI7EWpoolFLKDakbigQ4cWakWx2Kpcp84E4ppS5YwQ0I75JLSJdIqyOxlCYKpZRyp9ElhH98YV+fAD31pJRSqgyaKJRSSnmkiUIppZRHmiiUUkp5pIlCKaWUR5oolFJKeaSJQimllEeaKJRSSnlUo0a4E5EM4HzGJQwF0s6jjDfzik+X9rn4vHDgtNdRe47Dm+W+jP98Y/cUX1nLa3v87raltDKV9d3xVMbTvi45Xdbnmhh/bfm/C9DeGNPA+7BLMMbUmBcFY3Sfz3qzz6eMN/OKT5f2ucS8Sonf3XJfxn++sWv87ue52xY321Gl3/2y9rU3+76mx19b/u9WJP7C14Vy6umr8yzjzbyvyvjsTdtlKasOd8s1/uodv7tt8VSmvM73u1/a/PLue2/b98TK+Kvzd6fkdGXFD9S8U08JpgIDhFutJsdfk2MHjd9qGr+1Khp/TTuimG11ABVUk+OvybGDxm81jd9aFYq/Rh1RKKWUqno17YhCKaVUFdNEoZRSyiNNFEoppTyqFYlCRPxE5EUReUNEJlkdT3mJyBUislpE3hWRK6yO53yISD0R2SgiI62OpbxEpKNr338qIvdbHU95icgYEfmniHwpIkOtjqe8RORSEZkjIp9aHYs3XN/1ea59fqvV8ZTX+exvyxOFiLwvIidFZHuJ+cNFZLeI7BORaWVUMxpoCdiApMqKtTQ+it8AmUAINTN+gKnA4sqJ0j1fxG+M2WWMuQ/4A1Clt0D6KP4vjDF3A7cD4yox3HP4KP7fjDF/rNxIPSvndtwAfOra56OqPNhSlCf+89rfFXlazxcvYCDQDdhebJ4/sB+4FAgCtgCdgK7A1yVezYBpwL2udT+tgfH7udZrDiyogfFfDYyn4IdqZE2L37XOKGAtcEtNjN+13t+BbjU4/ir9v1uB7XgSiHWVWWhVzOcb//ns7wAsZoz5UUQiS8zuBewzxvwGICIfA6ONMX8Dzjm1ISJJQL5r0lF50Z7LF/EXkwoEV0ac7vho/18J1KPgP1GOiCw1xjgrNXAXX+1/Y8wSYImI/BdYWHkRn9OuL/a/ANOBb4wxv1RuxGfz8fffMuXZDgqO+iOAzVSDszJQ7vh3lrf+arGRpWgJHC42neSa585/gGEi8gbwY2UG5qVyxS8iN4jIe8CHwJuVHJs3yhW/MeYpY8wjFPzA/rOqkoQH5d3/V4jILNe/wdLKDs4L5f3+P0jBUd1YEbmvMgPzUnn3f5iIvAtcLiJPVnZw5eBuO/4D3Cgi7+DDbjIqQanxn8/+tvyIwg0pZZ7bJwONMdmApec4Syhv/P+h4MtXXZQr/qICxnzg+1DOS3n3/ypgVWUFcx7KG/8sYFblhVNu5Y0/GagOCa6kUrfDGJMF3FHVwZwHd/GXe39X1yOKJKBVsekI4KhFsZwPjd9aGr+1anr8hWr6dvgs/uqaKDYAbUUkSkSCKLhQusTimMpD47eWxm+tmh5/oZq+Hb6Lvxpcrf8IOMbvt7b+0TX/WmAPBVftn7I6To3f+lg1/ur3qunx15btqOz4tVNApZRSHlXXU09KKaWqCU0USimlPNJEoZRSyiNNFEoppTzSRKGUUsojTRRKKaU80kShlFLKI00UqlYTkUYiMvk81/1IRLaKyKM+iOPPJabXVrROpaqKPnCnajVX18tfG2O6lHO9i4CfjTGtS1kWYIyxl7O+TGNM/fKso1R1oUcUqrabDlwmIptFZK+IrJACLURkjyshlGY50My1XpyIrBKRl0Tkf8DDInKdiPwsIptcdTYHEJH6IjJXRLa5jkZuFJHpQB1XXQtc5TJd7yIir4rIdtc641zzr3C1+amI/CoiC1zjTihV5fSIQtVqJY8oROTfwE/AcApGE/zIy/VWATuNMZNd042BM8YYIyJ3AR2NMf8nIi8DwaZgfA5EpLExJrXkEUXhtIjcSEGXz8OBcAo6cusNtAe+BDpT0OPnGuAJY0y8z3aOUl6qruNRKFVZHgS2Az+5SxIeLCr2OQJYJCItKBhm8oBrfuGwsAAYY1LLqHMA8JExxgGccB2x9ATSgfXGmCQAEdkMRAKaKFSV01NP6kLTEnACzUWkvN//rGKf3wDeNMZ0Be4FQlzzBS8GeSrG0+mkvGKfHegfdsoimihUbZcBNICCi9DAXOAWYBfwWAXqDQWOuD5PKjZ/OTClcMJ1igrAJiKBpdTzIzBORPxFpCkwEFhfgbiU8jlNFKpWMwXDPq4Rke0U9NW/2hizmoIkcZeIdDzPqp8DPhGR1cDpYvNfABq7Lk5vAa50zZ8NbC28mF3M58BWYAuwEviTMeb4ecakVKXQi9lKKaU80iMKpZRSHunFMXVBE5FhwMslZh8wxlxvRTxKVUd66kkppZRHeupJKaWUR5oolFJKeaSJQimllEeaKJRSSnmkiUIppZRH/x/lGQKFHAfzuwAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"pdf2.plot(x='tx_fraction',y=['mint_price','withdraw_price','mint_price_fee','withdraw_price_fee','spot_price'], logx=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"pdf2['bond_to_mint_slippage'] = (pdf2['mint_price']-pdf2['spot_price'])/pdf2['spot_price']\n",
|
|
"pdf2['burn_to_withdraw_slippage'] = (pdf2['spot_price']-pdf2['withdraw_price'])/pdf2['spot_price']\n",
|
|
"\n",
|
|
"pdf2['bond_to_mint_slippage_fee'] = (pdf2['mint_price_fee']-pdf2['spot_price'])/pdf2['spot_price']\n",
|
|
"pdf2['burn_to_withdraw_slippage_fee'] = (pdf2['spot_price']-pdf2['withdraw_price_fee'])/pdf2['spot_price']"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"ticks=[10**k for k in range(-6,1)]\n",
|
|
"bound = .026 #need to figure out this analytically in terms of kappa and phi"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Text(0.5, 0, 'Transaction size as percent of the asset Burned or Bonded\\nnormalizd units: bonded/Reserve, burned/Supply')"
|
|
]
|
|
},
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAADvCAYAAAB10vVMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl8Tmf+8PHPN5FFrJHYQiRI7EsQYg0tVWrpTvXHMAsdZjrV1kxbv7a0o9rHox3ddNqpUssY2j7tlKJU7RQJsVXtQewiQUhk+z5/nJP0TnInuUO4hev9enm155zrXNd17nNy55trO6KqGIZhGIZhGEZ+Hu6ugGEYhmEYhnF7MoGiYRiGYRiG4ZQJFA3DMAzDMAynTKBoGIZhGIZhOGUCRcMwDMMwDMMpEygahmEYhmEYTplA0TCKICL1RCRFRDyv49zxIvLpTarXJBE5LyKnb0b+N5OIzBKRSbeoLBWRsFLKa4+I9Cji+GoR+UMJ8osXkV6lUbe7xc38mSphPYr9XijNZ88w3MkEisZdx/4FnWp/0ef8C3KWVlWPqWpFVc0qJs8eIpKQ79zJqupy4OAqEQkGngeaqWqtUspTReSK/VmcF5H5IlK1NPK+HYnIEBH5Od++FYXsexFAVZur6mp7/0QRmXvLKnwXusU/Ux+LyHSHbS/758HZvo75vxdK+kfCDda12GevJN9xhlEcEygad6sB9hd9zr+T+ROISDl3VMwFIUCiqp4t6YnFXFNrVa0INAD8gYnXV70yYQ3QVESqQ+7n0hrwy7evE7D2VlfuNn727lRrge4O25HAMSA63z6A2FtVqRtU7HecYbjCBIqGYRORULtl7fcicgz40WFfOTtNNRGZKSInRSRJRL4RkQrAUiDI8a/3/H/5i8hAu/sy2W6BaOpwLF5ExonIThG5KCILRMTXSR17ASscyprlYt4viMhO4EpxQYiqXgK+BZo55BEkIt+KyAUROSgiIx2OTRSRhSIyW0Qu2/WIdDjeRkS22ccWAAWuyyFtQxH5UUQS7ZbNeY4tm8V9TiLyVxE5Zd+f3xVxjSeBw/waCLQF9mAFkI77PIAYh7J7iUgfYDww2L4HOxyyDhGRDfa1LheRQIe6DRORo/a1/W++654oIl+KyFwRuQSMEJEOIrLJvqenROQDEfG2078mIu/b/5/T0jXF3i4vImki4u/k8/UXkcUics5+fheLSF2H4wWeb4djD4pInIhcEpFD9udQ3LORZ5iB5GslLOx+uvIzJb/+bA4XkWP28/K/DnmXF5HP7evYKyJ/k3wtlA5y/nDIuV/dgP8AFfLt26SqGQ5llxORN+xjH9j1/MAh314icsCuw4ciInbdPETkZft5OGv/7FRx9hk5fE7FPXsuEZGOIrLRfq52iMNwChGpIiIz7OfthFhDXEo87Ma4s5hA0TAK6g40Be53cmwO4Ac0B2oA/1DVK0Bf4GRhf72LSCNgPjAWqA4sARbl/OK3DQL6APWBVsCI/IWr6g/5yhrhYt5DgH5AVVXNLOri7QDjIeAnh93zgQQgCHgMmCwiPR2OD8T6xVoVK8j8wM7LG/jG/tyqAV8AjxZVPPCmXU5TIJiCLZtOPyf7l+g44D4gHChu/N9afg0Ko4F1wPp8+35S1XTHk1R1GTAZWGDfg9YOh58Efov1bHjb9UFEmgEfAcPsawsA6pLXg8CXWJ/hPCALeBYIxGrZ7AmMsdOuAXrY/98eOM2vLWKdgH2qmuTkmj2AmVit0vWAVOx7ZSvwfNv17wDMBv5q1y8aiLfPKe7ZKE6B++nKz5SDrkBjrM/nVfn1j6QJQChWC/l9wNDCKqCqCcBRrIAPfn0eNubbV6B1WVX/1077Z7uef3Y43B/r/rS2rzPnO2WE/e8eu34VyXsfCqtnUc9esUSkDvAdMAnr53Ec8JXYrejA50AmEAa0AXoDt6RL3bh9mUDRuFt9Y/9FnezYamKbqKpXVDXVcaeI1Mb65fVHVU1S1QxVXeNieYOB71R1hapmAFOB8kBnhzTvqepJVb0ALAIiSjnv4/mvKZ9tIpIMnMcKIj6G3DGRXYEXVDVNVeOAT7GCnhzrVXWJPWZrDtYvRoCOgBcwzf68vgS2FlYBVT1oX8c1VT0HvEPeLsGca3H2OQ0CZqrqbjvQmFjEtULe1sNuWL/s1+Xb5+r9zTFTVffbn/NCh7o9BixW1bWqeg14BcjOd+4mVf1GVbNVNVVVY1X1J1XNVNV4rPuR81lsAsJFJMCu7wygjohUtNM4rbeqJqrqV6p6VVUvA2/k5FnM8/174DP73mSr6glV/cXFZ6M41/vc53jN/rx2ADv49dkbBEy2ryUBeK+YfNYA0SLiAXTA+kNpncO+LpT8eXhLVZNV9Riwil+v7X+Ad1T1sKqmAC8BT0jpDjlw9h03FFhi/6xmq+oKrBbzB0SkJtb9H2t//53F+kPhiVKsk1EGmUDRuFs9pKpV7X8P5Tt2vJBzgoELhbTUFCcIq8UCAFXNtsup45DGcQbzVaxWhtLKu7BrctRWVatidQ1/BKwTq1s3COu6LzukPVpM3X3tX3pBwAlV1XznOiUiNUTkP3a31yVgLlaLmqPCPqcg8l5noeXY1gKt7BbUjliB2i9AbXtfV0o+PtGlutmBbGK+c/PcIxFpZHcNn7Y/i8nYn4UdiMZgBXnRWAHMRqxgptBAUUT8xJq4cdTOcy1Q1e5eLOr5DgYOOdnvyrNRnOt97os7P//zUNzPQE4Lc0vgsKpe5dcW5pZYf3xtLsW6OT6fR4FyQM0S5l8UZ99xIcDjDgFkMtZzXts+5gWccjj2MVbLsnEXM4GiYRSkhew/DlQT57OBCzsnx0msL2IA7LFKwcCJ66phyfMurn6/JrRaJT/F6gpsYedfTUQqOSSrh2t1P4XV0iX5zi3Mm3ZdW6lqZawWECkiff6ygl0sB1U9jHVto4BjdssOWK11o7B+qf9U2Oku1slp3UTED6v7uag8PwJ+AcLtz2I8eT+LNcC9WF2EW+3t+7FawwoLcJ/H6qaNsvPMaT0Vin6+jwMNnewv7tm4gtWVnaMks/RL+hnnd4q83fvBhSW0rcVqjeyH1ZII1rjVYHvfVlVNK+TcktY1z88s1meWCZwh32dmB/HVHdLeyOdyHJjjEEBWVdUKqvqWfewaEOhwrLKqNr+B8ow7gAkUDcNFqnoKa4D9dLEmBXiJSM4v2jNAQM6AdCcWAv1EpKeIeGH9wr6G1Qp0o0o1b/sX02+xxq8dVtXjdl5vijXRoBVWV+Q8F7LbhPUL8C/2wP9HsAKZwlQCUoBkezzVX0tQ9YVYk0Ca2YHYBBfOWQc8x6+BAVitSM8BMUV01Z8BQu0uSVd8CfQXka72uM3XKf77txJwCUgRkSbA6HzH1wC/AX62x1GuxhpPdsTuti8sz1Ssz7caDp9RMc/3DOC39jPmISJ1RKSJC89GHFa3ZjURqYU1jtZVxf1MFWch8JJ9LXWAPxeVWFUP2mU+g/082C3hm+19RbUun8Eaa+iq+cCzIlLfHi6QM+4wE9iP1SLfz/55fhnwyVdWSZ49R3OBASJyv4h42vesh4jUte//cuBtEals3+eGIpJ/6IdxlzGBomGUzDAgA6ul5yz2Lz67y3I+cNjutsmzZpmq7sNqHXsfawzgAKzlK/JMlLgepZj3DhFJAZKA4cDD9rgxsCbDhGK1hHwNTLDHNxVXt3TgEayB+0lY4yn/XxGnvIY12/gi1qD7otLmL2spMA34ETho/7c4a7C61tY77Ftn7ysqMPjC/m+iiGxzoW57gD8B/8Zq6UrCmgBSlHFYk2MuA/8CFuQ7vhGrOzSnnj8DacXUe5p9znms1tJl+Y4X9nxvwfrj4R9Y92YNv7aIFfVszMEaNxiPFYTkv4ZCFfcz5YLXsT7jI8APWMH6tWLOWYvVerfBYZ8rz8O7wGNizW4ubiwkwGdYn81au35pwNMAqnoRa9LSp1gts1fI+6yU6NlzZAf2D2K1Tp/DakX8K7/GAr/BmoT1M9Yz+iVWt7RxF5O8Q4cMwzAM484jIqOBJ1TVtJAZRgmYFkXDMAzjjiMitUWki92F2hhrSMbX7q6XYZQ1ZvV/wzAM407kjTVrtz6QjLXO5/QizzAMowDT9WwYhmEYhmE4ZbqeDcMwDMMwDKdM13MJBQYGamhoqLurYRiGYRiGUazY2Njzqlq9+JTOmUDRRSIyABgQFhZGTEyMu6tjGIZhGIZRLBEp7i1VRTJdzy5S1UWqOqpKletd+9UwDMMwDKNsMYGiYRiGYRiG4ZQJFF0kIgNE5JOLFy+6uyqGYRiGYRi3hBmj6CJVXQQsioyMHJn/WEZGBgkJCaSlFfa+eMO4Pfj6+lK3bl28vLzcXRXDMAyjDDCBYilISEigUqVKhIaGIiLuro5hOKWqJCYmkpCQQP369d1dHcMwDOMmK421sk2gWArS0tJMkGjc9kSEgIAAzp075+6qGIZhGDfBucvX2JmQzM6Ei+xMSGbXiRsfLmcCRRc5Lo9TyPFbWyHDuA7mOTUMw7gzXE7LYNeJi+w4fpEdx5PZmZDMyYvWEDgPgfAalejRuAaxN1iOCRRdVNQYRcMwDMMwjJslPTObX05fYsfxZOKOX2RHQjKHzqWQ07McEuBHZGg1WtWtQqu6VWkeVJkKPlaI9/YNlm0CRcMwDMMwjNtEdrZyJPEKO44nW/8SLvLzyUukZ2UDEFjRm9Z1qzKwdRCtg6vSqk4V/Ct437T63NWBoohUAKYD6cBqVZ3n5ipdt/j4ePr378/u3btLNd/Q0FBiYmIIDAwscCw5OZl///vfjBkzplTLdPTPf/4TPz8/fvOb3xSaJi4ujpMnT/LAAw+UKG/HzywmJobZs2fz3nvv3WiVDcMwDMNlZy6lEZcbFFrjCy+nZQLg5+1JyzpV+G2XUCsorFuFOlXL39JhRHdcoCginwH9gbOq2sJhfx/gXcAT+FRV3wIeAb5U1UUisgAos4GiOyQnJzN9+vSbGij+8Y9/LDZNXFwcMTExJQ4UHUVGRhIZGXnd5xuGYRhGcS6lZbAr4WJuYLgz4SKnL1njCst5CE1qV8ptKWxdtyphNSri6eHeseV3XKAIzAI+AGbn7BART+BD4D4gAdgqIt8CdYFddrKs0ij8tUV7+PnkpdLIKlezoMpMGNC82HSZmZkMHz6c7du306hRI2bPns2mTZsYN24cmZmZtG/fno8++ggfHx9CQ0MZPnw4ixYtIiMjgy+++IImTZqQmJjIkCFDOHfuHB06dChyav2LL77IoUOHiIiI4L777mPKlCn87W9/Y+nSpYgIL7/8MoMHD3Z67urVq5kwYQI1a9YkLi6ORx55hJYtW/Luu++SmprKN998Q8OGDZk4cSIVK1Zk3Lhx9OjRg6ioKFatWkVycjIzZswgKiqKV199ldTUVNavX89LL73ktMw1a9bwzDPPANaEjrVr1xaoz9SpU1m8eDETJ07k0KFDnDhxguPHj/O3v/2NkSNHsnr1al599VUCAgLYt28f0dHRTJ8+HQ8PD0aPHs3WrVtJTU3lscce47XXXgNgyZIlPPfccwQGBtK2bVsOHz7M4sWLuXLlCk8//TS7du0iMzOTiRMn8uCDDxZ7jw3DMIyyITtbOXguhW1Hk9h+LJntx5M4cPbXcYX1AyvQsUE1KygMrkqz2pXx9fJ0b6WduOMCRVVdKyKh+XZ3AA6q6mEAEfkP8CBW0FgXiMPFt9Ts27ePHj165Nk3ZcoUALKyskhKSiI19Vqe4+XKeeHl5YWqkpaWWiBPLy9vypUrV+jxa9d8AGsZnqNHC77bu3bt2rl1mzBhAuPHj8/9t2DBApYsWUKbNm148sknee211xg+fDgZGRlkZWUxf/58li5dytSpU3nnnXcYO3YsTZo04f3332f16tV88sknuQuJJycnc+bMmdxyR44cybZt29iyZQve3t7MmjWLjRs3snDhQpKSknj88ccJCgqiY8eOeHl5cf78eRITEwE4duwY27dv57vvvqNdu3aEh4czZMgQ5syZw+zZs3n99dcZP34858+fp2LFigCkp6dz9uxZ5syZw5o1a3jhhReYNWsWr7/+OjExMYwfP57Lly+zb9++3Dp6enoSFhbG1KlTmTBhAs2aNePKlSscO3aM06dPk56enps2NTWVffv2cf78ebZu3cqCBQvIysriwQcfpF+/fpw+fZrNmzfz3XffERQUxMiRI/n4448ZPXo0b7zxBsnJyaSlpTFixAjatWtHaGgof/jDH9iwYQP169enf//+pKSksG/fPt555x2aNm3KpEmT8PPzo0OHDoSEhFC+fPk897ZKlSrUqlUr9/7m5+/vT40aNcjKyuLgwYMFjgcEBBAYGEhGRgaHDx8G4PTp04wePRqA0aNHM3jwYI4fP86wYcMKnP/8888zYMAA9u3bx1NPPVXg+Msvv0yvXr2Ii4tj7NixBY5PnjyZzp07s3HjRsaPH1/g+LRp04iIiOCHH35g0qRJBY5//PHHNG7cmEWLFvH22wWHZM+ZM4fg4GAWLFjARx99VOD4l19+SWBgILNmzWLWrFkFji9ZsgQ/Pz+mT5/OwoULCxxfvXo1QO4fEY7Kly/P0qVLAfj73//OypUr8xwPCAjgq6++AuCll15i06ZNeY7XrVuXuXPnAjB27Fji4uLyHG/UqBGffPIJAKNGjWL//v15jkdERDBt2jQAhg4dSkJCQp7jnTp14s033wTg0Ucfzf3Zy9GzZ09eeeUVAPr27Utqat7vnv79+zNu3DiAAt95AIMGDWLMmDFcvXrVaWv+iBEjGDFiBOfPn+exxx4rcNw8e+bZgzvr2cvy9OVapdp0GTiU81qRmCPnSbV6kPHISMUn5SRVUk7xzNAHeaR7O7ZuXMOkSc8Sly//m/3sldQdFygWog5w3GE7AYgC3gM+EJF+wKLCThaRUcAoAB8fnyILGh1VvcA+Z7+sHVWvXp1q1aqRnp7OkSNHChyvWbNmkWXmqFu3Lm3btgVg4MCBTJ8+nbp16xIeHg7Ak08+yXvvvcfw4cMB6N27NwBt2rTJ/SKKiYnh/fffB6wf0CpVqrhUNsDmzZvp168fnp6eBAYG0r59e3bv3k3Hjh2dpm/ZsiU1atTAx8eHhg0b5n4hNGrUiM2bNzs9J6fOzZs358SJEy7XrUuXLrz++us88MAD9O7dmwoVKhSZvmfPnvj6+uLj48M999zDli1bAGjVqhXBwcEA9OvXj5iYGAAWLlzIBx98QEZGBufOnePgwYNkZ2dTr1693MWtBwwYwPz58wHYsGEDq1atYtasWXh5eZGWlsapU6do0KCBy9dkGHeTnGAmIiLCzTUxbqXb9b5nZmVzOCmdSzVac61SENcqBpFZvhoA3+xPo2ltbzrX8WbHym/wSTlJubQkcjqQ29QeTBW/MvR2LFW94/4BocBuh+3HscYl5mwPA94vYZ4DgE/CwsI0v59//rnAvlvtyJEjWq9evdztlStXao8ePbRbt265+3744Qd9+OGHVVU1JCREz507p6qqW7du1e7du6uqauvWrfXw4cO55/j7++emc1Zm8+bNc7efeeYZnTFjRu720KFD9b///a/Tc1etWqX9+vXL3e7evbtu3bq1wLEJEybo//2//7dAmnPnzmlISIiqqs6cOVP/9Kc/FfbR5Nq5c6e+9dZbWqdOHd27d2+e+ucv89VXX809b9iwYfrNN9/oqlWrNDo6Onf/jBkzdOzYsXr48GFt2LChXrhwQVVVhw8frjNnztRt27blSf/f//43t4y2bdvqL7/8Umydb4bb4Xk1jJLq3r177veUcfe4Xe772Utp+v3uU/rW0r06+OON2vSVpRrywmINeWGxtvv7cv39rK364aoDuvHgeU1Jy3B3dfMAYvQGYiqXulvvAAlAsMN2XeCkm+py0xw7diy3i2H+/Pn06tWL+Pj43C7JOXPm0L179yLziI6OZt48a07P0qVLSUpKKjRtpUqVuHz5cp5zc7prz507x9q1a+nQocONXlax8tfDmUOHDtGyZUteeOEFIiMj+eWXX4pM/9///pe0tDQSExNZvXo17du3B2DLli0cOXKE7OxsFixYQNeuXbl06RIVKlSgSpUqnDlzJrdLqEmTJhw+fJj4+HgAFixYkJv//fffz/vvv587BnT79u3Xe/mGYRh3rHp+aTxW9yykX71lZWZlK3tOXmT2pnie+c92uk35kfZv/MCoObH8a+1hUtOzGBQZzLtPRLDub/ew9X978enwSMb0CKNTw4Dc9QvvFHfW1RRuKxAuIvWBE8ATwJPurVLpa9q0KZ9//jlPPfUU4eHhvPvuu3Ts2JHHH388dzJLcbOIJ0yYwJAhQ2jbti3du3enXr16haYNCAigS5cutGjRgr59+zJlyhQ2bdpE69atERGmTJmSO77uZrrnnnt46623iIiIKHQyy7Rp01i1ahWenp40a9aMvn37curUqULz7NChA/369ePYsWO88sorBAUFsX//fjp16sSLL77Irl27iI6O5uGHH8bDw4M2bdrQvHlzGjRoQJcuXQBrHNH06dPp06cPgYGBeYLmV155hbFjx9KqVStUldDQ0ALjkAzDMO5qqvy+/ik6VLsEGVfB2++mFHPlWiZxx5OJiU8i5ugFth9LJuWaNbiwZmUf2tbzZ1jHENrW86dFnSq35YSTm0lyWjTuFCIyH+gBBAJngAmqOkNEHgCmYS2P85mqvlHCfHNe4TfywIEDeY7t3buXpk2blkb1jduA40xrR44zo12VkpJCxYoVUVX+9Kc/ER4ezrPPPlvaVS4R87waZdGoUaMAcidZGHe4jDRY+lfYNptvLrXkoXfWl1rWpy+mEXP0AjHxScQeTeLnU5fIylZEoHHNSkSG+hMZUo12If7U9b+1axbeDCISq6rXvf7bHdeiqKpDCtm/BFhyA/maV/gZJfavf/2Lzz//nPT0dNq0aeN0Bp1hGMUzAeJdQhUOLIfvx0PiQej2PA/d+8p1Z5edrew/e5mt8UnExl8g5mgSCUnWLGtfLw/aBPszpkdD2oX406aeP1XKl6FJJrfIHdeieLPczS2KiYmJ9OzZs8D+lStXEhAQUOS5u3btKrD8gI+PT6Gzmm/UzJkzeffdd/Ps69KlCx9++OFNKa8sutOfV8MwyiBVOLwa1r8DR9ZCQDj0/T8QVvB3T1FS07PsbmQrKNx2LCn3LSc1KvkQGepPu5BqRIb40yyoMl6ed/5UjRttUTSBYglFRkZqzpIoOcwvXqMsMc+rURaZruc7VFYG7F0EG96FU3FQsRZ0HQvt/wCeXsXe94upGcQevcDmIxfYcuQCuxIukpltxTWNa1aiXag/kSFWV3JwtbLfjXw9TNfzLeLQoujuqhiGYdx18i/6bJRxiYdg22yImwdXzkFAGAx4D1o/AeV+Xa84/31PTLnGliO/BoZ7T19CFbw9PWgdXIVR0Q1oH1qNtvX8y9ZahbcxEyi6yIxRNAzDMIwbkH4V9i2xAsQja0A8oXFfaDcCGt4LHgVnE2d6VyStUjDjv97FliMXOHg2BbDGF7YL8Wdsz0Z0qF+NNvWq3nWzkW8VEygahmEYhnFzZGXCkdWw8wv4ZTGkp0CVenDvyxAxFCrXzk2qqhy7cDW3tXDzkUQS2lqvG10Ud5LIUH8ebVuXqAbVaBFUBe9yd/74wtuBCRRdZLqeDcMwDMMFqpAQA7u+gD3/z+pa9q0CLR6Blo9DSFfw8EBVOXDmcm5guOVIImcuXQPA38+LDvWrcWXbYnwuJbB+8QI8Pe6+8YW3AxOOu0hVF6nqqJK8+/hWio+Pp0WLFresvMmTJ9+0vB944AGSk5NJTk5m+vTpuftXr15N//79iz3f1XQ3S48ePXLfAZ1zLYZh3JiIiIjb7n2/hoOc4HDFq/BeBMzoBbGzIKQzDJ4H4w6gA97jgF8bZm8+xui5sbSb9AO9/7GWV77ZzZYjiUTVD2DSQy1Y8Ww0sS/fx8fDIomulU1UoyATJLqRaVE0yMzMpFy5kj0KkydPZvz48TelPkuWWMtdxsfHM336dMaMGVMq+V7Pdd6onGsxDOPGTJs2zd1VMPLLzoJjm6xZy3sXwaUT4FEO6neH6L+hTfpxJKUcmw4nsmnhHn46fIHzKVaLYVAVX3o0rk7HBgFE1a9GvWp+Tmckm/vufiZQLG1LX4TTu0o3z1otoe9bxSbLzMxk+PDhbN++nUaNGjF79myaNWtGTEwMgYGBxMTEMG7cOFavXs3EiRM5efIk8fHxBAYG0rt3b7799luuXr3KoUOHePjhh5kyZYrTcl588UVSU1OJiIigefPmzJs3j3feeYfPPvsMgD/84Q+MHTvW6blTpkzB19eXv/zlLzz77LPs2LGDH3/8kZUrVzJz5kzmzp1LaGgoMTExvPjiixw6dIiIiAjuu+8++vXrR0pKCo899hi7d++mXbt2zJ07FxFh2bJljB07lsDAQNq2bZtbXv7rnDx5MsOGDePKlSsAfPDBB3Tu3JkxY8bQp08fBg4cyMMPP4y/vz+fffYZM2bM4MiRI0yaNKnAtVy5coVBgwaRkJBAVlYWr7zySoHXB+ZcS0pKCn369CEqKirP/fHz8yM0NJTBgwezatUqAP79738TFhbGokWLmDRpEunp6QQEBDBv3jxq1qzJuXPnePLJJ0lMTKR9+/YsW7aM2NhYAgMDmTt3Lu+99x7p6elERUUxffp0PD3NAG/DMEpJVoa1zuHeb+GX76xuZU8fCOsF975CQo3ubDiRyaZ9ify0NJbTl9IAaw3DLmEBdGoQQKeGAYUGhsbtx+2Booh0BcJVdaaIVAcqquoRd9crv7IwRnHfvn3MmDGDLl268Lvf/S5Pt60zsbGxrF+/nvLlyzNr1izi4uLYvn07Pj4+NG7cmKeffprg4OAC57311lt88MEHxMXF5eYzc+ZMNm/ejKoSFRVF9+7dadOmTYFzo6Ojefvtt/nLX/5CTEwM165dIyMjg/Xr19OtW7cC5ezevTu3nNWrV7N9+3b27NlDUFAQXbp0YcOGDURGRjJy5Eh+/PFHwsLCCgRrjtd59epVVqxYga+vLwcOHGDIkCHExMQQHR3NunXrGDgJUBlDAAAgAElEQVRwICdOnMh9D/T69et54oknnH5+y5YtIygoiO+++w6AixcvFvl5O7s/Oa8JrFy5Mlu2bGH27NmMHTuWxYsX07VrV3766SdEhE8//ZQpU6bw9ttv89prr3Hvvffy0ksvsWzZstz1xfbu3cuCBQvYsGEDXl5ejBkzhnnz5vGb3/ymyHoZRlkwdOhQAObOnevmmtyF0q9Yi2HvXWTNWk67CN4VIbw3F0LuZ622Yf2xNDYtS+RE8nYAAit6E9Xg18CwQWCF6woMzX13P7cGiiIyAYgEGgMzAS9gLtDFnfVyxuXlcVxo+btZgoOD6dLF+uiGDh3Ke++9V2T6gQMHUr58+dztnj17kjMGs1mzZhw9etRpoJjf+vXrefjhh6lQoQIAjzzyCOvWrXMaKLZr147Y2FguX76Mj48Pbdu2JSYmhnXr1hVbX4AOHTpQt25dwBqzFB8fT8WKFalfvz7h4eG51+64OKvjdWZkZPDnP/+ZuLg4PD09c9fo6tatG9OmTePnn3+mWbNmJCUlcerUKTZt2lRovVq2bMm4ceN44YUX6N+/f4FANz9n9ycnUBwyZEjuf3PeBZ2QkMDgwYM5deoU6enp1K9fH7A+76+//hqAPn364O/vD1hvyomNjaV9+/YApKamUqNGjWI/U8MoCxISEtxdhbvLpZOwfxnsWwqH10DWNfCtSmqDPuys1I1FKU1YF5/C0dirwEGq+nnRsX4Ao6Ib0KlhAOE1KpZKi6G57+7n7hbFh4E2wDYAVT0pIpXcW6WyK/8PpYhQrlw5srOzAUhLS8tzPCewy+Hj8+sip56enmRmZrpUbkne7uPl5UVoaCgzZ86kc+fOtGrVilWrVnHo0CGX3hZSWB2L+kJyvM5//OMf1KxZkx07dpCdnY2vry8AderUISkpiWXLlhEdHc2FCxdYuHAhFStWpFIl549ko0aNiI2NZcmSJbz00kv07t2bV199tdB6OLs/Rf3/008/zXPPPcfAgQNzhwtA4Z+3qjJ8+HDefPPNQutgGIbhlCqc3mkFhvuWWm9JAbKqhHA0dBCrNJL/nK3LgW3WGMNKvheIqh/AbzqF0qlBAE1qVcLDTDi5I7k061lE2ha1fQPS1fqtp3a+FYpJX+pEpIGIzBCRL2912aXt2LFjbNq0CYD58+fTtWtXQkNDiY2NBeCrr74qtbK8vLzIyMgArO7kb775hqtXr3LlyhW+/vrrIlvXoqOjmTp1KtHR0XTr1o1//vOfREREFAikKlWqxOXLl4utS5MmTThy5AiHDh0CrGsvzMWLF6lduzYeHh7MmTOHrKys3GOdOnVi2rRpufWaOnVqkddx8uRJ/Pz8GDp0KOPGjWPbtm1F1tPZ/cmxYMGC3P926tQpt6516tQB4PPPP89N27VrVxYuXAjA8uXLSUpKAqwW4S+//JKzZ88CcOHCBY4ePVpknQzDuItlpMGBFbD4OfhHc/g4Gl39FskZHqysM5pRlT6k4ZnJ3LunL/84VJu6AZUZ/0ATFv25K3Gv9ubT4ZH8vmt9mgVVNkHiHczVFsXRwMgitq/XQhH5GKgqIiOB3wH/cvVkEfkM6A+cVdUWDvv7AO8CnsCnqlpof7CqHgZ+fycEik2bNuXzzz/nqaeeIjw8nNGjR9OhQwd+//vfM3nyZKKiokqtrFGjRtGqVSvatm3LvHnzGDFiBB06dACsySzOup1zdOvWjTfeeINOnTpRoUIFfH19nQZkAQEBdOnShRYtWtC3b1/69evnND9fX18++eQT+vXrR2BgIF27dmX37t1O044ZM4ZHH32UL774gnvuuSdPa2O3bt1Yvnw5YWFhhISEcOHChSIDxV27dvHXv/4VDw8PvLy8+OijjwpNC87vT45r164RFRVFdnZ2bqA7ceJEHn/8cerUqUPHjh05csQaujthwgSGDBnCggUL6N69O7Vr16ZSpUoEBgYyadIkevfuTXZ2Nl5eXnz44YeEhIQUWS/DMO4iV87D/u+tsYaHVkHGFbLK+XG4cge+rzyY2ecbcTahMt7lPGgf6s9f2wbSuWEALetUoZynWVHvbiQl6Ta8KRUQuQ/oDQjwvaquKMG50UAKMDsnUBQRT2A/cB+QAGwFhmAFjfn75H6nqmft875U1ceKKzMyMlJz1sjLsXfvXpe6TY27V3x8PP3793cawObMjA4MDHQpr2vXruHp6Um5cuXYtGkTo0ePzp3w4wrzvBpl0UsvvQRghlaUlKq1EsfBFbD/e/T4FgTlik8NfvKKYuGl5qxOb0K6eNOqThU6hwXSNSyQdiH+t8Ur8cx9v3EiEquqkdd7frEtimL1B/4P0EBVXxeRekAtVd1yvYU65F0fWJcTHIpIeREJVdV4V85X1bUiEppvdwfgoN1SiIj8B3hQVd/Ean00jDLt2LFjDBo0iOzsbLy9vfnXv1xuhDeMMssECiWQdsmapXxgORz8AS5bqzgc82nEEnmcRWkR7EkLoUH1inRpG8i7YYF0ahBAFT8v99bbCXPf3c+VrufpQDZwL/A6cBn4CmhfCuV/AXR22M6y991I3nWA4w7bCUChfa4iEgC8AbQRkZfsgDJ/mlHAKIB69erdQNXKnqioKK5du5Zn35w5c2jZsmWR5yUmJtKzZ88C+1euXElAQECp1vFmK41rCQ0NLbQ7PD4+vkT1CQ8PZ/v27SU6xzCMO5gqnNtnBYYHlqPHNiHZmaR6VGSTtGJJxkDWZLVGvGrSpUkgvw0LpEtYALWrlC8+b+Ou50qgGKWqbUVkO4CqJomId2mVr6rpORuqml4KeTsbUVto/7qqJgJ/LCpDVf1ERE4BA7y9vdsVkuaOXDx08+bN13VeQEBAibpDb2d30rW4e6iJYVyvRx99FCjdSXllWvoVOLIODiwn+8ByPC5a7SNHPENZlt6XVVkRHPBuSrsGNekaFsBTYYGEldKSNbeSue/u50qgmGGP+8uZmVwdq4WxNJwTkYGq+q2d94PA+RvMMwFwXPyvLnDyBvMskq+vL4mJiQQEBJS5H0Lj7qGqJCYm5i4JZBhlSWJiorur4H6Jh+DACrIPLIf4dXhkpZMmvqzLasGPWb3ZQBuCgsLoGhbIi2GBtLoDJqCY++5+rgSK7wFfAzVE5A3gMeDlUir/j8A8EfkAqyXwOHCjr5HYCoTb4x9PAE8AT95gnkWqW7cuCQkJnDt37mYWYxg3zNfXN3fBcsMwbnMZaXB0A3pgORm/fI/3RWvlg3gN4sesnqzOjiClVgeiwmvTt2Egr4ZWo7y3+yegGHeWYgNFVZ0nIrFAT6xg7iFV3VsahavqIaCjiFTEmoFd/KJ5DkRkPtADCBSRBGCCqs4QkT8D32PNdP5MVfeURn0L4+XllfvWDMMwDMO4bsnH4cByrv3yPZ7xaymXlco1vNmU1ZRV2cM5WLkj9Ru1pEtYIO83CMC/QmmNBDMM51yZ9VwNOAvMd9jnpaoZ11uoiAxV1bki8ly+/QCo6juu5KOqQwrZvwRYcr31KyRP117hZxiGYRiuyrwGx34ic/8Kru1dRoWLBwA4k12dH7O7sdUrEq8G0XRsXIeRYYEEV/Nzc4WNu40rXc/bsMb8JWG1KFYFTonIWWCkqsZeR7k5qxyXmdf1icgAYEBYWJi7q2IYhnHXcbbyQJmkCokH0YM/kLJnOb4nNuKVnUa2erItuylrGcb52tGENWlDt0bVGRZUBc+7+K0nd8x9L8OKXXBbRP4JfK2q39vbvYE+wELgXVW9rtd92BNk/qKq/7ie893F2YLbhmEYhlGotItweA1X9y5HD66kQqo1v/Jwdi3WZrfiUKUOlG/cg05NQuhQvxoVfFx9aZphFO+mL7gNRKpq7vIxqrpcRCar6nMi4nO9BatqlogMBMpEoGhaFA3DMAyXZGfBye2k7/+Bqz8vp/L5ODzIIkvLszG7ObHl+pFR/16aNWtJn/Dq1KpiViIwbl+uBIoXROQF4D/29mAgyW4RvNFlcjbaM54XAFdydqrqthvMt9SZMYqGYRju07dvXwCWLl3q5poU4uIJsg+u5NLu7/E9vg7fzIuUUyFe67OBgVyo2ZVazbrSuXFt7qtVGY+7uDu5JG77+34XcCVQfBKYAHyDNUZxvb3PExh0g+XnvJXldYd9ivUWGMMwDMMAIDU11d1VyCsjFY5uIGXPcrIOrKRKykE8gDT1Z0VWaw5WjsK3cU/aNQ3j9/Wr3RbvTS6Lbrv7fhdyZXmc88DThRw+eCOFq+o9N3L+rWS6ng3DMO5iqnDuF67tW0HK7u+pfHYLXpqOl3qxLbsJ27yGkxHanfAWUfQIr87jla57ZJZh3FZcWR6nETAOCHVMr6pOW/1ExA94HqinqiNFJBxorKqLHdJEAZ8ADYFdwO9Ka23Gm8V0PRuGYdxlrl4g6+CPJO1ahu/RNVRMP4sPcCy7Dovoyfma3Qho3oPOTerxTM2y93o8w3CFK13PXwD/BD4FslxIPxOIBTrZ2wl2Hosd0nyIFXyuBQYC04D7XauyYRiGYdwEWZlwIoaLu5aRsX8F1S7uwROlnFZgTXYLDlUeTLlG9xHRvDlDQv3xKWe6k407nyuBYqaqflSCPBuq6mARGQKgqqlS8M8sD1VdYf//FyLyUgnyNwzDMO4y/fv3vzkZJx3l6i8ruLR7GVVObaJ8dgoVVYjTML7xGkRaSA9CWnWjS3hN+pm3oNxyN+2+Gy5zJVBcJCJjsN73fC1np6peKCR9uoiUx5qUgog0dDzPVlVEHilsW1X/nyuVv5XMGEXDMAz3GTduXOlklH6FzMNrSdyxFK8jq6iWdgw/4IIGspgoztXoQtXmvejQrCG/r17BdCe7Wandd+O6ubLg9hEnu1VVGxSS/j7gZaAZsBzoAoxQ1dUOaWYWUaSq6u+KqbfbmAW3DcMwyhBVOL2LCzuXcm3fDwRe2I4XGaSqN5uzm3KwchSe4b1o3iqSiHr+eJfzcHeNDaNU3fQFt1W1fkkyVNUVIrIN6Ii1nM4z9sxpxzS/LVEtDcMwjLtajx49AFi9enXxiVPOcXXfCpJ2LqPyiXVUyrxANWBvdj1WeT/A1eAeBLe+l46N6tDDz+tmVtu4QSW678ZN4dJ7gkSkBVYLYe7y8ao6u5C0DwM/qup39nZVEXlIVb8phfqWOhF5COgH1AA+VNXlbq6SYRiGURKZ6WQd+4nzcUuRwz9SI+UX/IBUrcQaWnG2ehcqtehNZItmDAnwM93JhlECriyPMwHogRUoLgH6Yi267TRQBCao6tc5G6qabOdR6oGiiHwG9AfOqmoLh/19gHexFgX/VFXfKiwPO4D9RkT8galY3eWGYRjG7SzxEBd3LyNlz3ICzm3GV1Oppp5s03CWVRgGDXvSqE1XeocEmO5kw7gBrrQoPga0Brar6m9FpCbWUjmFcfYT6bQcEfFR1WvF7SvCLOADHIJW+9WCHwL3YS3Ns1VEvsUKGt/Md/7vVPWs/f8v2+cZhmEYtxk/zywi/K9ycu5ofI+vodq1E1QBkrNrsLhcNJfqRlOz1X10bBpKVEWz2LVhlBZXAsVUVc0WkUwRqQycBZxOZLHFiMg7WEGXYr3VJbaQtJuAti7sc0pV14pIaL7dHYCDqnoYQET+Azyoqm9itT7mYS/d8xaw1JV3TO/bty93zESOQYMGMWbMGK5evcoDDzxQ4JwRI0YwYsQIzp8/z2OPPVbg+OjRoxk8eDDHjx9n2LBhBY4///zzDBgwgH379vHUU08VOP7yyy/Tq1cv4uLiGDt2bIHjkydPpnPnzmzcuJHx48cXOD5t2jQiIiL44YcfmDRpUoHjH3/8MY0bN2bRokW8/fbbBY7PmTOH4OBgFixYwEcfFVxJ6csvvyQwMJBZs2Yxa9asAseXLFmCn58f06dPZ+HChQWO54xNmTp1KosXL85zrHz58rnvAP373//OypUr8xwPCAjgq6++AuCll15i06ZNeY7XrVuXuXPnAjB27Fji4uLyHG/UqBGffPIJAKNGjWL//v15jkdERDBt2jQAhg4dSkJCQp7jnTp14s03rb9PHn30URITE/Mc79mzJ6+88gpgvdM0/+uq+vfvnzvrL/9zB+bZM8/eHfzsPfcs/dsFc2DVv0nZuYj/dj2Ll2STciCBTVlN2V++NwHtHsTXtyLvT/wrwpfAl7nnm2fvznj2curm+Aya770be/ZKypVAMUZEqgL/wgr4UoAtRaR/GngFWIA1mWU58CfHBCJSC6gDlBeRNnY6gMqAX0kuwIk6wHGH7QQgqpj69gKqiEiYqv4zfwIRGQWMAvDxMX+pGoZh3AwB3hm0C0yjbY0MOm//E7LtMo2AXb6hfHL1HtadKc+xS56Uu3SSV8f3p1eve4iLi8OMOLxzVa9e3d1VuOsVuzxOnsRW611lVd15Q4WKDAdGAJGA41ozl4FZJVlH0a7T4pwxiiLyOHC/qv7B3h4GdFDVwt5X7Wo5Oesojjxw4MCNZGUYhmEAZKSRcWQj5+KW4BW/iupXDwJwTqvwk7QmsVZXqrboTYcWTQiqWt7NlTWMsummL49jF1IHCMlJLyLRqro2X5ppqjpWRBZhL7btSFUHOvz/58DnIvKoqn51vZUvRAIQ7LBdFzhZymUYhmEYJaUK5/dzYcdSrv6yguqJW/HRawRoOWK1Mcsq/w7P8F40a9OZB+pWxdPj17bCq1evAuDnd6OdTkZZYu67+7ky6/n/AIOBn/n1Xc+K9Z5mR3Ps/04tQfkr7fGM0fb2GuB1Vb1Ygjzy2wqEi0h94ATwBPDkDeRnGIZhXK/UJK7u+5ELO5ZSMWENVTPOUg1Iyq7Nt169uFqvO0Gt7yOqSTCdfQtf0zBnLJpZT+/uYu67+7nSovgQ0Li4mciqGmvPOB6pqkNdLH8GsBsYZG8PA2YCjxR6hgMRmY+1dE+giCRgLc0zQ0T+DHyPNdP5M1Xd42J9DMMwjBuRnUXW8RjOxS1BD66k5uU9+JFNpvrxEy04HfgkFZr3pm2rCB4zaxoaxm3PlUDxMOBFwfc1F6CqWSJSXUS8VTXdhbwbquqjDtuviUhcoakLljekkP1LsNZ8LDWqughYFBkZObI08zUMwyjzLiaQvGsZl3d/T8DZjfhlp1BDhZ3agNUVBpHd4F4atulBj9DqZk1DwyhjCg0UReR9rC7mq0CciKzEIVhU1b8Ucmo8sMFeu/CKQ/p3nKRNFZGuqrreLrMLkOoknds5TGZxd1UMwzDcK/0q6YfWcjZuKT5HV1M9LZ6qQKpW4wePDiTXiSawdW+imoURYdY0NIwyragWxZzZyLHAtyXI86T9zwOoVEza0ViTWqpgLZFzARhegrJuGdOiaBjGXUsVPbOHc3FLSN/3AzWStuFNBoHqxVZtynL/UXg3vo+WbaIYUKuy6U42jDtIUYHiEqC6qv7suNN+7/MZZyeISHXgO6wFr5OLK1xV44DW9kLeqOolVyt+q5kWRcMw7ipXEknZu4ILO5ZS5dQ6qmQmUgPYl12Xb30f4FrIPQRH9KR9eB26eXve9OqMGDHippdh3H7MfXe/QtdRtN9o8pGqrsm3/35guKo+mW//H4DJwCGgPjBKVYtsiRSRAGAC0BWrm3s91qznxKLOc6fIyEiNiYkpPqFhGEZZkpVBxtHNnNm+BM/DP1Lzyi94oCRrBTZLK87V7EqV5vfTrlULs6ahYZQhN3MdxZb5g0QAVf1eRAq+UwbGAs1V9ZyINADmUXyX9X+wltnJmdDyP1hvdOlVbM0NwzCMG3PhCIk7lnJl73Kqn9tMeb1KLfUgTsNZU3koEtaTxm2i6RVcLc+ahu5w/vx5AAIDA91aD+PWMvfd/YoKFAtf0Mr5sXRVPQegqodFxJURzNVU9e8O25NE5CEXzrvlTNezYRhl3rUUru5fxfm4pfgdX0NgegIBQKoGstyrKyl1ulOzdW86NKtPZBFrGrpDzjt7zXp6dxdz392vqEDxgIg8YC81k0tE+mItmZNfXRF5r7DtQmZJrxKRJ4CcN6I/hjXG8bZjJrMYhlHmZGeTdWoHZ7YvJfvAD9S6uAM/MglUH7bQnJMBD1K+WW8iWkcyMLCCmYRiGEYBRQWKzwKLRWQQ1sxnsN7N3Ano7yT9X/NtxzpJk99TwHPAXHvbA7giIs8BqqqVXcjDMAzDyJFyluRdy7i4axn+ZzZSOSuJIGBPdgg/+T1IZv17qd/2XjrXr2XWNDQMo1iFBoqqul9EWmK9/q6FvXsN8JSqpjlJ/3lJC1fV4pbPMQzDMIqSeY1rhzdyZvt3eMevplbqAaoCmVqZDR4RJAV1o1qr3rRv0ZTmZk1DwzBKqMg3s9iv7ZtZ2oWKSAiQnPNOZxG5B+tVgfHAhy6+1eWWMmMUDcO4LaiiiQc5u30Jab8sp+aFGHw1jdrqyTYasabKbynXuBfN23alT60qpjvZMIwb4sor/G6GhcDDwEURiQC+AN4EIoDpwB/cVK9CmTGKhmG4TdpFLv/8A4k7l1LpxDoCMk5TEziSXZPvfe4lNaQHdSLuI7JRCFG3YE1Ddxg9erS7q2C4gbnv7lfoOoo3tVCRnarayv7/qUC2qv5NRDyAuJxjtyOzjqJhGDdddhYZx7dxevt3yKGV1L68G0+yuazl2SotOFujC5Wa30+b1m3MmoaGYRTpZq6j6FhIeaCequ4rIk3Ou6Gdyjfr2bEv5F7gJTtN9q3sJhGRpsAzQCCwUlU/umWFG4ZhONCLJ0jcsZSUn78n8OwmKmZfpo4Ku7U+mysNQhv2JKzdPXQPDnT7mobucPz4cQCCg4PdXBPjVjL33f2KDRTtsXlTAW+gvt1V/LqqDsyXNKeZrQvQDGvhbIDHKTgD+kcRWQicAvyBH+2yagMujU8Ukc+wZl+fVdUWDvv7AO8CnsCnqvpWYXmo6l7gj3ZL5r9cKdcwDKNUZKRy5eA6zm5bgt/x1dRMO0IgkKVVWVcukkv1oqke0YfIZuG0us3WNHSHYcOGAWY9vbuNue/u50qL4kSgA7AarPczi0ho/kQ5s55FZARwj6pm2Nv/BJbnSz4WGAzUBrrmpAVqAf/rYt1nAR8As3N2iIgn8CFwH5AAbBWRb7GCxjfznf87VT0rIgOBF+28DMMwbg5Vss7s5fS278g8sJLaSbFUIJ0gLUcsTVkT8BS+TXrRqk1n+pg1DQ3DuE24EihmqurFEnxpBQGVgAv2dkV7Xy61Bkb+J/+Jqrrd1UJUda2TgLUDcFBVD0Pu+6ofVNU3cb72I/b7qL8Vke+Af7tavmEYRrGuXiBp93KSdi7D//R6/DPPUQc4mB3EUr++ZIT2oF7b3kQ2CKKzWdPQMIzbkCuB4m4ReRLwFJFw4C/AxiLSvwVsF5FV9nZ3rFbJW6EOcNxhOwGIKiyxiPQAHgF8gCVFpBsFjAKoV69eadTTMIw7UVYm1+I3c2rbd5SLX03tK3vxJxsP9SPGozWJtX9L1Za9adeqFQ+aNQ0NwygDXAkUn8bqDr4GzAe+B/5eWGJVnSkiS/k1QHtRVU/faEVd5KzZs6gJNquxu9SLoqqfiMgpYIC3t3e7666dYRh3HE06yuntS0jbu5wa5zdTQa8QrMJOwthS5Uk8wnvSpF0P7q3tb7qTDcMoc4oNFFX1Klag6NLYQbG+CXsBDVT1dRGpJyIdVHVLIem9gUb25j6H8YrXIwFwnBpVFzh5A/kZhmHklX6FS3tXcX7HEiomrKVG+nFqAyc0gDXeXbga3J1abe6nXeMGtLlD1zR0h+eff97dVTDcwNx393Nl1vMiCrbKXcSa5fyxk9f5TQeysZa9eR24DHwFtHeSdw/gc6w3sggQLCLDVXVtia7iV1uBcBGpD5wAnsB6BaFhGMb1USXj5E5Oxn4HB1cSdCmOymTipd7ESjPWVh9Ihaa9iWjbgQeq+rm7tnesAQMGuLsKhhuY++5+rnQ9HwaqY3U7gzVb+QxWK+C/gGH50kepalsR2Q6gqkl2q6EzbwO9c9ZnFJFGdjnFdu+KyHygBxAoIgnABFWdISJ/xuoe9wQ+U9U9LlyjYRhGLk05y/kd33Npz/cEnNlA1awLhAC/ZAeztOKDZDW4hwbt7qNTSM27ck1Dd9i3z1rGt3Hjxm6uiXErmfvufsW+mUVE1qpqtLN9IrJHVZvnO7YZ6AxstQPG6sByVW3jJO/cN7QUte92Yt7MYhh3oMx0rhzeyOnYJfgeW0Wd1P0AXNCKbCsXQXJQNIGt+9C2RTMqmzUN3aJHjx6AWU/vbmPu+427FW9mqS4i9VT1mF1gPaw3mYDzxbHfA74GaojIG8BjwMuF5B0jIjOAOfb2/1Bwce7bgr3w+ICwsDB3V8UwjFKQdf4Qp2IXk77vB2onbaWCphKiHsTRiC3+v8W7SS+at42mZ/VKZhKKYRh3LVcCxeeB9SJyCGscYX1gjIhUwBpfmIeqzhORWKCnnf4h+w0ozowG/oS15I4Aa7EWzL7tqOoiYFFkZORId9fFMIzrkHaJCz+v5ELcUqqcWkf1jJPUBY5lV2dV+Xu4FtqDum3up3VYPSLNmoaGYRiAa7Oel9jrJzbBCuZ+cZjAMi1/eruF8H1V/dBh30RVnegk+z+q6jvAOw5pn8F6Bd9txbQoGkYZk51N2vFtnIxdjOfhVdRJ2UU1svBRH2I9WrKu1uNUbnE/bVq344FKvu6urWEYxm3JlRZFgHCgMeALtBIRVHV2IWnvB9qJyDsOaQbifNHt4RQMCkc42ed2pkXRMG5//7+9+47zqrrzP/56MzD0jhRhKEPvHbuiAoLKalw3tmRTLOtqiptNfsmu2WiqyZYU48YaS2KJrjGJgIhiAxWljjSliwygIFKlz3x+f5zzla/j9zvznfqdYT7Px2MezL3fe8/93HPvMJ85955zbM9Wti55hv0rn6Pj9nm0Kt5NPrDCejKz1aXQ51z6jjmXM05s74+TnXMuA5kMj3MLoXfxIMLsJVOAV0maY7xB9h0AACAASURBVLmEbXH7RySdBHyTEgNhS7qCMGxNrzgXc0JLYEe5zsA5V38dOcie1XP4YMlMmm96hRMPreNEYLu15s3cUXzc40w6jpjCyIH9GOxjGtZp3/9+ulfd3fHMr3v2ZdLreRkwHFhiZsMldQLuM7OUgxtJWpLo4SzpVmAi0MXM8pO26UF41/E24HtJu+8FlprZ0YqfUvVIevR87Zo1a7IdjnP1kxmHP1jFlkXTKVozm267FtOYQxy2HAo0gC0dTqPZgEkMHXMqXdo0z3a0zjmXdTXR6/mAmRVLOiqpFaHFML+U7T9pITSzWyUtBL6VvIGZbQQ2AqdUIOas8EfPzmWH7d/JtqXPsWfZs7R7/1XaF22jJ7DeuvBi80kc7XkOPcacx+ieJzLOxzQ8bhUUFAAwYsSILEfiapJf9+zLJFFcKKkNYXDtRcA+IOV0fABmdkuJ5enA9MoE6ZyrR4qL+HjDfLYsmkHuuy/Rbf9KOlFMU2vKkobD2NntH2k3bDIjho0g38c0rDduuukmwMfTq2/8umdfJr2eb4jf3iXpWaCVmS0tuZ2kV83sdEl7+fSUfwrFWKsqidg5d9wp2rmJzYumc+id5+my401a2D56m1hOb5a2vZJG/c5lwOhzOKtTm2yH6pxz9UomnVleMLNzAczs3ZLrEszs9Phvy/IEIKkp0D0xjV9t5cPjOFeFDu/no7df4sOCmbTcPIcuhzfSHXjf2jKvySkc6H4WXUdOYWi/fIb5mIbOOZc1aRNFSU2AZoS5lNtyrOdyK+DEFNu3K+1AZvZRin2mAv8N5BJ6QI8AfmRmf5fxGdQQf0fRuUow4+Dm5WxeOA3WvUTe3iW04wjNrRFLGgxiQacLaDH4PIaPPJmJPqahc87VGqW1KP4TcBMhKVzEsURxD6lnT1lEeOSc6m1yI3UHmFuBccDLAGZWIKlnmVE752o9+3gHW5Y8w77lszhh2+u0K95Bb2CNdeOFllOh97nkj53ISV07+piGzjlXS6VNFM3sN8BvJH3dzH5bVkFm1qsCxz9qZruz+UsiTkU4B7gldrxxzlVE0RF2r3md9xfPoOl7r9Dt4Cq6Yuyy5rzVaAR78s7khBFTGD54CH19TENXTj/72c+yHYLLAr/u2ZdJZ5bfSjoV6Jm8fSkzsxAfVfclzOSS2H5Oik2XS7oSyInTBH4DeD2TwCXdD1wIbDOzIUnrJxNmdskhjPf48zKK+i7wRCbHdM592uHtGyhcOI2jq2fTddcCWtt+WphYpn4sbf8lmvSfxOCxZ3FW2xbZDtXVcaeeemq2Q3BZ4Nc9+zLpzPJHoDdQABTF1UaamVkkXUOYjaVb3OdkYB5wTorNvw7cDBwCHgVmAT/JMPYHgTuS45CUQ3gsPhEoBBbEmV9yCIN7J/sqMAxYSVJC65xLzw7t5YOls9m1dCZttr5K56ObyQc2WwfmNTuTwz3PJm/0FIbmd2eEj2noqtDrr4c2BE8c6he/7tmXycwsbwODrKwNj22/DBgLvGFmIyQNAH5oZpel2HakmS2pQNyJ/XsC0xMtipJOAW41s/Pi8r8BmFnJJDGx/0+B5oTpCQ8AnzOz4tKOOWbMGFu4cGFFQ3aubikuZt97S9i8cAaNNrxI3sfLaMRR9ltj3soZwo7Op9N62GSGDx9Dq6a52Y7WHcfGjx8P+Hh69Y1f98qriZlZlgOdga0ZlnnQzA5KQlJjM3tHUv802/5SUhfg/4A/mdmKDI+RTldgU9JyIXBSuo3N7GYASV8GPkyXJEq6DrgOoHv37pUM0bnarWjPBxQunMGBt5+j8455tCneRX9glXXnhTaXkNN3An3HTuSUTqUOdOCcc+44kEmi2AFYKWk+4RExAKUMYVMYZ3L5K/C8pJ3AllQbmtnZkjoDnwfuiVMEPm5mmT5+Lildj+tSmdmDZXx+j6StwNTc3NzRFYzNudrp6GF2vPMK25bMpEXhK+QdWksPYIe1pKDJaPbnnUXnEVMYMqA//X1MQ+ecq1cySRRvLU+BZva5xH6SXgJaA8+Wsv37wO1x2/8H/IDM31MsqRDIS1ruRpok1bl6y4yD769m08Jp2NoXydu9iPYcpJXlsKxBf5Z1vJZmgyYxdPQZjG/ZNNvROuecy6JMej2/IqkH0NfMZktqRugckpak0+P2D0g6gfBIeEOK7QYClwGXAjuAPwH/Wv7T+MQCoK+kXsBm4HLgykqU59xxwQ7sYnPBLPYsm0WHD16lY9EH9AU2WideazmRol7n0GvsZEbmdfExDZ1zzn0ik17P1xLez2tH6P3cFbgLODfN9rcAY4D+wANAI+Bh4LQUmz8APAZMMrNytfxJegwYT5g5ppAwDuLvJX2N0Hs6B7i/Ct57dK7uKS5i97r5bFk0g8YbX6H7geV0o5h91oSljYaxsPsXaT98CsOHjaRHIx/T0NV+v/71r7MdgssCv+7Zl0mv5wLC7ClvmtnIuG6ZmQ0tZfuRwOKk7Zea2bAqjTxLvNezq60Of1TIpoXTObzqebp+9CatbC8AK8insN0pNOo/kYFjz6FLu9ZZjtQ551xNqYlez4fM7HDicZSkhpTeQeSwmZkki9s3L7mBpCfM7PNxKJ3ksgRYbUwq47zUU/v06ZPtUJwDwA7v54PlL7HjrZm02TKXrkfepTewzdqwuOk4DvU4m66jz2dgn3wG+5iGro6bPXs2ABMmTMhyJK4m+XXPvkxaFP8T2AX8I2GA7BuAlYmhZVJs/23CrCwTCYNcfxV4zMxuT9qmi5ltje8+foaZbazAudQIb1F0WWPGvs0r2DR/OjkbXqDH3gIac5hD1pBlOYP4sPPptBx8HsNGnUpLH9PQHWd8PL36ya975dVEi+L3gKuBZcA/Ac8A96Xb2Mz+W9JEYA/hPcUfmNnzJbZJjMl4g5l9N/kzSb8gTKtXq3iLosuGoo8/4r0FM9j/9vN02v4aHYo/ZCCw3k5kbusLUJ9z6TN2MmO6nJDtUJ1zzh2HMkkUmxI6hdwLn0yT1xTYn26HmBg+n9he0lVm9kiKTSfy2aRwSop1WWdm04BpY8aMuTbbsbjjWNFRPlz9Ou8vnkHzTa/Q/eA79MLYY81Y1ngki7pdS8cR5zN40BDyfUxD55xz1SyTRPEFYAKwLy43BZ4DPjXxYhws+0ZCr+inCYnijcB3CHM+P5K07T8THmHnS1qaVExL4LWKnIhzddXB7e+ycf7TFK95gbxdC+jAx7Q1sbJBH1444Us0GTCRwWPP5rRWn3nd1znnnKtWmSSKTcwskSRiZvviWIol/RHYCcwDriEkiLnARWZWUGLbR4GZhHcYv5e0fq+ZfVSO+GuMP3p2VcUO7WNTwWx2L3uW9u/P5cSjhfQHtlo7FrY4g6O9zqHHmCkM6ZHHUB/T0DnnXBZl0pnlNeDrZrY4Lo8G7jCzU0ps98mQOfHx9IdAd7M4Rkfpx+gINEksm9l75T2RmuKdWVy5mbFrw2I2L5pBow0v0XP/UnI5ykFrxLJGQ9jZ+QzaDp/C0OHjaJKbyd9uztU/q1atAqB///5ZjsTVJL/ulVcTnVm+CfyfpMSA2F0Is6mUdCTxjZkVSdpQVpIYW+l+CZwIbAN6AG8DgzOIy7la6/DubWxcMJ1D7zzPiTvm0c520gZYQx5z215Cw34T6DduImPbt8t2qM7VCZ4o1E9+3bOv1ERRUgPC4+MBhB7MAt4xsyMpNh8uaU9iV6BpXE6MjdgqxT4/AU4GZpvZSElnA1dU7FScyx47eoj3V8xle8FMWm2eQ/dDa+grY6e1YGXT0RzIO4suoy9gQL/+9PUxDZ0rt2nTpgEwderULEfiapJf9+zL5NHzvJKPmavs4NJCMxsj6S1gpJkVS5pvZuOq43iVkfSO4rVr1qzJdjiuFti7dTXvzZ+G1r1Izz0LacZBjloDVuT0Z3vH02gx+DwGjz6Tls2alF2Yc65UPp5e/eTXvfJq4tHzc5L+HnjKysoqy2+XpBbAHOARSduAo1V8jCrhw+O4ogN72LhwJvtWPscJ216jS9FWBgOFdgLzW02A3ueQP+58hp/YJduhOuecc1Uik0TxW0BzoEjSAUp/lFxeFwEHgX8BrgJaAz+qgnKdq7ziYravnc/WRTNo+t7L9DywgnyK+NgasyJ3OCvyruKEEZMZNGQU3RrmZDta55xzrsqVmSiaWcvqOriZfZy0+FB1Hac0ksYDPwZWAH8ys5ezEYerHQ58tJl335zG0dWzydv1JifYHk4AVqkXcztcRuMBkxg4dgLjWlfbj4VzzjlXa5SZKEoSobWvl5n9WFIe0MXM5lf0oJL2AsmPsRWXy9VaKel+4EJgm5kNSVo/GfgNkAPcZ2Y/L6UYIwwm3gQoLM95uLrPjhzkvYIX2bVsJm22vkqPI+sZCHxorVnefCxHeownb+yF9OvVi/4+pqFzzrl6JpPOLHcCxcA5ZjZQUlvgOTMbWxMBlkbSmYQk7w+JRDGO4biaMD1gIbCA0JM6hzDAd7KvAh/GTjSdgF+a2VWlHdPHUazjzNj53goKF06n4YYX6bVvCU04zGHLYWXDQXzU+XRaD53M4FGn0SS3Ubajdc5FmzZtAiAvLy/Lkbia5Ne98mqiM8tJZjZK0hIAM9spKbeiByxJ0ulAXzN7QFIHoKWZbchkXzObI6lnidXjgLVmtj6W/yfC7DC3EVof09kJNC5v/K72O7xvJ+8umMGBt5+jy4ev07F4O22BjXThzTYX0KDvufQdN4URJ3TIdqjOuTQ8Uaif/LpnXyaJ4pHYSmcAkk4gtDBWmqRbgDGEMRofIIzZ+DBwWiWK7QpsSlouBE4qJYZLgPOANsAdaba5DrgOoHv37pUIzdUEKzrK1rdfZ9uSZ2hROIeeB9+mn4rZZ01Z2WQkK/KupvOoC+g3YCg9fExD5+qExx9/HIDLLks134M7Xvl1z75MEsXbgb8AHSX9FLgU+H4VHf9zwEhgMYCZbZFU2V4CqX7zp32+bmZPAU+VVqCZ3SNpKzA1Nzd3dCXjc9Vg77aNvPvm07D2BXrsXsCJ7KOziVU5fZjb+Ys0HziJgWPPYVzzVNOUO+dquzvvvBPwhKG+8euefZn0en5E0iLgXEISdrGZvV1Fxz9sZiYp0VrZvArKLASS26q7AVvSbOvqqKJD+9mwaBZ7l8+iwwevkVf0HkOBbdaWZS1Pozj/bHqOu4CB3bozMNvBOuecc3VU2kRRUhPgeqAPsAy428yqejDsJyTdDbSRdC2hc8l9lSxzAdBXUi9gM3A5cGUly3TZZsa2dUvYsmgGjTe+TP7+t+jDEQ5ZI1bmDmFdt4tpN2wyA4efzGk+pqFzzjlXJUprUXwIOALMBaYAA4GbqvLgZvbfkiYCewjvKf7AzJ7PdH9JjwHjgQ6SCoFbzOz3kr4GzCL0dL7fzFZUZdyuZhzYtZ3186dxZNVsun00j472ER2BDXTjzXYX02jARPqPO4+RbdpkO1TnnHPuuFRaojjIzIYCSPo9UOFxE0sTE8Pn43FyJF1lZo9kuO8VadY/AzxTdVH6FH41wY4eZuPSOex4ayZttsyl1+HVDJaxy5qzqtloVvY4i65jppLfux+9fExD55xzrtqVligeSXxjZkdVhb+YJbUCbiT0UH6akCjeCHwHKAAyShRrkqSpwNQ+ffpkO5TjykeFq9m0YBpa/xL5exfRk/3kmXinYX/mdr2aVkPOY+Do8ZzUuMpGZHLO1UFPPvlktkNwWeDXPfvSDrgtqQhITLEnoCmwnyqY61nS3wjjFs4jdJJpSxga55tmVlDRcmuCD7hdOYf372HdgmfZv/I5Om9/ja7FoZ/RVtqzvtXJqM+59D7pAjp16pzlSJ1zzrm6r9oG3Daz6uwRkJ/0WPs+4EOgu5ntrcZjVoq3KFaMFRexZdUC3l88g+abXqH3geUMVBEHLJe3Gw9nXd4VdBxxPn0HjaJLToNsh+ucq6UefPBBAL785S9nNQ5Xs/y6Z1+ZU/hVy0GlxWY2Kt1ybeYtimXbu2Mz69+YTvHaF+ix8w3asRuAterJ1g6n0HTgJPqPm0jLFpUdMtM5V1+MHz8egJdffjmrcbia5de98mpiCr/qMFzSnvi9gKZxudKPtV3NKzpyiPWLZ7N72Szavz+XXkfXMxz4yFqypsVYjvY6mx7jLqRP93y8PdY555yrO7KSKFbzY+1q4Y+ek5jxwbsrKVw4jdx3X6b3x4vpyyGOWA6rGg1kbt71tB06mf6jzuCkhtn6W8Q555xzleW/xTNU34fHObBnJ2vnz+DQO7PpuuN1utgHdAIK6URB2yk07DeBPiedz5B27bMdqnPOOeeqiCeKLiUrOsq7y19ne8FMWm+eQ+9DKxmqYj62JqxqOoL13b9Cl9EX0KvfULr5mIbOOefccSkrnVnqsuO5M8tH729k45tPw7oX6bVnAW0IndDXNOjNto6n0WLwefQfey5NmjTNcqTOufpm//79ADRr1izLkbia5Ne98upqZ5Y653h8R/Hwwf2sXfAc+1bOouO21+hZtJF2wIe0ZnWrUyjOP4f8ky6kb5c8+mY7WOdcveaJQv3k1z37vEWxnOpyi6IVF7N57VtsXTSdpu+9TJ/9b9FERzhsDVnVeAh7up5Bh+Hn02foyeT4mIbOuVrkd7/7HQA33HBDliNxNcmve+VVtkXRE8VyqmuJ4p5d21n3xnSOrp5N953z6GQ7AHhPJ7K5/ak0HjCRvuMm07JVmyxH6pxz6fl4evWTX/fK80fPlSCpAfBjoBWw0MweynJIlVZ09AjrlrzCzqXP0vb9OfQ+vJqRMvZYM9Y0H82GXmfTbcwFdO81gO7ZDtY555xztVqdTRQl3Q9cCGwzsyFJ6ycDvwFygPvM7OelFHMR0BX4CCisxnCr1Qfvrea9BdNouOFleu9bRD8+ptjEmkZ9md/tq7QeNpm+o8YzulFutkN1zjnnXB1SZxNF4EHgDuAPiRWScoD/BSYSEr8Fkp4mJI23ldj/q0B/YJ6Z3S3pSeCFGoi70g7s28Oa+TM58M5sunz4Gt2LN9MJ2EY73mlzFg36nkvvky6kf4fO2Q7VOeecc3VYnU0UzWyOpJ4lVo8D1prZegBJfwIuMrPbCK2PnyKpEDgcF4uqL9rKseJiNqx4k21LnqHF5jn0O7icYTrKActlddNhbMm7nE4jL6DngJF0bOCdUJxzzjlXNepsophGV2BT0nIhcFIp2z8F/FbSGcCcdBtJug64DqB795p5s2/HB4W8O38axWtfJH/3fPLZRT6wvkFPFnX+PM0HTaLfuEkMb9q8RuJxzrls8s4M9ZNf9+w73hLFVFOEpO3WbWb7gavLKtTM7pG0FZiam5s7uhLxpXX40EHWLJzN3hWz6PDBa/QpWkd7YCctWddyHGvzz6HXuAvJ79qT/OoIwDnnnHOuhOMtUSwE8pKWuwFbshRLqay4mMJ1y9myaDpNNr5M3/0FDNYhjlgOa3IHMS/vBtoPP5/ew05lTE5OtsN1zjnnXD10vCWKC4C+knoBm4HLgSuzG9Ixe3btYN2b0zmyajbddr5Bnm0jDyhUF5aecD6N+0+kz7gpDGrdLtuhOuecc87V3URR0mPAeKBD7JRyi5n9XtLXgFmEns73m9mKbMVYdPQoawvm8NHSZ2m7dS59Dr/DSBWzz5qypvkoNvW8lm5jLqRb/iC6ZStI55xzzrk0fGaWciprZpb3N63jvfnTaLjhRXrvW0jrOKbh2kZ92dHpNFoPnUzfUWfTKLdxDUbtnHPOufrIZ2apIZKmAlP79OnzqfUHPt7LmvnPsv/t5+ny4ev0KN5EZ8KYhqvanEWDvufQe9yF9DuhS1bids4555yrKG9RLKcxY8bYEw/eEcY0LJxDv4PLyNVRDlojVjcdxv5uZ9Jp1AX0HDAa+ZiGzjnnnMsib1GsIYkWxeFdcsl/8jzygQ0NerC48z/QbNAk+o2dxLBmLbIdpnPOOedclfEWxXIalNfGHrz9R/QcN5WOXXtlOxznnHPOubS8RbGGNevUh3Gf+0a2w3DOOeecq3b+El2GJE2VdM/u3buzHYpzzjnnXI3wRDFDZjbNzK5r3bp1tkNxzjnnnKsRnig655xzzrmUPFF0zjnnnHMpeaKYIX9H0TnnnHP1jQ+PU06S9gKrqvEQrYGKZKOZ7lfWduk+T7U+k3UllzsAH2YQZ0V5/VVONuuvvJ+Vt/6O57or7fNM19fne6+0z/1nt+zt/Ge3cttV989ufzNrmUGcqZmZf5XjC1hYzeXfU537lbVdus9Trc9kXYplrz+vvyr5rLz1dzzXXWmfZ7q+Pt975a0//9mt3Gf+s1vxe6+sukqzXKn680fPtc+0at6vrO3SfZ5qfSbrKno+FeX1VznZrL/yflbb6q8u3Xup1tfne6+0z+vCvVeZ4/nPbt2691Ktr9a680fP5SRpoVVihPP6zuuvcrz+Ks7rrnK8/irH66/ivO4qp7L15y2K5XdPtgOo47z+Ksfrr+K87irH669yvP4qzuuucipVf96i6JxzzjnnUvIWReecc845l5Inis4555xzLiVPFJ1zzjnnXEqeKDrnnHPOuZQ8UaxCkhpI+qmk30r6UrbjqWskjZc0V9JdksZnO566RlJzSYskXZjtWOoaSQPjffekpH/Odjx1jaSLJd0r6W+SJmU7nrpEUr6k30t6Mtux1BXx/7qH4j13VbbjqWvKe895ohhJul/SNknLS6yfLGmVpLWSvldGMRcBXYEjQGF1xVobVVH9GbAPaEI9qr8qqjuA7wJPVE+UtVdV1J+ZvW1m1wOfB+rVeG1VVH9/NbNrgS8Dl1VjuLVKFdXdejO7unojrf3KWZeXAE/Ge+7vajzYWqg89Vfee86Hx4kknUlIUv5gZkPiuhxgNTCRkLgsAK4AcoDbShTx1fi108zulvSkmV1aU/FnWxXV34dmViypE/BLM6sXfylWUd0NI8yH2oRQj9NrJvrsq4r6M7Ntkv4O+B5wh5k9WlPxZ1tV1V/c73+AR8xscQ2Fn1VVXHf16ndGSeWsy4uAmWZWIOlRM7syS2HXGuWpPzNbGT/P6J5rWG1R1zFmNkdSzxKrxwFrzWw9gKQ/AReZ2W3AZx7vSSoEDsfFouqLtvapivpLshNoXB1x1kZVdO+dDTQHBgEHJD1jZsXVGngtUVX3npk9DTwtaQZQbxLFKrr/BPyc8Mu7XiSJUOX/79Vr5alLQtLTDSjAn4wC5a6/leUp2yu4dF2BTUnLhXFdOk8B50n6LTCnOgOrI8pVf5IukXQ38EfgjmqOrbYrV92Z2c1mdhMhwbm3viSJpSjvvTde0u3x/numuoOrA8r7f9/XgQnApZKur87A6oDy3nvtJd0FjJT0b9UdXB2Tri6fAv5e0p3U/JzadUnK+ivvPectiqVTinVpn9Wb2X6g3r9rkqS89fcU4T8AV866+2QDswerPpQ6qbz33svAy9UVTB1U3vq7Hbi9+sKpU8pbdzuA+p5cp5OyLs3sY+ArNR1MHZSu/sp1z3mLYukKgbyk5W7AlizFUhd5/VWc113leP1VjtdfxXndVR2vy8qpkvrzRLF0C4C+knpJygUuB57Ockx1iddfxXndVY7XX+V4/VWc113V8bqsnCqpP08UI0mPAfOA/pIKJV1tZkeBrwGzgLeBJ8xsRTbjrK28/irO665yvP4qx+uv4rzuqo7XZeVUZ/358DjOOeeccy4lb1F0zjnnnHMpeaLonHPOOedS8kTROeecc86l5Imic84555xLyRNF55xzzjmXkieKzjnnnHMuJU8UnaukOG9mQfx6X9LmpOXcWhDfJZIGJC3/VNLZ1XSsHElzq6PsukbStyQ1Kec+4yWtkLQk+d6R1C55DmVJEyT9tSrjrSqlnbekVyWtij8bKyXV+JSnkq6R9OsqKquPpAPxfN6S9JqkvlVUdrnjjOPntamK4zuX4Imic5VkZjvMbISZjQDuAn6VWDazwwAKsvXzdgnwSaJoZjeb2UvVcSAzKzKzM6qj7JogKacKi/sWUK5EEfgC8HMzG5m4d6J21J35gMs678viz8qZwH9LaphpweXZtjqkOf6q+LM+HHgU+F4Nh+VctfJE0blqElsblku6C1gMdJF0j6SFsdXoB0nbFkq6NbYkLZXUL64/J7ZUFEhaLKm5pFaSXozLSyVdmFTOV+K6tyQ9IOkM4HzgV7GMnpIelnRx3H5iXL9M0r2JVqx08ZQ4v6GSFsT9l0rKl9RQ0q74+U+TWla3SLo3rv+SpPlx/e9SJdCSfhjLXi7pLkmK6/8ltkS9JenhFPtdI+kvkmbFlqvvJ332meMm4pX0E0nzgXGSTpI0Lx7jTUnN4na/jPsvlXRNLHOCpBckPRWP94dEnEBHYK6k2Sni/Ey9K7QYXgL8KFFOkp8TZlwokPTzuK5lyePGssdKekXSIkkzJXVKcfyL4rktkfScpI5xfar7ratCS2BBvB6nxm2nxHpaLOnxuG2p511CC+BjoCj5vollXy7pvvj9w5L+R9JLwM/itfp9PMf1km4s7Ron3RerJb0MnJwqGEkdJD0dr+/rkobE9T+RdLek54EHyjinVsDOuF9TSQ/Fa7xY0plJsTwZ79E1km5LiiFlnJI6xWu9MJ7fyXH9CZKej+XfCaiM+JwrPzPzL//yryr6Am4Fvh2/7wMUA2OTPm8X/20IzAUGxeVC4J/j998A7orfzwROit+3AHKARkDLuK4jsCZ+Pxx4J+kYiX8fBi5OiuFh4GKgGbAJ6B3XPwJ8rbR4SpzrnYTWIYDGhFakhsCuEtu1BZYDI4AhwF+BhvGze4ArU5SdiF3AY8CUuLwVyI3ft0mx3zXA5njM5sDK0o4b4zXgkri+CbABGBWXW8c6vwH4XtK5LgG6AxMIiUGXuN0C4OSkOkwVY2n1/qlrlbRPH6AgaTnlcWNsrwMd4nZXAfekKK8tx2bmuh74RSn37l7j7QAADmNJREFU23eB78Z1OXF9R+AVoFlcfzPw76Wdd/zsVWAVsBQ4AFyT9POwK2m7y4H7kurkr0CDuPwTws9OboxjR4wr3TXuBmwE2sd93gB+neZ+vjl+PwlYmHS8+UCTNNflAFAArCfce93iZ98F7o3fD44x5BLu0TVAS6BpvBdOLC1O4HGO3Vc9geXx+98l1ftFhHs5Zd37l39V9CurzfjO1QPrzGxB0vIVCu9lNST8chhESGYAnor/LiK0AgK8Bvxa0qPAn81sn8Lj0V9IOp2QiOZJ6gCcAzxuZh8BJP4txUBCkrkuLv8BuBq4o5R4kr0OfF9SD+ApM1urEo/mYovOo4REpEDSTcBYYKFCI2HiF2VJ50r6DiFx6xBjmAmsAB6W9DdCUpDKLDNLtOr8FTidUN/pjnsY+EtSnbxnZosBzGx3LGcSMFDS5XG71kDiXbQ3zGxr3K6A8Iv8jTSxJY5RWr1nKtVxDxKSktnxPHMIiVtJ3YEnJHUmJJer4/pU99sC4G6F9w7/amZvSZpAuHdfj8fJJSSBmbgs3gsd4/7PAu+Xsc//mVlx0vJ0C4/mt0n6CDiBkDynusaHgRfMbAeApCfi+Zd0OnABgJk9J+lBSc3jZ38zs4NpYltl4VE6kq4ivH5yYSzvv2J5KyRtISSWALPNbG/c550YT7dS4pxAaFFOHLOtpKaEx/fnx2P8TdLedBXoXEV5ouhc9fo48Y3CS+7fBMaZ2S6FR6fJ73Idiv8WEX82zewnkp4m/AJbIGk8cBYhURllZkclFcZyRGhRyFRZj6k+E08yM/ujpHkxtuclfYmQPCb7MSFZ/mPSMe83s/9IG5TUjJA0jTKzzZJ+wrF6Oo9w/hcRktQhZlZUMrQUyymPGxPbA2aW2CddHQq4wcxeKLH/BI7VE6SpqxRlVYVUxxWw1Mp+T/R/gZ+Z2TPxHL4Hqe83M3sx3ncXAI/ER6X7gWfN7IsVDd7Mtkl6CxhHSPqT66XkO44fl1hOd+6prvGlZPZzUfK6JC+XPH46TxNaJlOVlyzdPZMuThH+3zj8qZUhcSzPz7xz5ebvKDpXc1oBe4E9kroQkp5SSeptZkvN7DbC487+hCRxW0wSJwJd4+azgcsltYv7tovr9xIec5W0EugrKT8uf4HwODEjkvLNbK2Z/QaYAQwr8fnFhBaPf0laPRv4fGwBTfQYL9m605TQUvqhpJbA38dtcwiP9V4EvkNoRWqWIrRJktrEhPMiQitZJseF0GLZQ9KouF2reNxZwA2JFlNJ/WOLTmmqst7TlZWq7K6SxsU4cyUNTrFda2CzQqbxpcTKVPdbbDF+38zuAR4ERhL+IDgrcQ4K7ycmWlgzijW21g0n/CFRDOyU1De2Qn8ug3MtKd01foPQQt1O4R3cS9PsP4fwqD7xB0ChmWWaICacDiRaipPLG0h4TWBtKfuWFudsIPldzBEpjjGVzO4R58rFWxSdqzmLCb/IlxPeZ3otg32+rdAhpZjwXtdzhPelpklaGMtcA2BmSyX9JzBH0lHC49qrCe/43S3pXwnvJhK33x8fgz8Vk6E3gXvLcT5XSroCOAJsAb5f4vN/JTxOWxBbPp4ysx9J+iHh0WiDuO/1wHtJce2Q9BChnjbGuCD8f/VoTB4bEB5np3rU9irhcXdv4I9mVgChg0yK425J3tHMDsVzujM+aj1AeKR/N+ExYEE8l22EJLQ098TjbTKzCUnHKHe9m9kHCh0ZlhGS8pQdRWL8lwK3x3pqCPwPIQFOdivhcXsh4X7qEtenut++AHxL0hFgH/CFGM/VwOM6NozPvxPuxZTnneRxSQcIj7zvNbO34vrvAs8S7oWV8fOMmdmyVNfYzBbEVuk3CNd7YZoifgA8IGlpPM+vZHjo/vHRvwgthdfF9b8l/Nwti7H8o5kdTnp8XDL+wlLivJFwT36FcE1fiutuAR6T9Pm4bnOGMTuXscTLzM45V+cp9EYeYmY3ZTsW55w7HvijZ+ecc845l5K3KDrnnHPOuZS8RdE555xzzqXkiaJzrkySXpY0Jn7/jDKcT1bSlyWVd3zAdGX9KPZGRdJNsVdzRcqpsphKlNtT0vJy7vNg7HySWL5C0s0xxu0KM4y8ozDjSZ2QfK9kMYZ3E72f4/Ldkk6TdLLCjDQFkt6WdGs1HPtWSd+u6nKdyxZPFJ07zqmK58c1s/PNbFfZW1YtM/uBmSV6+95E6qFx6rrJhJ6/EAZPHwGcBtwsKa86DqigVvwuqMZYTiL0Jn4IuC7W6xDgiWo4lnPHlVrxn4NzLr3YUvW2wpzAKxTm5m0aPxsh6Q2F+Wn/IqltXP+ypJ9JegX4Zmy5ulPSSwrz454l6f5Y7oNJx7pTx+ai/mGaeN5VmBf3eh2by3mDwly8ifmmV8djn5amjE+1uijMIdyzjHN9UNKlkr5BmNXmpXg+OfGz5Qrz6mbS+pYn6VmFeZJvSYrjW7Gc5QqzyJRV/6MV5kaex6fHucuR9F8K81UvlfRPcb0k3aEwX/UMwhR0iX1EmG5wcXKgcaaOtcQhbBTm9/1zLHuBpNPi+rOSrscSheFxkPSdpDh+WOKcfheP9x8KQyslYvmypN/G77+gY/Mn360wpE9ZvqAwX/JyHRvTsaxrnoglT9I+hbnC34r3d6cyzr19vC5LJN1N0mDXCmMYro4Ds3ckTAOJmRWZ2coMYntHYc7mpQpzNDeL27wr6RexbuZLSsy6kiijt6TFSct9JS3KoO6cq1U8UXSubugL/K+ZDQZ2EQehJkz/9l0zGwYsI4yrltDGzM4ys/+Jy20JYwL+CzAN+BVhurehOjaA781mNoYwePZZkj41iHYyM7srtsyMJYzH90uFgcR/SEgQJxKmeauqc00c93bCOHNnm9nZhOSqq5kNMbOhwAMACons9WmOMY4wUPEI4B8kjZE0mjB23kmEeZOvlTSyjJgeAL5hZqeUKP9qYLeZjSXUz7WSehEGku4PDAWuBU5N2mck8JaV6GGoMGh0E8K4hgC/AX4Vy/574L64/tvAjfGanAEcUJh6sG883xHAaElnxu37A38ws5GEOYMvSTrsZYTxDgfG70+L5RbFeitLczM7lTBH9v0ZbP9JLGa2kTBP9xtmNpwwqPS1ZZz7LcCr8Vye5tNT9E3hWCvtr4BVCn9U/ZPCWJmZxHZP/BnbE88pYY+ZjSPMJPTr5J3iFI27k362vkIYsNy5OsUTRefqhg2JgaMJA2n3lNSakAwmZvV4iDATSsLjJcqYFpOQZcAHZrYszoixgjBPMISZLRYTZuUYTGaJ3m+AF81sGiHJetnMtsfpxkrGkInPnGsZ268H8iX9VtJkwi/zRCJ7V5p9njezHWZ2gDCn9enx6y9m9rGZ7YvrE1PhZVL/f0wqfxLwjwoDMb8JtCckbGcCj8XWrC3Ai0n7TCbMZ51wmaQV8fx+kzTX8ATgjlj200Cr2Hr4GiFZ/0aM62iMYxLhei4GBnBsjuqNZvZGrKvtwHqFd/jaE5Kj14BzgdGEQdML4nJiRpnSPBbLnRPjK+ud1k9iiQ4D0+P3yfdAunM/E3g4HnMGsDOprPOIiaKZ/QgYQxhI/EqOJZCl2WRmicHxHybcJ586z/hvyT8WICSyX4mtsJcRBoJ3rk7xmVmcqxtKzg1b1vRxkH5+3OIS5RUDDWOL17eBsWa2U+GRdKktLpK+DPQAvpa0OpMxt47y6T9UU815DRmca4x1OCEhuBH4PPDVMo6fbj7odFLFVNrc2gK+bmazPrVSOr+UfSbx6dbTx83sa5JOAWZImmlm7xPq7ZSY5Cb7eXycfT7whkLHHwG3mdndJeLoyWfvj8cJdfcOIWG2+Dj8ITP7tzQxp5Oqfku75iVjOZLUspo8F3LKc1eaOY/jY+I2MSkPgYSWvjsl3Qtsj4lxabGlOpeyvk/4M6G180VgUXyNwLk6xVsUnaujzGw3YX7cRKvXFynHXM0ptCL8wt4d3wmbUtrG8VHttwlTuhXH1W8C4+M7Y42Af0iz+7tAYj7lUUCvcsb6yXzCCr1bG5jZn4H/SJRbhokKc+o2JUxr+BrhEefFkpopzEP8OWBuugJih57dkhItTMmPZGcB/xzrAEn9YplzCPNx58TH9GfHz1sDDVMlEmY2j9Ba+c246jmSEvPEo02FeZqXmdkvCNO/DYhxfFVSi7hNV0kdSe2pWBdXcKwl+AXg0sQ+sc56xO//kHj/MIXL4janEx7B76by1zztufPpOY+nEF6zgFC/LyVtf0FMfiG0rBYRXiUoLbbuMVmHUDevljzP+O+8ksHGVuBZwJ3EVyKcq2u8RdG5uu1LwF2x5WQ9mc9P+xlm9pakJYRH0ZnMRf01oB2hUwnAQjO7RmHIkXmETgOLgVSdH/7MsUezC4DV5Qz3HmCmpK2EHtAP6Fhv2X+D8I5iPK9Uj59fJSRffYBHzWxh3OdBwtzHAPeZ2ZLY+pbOV4D7Je0nJAQJ9xEely6Oicl2QhL2F8J7ossI55xI7CeSZv7m6BexrJ8B3wD+V2FO4oaEJOl64CZJZxOSn5XAzDj380BgXrxG+whzNxeVPEBsmV0JDDKz+XHdSknfB57TsfmTbyTMwT2M2DEkhZ2SXif88ZFo3a3sNaeUc/8hYc7jxYQ6TcwdPgV4Mmn/LwK/itfrKHCVmRVJKi22t4EvKXSSWUNI+hIaS3qT0OhyRZqYHyG8//lcBc7XuazzmVmccy7LJN1HSEzfKHPjWkBSK+D3ZpauxbhWiInjSWZ2pIL79wSmm9mQFJ+9C4wxsw/LKOPbQGsz+4+KxOBctnmLonPOZZmZXZPtGMrDzPaQ/rWCWsPMMnkNodpI+gvQm9CK7Fyd5C2KzjnnnHMuJe/M4pxzzjnnUvJE0TnnnHPOpeSJonPOOeecS8kTReecc845l5Inis4555xzLqX/D/2EkWWXbm4rAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 720x216 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, ax = plt.subplots(figsize=(10,3))\n",
|
|
"ax.hlines(phi, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.hlines(1, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.vlines(bound, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"ax.vlines(1, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"pdf2.plot(x='tx_fraction', y = ['bond_to_mint_slippage', 'burn_to_withdraw_slippage'], logx=True, logy=True, ax=ax)\n",
|
|
"plt.title(\"Friction for Bond and Withdraw accounting Without Fee\")\n",
|
|
"plt.ylabel(\"\"\"Percentage Change:\n",
|
|
"Realized Price\n",
|
|
"Relative to Spot Price\"\"\")\n",
|
|
"plt.yticks([10**k for k in range(-6,1)])\n",
|
|
"plt.xlabel(\"\"\"Transaction size as percent of the asset Burned or Bonded\n",
|
|
"normalizd units: bonded/Reserve, burned/Supply\"\"\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Text(0.5, 0, 'Transaction size as percent of the xDAI Reserve\\nnormalizd units: bonded/Reserve, withdraw/Reserve')"
|
|
]
|
|
},
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAFcCAYAAABP+58jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsnXdclWX7wL83iICCI3BrgoOciIqggjhzj1ezjJY21LQyNUvtzVVq/sy3tBJLU3OQ4ShXaOZApVygONIcDBG3DBVkc//+eM45HeBwAAVRvL+fjx8597zu9TzXc91LSClRKBQKhUKhUChyYlHSAigUCoVCoVAoHk2UoqhQKBQKhUKhMIlSFBUKhUKhUCgUJlGKokKhUCgUCoXCJEpRVCgUCoVCoVCYRCmKCoVCoVAoFAqTKEVRUWCEEE8LIRKFEJb3EfdjIcQPxSTXTCHELSHEteJIvzgRQvwohJj5kPKSQogGRZTW30KITmb8g4QQbxUivSghRLeikO1JoTjHVCHlyPe5UJR9rzAIIZx0eZcpovQShRD1zPirfmyEuXYXQrwshNjxsGVSFB6lKD7h6B5syboHoP5fTVNhpZTRUko7KWVmPml2EkLE5Ig7W0pZYMWhoAgh6gAfAE2klNWLKE0phEjS1cUtIcQaIUSlokj7UUQI4SuEOJ3D7Y883CYBSCmbSimDdO7ThRCrH5rATyAPeUx9L4TwM/ptpRsPptza5nwuFPYjoaQQQkwWQgTmcDufh9uLALpyRujcH+ZH3jAhRHA+YYKEECk5nuXtHoZ894OU0l9K2b2w8XTK/x4hxD0hxD/mFHMhhLUQYpkQ4o4Q4poQYryRX1khxHrdO1Ca+/B90lGKogKgn+4BqP93JWeAovoiLwbqArFSyhuFjZhPmVpIKe2AekBlYPr9ifdYsBdoLISoAoZ6aQGUy+HWDtj3sIV7hPteaWUf0NHotzsQDfjkcAMIfVhCFQP7AC+9JVQIUR2wAlrlcGtACfT7++TdHM/yAyUtUDGwBjgGOAD/Bdbrn1MmmA40RHtPdAY+EkL0NPIPBl4BHrvZqIeJUhQVJjGasnlTCBEN7M45jSOEeEoIsVwIcUUIES+E2CiEKA9sA2oaWyhzWp2EEP1105cJui/hxkZ+UUKICUKIE0KI20KIACGEjQkZuwF/GOX1YwHTniiEOAEk5aeESCnvAJuBJkZp1BRCbBZCxAkhLgghhhv5TRdCrBVCrBRC3NXJ4W7k31IIcVTnFwDkKpdR2PpCiN1CiFidZdPf2LKZXz0JIT4UQlzVtc8bZsp4BYjgX0WgFfA3mgJp7GYBhBjl3U330P0YGKJrg+NGSdcVQvypK+sOIYSjkWyvCiEu6sr23xzlnq770l8thLgDDBNCeAghDuja9KoQ4lshRFld+BlCiG90f+stXXN1v22FZmWpbKJ+Kwshtgohbur671YhRG0j/1z928hvgBAiTGiWinD9yyefvpHNAiVyWAnzas+CjCnx79gcKoSI1vWX/xqlbSuEWKErxxkhxEcih4XSCP2Hg769OgA/A+VzuB2QUqYb5V1GCDFL5/etTs5vjdLtJjTrXLwQYqEQQpjK3Fxb6/ylEOJtU2kJISyFEPN05Y8A+uRRRoAjaIqhm+63D7AHOJvDLVz/8azLu4EQYgTwMprikSiE2GKUrpuZMTlc1y/idP2kps491xS50Flmhfb8+g5op8srwUyZTCKEaCS0GYE4IcRZIcQLRn7WujqLFkJcF0J8J4SwLWC6P+rC/yG0cb5XCFE3RzCT7S4KYCU1kZ8L2rNompQyWUq5ATgJPJdHlNeAz6SU8VLKM8ASYBiAlDJNSjlfShkMmJ0le9JRiqIiPzoCjYEeJvxWAeWApkBV4CspZRLQC7iSl4VSN9jXAGOBKkAgsMX4ZQC8APQEnAFXdIPbGCnlzhx5DStg2r5oL5BKUsoMc4UXmoLxH+CgkfMaIAaoCQwGZgshuhr590d7sVZCUzK/1aVVFtioq7engHXk/YADEMDnunwaA3XIbdk0WU86xWUC8CzaF3V+66b28a9S6APsR/vaNnY7KKVMM44kpdwOzAYCdG3Qwsj7JeB1tL5RVicPQogmwCLgVV3ZHIDaZGcAsB6tDv3RHuTjAEc0y2ZXYLQu7F6gk+7vNmjWAb1FrB1wVkoZb6LMFsByNGvD00AyurbSkat/6+T3AFYCH+rk8wGidHHy6xv5kas9CzKmjPAGnkGrn6ni34+kaYATmoX8WTQrikmklDHARTSFD/7tD3/lcMtlZZNS/lcXVm/ZetfIuy9a+7TQldPUMwXMt3V+aQ3X+bVEs3oONlPONOAQ+fd7U+VcjNYv5+rK2c/IO68x2QVtPL8A1ECr45/zks8orzPA22iKuZ2UslDLYHQfGn8AP6H1Y1/ATwjRVBfk/wAXNOW4AVALmFqILF4GPkNrrzC0ejGmQO2uU64T8vinX/bQFIiQUt41inpc554zvcpo4/B4fmEV5lGKogJgo9GA3JjDb7qUMklKmWzsKISogfbyelv3tZYupdxbwPyGAL9JKf+QUqYD8wBboL1RmK+llFeklHHAFv79wi+qtC/lLFMOjuq+3G+hKRHfg2FNpDcwUUqZIqUMA35AU3r0BEspA3VrtlahPSAB2qJZMObr6ms9mlXDJFLKC7pypEopbwJfkn1KUF8WU/X0ArBcSnlKp2hMN1NWyG497ID2wtyfw62g7atnuZTynK6e1xrJNhjYKqXcJ6VMBaYAWTniHpBSbpRSZuksB6FSyoNSygwpZRRae+jr4gDQUAjhoJN3KVBLCGGnC2NSbillrJRyg5Tynu7FM0ufZj79+01gma5tsqSUl6WU/xSwb+TH/fZ7PTN09XUc7aWo73svALN1ZYkBvs4nnb2AjxDCAvBA+1Dab+TmReH7wxwpZYKUMhrNcmeybPm0dX5pvYA2vi7p6vDzgpRT93dR9fu82vBltH5zVNfvJ6NZCZ0Kmb7ZvI2e5Ud1bn2BKCnlcl2dHgU2AIN11r3hwDgpZZxuHMwGXixEnr8ZjeX/opWpjpF/QdvdVUpZKY9/+g8FO+B2jqi3AXsTSdoZ+ecXVmEGpSgqAP5jNCD/k8PvUh5x6gBxeVhq8qMm2tc0AFLKLF0+tYzCGK8Zuce/g74o0s6rTMa00n2526BZv/brppBqopXb+Iv2Yj6y2+imlGoCl6WUMkdckwghqgohfhZCXBbaFOxqtK92Y/Kqp5pkL2ee+ejYB7jqvsLboilq/wA1dG7eFH6dVoFk0ymysTniZmsjIYSL0KaGr+nqYja6utApoiFoyoQP2ov9LzRlJk9FUQhRTmgbNy7q0twHVBLa+jRz/bsOEG7CvSB9Iz/ut9/nFz9nf8hvDOgtzM3RLDj3+NfS1hzt4+tQEcmWDXNtXYC07qffe+v6eBUp5Xm0vtNe59aMou33xs+mRLR+X5j+kR9jjJ7lrXRudQFPYwsdmtJaHW3WpRwQauS3XedeUIzHciIQh1ZWPQ/ap41JBCrkcKsA3M0jrN4/v7AKMyhFUZEfMg/3S8BTwvRu4Lzi6LmC9vACQPdVWwe4fF8SFj7t/OT7N6BmlfwBbRqpmS79p4QQxl+lT1Mw2a+iWbqM12Y9bSb85zpZXaWUFdCmC02u68ojL+OvenP5ILWdnFeAEUC07oEPmrVuBNrD/WBe0Qsok0nZhBDl0KafzaW5CPgHaKiri4/JXhd7gS5oU45HdL97oFnD8nrRf4A2TeupS1NvRRKY79+XgPom3PPrG0loL2U9hdmlX9g6zslVsk/v18kroI59aNbIPmgWNtDWrdbRuR2RUqbkEfdBZc2vrc1RqH6P1r8rovXxP8GwLlk/Fq5IKSPziFvYcuZ8NpVH6/eX0foG5N0/HqROLwF7c1jo7KSUo9BmTJKBpkZ+FaW2ka+gGI9lO7RlNXktjcgToa3nTszj33e6YH8D9XKMsRY692zoPvKu8q9VPc+wCvMoRVFxX0gpr6ItsPcT2qYAKyGE/kV7HXAQQlTMI/paoI8QoqsQwgrthZ2K9iX/oBRp2jrr0utoD9MIKeUlXVqfC22jgSvaVGTOdTmmOABkAGOEtvB/EJoikxf2aF/FCUKIWmhr4grKWrRNIE10iti0AsTZD4znX8UANCvSeCDEzFT9dcBJNyVZENYDfYUQ3rp1m5+S/7PIHrgDJAohGgGjcvjvRVu4flpqa8+CgLeASN20fV5pJqPV71MY1VE+/Xsp8Lquj1kIIWoJIRoVoG+EAb2FtkmmOto62oKS35jKj7XAZF1ZagHvmgsspbygy/N9dP1BZwk/pHMzZ2W7jrYW8n7Jr63NsRZtfNXWWQQnmQtsZI3Oq98XZTl/Qus3bkIIazRL6SEpZZSuj14GXhHahpw3yP4xch2oLbKvtS4oWwEXoW0gs9L9ayOEaKybcVkCfCWEqAqg68+GdYQi/6NjehuN5c90ZSrIrE02pHbkll0e/97WhTmHNo6m6cbYQLR1oBvySHYl8Imu3zdCm2b/0ahs1uLfzUZldWkW9KPkiUEpiooH4VUgHe3r/wa6F59uynINEKGbzsh2LqOU8iyadewbtC/afmhH9GTbKHE/FGHax4UQiUA8MBQYqFtzBNpicCe0r+Zf0Xbg/VEA2dKAQWiL2+PR1lP+YibKDLQdfreB3/IJmzOvbcB8YDdwQfd/fuxFW+xuvBNxv87N3Atzne7/WKN1UeZk+xt4B+3FeRWtLvLagatnAtrmmLtoL7aAHP5/oU2H6uU8DaTkI/d8XZxbaNbS7Tn88+rfh9E+Hr5Ca5u9/GspMtc3VqGtG4wCdpgoQ57kN6YKwKdodRwJ7ERT1lPzibMPbQryTyO3gvSHBWjr3+KFEPmthTRFfm1tjiXA72j1fJSCjZn77fdLgSbC9NruXEgpd6Gtx92A1u/rk30t4HC0j8FYtA0Xxh+3u9EsYdeEELfyyytHvneB7rq8rqBNBf8fYK0LMhHtGXFQN9W/E83SjtBOAUhE21mcFz+hfWTFAa3RprWLkxfRNirFA3OAwfqPQaEd4m1sMZyGtkzkIlo7fyG1DXh6zqJ9LNZC6zfJGFl9FRoi+3IphUKhUJR2hBCjgBellDk3iSgUBoQQr6BNS0/Ow/9HIEZK+clDFUzxUFEH2SoUCkUpR2i7uOuh2yGOtiTjW7ORFE88Ukp145JCKYoKhULxBFAW7ZgZZyAB7fw+P7MxFAqFAjX1rFAoFAqFQqHIA7WZRaFQKBQKhUJhEqUoKhQKhUKhUChMotYoFhJHR0fp5ORU0mIoFAqFQqFQ5EtoaOgtKWVhbtvJhlIUC4gQoh/Qr0GDBoSEhJS0OAqFQqFQKBT5IoTI7ypLs6ip5wIipdwipRxRseL9XoygUCgUCoVC8XihFEWFQqFQKBQKhUmUoqhQKBQKhUKhMIlao1gEpKenExMTQ0pKSkmLolA8dGxsbKhduzZWVlYlLYpCoVAoihilKBYQ480sOYmJicHe3h4nJyeEEA9fOIWihJBSEhsbS0xMDM7OziUtjkKhUCiKGDX1XEDMbWZJSUnBwcFBKYmKJw4hBA4ODsqarlAoFKUUpSgWEUpJVDypqL6vUCgUpRelKCoUCoVCoVAoTKIUxVJCVFQUzZo1K/J0nZycuHXrlkm/hIQE/Pz8ijxPY7777jtWrlxpNkxYWBiBgYGFTtu4zkJCQhgzZsx9yahQKBQKRWlFbWZR3Dd6RXH06NHFlsfbb7+db5iwsDBCQkLo3bv3fefj7u6Ou7v7fcdXKBQKheJRIT0znfWndxNwZvMDp6UUxQJibtezMTO2/M3pK3eKNO8mNSswrV/TfMNlZGQwdOhQjh07houLCytXruTAgQNMmDCBjIwM2rRpw6JFi7C2tsbJyYmhQ4eyZcsW0tPTWbduHY0aNSI2NhZfX19u3ryJh4cHUso885s0aRLh4eG4ubnx7LPPMnfuXD766CO2bduGEIJPPvmEIUOGmIwbFBTEtGnTqFatGmFhYQwaNIjmzZuzYMECkpOT2bhxI/Xr12f69OnY2dkxYcIEOnXqhKenJ3v27CEhIYGlS5fi6enJ1KlTSU5OJjg4mMmTJ5vMc+/evbz//vuAtqZu3759ueSZN28eW7duZfr06YSHh3P58mUuXbrERx99xPDhwwkKCmLq1Kk4ODhw9uxZfHx88PPzw8LCglGjRnHkyBGSk5MZPHgwM2bMACAwMJDx48fj6OhIq1atiIiIYOvWrSQlJfHee+9x8uRJMjIymD59OgMGDMi3jRUKhUKhMEVmViZbzgXjf2oTZ+/+ibS4h8y0eeB01dRzAXkcrvA7e/YsI0aM4MSJE1SoUIEvv/ySYcOGERAQYFBIFi1aZAjv6OjI0aNHGTVqFPPmzQNgxowZeHt7c+zYMfr37090dHSe+c2ZM4f69esTFhbGF198wS+//EJYWBjHjx9n586dfPjhh1y9ejXP+MePH2fBggWcPHmSVatWce7cOQ4fPsxbb73FN998YzJORkYGhw8fZv78+cyYMYOyZcvy6aefMmTIEMLCwvJUTOfNm8fChQsJCwtj//792Nramq3LEydO8Ntvv3HgwAE+/fRTrly5AsDhw4f53//+x8mTJwkPD+eXX34BYNasWYSEhHDixAn27t3LiRMnSElJYeTIkWzbto3g4GBu3rxpSH/WrFl06dKFI0eOsGfPHj788EOSkpLMyqRQKBQKhTFZMos/Ig7x8q+TaL3ChymH3uXM3b3YZzVnUM0p7HhuzwPnoSyKRUxBLH/FRZ06dfDy8gLglVde4bPPPsPZ2RkXFxcAhg4dysKFCxk7diwAgwYNAqB169YGhWffvn2Gv/v06UPlypULnH9wcDC+vr5YWlpSrVo1OnbsyJEjR+jfv7/J8G3atKFGjRoA1K9fn+7duwPQvHlz9uwx3bmNZY6KiiqwbF5eXowfP56XX36ZQYMGUbt2bbPhBwwYgK2tLba2tnTu3JnDhw9TqVIlPDw8qFevHgC+vr4EBwczePBg1q5dy+LFi8nIyODq1aucPn2arKws6tWrZzhf0NfXl8WLFwOwY8cONm/ebFDQU1JSiI6OpnHjxgUuk0KhUCiePKSUHIw5wQ/HfuFobBAZFnHIrDKUz2xOp+rP8rZHX5wdCv7uzg+lKJYiCntMibW1NQCWlpZkZGTcdzp6zE1Tm8sfwMLCwvDbwsIimzym4uSUOT8mTZpEnz59CAwMpG3btuzcuRMbm7xN8jnrQP/blHtkZCTz5s3jyJEjVK5cmWHDhpGSkmK2PqSUbNiwgWeeeabAZVAoFArFk8uJ62f5PnQDh27sJlVcR0oLrDMa06naq7zdpj9Na1QtlnzV1HMpIjo6mgMHDgCwZs0aunXrRlRUFBcuXABg1apVdOzY0WwaPj4++Pv7A7Bt2zbi4+PzDGtvb8/du3ezxQ0ICCAzM5ObN2+yb98+PDw8HrRY+ZJTDlOEh4fTvHlzJk6ciLu7O//884/Z8Js2bSIlJYXY2FiCgoJo06YNoE09R0ZGkpWVRUBAAN7e3ty5c4fy5ctTsWJFrl+/zrZt2wBo1KgRERERBstnQECAIf0ePXrwzTffGJTJY8eO3W/xFQqFQlFKuRAXxYd/fInnil68vH0we2/8TEZaRTzt32ZZ598IeWsN3/R/q9iURFAWxVJF48aNWbFiBSNHjqRhw4YsWLCAtm3b8vzzzxs2s+S3i3jatGn4+vrSqlUrOnbsyNNPP51nWAcHB7y8vGjWrBm9evVi7ty5HDhwgBYtWiCEYO7cuVSvXr2oi5mLzp07M2fOHNzc3PLczDJ//nz27NmDpaUlTZo0oVevXmbXT3p4eNCnTx+io6OZMmUKNWvW5Ny5c7Rr145JkyZx8uRJfHx8GDhwIBYWFrRs2ZKmTZtSr149w/S/ra0tfn5+9OzZE0dHx2xK85QpUxg7diyurq5IKXFycmLr1q1FXzkKhUKheKyIuXOV74/+wu7oHdyREQCIVGdaVBrG624D6NKw/kO96EAUdrrwScfd3V2GhIRkcztz5oxaW1aKMN5pbYzxzuiCkpiYiJ2dHVJK3nnnHRo2bMi4ceOKWuQSR40BhUKhuH/ikxNYcnQjgZG/EZupm/FKrc0z9h14rfkAejduTBnL+5sEFkKESinv+/w3ZVFUKIqRJUuWsGLFCtLS0mjZsiUjR44saZEUCoVC8QiQkpHCmlO/s/bMJmJSj4LIRKZVxdlmEC826cfgFi2xLmNZ0mI+2RZFIUR5wA9IA4KklP75xXkSLYqxsbF07do1l/uuXbtwcHAwG/fkyZO8+uqr2dysra05dOhQkcqoZ/ny5SxYsCCbm5eXFwsXLiyW/BQapX0MKBQKRVGQmZXJ7xHB/Hj8F/65+xdSpJCVYU8Ny3Y859KPV1t5YWdjVaR5PqhFsdQpikKIZUBf4IaUspmRe09gAWAJ/CClnCOEeBVIkFJuEUIESClNH8JnxJOoKCoU+aHGgEKhUJhGSsnRa6f4PnQ9R27tIkPcRmZaUyGrNT2dejPS81mq2ZcrtvzV1HNufgS+BQwXBAshLIGFwLNADHBECLEZqA2c1AXLLEjiZ8+epVOnTtnc5s6dqyWQmWnYYWyMg4MDjo6OpKenExERkcu/SpUqPPXUU6SlpREZGZnLv1q1alSqVImUlBQuXryYy79GjRpUqFCBe/fucenSpVz+tWrVws7OjsTERC5fvpzLv06dOpQrV447d+6Y3OBRt25dbGxsSEhI4Pr167n8nZ2dKVu2LHFxcdkOldZTr149rKysuHXrFrGxsbn8GzRogKWlJTdu3DC5y1p/hMy1a9e4fft2Nj8hhOGcyCtXruTa/WxpaYn+Np2YmJhch1pbWVkZzkWMjo4mOTk5m7/+FhvQ7oZOTU3N5m9ra2vY8BMREUF6eno2//LlyxvObLxw4QKZmdm7mb29PTVr1gTg3LlzuY7UqVixomFD0NmzZ8lJ5cqVqVq1aon3vbS0tFzjAmD27Nm0b9+ev/76i48//jiX//z583Fzc2Pnzp3MnDkzl//333/PM888w5YtW/jf//6Xy3/VqlXUqVOHgICAbIfJ61m/fj2Ojo78+OOP/Pjjj7n8AwMDKVeuHH5+fqxduzaXf1BQEIDJtam2traGHe6fffYZu3btyubv4ODAhg0bAJg8ebLhRAI9tWvXZvXq1QCMHTuWsLCwbP4uLi6GczdHjBjBuXPnsvm7ubkxf/58QDs3NSYmJpt/u3bt+PzzzwF47rnnco29rl27MmXKFAB69eqVq+/37dvXsE7XVNu+8MILjB49mnv37pm8PnPYsGEMGzaMW7duMXjw4Fz+o0aNYsiQIVy6dCnXrAPABx98QL9+/Th79qzJJRuffPIJ3bp1IywszHA2rDGq76m+V9J979c9G/l0+yLSnZIQ5W4jpSVZt+vhXnkwk3u/wuVTYcycOZPdfJUtfnH3vcJS6hRFKeU+IYRTDmcP4IKU2vYhIcTPwAA0pbE2EIaZo4KEECOAEZD97D+FQqFQPBz0yoybm1sJS6J4mDxu7Z5pncX6q7uYvHoecZnnoQlkJdbF8p+GlP8nCZv4G4yf34nG1R25fKqkpS0YpW7qGUCnKG7VTz0LIQYDPaWUb+l+vwp4AhPRrI8pQLBao6hQ3B9qDCiKG71lSW9pUzwZPA7tnpKRwvoz21lzeiPRycdAZJGVWp16tt683PQ/DHJtTtkyJXdstZp6LhimDhySUsok4PUCJSBEP6CffhpToVAoFArFk4mUkj9jjvD90bWciN9LlkghK70iVcSzDGzYj2Ft2lPRtmg3pZQUT8rNLDFAHaPftYErhUlASrlFSjmiYsWKRSpYUREVFUWzZs3yD1hEzJ49u9jS7t27NwkJCSQkJODn52dwDwoKom/fvvnGL2i44qJTp07orc76sigUCoXi8Sf69iUm7/4fnqu6MWr3mxyL20PZVFf6VZ3B9ud+J+jNebzv07HUKInw5FgUjwANhRDOwGXgReClwiRQmi2KGRkZlClTuK4we/ZskwvEi4LAwEBAU379/PwYPXp0kaR7P+V8UPRlUSgUCsXjyd20u/x0agvrzm7ketoZpBSIlPq0rDyIUW3+Q1vnmg/1ppSHTalTFIUQa4BOgKMQIgaYJqVcKoR4F/gd7XicZVLKvwuTrpRyC7DF3d19uNmA2ybBtZNmgxSa6s2h15x8g2VkZDB06FCOHTuGi4sLK1eupEmTJoSEhODo6EhISAgTJkwgKCiI6dOnc+XKFaKionB0dKR79+5s3ryZe/fuER4ezsCBAw27uXMyadIkkpOTcXNzo2nTpvj7+/Pll1+ybNkyAN566y2TO8FA2yFuY2PDmDFjGDduHMePH2f37t3s2rWL5cuXs3r1apycnAgJCWHSpEmEh4fj5ubGs88+S58+fUhMTGTw4MGcOnWK1q1bs3r1aoQQbN++nbFjx+Lo6EirVq0M+eUs5+zZs3n11VcNu5+//fZb2rdvz+jRo+nZsyf9+/dn4MCBVK5cmWXLlrF06VIiIyNN7opMSkrihRdeICYmhszMTKZMmZLr+kB9WRITE+nZsyeenp7Z2qdcuXI4OTkxZMgQ9uzZA8BPP/1EgwYN2LJlCzNnziQtLQ0HBwf8/f2pVq0aN2/e5KWXXiI2NpY2bdqwfft2QkNDcXR0ZPXq1Xz99dekpaXh6emJn58flpYlf2CrQvGgfPLJJyUtgqIEmDZpHGRmPfR8M7Iy2HMxmB/C1nHm9gGkSCcr1ZHaVoN4pdlAnndrjo3Vk/FsLXVTz1JKXyllDSmllZSytpRyqc49UErpIqWsL6WcVdh0hRD9hBCLcx7P8ihx9uxZRowYwYkTJ6hQoUK2aVtThIaGsmnTJn766SdA210WEBDAyZMnCQgIMHnUDsCcOXOwtbUlLCwMf39/QkNDWb58OYcOHeLgwYMsWbKEY8eOmYzr4+PD/v37AQwKVHp6OsHBwXTo0CFXPvXr1ycsLIwvvvgCgGPHjjF//nxOnz5NREQEf/75JykpKQwfPpwtW7awf/9+rl27lmc5q1atyh9//MHRo0cJCAhgzJgxueS6fPkyp0+fBjApl57t27dE8bHFAAAgAElEQVRTs2ZNjh8/zqlTp+jZs6fZ+jbXPhUqVODw4cO8++67BiXb29ubgwcPcuzYMV588UWD4j5jxgy6dOnC0aNHGThwINHR0YC2oSQgIIA///yTsLAwLC0t8ffPd3+WQvFY0K1bN7p161bSYigeMj5WkdScOImEn1fmH7gIOBt7jnF/zMRzVWfG73uPv+OPYJPSlueqz2XnC4H8/voMXm3j9sQoiVAKLYrFRYEtigWw/BUXderUwcvLC9DOtvr666/Nhu/fvz+2traG3127dkW/BrNJkyZcvHiROnXq5BXdQHBwMAMHDqR8+fIADBo0iP3799OyZctcYVu3bk1oaCh3797F2tqaVq1aERISwv79+/OVF8DDw8NwLqGbmxtRUVHY2dnh7OxMw4YNDWXXnwGWs5zp6em8++67BkVKfz5Yhw4dDApokyZNiI+P5+rVqxw4cCBPuZo3b86ECROYOHEiffv2zVOh1GOqffRnhfn6+hr+198FHRMTw5AhQ7h69SppaWk4OzsDWn3/+uuvAPTs2ZPKlSsD2k05oaGhtGnTBoDk5GSqVq2ab50qFI8Dj9sxKYqi4eavP5OVYYF1I9diyyM2OZbVpzbxy7mNxGVEIqUF4l5j3B2HMcqjL23qVi3VU8v5oRTFUkTOjiyEoEyZMmRlaWb7lJSUbP56xU6P8RmRlpaWZGRkFCjfwhyxZGVlhZOTE8uXL6d9+/a4urqyZ88ewsPDC3S8Sl4ymhvExuX86quvqFatGsePHycrKwsbGxtAO5Q8Pj6e7du34+PjQ1xcHGvXrsXOzg57e3uT6bq4uBAaGkpgYCCTJ0+me/fuTJ06NU85TLWPub/fe+89xo8fT//+/Q3LBSDv+pZSMnToUMNBtwpFaUJvaX+Uj0lRFC3y3C7uHbnFPWsrbFyLVlHMyMpg98V9LD72M2fvHAKRRWZKLZzK+vKa63/4j+szT5TV0Bylbuq5uHgcpp6jo6MNJ/CvWbMGb29vnJycCA0NBTCc1F8UWFlZGW4h8fHxYePGjdy7d4+kpCR+/fVXs9Y1Hx8f5s2bh4+PDx06dOC7777Dzc0tlyJlb2+f66YVUzRq1IjIyEjCw8MBrex5cfv2bWrUqIGFhQWrVq3KdlNKu3btmD9/vkGuefPmmS3HlStXKFeuHK+88goTJkzg6NGjZuU01T56AgICDP+3a9fOIGutWrUAWLFihSGst7e34SaHHTt2GG6z6dq1K+vXr+fGjRsAxMXFmbxNRaFQKB557l7n5pR3SL1txU/lKiAsikZdiUiIYPKeObRd3ZkP9r3PmfgT2CZ3YkiNBezx3Ujg6x/zYusmSkk0QlkUC0iBp55LkMaNG7NixQpGjhxJw4YNGTVqFB4eHrz55pvMnj0bT0/PIstrxIgRuLq60qpVK/z9/Rk2bBgeHh6AtpnF1LSzng4dOjBr1izatWtH+fLlsbGxMamQOTg44OXlRbNmzejVqxd9+vQxmZ6NjQ2LFy+mT58+ODo64u3tzalTpo+8Hz16NM899xzr1q2jc+fO2ayNHTp0YMeOHTRo0IC6desSFxdnVlE8efIkH374IRYWFlhZWZm8SskYU+2jJzU1FU9PT7KysgyK7vTp03n++eepVasWbdu2NVyxN23aNHx9fQkICKBjx47UqFEDe3t7HB0dmTlzJt27dycrKwsrKysWLlxI3bp1zcqlUCgUjxT34oif3JfY44Lj9laEWtvmH8cMSelJbDwXyMpT67iScgYpLZBJjWj11OuM7tCXts5Vnuip5fwolTezFAdGx+MMP3/+fDY/dSuFIj+ioqLo27evSQVWvzPa0dGxQGmlpqZiaWlJmTJlOHDgAKNGjcp1V+vDRo0BRXHzONzQoSgCEm+SMLkXV/9IpHyrJrx+OZZMIQrd7lJKQq8fZcmxnzl0Yw+ZpJKZWgVHvHmpySBecm9KBZvSc9ahOdTNLA+Jx8GiqHgyiI6O5oUXXiArK4uyZcuyZMmSkhZJoVAoHhh5JYxbE3y5dRTKuzWi9lJ/Mnv1KlQaN+7d4Ke/f2H9uV+4nXEVmVkWcc+NjjX68Ha3LjSrVamYpC+9KEVRYRZPT09SU1Ozua1atYrmzZubjRcbG0vXrl1zue/atQsHB4cilbG4KYqyODk55TkdHhUVVSh5GjZsmOfxQwpFaaU4b4NSlDxZh1dxdeo07kRZU7FHR2p88TWibNkCtXt6Zjq7o4NYejyAMwmHQUgy7jlR12oYb7QcQH9XZ7Xm8AFQU8+FxN3dXeqvZ9Ojpt0UTzpqDCgUivsi5TYpy0Zzefkh0hKtqPL2WziMGV+gNYMX4i+w8tQ6AiO3kirvkJVegbLJHvRx7sdbbT1xciyfbxpPAmrq+SFRmq/wUygUikedv/76C4D27duXsCSKokJG/UXC7OFc/zMTi/IVeHrpt5TP0b452/1e+j0CI7bx48kALiadQUpLMu82pmmFbgxv14uujapTxlId6FKUKEWxgKg1igqFQlFy6O+WV5tZSgEpd0hfP5mrP2wj6Zo15Vs1p+bXiyhjYkOfvt39Nvix6lQAv1/cRrpMJjO1CrYpA3jOZQCvD2xGjYoPtjNakTdKUVQoFAqFQvFQkGd+4/aXE7h+MAspylH9vx9Q6eWhJs9JTExLJPmZFJIbS4ZsHYLMKkPGXVea2nVnRPsudG1cTVkPHwJKUVQoFAqFQlG83LlCmv9YrgUcIemaDeVaNKXG/76mrO5KVj1SSk7dOsWqvwP4I/p3MtqnkJlSHev4Hgxy6c+wAU2o81S5EirEk4lSxUsJUVFRNGvWrMjTdXJy4tatWyb9EhIS8PPzK/I8jfnuu+9YudL8ZfBhYWEEBgYWOm3jOgsJCWHMmDH3JePDwNfXF1dXV7766quSFkWhUCgKTnoKWbvmcGt4eyK+PUFyvD3VPp7M02vWZ1MS76Td4acza+i1/j+8FPgSgZGB3ItvRsapQZT73ZlD705nSm93pSSWAMqiWEDUZpbc6BXF0aNHF1seb7/9dr5hwsLCCAkJoXfv3vedj7u7O+7u970prFi5du0af/31l7qOT6FQPD5ICf9sJWnpZK7tTSXtri32XbypNm0mVtWq6YJIwm6G8dPpteyM3kGGTCMzuRZl7g1mUIM+vNa3EW8+3xeAsmWUXaukUIpiASnoZpb/O/x//BP3T5Hm3eipRkz0mJhvuIyMDIYOHcqxY8dwcXFh5cqVHDhwgAkTJpCRkUGbNm1YtGgR1tbWODk5MXToULZs2UJ6ejrr1q2jUaNGxMbG4uvry82bN/Hw8MDc8UmTJk0iPDwcNzc3nn32WebOnctHH33Etm3bEELwySefMGTIEJNxg4KCmDZtGtWqVSMsLIxBgwbRvHlzFixYQHJyMhs3bqR+/fpMnz4dOzs7JkyYQKdOnfD09GTPnj0kJCSwdOlSPD09mTp1KsnJyQQHBzN58mSTee7du5f3338fACEE+/btyyXPvHnz2Lp1K9OnTyc8PJzLly9z6dIlPvroI4YPH05QUBBTp07FwcGBs2fP4uPjg5+fHxYWFowaNYojR46QnJzM4MGDmTFjBgCBgYGMHz8eR0dHWrVqRUREBFu3biUpKYn33nuPkydPkpGRwfTp0xkwYIDJuurevTs3btzAzc2Nb775hpo1a/LOO+9w8+ZNypUrx5IlS2jUqBE3b97k7bffJjo6GoD58+fj5eWVb79RKB4H5s+fX9IiKArK9dOkr/+AG5tOcye6HFY1alDny9nYddDut09ISWBLxBb8T6/lclIUMtOa9DstaWjTlTc9O9CrWQ3DuYeq3UsepSiWIs6ePcvSpUvx8vLijTfe4Msvv+T7779n165duLi48Nprr7Fo0SLGjh0LgKOjI0ePHsXPz4958+bxww8/MGPGDLy9vZk6dSq//fYbixcvzjO/OXPmcOrUKcP1cRs2bCAsLIzjx49z69Yt2rRpg4+PDzVq1DAZ//jx45w5c4annnqKevXq8dZbb3H48GEWLFjAN998Y/IBkZGRweHDhwkMDGTGjBns3LmTTz/9lJCQEL799ts8ZZ03bx4LFy7Ey8uLxMREbGxszNbliRMnOHjwIElJSbRs2dJwz/Thw4c5ffo0devWpWfPnvzyyy8MHjyYWbNm8dRTT5GZmUnXrl05ceIELi4ujBw5kn379uHs7Iyvr68h/VmzZtGlSxeWLVtGQkICHh4edOvWLdvd03o2b95M3759DfXctWtXvvvuOxo2bMihQ4cYPXo0u3fv5v3332fcuHF4e3sTHR1Njx49OHPmjNlyKhSPC25ubiUtgiI/7l4n649ZxK35ldgz5ZHY4zhqOA4jRyKsrTly7QgB/6xjZ/ROMmU6mcl1EHefp3+D3gzr/QzPVLfPlaRq95JHKYpFTEEsf8VFnTp1DBakV155hc8++wxnZ2dcXFwAGDp0KAsXLjQoioMGDQKgdevW/PLLLwDs27fP8HefPn2oXLlygfMPDg7G19cXS0tLqlWrRseOHTly5Aj9+/c3Gb5NmzYGJbJ+/fp0794dgObNm7Nnzx6TcYxlLsyNJl5eXowfP56XX36ZQYMGUTvHAuqcDBgwAFtbW2xtbencuTOHDx+mUqVKeHh4UK9ePUBbNxgcHMzgwYNZu3YtixcvJiMjg6tXr3L69GmysrKoV68ezs7OhvB6xXvHjh1s3ryZefPmAZCSkkJ0dHS+h1YnJiby119/8fzzzxvc9Dfn7Ny5k9OnTxvc79y5w927d7G3z/3wVSgeN3bu3AlAt27dSlgSRS5S7yL3z+e2/w/cDLMmI9kOu84+VJs4mcTqFVh54Wd+/mcdl5OiIcuWtAR3qouOvOHhxaBWtbA3c+eyaveSRymKpYiCnGRvjLW1NQCWlpZkZGTcdzp6CnvLjz5/AAsLC8NvCwuLbPKYipNT5vyYNGkSffr0ITAwkLZt27Jz506zVsWcdaD/bco9MjKSefPmceTIESpXrsywYcNISUkxWx9SSjZs2MAzzzxT4DIAZGVlUalSJYN1MaffgQMHsLVV54kpSh8zZ84ElMLwSJGRBqE/kvjTXG4cgtSEctg0caHG5E84WSuD+ee+Yde+3WTKDDLvOZGR8AI+tbryej8X2td3KNC7RrV7yaNWh5YioqOjOXDgAABr1qyhW7duREVFceHCBUC7o7ljx45m0/Dx8cHf3x+Abdu2ER8fn2dYe3t77t69my1uQEAAmZmZ3Lx5k3379uHh4fGgxcqXnHKYIjw8nObNmzNx4kTc3d355x/z60g3bdpESkoKsbGxBAUF0aZNG0Cbeo6MjCQrK4uAgAC8vb25c+cO5cuXp2LFily/fp1t27YB0KhRIyIiIgyWz4CAAEP6PXr04JtvvjEokwW9u7lChQo4Ozuzbt06QFM4jx8/DmhrGY2n300pkwqFQvHAZGXBqQ2kfOpO9MTPufS7FVk2NakwZwa7p/djcPRURvwxgj8i/yT5Vlusrkzk9XpfsGfUBH54rT1eDRzv2yChePgoRbGACCH6CSEW3759u6RFyZPGjRuzYsUKXF1diYuLY9y4cSxfvpznn3+e5s2bY2Fhke8u4mnTprFv3z5atWrFjh07ePrpp/MM6+DggJeXF82aNePDDz9k4MCBuLq60qJFC7p06cLcuXOpXr16URczF507d+b06dO4ubllU8aMmT9/Ps2aNaNFixbY2trSq1cvs2l6eHjQp08f2rZty5QpU6hZsyYA7dq1Y9KkSTRr1gxnZ2cGDhxIixYtaNmyJU2bNuWNN94wTP/b2tri5+dHz5498fb2plq1alSsWBGAKVOmkJ6ejqurK82aNWPKlCkFLq+/vz9Lly6lRYsWNG3alE2bNgHw9ddfExISgqurK02aNOG7774rcJoKhUKRL1JC+B7Sv/LhyofjiFybTvLdyiSPGsL3/21FnzufM//YAmJuliX58os4J8/h/zp/woEPffmwRyNqVVKzHY8jorDThU867u7uMiQkJJvbmTNn8l1bpnh8MN5pbYzxzuiCkpiYiJ2dHVJK3nnnHRo2bMi4ceOKWuQSR40BRXHTqVMnQF3hV2Jc/IvMbZ8R98dJYs/aI6UFV3q1xM/tFucyL2Mpy5Mc1xLutqV/Ezdea+dE89oVHzhb1e4PjhAiVEp53+e/qTWKCkUxsmTJElasWEFaWhotW7Zk5MiRJS2SQqFQFJyYEOTOz0jYeZibf1ckM9meiNbV+dojjiuVjmNxrz7Jt16kehl3RrdtwPOt61C5fNmSllpRhCiLYiF5Ei2KsbGxdO3aNZf7rl27cHBwMBv35MmTvPrqq9ncrK2tOXToUJHKqGf58uUsWLAgm5uXlxcLFy4slvyKkt9//52JE7Pvmnd2dubXX38tIYkKTmkfA4qS5+zZswCF3gCmuE+uhCF3zyJx316unqhMZoIFEXWt+aFjBhdr2ZMc35LUuDZ0cGrK0PZ16ehSFUuLol93qNr9wXlQi6JSFAvJk6goKhT5ocaAQlFKuP437JlN8l+/c+GUA2WuWHD1KcHqToJT9RsSd92dsqktGNzKmaHtnahfxa6kJVbkg5p6VigUCkWpZ8uWLQD069evhCUppdw6D0Gfc/PIZs6ccaDKuSrcs4Vfu9uyq0FbYm+1oVZsXSZ1cOJ59zpUtM377MOiRLV7yaMURYVCoVA88vzvf/8DlMJQ5Ny6gNz3BUf+3kTkPxVpFFaFisD29o6sdu5C7L2WtLOpzqwhTnRtXK1YppfNodq95FGKokKhUCgUTxo3/iF+3+dsjtrNlQg7uhyojGsyHGpak0VO/UiwfYaBTWoxtL0TjWtUKGlpFSXIE68oCiHqAf8FKkopB5e0PAqFQqFQFBfy6klCgqaxLjaMhMu2DAmywyMeztSqzscug0mq04jX2tXF1+NpnlK7lxU85gduCyGWCSFuCCFO5XDvKYQ4K4S4IISYZC4NKWWElPLN4pW0+ImKiqJZs2YPLb/Zs2cXW9q9e/cmISGBhIQE/Pz8DO5BQUH07ds33/gFDVdcdOrUCf2GJ31ZHkXWrVtH48aN6dy5c0mLolAoipn4i8GsWN2d/lufZ3bkObw32jLu1ywysxyZ2vYNVg/6jLFvD2T/xM6807mBUhIVBh53i+KPwLfASr2DEMISWAg8C8QAR4QQmwFL4PMc8d+QUt54OKI+umRkZFCmTOG6wuzZs/n444+LRZ7AwEBAU379/PwYPXp0kaR7P+V8UPRleRRZunQpfn5+SlFUKEopWTKLgydW8cvxxezOuk3lBHh7rw3NzqQSZ23HwpY9seo7gE98GtCiTqWSFlfxiPJYK4pSyn1CCKcczh7ABSllBIAQ4mdggJTyc+C+zExCiBHACMDslXYA12bPJvWM+XuEC4t140ZUL4BSlpGRwdChQzl27BguLi6sXLmSJk2aEBISgqOjIyEhIUyYMIGgoCCmT5/OlStXiIqKwtHRke7du7N582bu3btHeHg4AwcOZO7cuSbzmTRpEsnJybi5udG0aVP8/f358ssvWbZsGQBvvfUWY8eONRl37ty52NjYMGbMGMaNG8fx48fZvXs3u3btYvny5axevRonJydCQkKYNGkS4eHhuLm58eyzz9KnTx8SExMZPHgwp06donXr1qxevRohBNu3b2fs2LE4OjrSqlUrQ345yzl79mxeffVVkpKSAPj2229p3749o0ePpmfPnvTv35+BAwdSuXJlli1bxtKlS4mMjDRcTG9MUlISL7zwAjExMWRmZjJlyhSGDBmSLYy+LImJifTs2RNPT89s7VOuXDmcnJwYMmQIe/bsAeCnn36iQYMGbNmyhZkzZ5KWloaDgwP+/v5Uq1aNmzdv8tJLLxEbG0ubNm3Yvn07oaGhODo6snr1ar7++mvS0tLw9PTEz88PS0vLXLJ/+umnBAcHExkZSf/+/ZkzZw6TJk0iKCiI1NRU3nnnHcPh4F988QVr164lNTWVgQMHMmPGjPy6okJR5KxataqkRXhsuJZ0jY2h37Ix8jcuk0GNpCwmH6xAo5A7ZIgsfm3ek/KvDWVqx0ZUrWBT0uKaRbV7yfNYTz3nQS3gktHvGJ2bSYQQDkKI74CWQojJpsJIKRdLKd2llO5VqlQpWmmLkLNnzzJixAhOnDhBhQoVsk3bmiI0NJRNmzbx008/ARAWFkZAQAAnT54kICCAS5cumYw3Z84cbG1tCQsLw9/fn9DQUJYvX86hQ4c4ePAgS5Ys4dixYybj+vj4sH//fgCDApWenk5wcDAdOnTIlU/9+vUJCwvjiy++AODYsWPMnz+f06dPExERwZ9//klKSgrDhw9ny5Yt7N+/n2vXruVZzqpVq/LHH39w9OhRAgICGDNmTC65Ll++zOnTpwFMyqVn+/bt1KxZk+PHj3Pq1Cl69uxptr7NtU+FChU4fPgw7777rkHJ9vb25uDBgxw7dowXX3zRoLjPmDGDLl26cPToUQYOHEh0dDSgnWUYEBDAn3/+SVhYGJaWlvj7+5uUZerUqbi7u+Pv788XX3zB0qVLqVixIkeOHOHIkSMsWbKEyMhIduzYwfnz5zl8+DBhYWGEhoayb98+s+VUKIqDOnXqUKdOnZIW45ElPSudXRd3MXqLLz3WP8vCyE04JaXw6cGazF5UliaHbxPq0p6LC1bywZp5vN/P7ZFXEkG1+6PAY21RzANTe/fzPFVcShkLvJ1vokL0A/o1aNDAbLiCWP6Kizp16uDl5QXAK6+8wtdff202fP/+/bG1/feS9q5du1KxonY3Z5MmTbh48WKBBmhwcDADBw6kfPnyAAwaNIj9+/fTsmXLXGFbt25NaGgod+/exdramlatWhESEsL+/fvzlRfAw8OD2rVrA+Dm5kZUVBR2dnY4OzvTsGFDQ9kXL15sspzp6em8++67BkXq3LlzAHTo0MGggDZp0oT4+HiuXr3KgQMH8pSrefPmTJgwgYkTJ9K3b988FUo9ptpHf5+0r6+v4X/9XdAxMTEMGTKEq1evkpaWhrOzM6DVt/62lp49e1K5cmVAuyknNDSUNm3aAJCcnEzVqlXzrVOAHTt2cOLECdavXw/A7du3OX/+PDt27GDHjh2GtkxMTOT8+fP4+PgUKF2FoqgICAgAyGW1f9KJvB3Jr+d/YdO5DcSl36VqRgZvJEvqhbtivzeGaveiiaznisMHHzC0SxuEeLjH2zwoqt1LntKoKMYAxtpNbeDKgyYqpdwCbHF3dx/+oGkVFzkfAEIIypQpQ1ZWFgApKSnZ/PWKnR5ra2vD35aWlmRkZBQo38Lc7mNlZYWTkxPLly+nffv2uLq6smfPHsLDwwt0s0deMpp7+BmX86uvvqJatWocP36crKwsbGy0L+patWoRHx/P9u3b8fHxIS4ujrVr12JnZ4e9vb3JdF1cXAgNDSUwMJDJkyfTvXt3pk6dmqccptrH3N/vvfce48ePp3///oblApB3fUspGTp0KJ9/nnMpbv5IKfnmm2/o0aNHNvfff/+dyZMnqzuqFSXOokWLAKUwACRnJPPHxT/YcG4DR28cpYyEjvfu0S/VioRr3pTZd5EG8SeJr14Xq5mf0bt37itYHxdUu5c8pXHq+QjQUAjhLIQoC7wIbH7QRIUQ/YQQi2/fvv3AAhYX0dHRHDhwAIA1a9bg7e2Nk5MToaGhAGzYsKHI8rKysiI9PR3Qpm03btzIvXv3SEpK4tdffzVrXfPx8WHevHn4+PjQoUMHvvvuO9zc3HIpUvb29ty9ezdfWRo1akRkZCTh4eGAVva8uH37NjVq1MDCwoJVq1aRmZlp8GvXrh3z5883yDVv3jyz5bhy5QrlypXjlVdeYcKECRw9etSsnKbaR4/+qzkgIIB27doZZK1VS1s1sWLFCkNYb29v1q5dC2iWwPj4eECzCK9fv54bN7T9WXFxcVy8eNGsTHp69OjBokWLDG167tw5kpKS6NGjB8uWLSMxMRHQpuX16SsUioeHlJK/Y/9m5sGZdFnbhf8G/5fYa2GMi4tn480MmsX05OLmpjTZ9CdPy2QqTv+Udrt+o8FjrCQqHg0ea4uiEGIN0AlwFELEANOklEuFEO8Cv6PtdF4mpfz7QfN6HCyKjRs3ZsWKFYwcOZKGDRsyatQoPDw8ePPNN5k9ezaenp5FlteIESNwdXWlVatW+Pv7M2zYMDw8PABtM4upaWc9HTp0YNasWbRr147y5ctjY2NjUiFzcHDAy8uLZs2a0atXL/r06WMyPRsbGxYvXkyfPn1wdHTE29ubU6dOmQw7evRonnvuOdatW0fnzp2zWRs7dOjAjh07aNCgAXXr1iUuLs6sonjy5Ek+/PBDLCwssLKyMnz55oWp9tGTmpqKp6cnWVlZBkV3+vTpPP/889SqVYu2bdsSGRkJwLRp0/D19SUgIICOHTtSo0YN7O3tcXR0ZObMmXTv3p2srCysrKxYuHAhdevWNSsXaG0WFRVFq1atkFJSpUoVNm7cSPfu3Tlz5oxBebWzs2P16tUFntJWKBQPxq3kW/wW8RubwjdxPv481qIM3VMzGRR7HSdRg0W3X2JNWBx9ovZiYWXFU++9R5U3XsfCaFmRQvEgiMJMGz7JGK1RHH7+/PlsfmfOnCnQtKniySUqKoq+ffuaVGD1O6MdHR0LlFZqaiqWlpaUKVOGAwcOMGrUKMLCwopa5EKhxoCiuOnUqROgnZNa2knLTGNvzF42XdhE8OVgMmUmrjZV6X/rKr1ir3C77DPMvd0Dq/PJvHphN9ZpKVR67jmqjnmPMo/whsv74Ulq9+JCCBEqpXS/3/iPtUXxYfI4WBQVTwbR0dG88MILZGVlUbZsWZYsWVLSIikUigdESsnp2NNsvLCRbVHbuJ16m6q2jgyr0Ij+Fw5TLzGE09YtGJ38KlaRMOrs79jHXae8tzdVP/wQm2dcSroIilKKsigWkCfVoujp6Ulqamo2twrHadwAACAASURBVFWrVtG8eXOz8WJjY+naNffamF27duHg4FCkMhY3j3tZ7rcNC0NpHgOKR4Nbt24BFNjy/rhw895NtkZsZXP4Zi4kXMDa0pouNdoz4F4qnie3UiYtkb/KeDAvqTfWKfaMORdIpfAzWDdsSNWPPsKug3f+mTzGlNZ2f5g8qEVRKYqFxN3dXeqvZ9Nz5swZGjVq9NgdO6BQFAVSSv755x+lKCoUBSQ5I5mgS0FsCd/Cn1f+JEtm0aJKCwbU8KbHpb+xPx6AzEznd9GeBSl9cbSrwbvhO6j41x4sHR2pMuY9Kg0ahHjIN00pHk/U1PMjgI2NDbGxsTg4OChlUfFEIaUkNjbWcMyQQlFc/PjjjwAMGzasROW4XzKyMjh49SC/RfzGruhdJGckU61cNd5o9gb9KzXDOWwtcvPHZCJYm+nDovS+NKr3DJ9f+RPbgO/AwoKnRr2Nw5tvYWlXPv8MSwmPe7uXBpRFsYCYm3pOT08nJiYm1zmFCsWTgI2NDbVr18bKyqqkRVGUYh7HTQ1SSk7cOsFvEb/xe9TvxKXEYV/Wnu51u9OnXh9aZ4AIno/4ZyupwppV6V1YJfrj06o5r6Wch++/IePaNSr07UvVD8ZjVaNGSRfpofM4tvujhrIoPiTMbWaxsrIy3JqhUCgUiiebiNsR/BbxG4ERgcQkxmBtaU3H2h3pXa83HWp6U/bSYbJ+/3/27ju8qipr4PBvpTdIgNB77xAhdEQQBEGwMnZn0FFso6LgjDp+6tgLIHbF3sbuqKFIE0EB6SBI7wkBQoCQhPTc9f1xbzAJKZe0m7Le5+FJzjn77rPChWRl77PXfhKvvT+TRDDvZV3O7MBxXHpeD74OTeHUtOdIXbMW/y6daTptKkG9e3v6SzI1mCWKxhhjTClFJ0Yzb/885u+bz9bjW/ESL/o16sdtPW9jeIvhhPgGw455ZL13EcSu5gRhvJV5DWvrX8Z1Q7ryffNAEl59hfivvsI7NJRGj/+HsCuuQLy9Pf2lmRrOEkVjjDGmBA4kHmD+/vmnk0OA7uHd+Weff3JhqwupH1QfsjNh87dkLH0Rv2NbOaz1eTPrRg63Gc+N53XigZahJHz+BQduewXHqVPUue466v/jTrxDQz381RnjZImim3I9o+jpUIwxxnjI/sT9zN83n/n757Pt+DYAeoT3YErkFC5oeQFNQpo4G2akwMq3yPjlZfySY9jraMbbjjvw6jGem4a0p1Oj2qRu2MC+v9xC+rZtBA3oT6OHHsK/fXsPfnXGnMkWs5ylgsrjGGOMKV8pKSkABAUFVeh9VZWdCTtZfGAxC/YvYPuJ7QD0qN+DkS1HMrLlSBqH5FpkknIcx8q3yFrxJn4ZCaxydORDr0tp3vdSJgxqQ6PQALITEoib/iIJX32FT4MGNHzwQWqNGmlVMwrgqfe9OrHFLMYYY6q9ikwUshxZrDuyjsXRi1kcvZiDyQcB6Fm/J/dH3s/IViNpFNwo74sSosla9gqs+wif7FSWZPfim8Dx9Bkyhuf6NCfE3wdVJeG774h7/gWyT56k7l//Svhdd9WocjdnyxJEz7NE0RhjTKX3+uuvA3DHHXeUS/+nMk+x7OAyFkcvZmnMUhIzEvHz8qN/k/7c3P1mzmt2nvOZw/zitpK+ZDo+W74Bhe+zB7Ko7tVceP75vNqtET7eXgCk797N4f88TsqqVQT07EGLd98hwIrUF6u833dTPJt6dlNRdRSNMcaUr7Kup6eq7E/cz7LYZfxy8BdWHVpFpiOTMP8whjQbwrDmwxjYZCBBvoWMaO1fQcriqQTtW0iK+vNZ9vlsbXU9VwwbQP82dU9PI2tGBvFvzSR+5ky8AgNpcN99hF35F8TLq0y+jurO6iiWnk09V5Ci6igaY4yp/FIyU1h5aCXLYpfx68FfT08pt6rdims6XcOw5sOIaBCBj1chPxodDtg5j+RFUwmJW0OahvC24y8kdP0b1w6L4O8Na+VpnrppE4ce+jfpO3dSe+xYGj7wL3xsz2JTxViiaIwxplpyqIMdJ3awInYFyw4uY23cWrIcWQT6BNKvcT9u7Hojg5oOolmtZkV3lJ2J4/evOLV4OrUSd5Kg4bwiNxHYbwLXntuRBrXybmHpSEvj6CuvcPz9D/AJD6fZG69Ta9iwcvxKjSk/ligaY4ypFlSVPSf3sOrwKlYdWsWaI2tISE8AoH2d9tzQ+QYGNx3MOQ3OwdfbjS0nM06RseoDMn99meC0w8Q4mvNVwCRannsd9/RrQ5DfmT9CU9au5dBD/yZj/37C/jKeBvffj3ft2mX9pRpTYSxRNMYYUyWpKtFJ0acTw1WHV3Es7RgAjYMbc16z8+jbuC99G/U9c5VyUU4dI+XX15DV7xCYdZL1jk7MC7uN3sOv4qFcC1Ryc6Snc/TFGRz/8EN8mzShxXvvEjxwYFl9qcZ4jMcXs4jIYKC9qr4vIvWBEFXd69GgimB1FI0xxjMysjPYcmwLG49uZH3cejbEbTidGNYPrE+fRn3o17gffRr1oVlIs7OvS5hwgIRFLxK0+VP8NJ352b1Z0+xvjBg5jj6t6hTaX9r2HcTefz/pO3YQds3VNJwyBa9gK3ljKocqvZhFRB4FIoGOwPuAL/AJMMiTcRljjPG8+NR4fj/6OxviNrDh6Ab+iP+DDEcGAM1rNWdgk4FENIggslEkrWu3LnHBaj28mePznydsTxTBKvyggznQ6WYuvuB8RtYPKfx1DgfHP/yIo9On4xUaSvO33iTkvPNKFIMxlZWnp54vA84B1gGoaqyI1Cr6JZ5hW/gZY0z5iU+NZ8uxLfxx7A+2HNvClvgtxKXGAeDr5UtYehjtM9tzy5hb6NmgJ+GBpVw9rEr2vuUcm/ccDQ4vIUD9+UxGk9LnNi4f2o/wEP8iX5555Aix/3qAlN9+I2T4cBo/8Tg+deuWLiZzhqlTpwIwZcoUD0dSc7k19SwivVR1XWHHJb65yCpV7Ssi61S1l4gEAytUtUdp+y4vNvVsjDEll+3I5mDyQXae2MmOhB1sPbaVLce2cCTlCACC0Cq0FV3rdaVLvS50C+9Gl3pdGDV8FFAG9fQcDtK3zOLkgqk0OLmReK3N935jCTn3di7u35VAP+9iu0j+5Vdi//lPHOnpNHroQUKvuMK23ysnVkex9Cpq6vl24JYijkvqSxF5CwgTkVuAm4C3y6BfY4wxHqSqHEs7xo4TO9h5Yie7Enax88ROdifsJi077XS7VrVb0bthb7rU60LXel3pXK8zwb7l8HxfVgaJq/9L5tIZ1EvdS7qjPjNr306rEbcyoUcrvL2KT/Q0O5ujr77KsTffwr99e5rOmIF/m9ZlH6sxlYhbiaKq3lLUcUmp6lQRuQBIxPmc4iOquqAs+jbGGFP+UjJT2J+4n/2J+9mXuC/P50kZSafb1QuoR7s67RjfYTzt67SnfVh72oa1LXznk7KSnsTRJTPxXfUmYVlxbHW04H+N/s05oycwsXUDt7vJOnqUg1PuJ2XlSkKvuJxGDz+MV2BgOQZuTOVQbKIozvH064A2qvq4iLQAGqnqqtLeXERaA7/kJIciEigirVR1X2n7NsYYU3pZjiyOpBwhNjn2zz+nYolJimF/4n6Oph7N075xcGNa1m7JmNZjaB3amvZh7WlXpx11Ayr2+T1NjuPgvJcI++ND6juSWKld2Nb2XwwZfTU3F7FApSCpGzYQfdddOJKSafz004Rdflk5RW1M5ePOiOLrgAM4H3gcSAK+AfqUwf2/AnIXmsp2nSuLvo0xxhQhMzuT+NR44lLjiE9xfjyacpTDpw4Te8qZFMalxJGt2XleVz+wPk1DmjKwyUBahbaiZe2WtKzdkua1mhPoUz6jbIFujt5lH9tLzOznabTna5poJj9LH+J63sHIkRfRL9jvrO+b8N13HP6/R/Bp1IgW77xLQMcOZ92HKTl333dTftxJFPu5FpqsB1DVEyJy9v/bCrm/qmbkHKhqRhn2bYwxNYqqkpyZTEJ6AglpCZxIP0FCegIn0pwf41PjOZpylKOpRzmacpQT6SfO6MNLvGgQ1IAmwU3o3bA3TUKa0CS4ifNjSBMaBTfC37voFcHlYe7cuUVeT4/ZSOzsZ2h+aB6NVVjgO5Ts/ncz8rxzCfAtfoFKfpqdTdy06Rx/7z2C+vWj6YwX8alTp6ThmxIq7n035c+dRDFTRLwBBXAVxXaU0f2PisjFqvqDq+9LgPgy6tstInIpcBHQAHhNVedX5P2NMSa39Ox0kjKSSM5I5lTmKZIynZ8nZSSRnJns/Nx1LicpzEkEE9ISyNKsAvv1ER/qBtalQWADmoQ0IaJ+BOFB4TQIbED9oPrUD6xP/aD61PGvg7fX2SdWHqFK0tZFHJ//Ai0TfqO+BhAVdAmhwyZxYWRPtxaoFMRx6hQH75tM8pIl1Ln2Who++ADi68aWf8ZUQ+4kii8D/wMaiMhTwHjg4TK6/23ApyLyKiBANPBXd18sIu8BY4E4Ve2W6/yFwEuAN/COqj5bWB+q+h3wnYjUAaYCligaYwDnCF2mI5OM7IzTHzMcGWRmZ+Y5zrmemZ1JenY6qVmppGWnkZqV6vw8Ky3Px9TsVFIz/2yTlpVGWlYayZnJZDoyi40r0CeQWr61CPYLpo5/HVrUakHP+j0J8w+jTkCdvB/96xAWEEaIb0iVLuHyxBNPAPB///d/kJ1F/OqvyFjyIk1St5OmoXxd5yZajrqLSzuVvPA2QNbx40Tfehtpf/xBo0cfoc4115TVl2BKIM/7bjzC3TqKnYDhOJO5Raq6tUyDEAlxxZJUbOO8rxsCJAMf5SSKrtHPHcAFQAywGrgGZ9L4TL4ublLVONfrpgGfFlcfskevHjp7yewzLxTy16iFXCjsPDh/OJVVX2cd11neuyR9FaUi4iqrv5MiX+PBv5OSvCanvUMdKIpDHaDgwOH8POeaKg7yXlMUVT19TVVPn8t9/fQ11/U813L3U8A1Bw6yHdlkq+uP6/MsRxYOdZz+PPe10200C4cjbxuHOs5on5Po5SR+GY4MshwFj86dDUEI9AkkwCeAQJ/A039yjgO8A04fB/sGU8uvFsG+wYT4hlDLr9bpj7mv+Xh5eq+Eijd06FD8vRy8/8B4/Fa/TnjmIfZoY9Y0vYFzLppI+6b1S32PjJgYov9+M5mHD9P0xenUOv/8MojclIbVUSy90tZRLDZRFJGClqolqWrxv/YW3uf1qvqJiNxX0HVVnX4WfbUCZuVKFAcAj6nqKNfxg64+8yeJOa8X4FlggaouLO5+ga0Dtd1jtjuLMR7hcP1REIdQK6QWvt6+ZKRlcCrplPOXANc1FNq0aoO/rz/H4o9x9MjRPNdwwMD+A/Hz9WPP7j1E74t2XssGyRZwwIQbJuDn5cfyX5azZfOW0+clW/D38efxRx/H18uXzz75jLWr1iIOcbbJgnq16vHFp1/g5+XHQw89xIoVK/J8Kc2aNeOTTz4BYNKkSWzYsCHP9Q4dOjBz5kwAJk6cyI4dO/Jcj4iIYMaMGQBcf/31xMTE5Lk+YMAAnnnG+W3viiuu4NixY3muDx8+/PQozejRo0lNTc1zfezYsad3w8j5YZ3blVdeyR133EFKSgpjxow54/qECROYMGEC8fHxjB8//ozrt99+O1dddRXR0dHccMMNZ1yfPHky48aNY/v27dz/j78zuM4Rbu6YRF3vVNZlt+W3updx+Y2TObxvB5MmTTrj9U8//TQDBw5k+fLlPPTQQ2dcnzFjBhERESxcuJAnn3ySJpmZ3H0iAR9VXq8Txr/ef5+OHTsSFRXFtGnTznj9xx9/TPPmzfniiy944403zrj+9ddfEx4ezgcffMAHH3xwxvU5c+YQFBTE66+/zpdffnnG9ZzEaOrUqcyaNSvPtcDAwNPP7j3xxBMsWrQoz/V69erxzTffAPDggw9W6X97YWFhp++ZoyL/7d16661nXH/44YcZMWIEGzZsKJN/e/m99dZbZfpvb8mSJeVecHsd0Bw4gXNEMQw4JCJxwC2qurYE982pploe2/U1xTmFnSMG6FdE+7uAEUCoiLRT1TfzNxCRicBEgICwAEKW5i2t0LdfX4YPH05GRgbTpp75pp577rmce+65JCcl8/LLL59xffiI4fTv35/jx44X+KaPGTOGXr16cejQId59590zrl922WV0796dffv28dFHH51x/eqrr6Zjh45s37Gdzz///M8Lrt8RJkyYQMtWLdn0+ya+/fbbM14/ceJEmjRpwtq1a4n6IeqM63fffTfh4eEsW7aMefPmnXH9/in3U7t2bRYvXsxPi3/Kc29wTin4+/kz98e5LFu2DCHvtNETTzqnHr7/7nvy74rj5+fHo488CsAXX37B7xt/z3O9Vq1aPPjggwB89NFHbNu2Lc/9w8PDmTx5MgBvv/02e/bsyfP6pk2bctdddwHwyiuvcPDgwTzX27Rpw60Tnd9IXnjhBeLj8z5i27lzZ2688UYAnnziSRKTEvN87eeccw7XXnst4Pzmk56enuf1/fr14y/j/wJS8BZWQ4cMZdzF40hPTz/jG5IgjBw1klGjRnHy5Eke/8/jZ7x+3LhxDBs2jLi4OJ595tk/Y3N9vPaaazl38LlEH4jmmaef+fOa6/qtE29l4ICBbNu2jWeffjbPa1H45/3/JLJ3JOvWruPZ555FVPL08dRTT9Gjew+WLlnKCy+8kPc68Nqrr9GxY0fmzJrDi9NfPCP+PN8w3z/z/87Mr2f++Q1z7gdnXH9+8vPOH9ZbXufLX878YX3ntDsBODn/JHu37s1zLTAwkCHNhgCwMH0hvvF5n2HzDvD2yKKP6iQzfg8Zi57ii4HbCJRMFmR0478H27B7/2EeeXAAjcKCOFwG92mamcmk4yfIFGFqvboc9ql5I7bGFMadEcU3gf+p6jzX8UjgQuBL4CVVLSoJK6pfb+BuVT3zu//Z9dOKvCOKfwFGqerNruMbgL6qelcp75Oz1/MtO3fuLE1XxhhjipC6bw2H5j5PyyMLyFZhkd8w3t0ayNGDh1iyeFHxHZyFtK1bOXDjTUhAAC0//AC/li3LtH9TOjb1XHqlnXr2cqNNZE6SCOBaFTxEVX8DSvzrsqpmAxeX9PVFiME5ApqjGRBb2k5VNUpVJ4aGhpa2K2OMMfmpkrBpLvunDyfwg+GEH17KrOArWHXxYkY9+DWamkp43bAyvWXatm0cmHAjEhRIy48/siSxEqpXrx716tXzdBg1mjvj68dF5F9AzpzlVcAJ14hgacvkLHeteP4COJVzsrgFJcVYDbR37fpyELgauLZUUZJnRLG0XRljjMmRncmRFZ/h+HUGjdN2k6Z1+DZ8Im1H/4NL2v2ZuOU8c1dWMg4c4MDNtyBBQbT86CP8mjUr0/5N2Sjr992cPXemnsOBR4HBOJ9R/BX4D3ASaKGqu0p8c5HFBZxWVXVrqZmIfAYMBcKBI8CjqvquiIwBZuBc6fyeqj5V0hjzi4yM1PzPyRljjDlL6clEL3qToHVvUS8rjp3ajI0t/krvsRNp3bB8C1tnxcez79rrcCQm0vK/n+Lfpk253s8YTyr3Vc9n3aFIEDAZZxJ5i4i0Bzqq6qxiXlqp2TOKxhhTeo7EI+yb+yL1t31MLU1mLZ050OlmBo+5jvq1C9+uLWdRWs5q2hLf/9Qp9t1wAxl799Hyg/cJ7NmzVP2Z8lVW73tNVtpEsdipZxHpAEwBWuVuX8So3/vAWmCA6zgG5/7NpxNFEekHzATaAptw1jMs09qMZU1Vo4CoyMjIWzwdizHGVDUZcTs4MOt5Whz4jlaaxS/efUmKvINhI8bS27/4p6Dyl3gpCXU4iH3gAdK3baf5m29YklgFlMX7bkrHnWcUvwLeBN4BsotpC9BWVa8SkWsAVDVVziyT/xrO5HMpzgUtM4BRbkdtjDGmSkje/RtH5j5P6/ifaK4+LPQfjt+Quxk6YAA+3u6spyw78W+8QdKChTR88AFChgyp0HsbU1W5kyhmqeqZBcoKlyEigfy5N3RbID1fGy9VXeD6/KucotiVmS1mMcYYNzkcHN84i6SfptEyaQPZGkRU7atpdME9jO7eySNbCSb99BPxr7xK6KWXUuevbu8Ua0yN506iGCUid+Dc7/l0wqeqxwtp/yjwI9BcRD4FBgET8rUJE5HLCztW1TOrPnuYTT0bY0wxsjKIXfYxsvwVGqfvJU3r8b+Gd9Jx9J1c0rqpx8LKPHSI2AcfIqBrVxr957Eqvee1MRXNnUTxb66P9+c6p0CBy8RUdYGIrAP641wlfY+qxudrtgQYV8ixApUuUTTGGFMwTTvJ/vmvU3vjOzTJjme7tmBF60foO/ZmLgsvm9qzzUpYvkazs4m9/5+QmUnT6dPw8rfdcqqSkr7vpuyUx6rny4CfVPWk6zgMGKqq35XpjSqYrXo2xpi8shJi2TdnGo13/pdgTWG1dONQ14kMGX01YcGVIyGLf/Mtjs6YQeNnnyHs0ks9HY4xFa5CyuOISDegCxCQc05Vz9xU2Nl2g6pG5Du3XlXPKWmQlYnVUTTG1HRpsVuJnv0cLQ9G4a3ZLPUdSFrffzBs2CgCfL09Hd5p6bt3s/fSywgZMZym06fblLOpkSqiPM6jOItadwHmAKNxFt0uMFGk4G0BbYd1Y4yp4hK3/8LReS/Q9vgSmqsvCwNHETx0EkP69sHbq3yTsEmTJgEwY8YMt9qrw8GhRx5FgoJo9PDDliRWUWf7vpuy504CNx7oCaxX1RtFpCHOUjmFWSMi03GWwFHgLpx1Fc8gIv6qml7cucrAVj0bY2okh4Oja78j9efptDi1iWwN4Yc6N9Bs1D2M7tSuwhKwDRs2nFX7hK+/JnXtWho/9RQ+tldwlXW277spe+4kiqmq6hCRLBGpDcRRyEIWl7uA/8O5f7MA84E7C2m7AujlxjmPs1XPxpgaJSud6CXv4/vbqzTKjCZa6/Ndk3vodtGdXNysoaejK1J2cjJHZ7xEYGRvQi+/zNPhGFOluZMornEtSHkb58hgMrCqsMaqegp4oKgORaQR0BQIFJFzcCaUALWBIDdiMsYYUw409QR7f3yVOpveo7njOFu0Nb+1f4IBY2/i0rAQT4fnlmNvv0P28eM0fOstm3I2ppSKTRRV9Q7Xp2+KyI9AbVX9PX87EZmhqpNEJApXse18/Vyc63AUztqKzYDpuc4nAQ+5H74xxpiykHkimr2zptJs9xe0IZWV0pP4iKcYMmo8XQL9PB2e2zIPH+b4Bx9Q+6KLCOzezdPhGFPlubXIRESaAi1z2ovIEFVdmq/Zx66PU4vrT1U/BD4UkStU9ZuziNcYY0wZSonZRMzs52hzaA5tVFnqdy6OAXcxZMhw/Hwqdou9onTo0MGtdsdmvo06HNS/d1I5R2Qqgrvvuyk/xZbHEZHngKuALfy517PmGyHMaesNfKiq17t1c+eU9iNAzqabS4DHc2owViZWR9EYU22ocmLLYo4veIG2CctJUX9+Dr6QOudPon/vc6rsdG3WsWPsOn84tceNpcmTT3o6HGMqhXIvjwNcCnR0ZyWyqmaLSH0R8VPVDDf6fhfYDFzpOr4BeB+4vNBXeIgtZjHGVHmObA6t/JrMpS/SInUrDq1FVL0baTX6Hsa0b+3p6Ert+McfoxkZ1Lvp754OxZhqw51EcQ/gS659nouxD1gmIj8Ap3JOqur0Atq2VdUrch3/R0RsLbwxxpSlzFT2L3qHgDVv0DjrIPu1Id83n0LE2NsZ1yjc09G5ZeLEiQDMnDmzwOuO1FRO/Pczao0YgX+bqp/0Gqfi3ndT/gpNFEXkFZyLUlKADSKyiFzJoqreXchLY11/vIBaxdw/VUQGq+qvrnsOAlLdD98YY0xhHKeOs3vODBps+YCWepLNtGVVx2cZcNHfuKR21SowsWPHjiKvJ879EUdiInX/ekMFRWQqQnHvuyl/RY0o5uxTtxb4wZ3ORKQ+MBvYpaoJbrzkdpyLWkJxlsg5DvzNnXsZY4wpWFr8PvbPeoEW+76mPWks9+pNYu/bGXLBpXTz9/V0eOUi4auv8GvdmsDIEj+KZYwpQFGJ4hygvqpuyX3Ste/zkfyNReRm4GlgN9BaRCaqapEJpqpuAHq6CnmjqolnGb8xxhiXpH3riZ3zHG3j5tFGhaUB5+E96B4GDxqCj3flWcFc1tJ37iR1/Xoa/OtfVXYhjjGVVVGJ4ivAGwWcb4qz1uG1+c5PArqq6lERaQN8SjEjkSJSD3gUGAyoiPyKc9XzMTfjrzC2hZ8xplJSJX7TAk4unErbxJU01QAW1L6M+iMmcX6P7jUicTo5azZ4exN68ThPh2JMtVNUothdVZfkP6mq80RkWgHtM1T1qKvNHhHxd+P+nwNLgZwFLdfh3PpvhBuvrVC26tkYU6lkZxGz/HN02Us0T9uBaiizGtxCuzF3M7p1C09HV+YiIiIKPK+qJP34I0F9+9ieztVQYe+7qThFJYpFPchS0LVmIvJyYceFLH6pq6pP5Dp+UkQuLeK+xhhTo2nGKfYumEnIujdpln2YvdqYqFYP0mvcrYwNr+Pp8MrNjBkzCjyfvmMHGfv3U/fGGys4IlMRCnvfTcUpKlHcKSJjVHVO7pMiMhpnyZz87s93vNaN+y8WkauBL13H43EuhjHGGJNLVmIcu+fMoNH2j2mjiWykI2u6TmHQmL8yLtidCZzqKWnefPDyotYFlW4iyphqodCdWUSkAzALWM6fSV8kMAAYq6qlXrMuIklAMOBwnfLiz9qLqqq1S3uPshYZGalr1qwpvqExxpSB1CO72D/reVpF/48AMljm3ZeUPv/g3OFjCfD19nR4Feb6650bfn3yySd5zu+76moQodXnn3kiLFPOCnvfjfvKbWcWVd0hIt1xLlrJ2Vl9CXCrqqaV9Ib57lFcnUVjjKmREnat4sjc52h3bBFt1IulJbAQgAAAIABJREFUgcMJOG8SA/sNxMur+i9QyS8mJuaMc9mJiaRu2kT4bbd6ICJTEQp6303FKnJnFte2fe+X9U1FpCWQkLOns4gMw7lV4D7gNTe3/zPGmOpFlcPr5nBq8TTaJq/FSwOZH3YlTUbdy4gunT0dXaWTsmoVOBwEDxjg6VCMqbbc2cKvPHwJXAacFJEI4CvgGSACeB242UNxGWNMxcvOZP/ST/Be8TLNMvZwROswu9HtdB57F6ObN/V0dJXWqeUrkKAgAnv29HQoxlRbZZYo5tryr0D5Vj0Hqmqs6/PrgfdUdZqIeAEVtteziHQG7gHCgUWqWlDdSGOMKReansSuH18n7Pd3aJkdxy6aMbvN/9Fn3EQuqlPpHtGudFI2rCcooifi5+fpUIypttxKFEUkEGihqtuLaJazwmMQ0AVnPUSAv3DmCujcD9icDzwIoKoOd4vDish7wFggTlW75Tp/IfAS4A28o6rPFtaHqm4FbnMlqG+7dWNjjCmljITD7J49jaa7/kt7TWa9dGFdz38zaPS1tAuwpKcgA/JNLzvS0kjfvoOQW2wCqjrL/76bildsoujakWQq4Idza74InLunXJy7nap+6Go/ARimqpmu4zeB+fm6/UlEvgQOAXWAn1xtGwPuPp/4AfAq8FGuWL2B14ALgBhgtYj8gDNpfCbf629S1TgRuRh4wNWXMcaUm+TYrUTPep42sVF01CyW+/Yns/9dDB42Gt9qvMVeWXjmmbzfwtO2bIXsbAJ79PBQRKYi5H/fTcVzZ0TxMaAv8DM492cWkVZFtG8C1AKOu45DXOdymwRcBTQGBucklUAj4N9uxISqLi0gjr7ALlXdAyAinwOXqOozOEcfC+rnB+AHEZkN/LegNiIyEZgI0KJF9dvxwBhTvo5tX8bRH5+nw/EltMGHX4IvoNawSQyK7FsjttgrD2mbfgcgoFu3YloaY0rDnUQxS1VPnsU3s2eB9SKy2HV8Hs5k8zR1Fm/8PP8LVXW9uzcpRFMgOtdxDNCvsMYiMhS4HPAH5hTWTlVnAjPBWUexlDEaY2oCh4PYNT+Q9vN02qRsxEeDmF/vWlpcOIkRHTp4Oroq54ornDu9fvPNN4BzRNGnQQN8GzTwZFimnOV/303FcydR3Cwi1wLeItIeuBtnEe4Cqer7IjKXPxO0B1T1cOlDdUtB2WxRC2x+xjVSWmzHzin4ce3atStRYMaYmkGz0tm7+CP8V71K08x9xGo95ja7m25j7+LCxpbUlNSxY8fyHKfv2YN/u7YeisZUlPzvu6l47jwUcxfQFUgHPgMScU4dF0icQ48jgJ6q+j3gJyJ9yyBWd8QAzXMdNwNiC2l7VlQ1SlUnhoaGlkV3xphqJjv1JNu+eZJjT3emzbIpnMp08GOH/xAweROjb3mC5pYklhlVJX33bvza2i/uxpS3YkcUVTUF53ODbj07iLMOogPnaubHgSTgG6BPQY1FxA/ImYfZnut5xZJYDbQXkdbAQeBqnDvLlJqNKBpjCpJ2PIbds6bRcs/ndCKFtV7d2djrCQaOuooO/p4qVVu9ZR06hKak4N+2jadDMabac2fVcxRnTt+exFkO560CtvPrp6q9RGQ9gKqecCWDBfU9FPgQ544sAjQXkb+p6lI34voMGAqEi0gM8Kiqvisi/wDm4Vzp/J6q/lFcX+5Q1SggKjIy8pay6M8YU7UlRm8mZtZztD8yh06azXL/wTDobgYMHoGPrWAuV+m7dwPg39amno0pb+78ursHqI9z2hmcq5WP4BwFfBu4IV/7TFeZGgUQkfo4RxgLMg0YmVOfUUQ6uO7Tu7igVPWaQs7PoYiFKSVlI4rGGIC4P37m+PwX6HTyV9qoL0trjSZsxL0M7tnLVjCXo+HDh5/+POPAAQB8W7b0VDimguR+341niHMBchENRJaq6pCCzonIH6raNd+163Amk71wjhaOBx5W1a8K6Pt3Ve1R3LnKJDIyUtesWVN8Q2NM9eFwcOC3b8j6ZQZtUjdzQkNYVX88bS6aRPvWrT0dXY1z5IUXOPHRx3TcuAHxstFbY4oiImtVNbKkr3dnRLG+iLRQ1QOuG7bAueUdFFAcW1U/FZG1wHCc08mXunZAKcgaEXkX+Nh1fB1n7uJijDEeoZlp7Fr4LsFrX6dFVgwxWp8fW95Hz3F3Mqp+ePEdmHKRGRuLT5PGliQaUwHcSRQnA7+KyG6ciV9r4A4RCcY5YpiHK/F7RVVfy3XuMVV9rIC+bwfuxFlyR4ClOHdWqXRs6tmYmiPr1Al2zH6JRls/oL2eYBut2dz5afqNvYkLgwM9HV6NNHr0aADmzp1LVuwhfJvk38fBVEe533fjGe6sep7jqp/YCWcyty3XApYZBbxkFNBbRKaras72eheTr+i2y22qOh2YnnNCRO7BuVdzpWKLWYyp/lLj97M7aipt9n9JF9JY7R3B75HPMWDEFXTytRXMnpSamnr688zYWIKHnOvBaExFyf2+G89w9ztfe6AjEAD0EBFyJYH5xeFcjfypiPQD7qHgQtgAf+PMpHBCAec8zkYUjam+TuzdQOyc5+hwdB6dVFkROASfcyfRb8BQvLxsgUplopmZZB09im+jxp4OxZgawZ3yOI/iTPy64FxNPBr4FSgsURRVTQTGichjwBIgT5VqEbkGZ33D1iLyQ65LtYBKWYbdRhSNqWZUOfT7Ik4unEqnpBX4qz9LQy+mwcj7OLdbpV1PV+NlHT8BgI89I2pMhXBnRHE80BNYr6o3ikhD4J0i2p9O/FT1MRFZA9yXr81y4BDORTHTcp1PAn53J3BjjCkRRzZ7fv0CWfYSrdO34ae1md/oZtqPvYfhzVt4OjpTjOwTxwHwrlPXw5EYUzO4kyimqqpDRLJEpDbOqeVCy+Gr6qP5jmcBs/Kd2w/sBwacfcjGGHP2HOkp7Jg/k9ANb9EmO5YDNGR+638RMe52Rtat4+nwTDHGjh0LQJZr71+fepYo1gQ577vxHHcSxTUiEoazuPZaIBlYlb+RiPyqqoNFJIm8O7kIoKpauywC9hR7RtGYqik9KZ4ds2bQbMdHdNKTbJF2bOn+Av3G/I2Rgf6eDs+4acqUKQCcjHKOO3jXtUSxJsh5343nuLPq+Q7Xp2+KyI9AbVU9Y3pYVQe7PtYq2xArB3tG0ZiqJenIHvZFPU/bmP/RnTRW+USS3u9O+g+7hC4+3p4Oz5TQn1PPNgpsTEVwZzHLIlUdDqCq+/Kfy9WuyF/vVPV4If0HAi1ytvEzxpjSiN+5hiM/PkfH+IV0QlgRPIygoffSp88g22KvChs6dCgAX15yKXh74x0aWvQLTLWQ877//PPPHo2jJis0URSRACAICBeROvxZ4qY2UFCl07U4p5wL+k6sFPBco2s6dyrgh3MFdATwuKpefDZfhDGmhlMlet2PpPw0jY6nVhOgASypO55mF97HkI6dPR2dKUPZJxPwDg21XVmMqSBFjSjeCkzCmRSu5c8EMJECdk9R1ZJsePoY0Bf42dXHBhFpVYJ+jDE1kGZnsuvnT/Fd+SqtMnZyVENZ2PQ2Oo2bxPDGVmevOnIkn8IrJMTTYRhTYxSaKKrqS8BLInKXqr5yNp26RiDb4yzQndPf0gKaZqnqyaowHWSLWYypPLLTktk29w3CN71Ne8cR9tGEhe0epte4WxkRWqXXzZliOJKT8QoJ9nQYxtQY7ixmeUVEBgKtcrcvbGcWEbkZ524szYANQH9gBXB+Ac03i8i1gLdrm8C7cdZYrHRsMYsxnpeWcIQdUdNpuftTupLEZq+ObD3nQfpdeD2t/H09HZ6pAI5Tp/AOskTRmIrizmKWj4G2OJO+bNdppfCdWe4B+gC/qeowEekE/KeQtncB/wbSgf8C84An3Y7eGFMjnDy4g32znqfjoe/pQQYr/frhGHAPfc8bg7dtsVcjXHnllQBkL1yIb4OGHo7GVJSc9914jjt1FCOBLqqqxbZ0SlPVNBFBRPxVdZuIdCykbUdV/TfOZNEYY/I4vG0F8T++QOcTP9EZL34LuYDaw++j7zl9bQVzDXPHHc5Kbbu+/x6vYBtRrCly3nfjOe4kipuBRji33HNHjKtA93fAAhE5AcQW0na6iDQGvgI+V9U/3LyHMaa6UmXfyijSl75Ix5R1BGsgS8KvocWY+xjStr2nozMekpKSAthilpom530PCgrycCQ1lzuJYjiwRURW4ZwiBqCwEjaqepnr08dEZDEQCvxYSNthItIIuBKY6doi8AtVtelnY2oYzcpg+6IPCVzzGq0y93JE67CoxV10HXc35zdo4OnwjIeNGTMGgDdtMUuNkvO+Wx1Fz3EnUXzsbDsVkcFAe1V9X0TqA02BvQW1VdXDwMuupPKfwCNUwucUbdWzMeUjMzWRbbNfo+Ef79JJj7KHZizu9Bi9x01kuE0xmly8VNH0dLxsdMmYCuPOquclItISZ+K3UESCgEL3vxKRR3E+19gReB/wBT4BBhXQtjNwFTAeOAZ8DkwuwddR7mzVszFl69TxWHb+MI02+z6nO8ls9O7K9l6P0nfk1bTxtRXM5ky+rkflvQICPRyJMTWHO6uebwEmAnVxrn5uCrwJDC/kJZcB5wDrAFQ1VkQK2//5feAzYKSqFvYcozGmGjm+fwvRs5+jU9xsemgWqwMG4jX4HnoPGomXrWA2Rcj5gSV+fh6Nw5iaxJ2p5ztx7p6yEkBVd4pIUQ8MZaiqiogCiEihc0eq2v9sgjXGVF0xm5aSsGAqXU4uJRgfVoZeSL0L7qVf996eDs1UET6uEUVLFI2pOO4kiumqmpFTikJEfHDWUSzMlyLyFhDmGo28CXgndwMR+VJVrxSRTfn6EkBVtcfZfBHGmErK4WDX8m9x/PoSHdJ+p5YGs6ThDbS56D6GtCzJrp+mppowYQL+J07AWzMRf0sUa4oJEyZ4OoQaz51EcYmIPAQEisgFwB1AVGGNVXWqq10izucUH1HVBfma3eP6OLYEMRtjKjlHZjpb5r9H6PrXaZd1gEPUY3Gre+k+7i6G1avn6fBMFTRhwgTSd+1iz1sz8bIRxRrDEkXPcydRfAD4O7AJuBWYQ74RwvxcieECABHxFpHrVPXTXNdzajLeoar/yv1aEXkOyHPOGFM1pJ86wdaoV2i6/QO66TF2SUuWdHuKyDF/Z1iQLUAwJRcfH0/mkSMAiL+/h6MxFSU+Ph6A8PBwD0dSc7mTKAYC76nq2+BM/FznUnI3ctVAvBPnYpcfcCaKdwL349z+71POdAFnJoWjCzhnjKnEEuMOsCtqGh2ivySCFDb49GBnn2foM3w87XwKLZJgjNvGjx9P64wM/ok9o1iTjB8/HrA6ip7kTqK4CBgBJLuOA4H5wMB87T4GTgArgJtxJoh+wCWquiF3QxG5HecUdhsR+T3XpVrAsrP8GkrFtdhmKfCoqs6qyHsbU9Ud3bORg3Oep+vRufTEweqgIfifN4mIfsNsiz1T5nxdT7SLn40oGlNR3EkUA1Q1J0lEVZNdtRTza6Oq3QFE5B0gHmihqkkFtP0vMBd4BufUdo4kVT3uTuAi8h7OZxzjVLVbrvMXAi/hrPX4jqo+W0xX/wK+dOeexhin/esXkbRoGt2SlxGifqyoM46GoybTv7OtQzPlx4ecVc9WZ9OYiuJOonhKRHqp6joAEekNpBbQLjPnE1XNFpG9hSSJqOpJ4CRwjavPBkAAECIiIap6wI24PgBeBT7KOeGaFn8N55R2DLBaRH7AmTQ+k+/1NwE9gC2uextjiqCObLYv+QLv316hffoWTmgtfm58E+3H3suQZi08HZ6pAXLK43jZM4rGVBh3EsV7gK9EJKcgdmOcu6nk11NEEl2fC85V0on8WfKmdv4XuLbFmw40AeKAlsBWoGtxQanqUhFple90X2CXqu5x9f85zqnvZyhghbWIDAOCgS5AqojMUVVHAe0m4iw6TosW9gPR1CzZGan8Mfdt6v7+Fp2yYzhIA5a0vZ8eY+9kaJ06ng7P1CB/Tj3bM4rGVJQiE0UR8cL5nGEnnKVuBNimqpn526pqSZ5YfxLoDyxU1XNcids1JegnR1MgOtdxDNCvsMaq+m8AEZkAxBeUJLrazQRmAkRGRhZVQ9KYaiM18Thbo16k5c6P6cEJdni14deezxE55kaa2oiOqWC33347YRs3wrf/Q2yLxxrj9ttv93QINV6RiaKqOkRkmqoOADaXw/0zVfWYiHiJiJeqLnaVxympgp6eLzaxU9UPiu3YOfo5rl27diUIy5iqI+HQXnZHPU+n2G/pRRrrfXuxu/90eg+9lA7eXp4Oz9RQV111FQm+fhz69n/gbSvpa4qrripoAtNUJHemnueLyBXAt6pa1qNpCSISgnPV8aciEgdklaK/GKB5ruNmQJnsIa2qUUBUZGTkLWXRnzGVzaEd6zj843N0O7aAnihrQoYScv5kInoNshXMxuOio6PJjD8KgHjZLyw1RXS0c5KwefPmxbQ05cWdRPE+nM/xZYtIKkU8c1gClwBpwL3AdUAo8Hgp+lsNtBeR1sBB4Grg2tIGCTaiaKopVXavmUfqz9PpdmoloerPb/Uuo9mYKfRv19nT0Rlz2g033MDglBSuAxtRrEFuuOEGwOooelKxiaKq1iqvm6vqqVyHH57Na0XkM2AoEC4iMTjrIL4rIv8A5uFc6fyeqv5RRrHaiKKpNjQ7iz8W/5eAla/SLnM7x7Q2S5pPpNPYezm3URNPh2dMgXLGEW1E0ZiKU2yiKM45p+uA1qr6hIg0Bxqr6qqS3lREksj77KC4jt0erVTVAhe9qOocnNsMlikbUTTVQWbaKTbPeZMGm9+mm+MQ0TTil44P0XPs7ZxXqywmCYwpP5LzU8NGFI2pMO5MPb8OOIDzgSdw7tDyGtCnpDctz1HK8mIjiqYqS044yrYfptN2zyecQyLbvNuzoveL9B51A82teLGpImxE0ZiK506i2E9Ve4nIegBVPSEiZVbESkQGA+1V9X0RCQdqqeresuq/rNiIoqmK4mN2sG/WC3Q5/D2RpLPOvw97B91DxKCL8LIVzKaKkZyJKEsUjakw7iSKma4dTxRAROrjHGEsNRF5FIjEWaPxfZw1Gz8BBpVF/2XJRhRNVXJgy28cmzeV7gmL6ImwtvZwwkZMplfP/p4OzZgSmTx5MmE/L4HZs8HLpp5rismTJ3s6hBrPnUTxZeB/QAMReQoYDzxcRve/DDgHWAegqrEiUuWmpY2pFFTZvmIWWb/MoGvqGuppAL81uJKWYybTv3UHT0dnTKmMGzeO+MOHOTp7NmKj4TXGuHHjPB1CjefOqudPRWQtMBznYpNLVXVrGd0/Q1VVRHJGK4PLqN8yZ1PPprJyZGWyecFHBK99nY5ZuzhKGL+0uJMuF09icHgDT4dnTJnYvn07euSI88AWs9QY27dvB6Bjx44ejqTmksJqaItIAHAb0A7YBLyrqqUphl3QPaYA7YELgGeAm4DPVPXlsrxPWYqMjNQ1a9Z4OgxjSE9JZPPs12my5V0aaxz7pSkxnW/mnLG3EhRUaX/nMqZEhg4dyujkZC5OPkWnzZsQH3cmxExVN3ToUMDqKJaGiKxV1ciSvr6o/2kfApnAL8BooDMwqaQ3KoiqThWRC4BEnM8pPqKqC8ryHsZUN4nHDrH9h2m03/85vUliq08nons/Qq8LrqGl/fA01ZiXlccxpsIV9VOli6p2BxCRd4ES100siisxXOC6j7eIXKeqn5bHvYypyo7s20r07OfpFhdFH8lkbcAAfM6dRI+Bo2yLPVMjeAGI2L93YypQUYliZs4nqppVlv8xRaQ2cCfQFPgBZ6J4J3A/sAGodImiPaNoPGXf779wYuE0epz8mTC8WRc2kvALJtO7W4lnEoypkrxQG000poIVlSj2FJFE1+cCBLqOy2Kv54+BE8AK4GacCaIfcImqbihFv+XGyuOYiqQOB1uXfQ/LZtAlbQP1NJAVja6j9UWTGdCijafDM8YjBCu2bUxFKzRRVNXy/LWtTa5p7XeAeKCFqiaV4z2NqfSyMzPYNP99Qte9QZfsvRyhLr+2voeu4+5hcN16ng7PGI95+OGHqf3t/2DFCk+HYirQww+XVTU+U1KeevI997R2tojstSTR1GRpp06yKeoVWmx/nwiNZ680Z3n3J+h10S0MDgj0dHjGeNyIESM4sno1CSttRLEmGTFihKdDqPE8lSiW57R2ubBnFE15SIiLYWfUVDpEf0Ufktns243oPk9yzvAraW3PYhlz2oYNG/A+cgQ/+39Ro2zY4HwaLSIiwsOR1FyF1lE0BbM6iqYsHNq9iYNzX6D70Tn4ksW64EEEnncvXfoOtxWdxhRg6NChXJWYyHBfPzqs/M3T4ZgKYnUUS6886ygaY8rY7vU/k7RoGj2SfqEuPqytO5pGo6YQ2amnp0MzpmqwX6SMqVCWKBpTztSRzZYlX+O14hU6Z2zipAazounfaDd2MgObtPB0eMYYY0yhLFE0ppxkZaTx+9x3qLfxLbo6DnCIcJa1m0L3i//BoNp1PB2eMcYYUyxLFI0pY6cSj/NH1Mu02vkRvTjGbq9W/BbxLOeMvpHG/gGeDs8YY4xxmyWKxpSR44f3s+uHF+gc+zV9SWWTX09i+j9PxHmX09bbSnoYUxpPP/00gZ98CuvWeToUU4GefvppT4dQ41mi6CYrj2MKc3DHBg79+Dw9jv1IbxysCzmPkPPvpXvvoZ4OzZhqY+DAgRxeuIjE4puaamTgwIGeDqHGs0TRTbaFn8lvx+oFpP48nZ6nllNX/VgbfglNRk+hT7uung7NmGpn+fLlBB4+TLCnAzEVavny5YAljJ5kiaIxZ8GRnc3mxZ/hv/JVOmZu5QS1WNb0ZjpcfC8DGjbzdHjGVFsPPfSQs46in7+nQzEV6KGHHgKsjqInWaJojBsy0lL4fc5MGm6eSQ/HQQ7SkGUdHqDnxXcyKKTSbSRkjDHGlAlLFI0pQlJCPFt+mEHbPR8TSQI7vduysvdUel34N5r6+nk6PGOMMaZcWaJoTAGOHtzN3qipdD30Lf0kjY3+vYkZeDc9z70Y8bIVzMYYY2oGSxSNyeXA1lXEzZtKzxML6YWyrvb5hI24j549B3k6NGOMMabC1fhEUUSGAk8AfwCfq+rPHg3IVDh1ONi+8kcyl75I99RVhKs/q+tfTouL7qdv646eDs8YA8yYMQOf996HVas8HYqpQDNmzPB0CDVelU4UReQ9YCwQp6rdcp2/EHgJ8AbeUdVni+hGgWQgAIgpx3BNJePIyuL3RZ8QvPo1OmXt4Di1WdbidjqPm8TA+o08HZ4xJpeIiAgOh4dbHcUaJiIiwtMh1HhVOlEEPgBeBT7KOSEi3sBrwAU4E7/VIvIDzqTxmXyvvwn4RVWXiEhDYDpwXQXEbTwoLSWZTbPfpMmWt4nQw0RLY1Z0fpieY29jUHAtT4dnjCnAwoULCY2JJtTTgZgKtXDhQgBGjBjh4UhqriqdKKrqUhFple90X2CXqu4BEJHPgUtU9Rmco4+FOQFYga5qLPFYHFuiptNh36f0IZEd3u1Z0/tBIi64jua+vp4OzxhThCeffNLqKNZATz75JGCJoidV6USxEE2B6FzHMUC/whqLyOXAKCAM5+hkQW0mAhMBWrRoUWaBmopxeP929s+eSvcj39Nf0tkQ0JfYcyfRdcBoW8FsjDHGFKE6JopSwDktrLGqfgt8W1SHqjpTRA4B4/z8/HqXMj5TQfZsWsGJBVPpefIn6iGsDx1BvZFTiOjW19OhGWOMMVVCdUwUY4DmuY6bAbGl7dT2eq4a1OFgy/Io9NcZdEtbxykNYHWjq2h10WT6tmjv6fCMMcaYKqU6JoqrgfYi0ho4CFwNXFvaTkVkHDCuXbt2pe3KlIOszAx+n/8hoeveoGv2buIJY3mrf9D14kkMqFvf0+EZY4wxVZKoFjorW+mJyGfAUCAcOAI8qqrvisgYYAbOlc7vqepTZXXPyMhIXbNmTVl1Z0opNTmRTbNeo/n292iscRyQpsR2nUjERRMJCAzydHjGmDKyfft2HG/NxHv5cjr8tsLT4ZgKsn37dgA6drSatiUlImtVNbKkr6/SI4qqek0h5+cAc8ryXjaiWLmcOBrL9h+m0TH6C/qSxFafzhzq+yg9h19DC29vT4dnjCljHTt25HBYmNVRrGEsQfS8Kp0oViR7RrFyiN2zhZg5L9DjaBT9JZP1gQM5NPReOve9AJGC1jEZY6qDqKgowvfto56nAzEVKioqCoBx48Z5OJKayxJFUyXsWr+Uk4umEZG0hHC8WV9nFA0vnMI5nXp5OjRjTAWYNm2a1VGsgaZNmwZYouhJlii6yaaeK546HGxa+i3eK16ma/pGkjSQVU2up+3YKfRr2srT4RljjDHVniWKbrKp54qTmZHOxh/fo97GN+mRvY846rKi7b10vfhuBoTW9XR4xhhjTI1hiaKpNE4lJbAp6hVa7fiASOLZ69WClT2fImLM3xngH+jp8IwxxpgaxxJFN9nUc/mJPxzNrqipdDn4Ff05xR++3Tnc/yl6DP0LrW0FszHGGOMxVbqOoidYHcWyE71zI7FzpxJxbC6+ZLEh5FyCht1Lp8jzPR2aMaaSiY6OJv2VV3EsXWp1FGuQ6OhoAJo3b15MS1OYGl1H0VRN29YsInXxdHomL6MBPmyoN4bGo6fQq30PT4dmjKmkmjdvzuGQEKujWMNYguh5lii6yaaeS8eRnc2mxV/iu/JVumRu5iTBrGw2gfbjJtOvkX0jMMYU7YsvvqDJrp009HQgpkJ98cUXAFx11VUejqTmsqnns2RTz2cnPS2FjXPfoeGmmbR0RHOY+uzrMIHu4/5BcK0wT4dnjKkihg4derqOok091xxDhw4F4Oeff/ZoHFWZTT2bSikx4Rhbol6ize6P6ctxdnu1Zk3v5+k5agKNrGCuMcZOlzF1AAAewklEQVQYUyVYomjKVNzBveyJeoFuh76lv6Sy2T+CIwOn0e3cSxEvL0+HZ4wxxpizYImiKRP7t67lyLypRJyYRx8crK89jNDhk+kWMdjToRljjDGmhCxRdJMtZjmTOhxsXTWfjCUvEpH6Gw3Uj3UNLqP56PuJbNPJ0+EZY4wxppRsMctZssUskJ2Vxe+LPiVo9et0zNrGCWqxrcU1dBp3H3XqN/Z0eMaYaig+Pp6k6S+S+dNPtpilBomPjwcgPDzcw5FUXbaYxVSYtNRTbJz1Jk22vMM5GstBacjKzv+mx9jbGRBcy9PhGWOqsfDw/2/vzuPtGs/+j3++SRAxRIkxQmhMkUgQiTyGUkPRKFVP0WpR5VG0KJ1+1RYd6EOrxRNBqzHUkBKaEDWUNGhEIokMZqHEPERiHnKu3x/3vWU79jln75x9zj475/t+vfbrrL322mtd6zprn32de6113734qHt3Pqx1INauXCDWngtFa9HC117iofHnsunTVzGMhTzedRMe2PZcBu3xDXovt1ytwzOzTmD06NFs+Mgj9K51INauRo8eDcDhhx9e0zg6MxeK1qQXn3mcp286m61eupHhep8Hu2/HCzudyJbD9/EdzGbWrkaPHs1BixbR291rdSouFGvPhaJ9ypOz72PB7WczeOGdrIGYudrurLHHyQwaMKzWoZmZmVk7cqFYpmX9rudoaGDuv2+i4Z4/stV703g7ujN1nYPYaMQpbNdn2dxnMzMza54LxTJFxHhg/JAhQ46qdSzV9NGHH/DgbZfTc/pIBix+kldZjckbHUf/fU9i+Opr1jo8MzMzqyEXip3UO28vYtb4kWzw6KVsGy/xrNZjysDTGLTP0QxfcaVah2dmZmYdgAvFTub1l5/j0fHnsvmz17A9b/JIty14aejPGbTbIfTp2rXW4ZmZlTRhwgReP+u3vHPbbbUOxdrRhAkTah1Cp+dCsZN4bt5c5k84h61euYnh+oAZPf6Llz53EpsP27PWoZmZtahHjx4s6uavrM6mR48etQ6h0/Onbhn3+IxJLPrn7xj85r9Yk67MXP0LrP2FU9h6821qHZqZWdlGjhzJJnNms2GtA7F2NXLkSACOPfbYGkfSeblQXAZFQwOz/zWWLpPPZ8AHM1kUPbh/vW/Qb9+TGbpe31qHZ2ZWsTFjxnDQokVs6H4UO5UxY8YALhRryYXiMuTDD95n5i2X0uvBUWzV8DQvszr39TuRLfc9geE9V691eGZmZlZnOnWhKKkL8EtgVWBaRFxW45CWyluLFjBn/Pn0ffwytuNVnu6yAfcP/g2D9z6S7VfoXuvwzMzMrE7VbaEo6VJgBPByRAwomr8X8EegK/CniDirmdXsB/QGXgfmt2G4beLVF5/h8XG/Y8vn/8b2vM3c5Qfy0va/YeDn/pu+XT3EnpmZmbVO3RaKwGjgAuDywgxJXYH/A/YgFX5TJY0jFY1nNnr/t4DNgMkRcZGk64B/tkPcrfbMYzN58R/nMPi1WxjGYmauvBMr7XoSWw75fK1DMzMzs2VI3RaKETFJUt9Gs4cCT0TEPABJ1wD7RcSZpNbHT5A0H/ggP13c1LYkHQ0cDbDBBhu0Oval9cjUO3jnrnMZ/Pa9rE03ZvQawXp7n8I2/QbWLCYzs/YwceJEXjzjlyxyv3qdysSJE2sdQqdXt4ViE3oDzxY9nw8Ma2b5scD5knYCJjW1UERcDFwMMGTIkKhCnGVrWLyYWXeNYYUp57PFh3NZyEpM6XMEm4z4PsPW6dOeoZiZmVkns6wViioxr8nCLiLeAY4sa8XSvsC+/fr1W8rQKvP+e+8wa8IlrDXnYgY3zOdF1uS+zX7IwBHHMXyV1dolBjMzM+vclrVCcT5Q3My2PvB8NVYcEeOB8UOGDDmqGutrysI3XuOhcX+g37wr2I4FPNl1Y6Zt+78M+sLhrOP+w8zMzKwdLWuF4lRgE0kbAc8BBwNfq8aK27pF8eXnnmLe+LMZ8MJYhutdZq+wNS/ucC4DdtwPdfEdzGZmZtb+6rZQlHQ1sAvQK9+U8ouI+LOk44FbSXc6XxoRc6uxvbZqUXz64Wm8cus5DFpwG9vRwMxVd6Xn7iczcNCO1dyMmZmZWcXqtlCMiEOamD8BqPptcdVsUYyGBh6ZcisfTDqXQe9OYe1YnhlrfZk++/yAbTfavPXBmpmZmVVB3RaK7a0aLYqLP/qIB++4kpWmjWSLjx5lAaty3wZHs/m+32fYmutWMVozMzOz1nOh2A7ee+ctHrzpQno//Ge2iRd4Tmszpf9PGTTiO2zfY5Vah2dmZmZWkgvFMi3NqeeFr73Iw+POZdP/XMUwFvFYt02Zvu2PGLTHN+jdzak3MzOzjs3VSpkqOfX8wn8e5Zmbz2bgS+PYXu8zs/swXtj5RPpvv5fvYDYzM7O64UKxTOW0KD7x4L28ccfvGLzoLnohZqy2B2vseQqDt9yu/QI1MzMzqxIXimVqqkUxGhqYc884uPePDHx/Om/Fikxb5yD6jjiFoX3aZxQXMzMzs7bgQnEpffTB+8y67TJ6zriQgYvn8SqrMXnj79F/3xPY/jO9ah2emZmZWau5UKxQQ8Niplz9azZ47C9sE6/wny7rc//A0xn0xaMZ3r1HrcMzMzMzqxoXimUqXKM4eN3lGPboPB5abgAvDj2DQZ8/iA27dq11eGZmZmZV50KxTIVrFPuv3/Ooh/e5jv5D96h1SGZmZmZtyn21VKjHOpuwhYtEMzMz6wRcKJqZmZlZSS4UzczMzKwkF4plkrSvpIsXLlxY61DMzMzM2oULxTJFxPiIOLpnz561DsXMzMysXbhQNDMzM7OSXCiamZmZWUkuFM3MzMysJBeKZmZmZlaSC8Uy+a5nMzMz62xcKJbJdz2bmZlZZ6OIqHUMdUXSm8CjbbiJnsDSNFuW+76Wlmvq9VLzy5nX+Hkv4NUy4lxazl/r1DJ/lb5Waf6W5dw193q58zvzsdfc6/7strycP7utW66tP7ubRcQqZcRZWkT4UcEDmNbG67+4Ld/X0nJNvV5qfjnzSjx3/py/qrxWaf6W5dw193q58zvzsVdp/vzZbd1r/uwu/bHXUq6aeN6q/PnUc8czvo3f19JyTb1ean4585Z2f5aW89c6tcxfpa91tPzV07FXan5nPvaae70ejr3WbM+f3fo69krNb9Pc+dRzhSRNi4ghtY6jXjl/reP8LT3nrnWcv9Zx/paec9c6rc2fWxQrd3GtA6hzzl/rOH9Lz7lrHeevdZy/pefctU6r8ucWRTMzMzMryS2KZmZmZlaSC0UzMzMzK8mFopmZmZmV5ELRzMzMzEpyoVhFkrpI+rWk8yUdVut46o2kXSTdLWmUpF1qHU+9kbSSpAckjah1LPVG0hb5uLtO0ndqHU+9kbS/pEsk/V3SnrWOp55I2ljSnyVdV+tY6kX+W3dZPua+Xut46k2lx5wLxUzSpZJeljSn0fy9JD0q6QlJP25hNfsBvYEPgfltFWtHVKX8BfAW0J1OlL8q5Q7gR8CYtomy46pG/iLi4Yg4Bvgq0Kn6a6tS/m6MiKOAw4GD2jDcDqVKuZsXEUe2baQdX4W5PAC4Lh9zX2r3YDugSvJX6THn7nEySTuTipTLI2JAntcVeAzYg1S4TAUOAboCZzZaxbfyY0FEXCTpuog4sL3ir7Uq5e/ViGiQtDbw+4joFP8pVil3W5HGQ+1OyuNN7RN97VUjfxHxsqQvAT8GLoiIq9or/lqrVv7y+34H/DUiprdT+DVV5dx1qu+MxirM5X7ALRExU9JVEfG1GoXdYVSSv4h4KL9e1jHXrc2irjMRMUlS30azhwJPRMQ8AEnXAPtFxJnAp07vSZoPfJCfLm67aDueauSvyAJghbaIsyOq0rG3K7AS0B94V9KEiGho08A7iGodexExDhgn6Wag0xSKVTr+BJxF+vLuFEUiVP3vXqdWSS5JRc/6wEx8ZhSoOH8PVbJuJ7h5vYFni57Pz/OaMhb4gqTzgUltGVidqCh/kg6QdBFwBXBBG8fW0VWUu4j4aUScSCpwLuksRWIzKj32dpF0Xj7+JrR1cHWg0r993wV2Bw6UdExbBlYHKj321pA0Ctha0k/aOrg601QuxwJfkXQh7T+mdj0pmb9Kjzm3KDZPJeY1ea4+It4BOv21JkUqzd9Y0h8AqzB3Hy8QMbr6odSlSo+9icDEtgqmDlWav/OA89ounLpSae5eAzp7cd2UkrmMiLeBI9o7mDrUVP4qOubcoti8+UCfoufrA8/XKJZ65PwtPeeudZy/1nH+lp5zVz3OZetUJX8uFJs3FdhE0kaSlgcOBsbVOKZ64vwtPeeudZy/1nH+lp5zVz3OZetUJX8uFDNJVwOTgc0kzZd0ZER8BBwP3Ao8DIyJiLm1jLOjcv6WnnPXOs5f6zh/S8+5qx7nsnXaMn/uHsfMzMzMSnKLopmZmZmV5ELRzMzMzEpyoWhmZmZmJblQNDMzM7OSXCiamZmZWUkuFM3MzMysJBeKZnUij885Mz9elPRc0fPlO0B8B0javOj5ryXt2kbb6irp7rZYd72R9H1J3St8zy6S5kqaUXzsSFq9eKxmSbtLurGa8eb1XinpKUkPSnpM0mWS1mu0zHaSQtJuRfO6SXqjxPq6SVqcPwtzJP1d0qrVjtusM3KhaFYnIuK1iBgcEYOBUcC5hecR8QGAklp9rg8APi4UI+KnEXFXW2woIhZHxE5tse72IKlrFVf3faCiQhE4FDgrIrYuHDvZ6rTfuMMnRcQg0jEzG7hT0nJFrx8C3JN/luPN/FkYALwFfKeq0RaR1K2t1m3W0bhQNKtzkvrlVpRRwHRgXUkXS5qWW41+XrTsfEmn5ZakWZI2zfM/n1t3ZkqaLmklSatKujM/nyVpRNF6jsjzHpT0F0k7AfsA5+Z19M2tRvvn5ffI82dLuqTQitVUPI32b6Ckqfn9syRtXNyylFsuCy2rz0u6JM8/TNL9ef7IUgW0pNPzuudIGiVJef5Jkh7K+3dlifd9W9INkm6V9KikU4te+9R2C/FK+pWk+4GhkoZJmpy3MUVSj7zc7/P7Z0n6dl7n7pL+KWls3t7lhTiBtYC7Jd1RIs5P5V2pxfAA4IzCeoqcRRrZYaaks/K8VRpvN697O0n/kvSApFskrV1i+zdL+lqePk7SZY2XiYiGiDgHeB3YMy/bBfgKcBiwtypvMZ8M9C6K48dFOf15nrdKjvvB/Ps/sLn9knRPPtYmAd9TahEtHC8rS3om//42ycfFA5ImlTqmzepKRPjhhx919gBOA07J0/2ABmC7otdXzz+7AXcD/fPz+cB38vT3gFF5+hZgWJ5eGegKLAeskuetBTyepwcBjxRto/DzSmD/ohiuBPYHegDPAp/N8/8KHN9cPI329ULgoDy9Aqn1rBvwRqPlPgPMAQYDA4AbgW75tYuBr5VYdyF2AVcDe+fnLwDL5+nVSrzv28BzeZsrAQ81t90cbwAH5PndgaeAbfLznjnnxwI/LtrXGcAGwO7AAmDdvNxUYPuiHJaKsbm8f+J3VfSefsDMouclt5tj+zfQKy/3deDiEutbF3gC2Al4tBBnqe0DFwAn5+ldgFvz9BjgS0XH8xsltvPx/BznWGD3/HwfYGT+HXcB/gH8F3AQcGHROno2t1+k1s3zi5a/GdipaLnCZ+muopzvANxW678XfvjRmoebz82WDU9GxNSi54dIOpL0Bboe0J9UzED6EgV4gPQlCnAv8AdJVwHXR8RbSqdHfytpR1Ih2kdSL+DzwLUR8TpA4WcztiAVmU/m55cDR5IKg6biKfZv4FRJGwJjI+IJNTr1l1ugrgJ+GxEzJZ0IbAdMy40+K5KKpsZ2k/QDUuHWK8dwCzAXuFLS30mFXym3RsSCvP0bgR1J+W5qux8ANxTl5JmImA4QEQvzevYEtpB0cF6uJ7BJnr4vIl7Iy80E+gL3NRFbYRvN5b1cpbb7HrAlcEfez66kgvUTIuIFSWeQiqd9I+JT1xcWUdH0IcA1efqa/HxcC3GuUhTflLxNSK2Ue5OKbkj/CG2alzkrt5yOj4h7JQ1uYb+uKZq+llRs3g0cDPxe0mqkQvr6/H7A37NW33wAmy0b3i5MSNoEOAEYGhFv5FOnxdewvZ9/Lib/DYiIX0kaB3wRmCppF+BzpEJlm4j4SNL8vB6RWsfKpRZe/1Q8xSLiCkmTc2y3SzqMVDwW+yWpWL6iaJuXRsTPmgxK6kEqmraJiOck/YolefoCaf/3IxWpAyJicePQSjwvud1c2L4bEYX3NJVDAcdGxD8bvX93luQJmshViXVVQ6ntCpgV5V0nOhB4jfQPS3MGAzcrXaf4ZWAfSb8gtQKuJmmlRrE09mZEDM7F2gTgf1jSkviriPhz4zdIGkL65+RsSTeR/klobr/eLpq+kXT6/hd5H/9F+ry8Guk6YrNlgq9RNFv2rAq8CSyStC6p6GmWpM9GxKyIOJPU8rIZ6Uvv5Vwk7sGSa77uAA6WtHp+7+p5/pvAKiVW/xCwiaSN8/NDSV+qZZG0cUQ8ERF/JJ3u26rR6/sDOwMnFc2+A/hqbgEt3DG+QaNVr0hqKX1V0iqka+IKN5qsHxF3Aj8A1iSdxm1sT0mr5YJzP1KrbDnbhdRiuaGkbfJyq+bt3gocW2gxlbSZpBVbSFE1897Uukqtu7ekoTnO5SVt2XghScOB3YBtgJ+UyoWSk4A1gNtJLYBTI6JPRPSNiA2A8cCXyoiL3Gp5AvCDopwemQtNJK0vqZek3sBb+Z+L3+cYy9qvvJ1FpM/KH4Bxka61XAC8IOnL+f1dJA0qJ26zjsotimbLnumkL7w5wDxSAdOSU5RuSGkAZgG3AfcD4yVNy+t8HCAiZkn6X2CSpI9Ip2uPJF3jd5Gkk0nXJpKXfyefBh+bv7inAJdUsD9fk3QI8CHwPHBqo9dPBtYntYRCOj19hqTTSacQu+T3HgM8UxTXa0o3V8wB/pPjgvR38apcPHYhnc5+s0Rc95BOd38WuCIiZkK6QabEdp8vfmNEvJ/36UKlrm3eJZ3Sv4h0TeLMvC8vk4rQ5lyct/dsROxetI2K8x4RLyndBDWbVJR/6gaZovgPBM7LeeoG/I5UAJPzsGKO7dDcYvtD4NL8TwekG59OJxXsk4HPR8SHOS838EnXA0cAf2shF4X4pkp6BPhqRFyt1G3TfTmnb5KuG+1POvXcQLos4Jhy9quRa0nH/Y5F8w4m/V5PA5YnXY/5YDlxm3VEWnImxMzMyqF0N/KAiDix1rGYmbUln3o2MzMzs5LcomhmZmZmJblF0ayTkzQx3/2JpAn5rtFy3ne4pEq7WmlqXWfkO3uRdGK+QWRp1lO1mBqtt6+kORW+Z3S+3q3w/BBJP80xvqLUqfUj+UaOZYKkYyR9M08frqJh+SQ9XbjJp4V1lLXcUsQ2XKnT8V0kLVTq5P0RSedUe1tmyxIXimZ1TFUeSiwi9mmhr7s2ERE/j4jCjRMnUvou43q3F6mzZ0j9UA4mdcj8U0l92mKD+Y7idvs7HxGjIqIwesvhtNwlTlmqtB/F+b87IrYGtgZGSNqhletukqo7XKNZu3OhaFZDuaXq4dzSMVfSbYXuUCQNlnSf0rBjN0j6TJ4/UdJvJP0LOCG3XF0o6S5J8yR9TtKleb2ji7Z1oZYM63d6E/E8nbsOOUZLhsV7StJd+fUjJD2Wt13yy1VpSL5Tip7PyfvZ3L6OlnSgpO+Riou78v50za/NURqGrpzWtz6S/qE05NwviuL4fl7PHKUOuVvK/7ZKw7tNBo4rWk9XSWcrDf03S9L/5PmSdIHS0H83k0azKbxHpH4CpxcHGhGvkUYuWTcvt6ak6/O6pxYKmPw7Lfw+ZijdkYukHxTFcXqjfRqZt/czpbvUC7EcLun8PH2olgw3eFFzRY2ktSQ9kKcHSQrl7m4kPak0BOFpkk5RakkdAvw1r7vQxc93lYaEnK10J3KhC6Hb8n5dRO7/scR+9Cl1DEsaKmlsnt5P0rtK3dp0lzSvaBd2o9Fd3BHxLjCT3PWT0tCVl+aczpC0X56/ZVGeZin1Vdpk/iS9pdRKPgX4f5LGFOVxF0nj8/SeSsM4Tpf0N0krN5V/s5qp9dAwfvjRmR+kUSQ+Agbn52NI3YlA6qbmc3n6DOAPeXoiMLJoHaNJI0aI1JXKIlIHwF1IXdcU1l0Yrq5rXsdWResbkqefJg9flp8vRxp5Yl9SMfMMqV/B5Und7lxQYp9OIw8vmJ/PyfvZ3L6OBg5sHAOwLXB70boKQ8AdQ+rOpPG2DycNv7cGqduVOaSCZVtgNmm4vZVJ3Z1sXUH+zwbm5OmjgVPz9ArANGAj0vjJt+f8rge8UbRP2wCXF8V4QZ7egFSodM/PrwJ2LHrt4Tw9HtghT69M6rZlT1L3M4Wh6W4i9SfZl9TNUWGIvzWBJ4pydAupO5ct8nqXy/NHAt9s4XidS+qn83jScH5fBzYEJjf+3VN0XBX9Xr+bp48F/pSnzwN+nqe/SOqIvFfj/WjqGM65eCrPPyfHtQOpw/Sr8/xewF15ehfgpjz9GdJnZJ38/DdFv//VgMdIx8z5wNfz/OVJx1aT+cv78NU83Y30uVkpP7+Q1KdlL2BS0fwfFfLghx8d6eF+FM1q76nIffCRvrT6SupJKooKHSRfxif7kLu20TrGR0Qo9X/3UkTMBpA0l/SFO5PUEfTRpC+udUn9yM1qIbY/AndGxHiljq0nRsQred3XkoZCa9W+trD8PGDj3AJ2M6l/RyJiVDPvuT1SSx25pWlH0hf3DRHxdtH8nUjDwpWT/ytIw8BBKtC20pLrDwvD7O1MKkwWA89LurMopr1IBVrBQZJ2JXVsflREvJfn7w7015Lh31bNrYf3koaI+yupn8j5SsP97cknh6bbhFSU/Cci7su5ekWppXl7Ul+Ym+X1HUcqoAv9T65I6rexOf8mFWE7k4qqvUiF6t0tvK+geLjGA/L0zoXpiLhZ0oKi5T/ej+xTx3Ckfj2fkLQFMJTUefbOpGKyENee5GMn20nSLFIuzoqIF4uW+5KWtIh3JxXsk0mXCKxPyv/jknaj6fwtJvX9SKQO6/8B7CvpOlIx/ENSIdsfuDe/f/m8HbMOxYWiWe01HiKtpZE44JNDiRWvo6HR+hqAbpI2Ak4BtouIBUqnpLvTDEmHk1qLji+aXU43CR/xyctaSg0fCGXsa451EGl0meOArwLfamH7TQ2t15RSMTU3TKFILWO3fmKmtE8z79mTPPJLdm1EHK80csnNkm7JxUoXYHikU6LFzsqns/chdRy9e47jzIi4qFEcffn08XEtKXePkArmyKfDL4uInzQRcyl3kwrsDYG/k1rBgtSaWY6mhmtsKm/FQ1M2dwzfTSrkPySdXh5NKhQLBd/epALy4/2IiBGSNgXukXRD/mdBwFci4tFGcTycTyN/EbhVqR/N5vL3XnxyyMdrScfv66RRZ97M+b89Ig5pYt/NOgRfo2jWAUXEQmCB0mgpAN+ggmHvSliV9KW7UNLaLGkdK0nStqQv2UMjoiHPngLskq8pWw747ybe/jTpVCtKQ9RtVGGsHw8jp3T3a5eIuB74WWG9LdhD0ur5urj9Sa1nk4D983V0K5HGEm6yFSzSDT0LJRVG3Ph60cu3At/JOUDSpnmdk0hDG3ZVGjpx1/x6T6BboZWz0XYmk1orT8izbqOoMJc0OP/8bETMjojfkk51b57j+FbhujZJvSWtRWljcy4OYUlr9D+BAwvvyTnbME9frjyMXSOTSKdNH8/Hxeuk4rXU6D/lDgc4iZxfSXuTTgeX0twxPIl0E9Tk3OK9BilHc3NBthWpVf0TIuIx4ExSwQspp9/N70HS1vnnxsC8iDiP1Aq9Fc3kr4SJpGP3KJbk/z5gB0n98vt75MLVrENxi6JZx3UYMEqpq5h5pCHMlkpEPChpBukas3KG9TseWJ10UwnAtIj4ttKwZJNJ1wFOJ7XaNHY98E1JM0nXiz1WYbgXA7dIeoH05f8XLbnj9SeQumHJ+1XqFPQ9pOKrH3BVREzL7xlNGpYQ0vVxM3LrW1OOIA059w6pgCj4E+mU+fRcULxCKsJuIA3DN5u0z4XCfg+aGAov+21e12+A7wH/l0+LdiMVQMcAJ+ZT1YtJwzPeEmm4uS2Ayfl39BapiFvceAO5Be4h0qna+/O8hySdCtymJcMNHkcaznAr0u+48XqeztualGfdQxoXe0HjZUmteqMkvQsMb2b/TweuljSdlLNnSi3UwjE8BVi7KK5ZpHHKQ6nrpxkR0VSr5SjSEJYbAb8kjd08K/9unwZGAAcBh0r6EHgROCMiXm8mf41jXyzpJtL1qYflea/kVvurJa2QFz2Vyj8vZm3KHW6bmbUhSX8iFab3tbhwByBpVeDPEdFUi3FdycXcExFxTa1jMatHLhTNzMzMrCRfo2hmZmZmJblQNDMzM7OSXCiamZmZWUkuFM3MzMysJBeKZmZmZlaSC0UzMzMzK8mFopmZmZmV9P8BlHMkHK4uzroAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 720x360 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, ax = plt.subplots(figsize=(10,5))\n",
|
|
"ax.hlines(phi, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.hlines(1, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.vlines(bound, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"ax.vlines(1, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"pdf2.plot(x='tx_fraction', y = ['bond_to_mint_slippage', 'burn_to_withdraw_slippage','bond_to_mint_slippage_fee', 'burn_to_withdraw_slippage_fee'], logx=True, logy=True, ax=ax)\n",
|
|
"plt.title(\"Friction for Bond and Withdraw accounting With and Without Fee, phi=\"+str(phi))\n",
|
|
"plt.ylabel(\"\"\"Percentage Change:\n",
|
|
"Realized Price\n",
|
|
"Relative to Spot Price\"\"\")\n",
|
|
"plt.yticks([10**k for k in range(-6,1)])\n",
|
|
"plt.xlabel(\"\"\"Transaction size as percent of the xDAI Reserve\n",
|
|
"normalizd units: bonded/Reserve, withdraw/Reserve\"\"\")"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"[(0.01, 4.475613870122653), (0.02509430066318874, 10.0)]"
|
|
]
|
|
},
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAooAAAFcCAYAAABP+58jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzs3Xl4TdfewPHvSkwxa1JqbGIqERGRAYlQc1HKVaq0tLe0dO7VVu9bUwe3r3pbnVKXq66pGnPRUKUIrSkhaGkQiRiiSIKMMpz1/rHPOT2Jk4lEiN/neTxy9rD2Wnuvvc9vr73WPkprjRBCCCGEEHk5lHUGhBBCCCHEnUkCRSGEEEIIYZcEikIIIYQQwi4JFIUQQgghhF0SKAohhBBCCLskUBRCCCGEEHZJoCiKTCnVRCmVopRyvIl1/6mU+k8p5esDpdRlpdSF0ki/NCml/quU+uA2bUsrpZqXUFq/K6W6FTB/u1LquWKkF6uU6lkSebtXlOY5Vcx8FHpdKMm6VxxKKVfztiuUUHopSqmmBcyXemyjoOOulBqplNp8u/Mkik8CxXuc+cKWbr4AWv41sLes1jpOa11da51TSJrdlFJn86w7Q2td5MChqJRSjYF/AO5a6wdKKE2tlEo174vLSqllSqnaJZH2nUgpNUIpdTTPtJ/ymTYJQGvdRmu93Tx9mlJqyW3L8D3oNp9T/1ZKBdt8rmg+H+xN65j3ulDcm4SyopR6RykVmmfaiXymPQFgLucp8/TbeZM3Rim1q5BltiulMvJcyzvdjvzdDK31Uq117+KuZw7+tyml0pRSfxQUmCulKiulvlFKXVNKXVBKvWEzr5JSaqX5O1AXdON7r5NAUQA8ar4AWv6dz7tASd2Rl4IHgQSt9cXirlhImdpprasDTYE6wLSby95dYQfQWil1P1j3Szugap5pnYCw2525O7julVdhQFebzz5AHBCUZxpAxO3KVCkIAwIsLaFKqQeAioB3nmnNKYN6f5NeynMt313WGSoFy4CDgDPwP8BKy3XKjmlAC4zviYeBt5RSfW3m7wJGAXfd06jbSQJFYZfNI5u/K6XigJ/zPsZRSt2nlFqglDqvlEpSSq1VSlUDNgINbFso87Y6KaUGmh9fXjHfCbe2mRerlJqolDqslLqqlApRSlWxk8eewE822/pvEdN+Wyl1GEgtLAjRWl8D1gHuNmk0UEqtU0olKqVOKqXG2sybppRarpRapJRKNufDx2Z+e6XUAfO8EOCGctks20wp9bNSKsHcsrnUtmWzsP2klHpTKRVvPj7PFlDG88Ap/goEvIHfMQJI22kOQLjNtnuaL7r/BIabj8Ehm6QfVEr9Yi7rZqWUi03enlJKnTaX7X/ylHua+U5/iVLqGjBGKeWnlNptPqbxSqkvlVKVzMtPV0p9Yf7b0tI10/zZSRmtLHXs7N86SqkNSqlL5vq7QSnVyGb+DfXbZt4gpVSkMloqoi1fPoXUjVwtUCpPK2F+x7Mo55T669wcrZSKM9eX/7FJ20kptdBcjmNKqbdUnhZKG5YbB8vx6gJ8B1TLM2231jrLZtsVlFIfmud9ac7nlzbp9lRG61ySUuorpZSyt/GCjrV5vlZKvWAvLaWUo1Jqlrn8p4D++ZQRYD9GYOhl/hwEbAOi8kyLttw8m7fdXCk1DhiJEXikKKXW26TrVcA5OdZcLxLN9aSBefoNj8iVuWVWGdevOUAn87auFFAmu5RSrZTxRCBRKRWllBpmM6+yeZ/FKaX+VErNUUo5FTHd/5qX/0kZ5/kOpdSDeRaze9xVEVpJ7WyvJca1aKrWOl1rvQo4Avwtn1WeBt7XWidprY8B84AxAFrrTK31bK31LqDAp2T3OgkURWG6Aq2BPnbmLQaqAm2AusCnWutU4BHgfH4tlOaTfRnwGnA/EAqst/0yAIYBfQE3wBPzyW1La70lz7bGFDHtERhfILW11tkFFV4ZAcZjwB6bycuAs0ADYCgwQynVw2b+QIwv1toYQeaX5rQqAWvN++0+YAX5X+AAFPAv83ZaA425sWXT7n4yBy4TgV4Yd9SF9ZsK46+gMAjYiXG3bTttj9Y603YlrfUmYAYQYj4G7WxmPwk8g1E3Kpnzg1LKHfgaeMpcNmegEbkNAlZi7MOlGBfy1wEXjJbNHsAE87I7gG7mv30xWgcsLWKdgCitdZKdMjsACzBaG5oA6ZiPldkN9ducfz9gEfCmOX9BQKx5ncLqRmFuOJ5FOadsBAIPYeyfKeqvm6SpgCtGC3kvjFYUu7TWZ4HTGAEf/FUffs0z7YZWNq31/5iXtbRsvWQzewDG8WlnLqe9awoUfKwLS2useV57jFbPoQWUMxPYS+H13l4552LUy5nmcj5qMzu/c7I7xvk8DKiPsY+/yy9/Nts6BryAEZhX11oXqxuM+UbjJ+BbjHo8AghWSrUxL/K/QEuM4Lg50BCYUoxNjATexzhekRj7xVaRjrs5uL6Szz9Lt4c2wCmtdbLNqofM0/OmVwfjPDxU2LKiYBIoCoC1Nifk2jzzpmmtU7XW6bYTlVL1Mb68XjDfrWVprXcUcXvDgR+01j9prbOAWYAT0Nlmmc+11ue11onAev66wy+ptM/kLVMeB8x37pcxgoh/g7VPZCDwttY6Q2sdCfwHI+ix2KW1DjX32VqMcYEE6IjRgjHbvL9WYrRq2KW1Pmkux3Wt9SXgE3I/ErSUxd5+GgYs0Fr/Zg40phVQVsjdetgF4wtzZ55pRT2+Fgu01sfN+3m5Td6GAhu01mFa6+vAZMCUZ93dWuu1WmuTueUgQmu9R2udrbWOxTgeln2xG2ihlHI253c+0FApVd28jN18a60TtNartNZp5i+eDy1pFlK//w58Yz42Jq31Oa31H0WsG4W52XpvMd28vw5hfCla6t4wYIa5LGeBzwtJZwcQpJRyAPwwbpR22kwLoPj14SOt9RWtdRxGy53dshVyrAtLaxjG+XXGvA//VZRymv8uqXqf3zEciVFvDpjr/TsYrYSuxUy/wG3bXMsPmKcNAGK11gvM+/QAsAoYam7dGwu8rrVONJ8HM4AnirHNH2zO5f/BKFNjm/lFPe6eWuva+fyz3ChUB67mWfUqUMNOktVt5he2rCiABIoC4DGbE/KxPPPO5LNOYyAxn5aawjTAuJsGQGttMm+noc0ytn1G0vjrpC+JtPMrky1v8517FYzWr53mR0gNMMpte0d7upC8VzE/UmoAnNNa6zzr2qWUqquU+k4pdU4Zj2CXYNy128pvPzUgdznz3Y5ZGOBpvgvviBGo/QHUN08LpPj9tIqUN3Mgm5Bn3VzHSCnVUhmPhi+Y98UMzPvCHIiGYwQTQRhf7L9iBDP5BopKqarKGLhx2pxmGFBbGf3TCqrfjYFoO9OLUjcKc7P1vrD189aHws4BSwtzW4wWnDT+amlri3HztbeE8pZLQce6CGndTL0PNNfx+7XWJzDqTmfzNA9Ktt7bXptSMOp9cepHYV6xuZZ7m6c9CPjbttBhBK0PYDx1qQpE2MzbZJ5eVLbncgqQiFFWi1ut07ZSgJp5ptUEkvNZ1jK/sGVFASRQFIXR+Uw/A9yn7I8Gzm8di/MYFy8AzHe1jYFzN5XD4qddWP7+WtBolfwPxmMkD3P69ymlbO9Km1C0vMdjtHTZ9s1qUsDy/zLn1VNrXRPjcaHdfl35bMv2rr6g7aCNkZzngXFAnPmCD0Zr3TiMi/ue/FYvYp7s5k0pVRXj8XNBaX4N/AG0MO+Lf5J7X+wAumM8ctxv/twHozUsvy/6f2A8pvU3p2lpRVIUXL/PAM3sTC+sbqRifClbFGeUfnH3cV7x5H683zi/Bc3CMFoj+2O0sIHRb7Wxedp+rXVGPuveal4LO9YFKVa9x6jftTDq+C9g7ZdsORfOa61j8lm3uOXMe22qhlHvz2HUDci/ftzKPj0D7MjTQlddaz0e44lJOtDGZl4tbQzkKyrbc7k6Rrea/LpG5EsZ/blT8vk3x7zY70DTPOdYO/P0XMw3efH81aqe77KiYBIoipuitY7H6GAfrIxBARWVUpYv2j8BZ6VUrXxWXw70V0r1UEpVxPjCvo5xJ3+rSjRtc+vSMxgX01Na6zPmtP6ljIEGnhiPIvP2y7FnN5ANvKKMjv9DMAKZ/NTAuCu+opRqiNEnrqiWYwwCcTcHYlOLsM5O4A3+CgzAaEV6Awgv4FH9n4Cr+ZFkUawEBiilAs39Nt+j8GtRDeAakKKUagWMzzN/B0bH9aPa6Hu2HXgOiDE/ts8vzXSM/XsfNvuokPo9H3jGXMcclFINlVKtilA3IoF+yhgk8wBGP9qiKuycKsxy4B1zWRoCLxW0sNb6pHmbr2KuD+aW8L3maQW1sv2J0RfyZhV2rAuyHOP8amRuEZxU0MI2rdH51fuSLOe3GPXGSylVGaOldK/WOtZcR88Bo5QxIOdZct+M/Ak0Urn7WhfVBqClMgaQVTT/81VKtTY/cZkHfKqUqgtgrs/WfoSq8FfH9LM5l983l6koT21y0cYrt6rn8+8F8zLHMc6jqeZzbDBGP9BV+SS7CHjXXO9bYTxm/69N2SqrvwYbVTKnWdSbknuGBIriVjwFZGHc/V/E/MVnfmS5DDhlfpyR672MWusojNaxLzDuaB/FeEVProESN6ME0z6klEoBkoDRwGBznyMwOoO7Ytw1r8EYgfdTEfKWCQzB6NyehNGfcnUBq0zHGOF3FfihkGXzbmsjMBv4GThp/r8wOzA6u9uORNxpnlbQF+YK8/8JNv2iCsrb78CLGF+c8Rj7Ir8RuBYTMQbHJGN8sYXkmf8rxuNQSz6PAhmF5Hu2eZ3LGK2lm/LMz69+78O4efgU49js4K+WooLqxmKMfoOxwGY7ZchXYedUEbyHsY9jgC0Ywfr1QtYJw3gE+YvNtKLUh88w+r8lKaUK6wtpT2HHuiDzgB8x9vMBinbO3Gy9nw+4K/t9u2+gtd6K0R93FUa9b0buvoBjMW4GEzAGXNje3P6M0RJ2QSl1ubBt5dluMtDbvK3zGI+C/xeobF7kbYxrxB7zo/4tGC3tKOMtACkYI4vz8y3GTVYi0AHjsXZpegJjoFIS8BEw1HIzqIyXeNu2GE7F6CZyGuM4f6yNAXgWURg3iw0x6k06Nq2+wqByd5cSQghR3imlxgNPaK3zDhIRwkopNQrjsfQ7+cz/L3BWa/3ubc2YuK3kRbZCCFHOKWMUd1PMI8QxumR8WeBK4p6ntZZfXBISKAohxD2gEsZrZtyAKxjv7wsucA0hhEAePQshhBBCiHzIYBYhhBBCCGGXBIpCCCGEEMIu6aNYTC4uLtrV1bWssyGEEEIIUaiIiIjLWuvi/NpOLhIoFpOrqyvh4eFlnQ0hhBBCiEIppQr7KcsCyaNnIYQQQghhlwSKQgghhBDCLgkUhRBCCCGEXdJHsYiUUo8CjzZv3vyGeVlZWZw9e5aMjIzbnzEhyliVKlVo1KgRFStWLOusCCGEKGHywu1i8vHx0XkHs8TExFCjRg2cnZ1RSpVRzoS4/bTWJCQkkJycjJubW1lnRwghRB5KqQittc/Nri+PnktARkaGBIninqSUwtnZWVrThRCinJJAsYRIkCjuVVL3hRCi/JJAUQghhBBC2CWBYjkRGxuLh4dHiafr6urK5cuX7c67cuUKwcHBJb5NW3PmzGHRokUFLhMZGUloaGix07bdZ+Hh4bzyyis3lUchhBCivJJAUdy02xEovvDCCzz99NMFLnOzgaItHx8fPv/881tKQwghhChv5PU4JWz6+t85ev5aiabp3qAmUx9tU+hy2dnZjB49moMHD9KyZUsWLVrE7t27mThxItnZ2fj6+vL1119TuXJlXF1dGT16NOvXrycrK4sVK1bQqlUrEhISGDFiBJcuXcLPz4+CRsVPmjSJ6OhovLy86NWrFzNnzuStt95i48aNKKV49913GT58uN11t2/fztSpU6lXrx6RkZEMGTKEtm3b8tlnn5Gens7atWtp1qwZ06ZNo3r16kycOJFu3brh7+/Ptm3buHLlCvPnz8ff358pU6aQnp7Orl27eOedd+xuc8eOHbz66quA0acuLCzshvzMmjWLDRs2MG3aNKKjozl37hxnzpzhrbfeYuzYsWzfvp0pU6bg7OxMVFQUQUFBBAcH4+DgwPjx49m/fz/p6ekMHTqU6dOnAxAaGsobb7yBi4sL3t7enDp1ig0bNpCamsrLL7/MkSNHyM7OZtq0aQwaNKjQYyyEEELcTtKiWI5ERUUxbtw4Dh8+TM2aNfnkk08YM2YMISEh1oDk66+/ti7v4uLCgQMHGD9+PLNmzQJg+vTpBAYGcvDgQQYOHEhcXFy+2/voo49o1qwZkZGRfPzxx6xevZrIyEgOHTrEli1bePPNN4mPj893/UOHDvHZZ59x5MgRFi9ezPHjx9m3bx/PPfccX3zxhd11srOz2bdvH7Nnz2b69OlUqlSJ9957j+HDhxMZGZlvYDpr1iy++uorIiMj2blzJ05OTgXuy8OHD/PDDz+we/du3nvvPc6fPw/Avn37+L//+z+OHDlCdHQ0q1evBuDDDz8kPDycw4cPs2PHDg4fPkxGRgbPP/88GzduZNeuXVy6dMma/ocffkj37t3Zv38/27Zt48033yQ1NbXAPAkhhBC3m7QolrCitPyVlsaNGxMQEADAqFGjeP/993Fzc6Nly5YAjB49mq+++orXXnsNgCFDhgDQoUMHa8ATFhZm/bt///7UqVOnyNvftWsXI0aMwNHRkXr16tG1a1f279/PwIED7S7v6+tL/fr1AWjWrBm9e/cGoG3btmzbts3uOrZ5jo2NLXLeAgICeOONNxg5ciRDhgyhUaNGBS4/aNAgnJyccHJy4uGHH2bfvn3Url0bPz8/mjZtCsCIESPYtWsXQ4cOZfny5cydO5fs7Gzi4+M5evQoJpOJpk2bWt8vOGLECObOnQvA5s2bWbdunTVAz8jIIC4ujtatWxe5TEIIIURpk0CxHCnua0oqV64MgKOjI9nZ2TedjkVxX95u2T6Ag4OD9bODg0Ou/NhbJ2+eCzNp0iT69+9PaGgoHTt2ZMuWLVSpUiXf5fPuA8tne9NjYmKYNWsW+/fvp06dOowZM4aMjIwC94fWmlWrVvHQQw8VuQxCCCHE7SaPnsuRuLg4du/eDcCyZcvo2bMnsbGxnDx5EoDFixfTtWvXAtMICgpi6dKlAGzcuJGkpKR8l61RowbJycm51g0JCSEnJ4dLly4RFhaGn5/frRarUHnzYU90dDRt27bl7bffxsfHhz/++KPA5b///nsyMjJISEhg+/bt+Pr6Asaj55iYGEwmEyEhIQQGBnLt2jWqVatGrVq1+PPPP9m4cSMArVq14tSpU9aWz5CQEGv6ffr04YsvvrAGkwcPHrzZ4gshhBClRgLFIlJKPaqUmnv16tWyzkq+WrduzcKFC/H09CQxMZHXX3+dBQsW8Pjjj9O2bVscHBx44YUXCkxj6tSphIWF4e3tzebNm2nSpEm+yzo7OxMQEICHhwdvvvkmgwcPxtPTk3bt2tG9e3dmzpzJAw88UNLFvMHDDz/M0aNH8fLyyhWM2Zo9ezYeHh60a9cOJycnHnnkkQLT9PPzo3///nTs2JHJkyfToEEDADp16sSkSZPw8PDAzc2NwYMH065dO9q3b0+bNm149tlnrY//nZycCA4Opm/fvgQGBlKvXj1q1aoFwOTJk8nKysLT0xMPDw8mT55cgntECCGEKBnyW8/FZO+3no8dOyZ9y8oR25HWtmxHRhdVSkoK1atXR2vNiy++SIsWLXj99ddLOstlTs4BIYS4M8lvPQtxB5s3bx5eXl60adOGq1ev8vzzz5d1loQQQogikxbFYroXWxQTEhLo0aPHDdO3bt2Ks7NzgeseOXKEp556Kte0ypUrs3fv3hLNo8WCBQv47LPPck0LCAjgq6++KpXtCUN5PweEEOJudastihIoFtO9GCgKURg5B4QQ4s4kj56FEEIIIUSpkEBRCCGEEELYJYGiEEIIIYSwSwJFIYQQQghhlwSK5URsbCweHh63bXszZswotbT79evHlStXuHLlCsHBwdbp27dvZ8CAAYWuX9TlSku3bt2wDHiylEUIIYS4G0mgKIr1m8kWpRkohoaGUrt27RsCxVt1M+W8VZayCCGEEHejCmWdgXJn4yS4cKRk03ygLTzyUaGLZWdnM3r0aA4ePEjLli1ZtGgR7u7uhIeH4+LiQnh4OBMnTmT79u1MmzaN8+fPExsbi4uLC71792bdunWkpaURHR3N4MGDmTlzpt3tTJo0ifT0dOuLpJcuXconn3zCN998A8Bzzz3Ha6+9ZnfdmTNnUqVKFV555RVef/11Dh06xM8//8zWrVtZsGABS5YswdXVlfDwcCZNmkR0dDReXl706tWL/v37k5KSwtChQ/ntt9/o0KEDS5YsQSnFpk2beO2113BxccHb29u6vbzlnDFjBk899RSpqakAfPnll3Tu3JkJEybQt29fBg4cyODBg6lTpw7ffPMN8+fPJyYmhg8++OCGsqSmpjJs2DDOnj1LTk4OkydPZvjw4bmWsZQlJSWFvn374u/vn+v4VK1aFVdXV4YPH862bdsA+Pbbb2nevDnr16/ngw8+IDMzE2dnZ5YuXUq9evW4dOkSTz75JAkJCfj6+rJp0yYiIiJwcXFhyZIlfP7552RmZuLv709wcDCOjo6F1h0hhBDCHmlRLEeioqIYN24chw8fpmbNmoW2xkVERPD999/z7bffAhAZGUlISAhHjhwhJCSEM2fO2F3vo48+wsnJicjISJYuXUpERAQLFixg79697Nmzh3nz5nHw4EG76wYFBbFz504AawCVlZXFrl276NKlyw3badasGZGRkXz88ccAHDx4kNmzZ3P06FFOnTrFL7/8QkZGBmPHjmX9+vXs3LmTCxcu5FvOunXr8tNPP3HgwAFCQkJ45ZVXbsjXuXPnOHr0KIDdfFls2rSJBg0acOjQIX777Tf69u1b4P4u6PjUrFmTffv28dJLL1mD7MDAQPbs2cPBgwd54oknrIH79OnT6d69OwcOHGDw4MHExcUBxrsMQ0JC+OWXX4iMjMTR0ZGlS5cWmCchhBCiINKiWNKK0PJXWho3bkxAQAAAo0aN4vPPPy9w+YEDB+Lk5GT93KNHD2rVqgWAu7s7p0+fpnHjxoVud9euXQwePJhq1aoBMGTIEHbu3En79u1vWLZDhw5ERESQnJxM5cqV8fb2Jjw8nJ07dxaaXwA/Pz8aNWoEgJeXF7GxsVSvXh03NzdatGhhLfvcuXPtljMrK4uXXnrJGkgdP34cgC5dulgDUHd3d5KSkoiPj2f37t355qtt27ZMnDiRt99+mwEDBuQbUFrYOz6W35MeMWKE9X/Lb0GfPXuW4cOHEx8fT2ZmJm5uboCxv9esWQNA3759qVOnDmD8Uk5ERAS+vr4ApKenU7du3UL3qRBCCJEfCRTLEaXUDZ8rVKiAyWQCICMjI9d8S2BnUblyZevfjo6ORe7TV5xf96lYsSKurq4sWLCAzp074+npybZt24iOji7SL3vkl8e8ZbdlW85PP/2UevXqcejQIUwmE1WqVAGgYcOGJCUlsWnTJoKCgkhMTGT58uVUr16dGjVq2E23ZcuWREREEBoayjvvvEPv3r2ZMmVKvvmwd3wK+vvll1/mjTfeYODAgdbuApD//tZaM3r0aP71r3/lmwchhBCiOOTRczkSFxfH7t27AVi2bBmBgYG4uroSEREBwKpVq0psWxUrViQrKwswHtuuXbuWtLQ0UlNTWbNmTYGta0FBQcyaNYugoCC6dOnCnDlz8PLyuiGQqlGjBsnJyYXmpVWrVsTExBAdHQ0YZc/P1atXqV+/Pg4ODixevJicnBzrvE6dOjF79mxrvmbNmlVgOc6fP0/VqlUZNWoUEydO5MCBAwXm097xsQgJCbH+36lTJ2teGzZsCMDChQutywYGBrJ8+XIANm/eTFJSEmC0CK9cuZKLFy8CkJiYyOnTpwvMkxBCCFEQCRTLkdatW7Nw4UI8PT1JTExk/PjxTJ06lVdffZUuXbqU6KCGcePG4enpyciRI/H29mbMmDH4+fnh7+/Pc889Z/exs0WXLl2Ij4+nU6dO1KtXjypVqtgNyJydnQkICMDDw4M333wz3/SqVKnC3Llz6d+/P4GBgTz44IP5LjthwgQWLlxIx44dOX78eK7Wxi5dupCdnU3z5s3x9vYmMTGxwEDxyJEj+Pn54eXlxYcffsi7776b77Jg//hYXL9+HX9/fz777DM+/fRTwBiI8/jjj9OlSxdcXFysy06dOpXNmzfj7e3Nxo0bqV+/PjVq1MDd3Z0PPviA3r174+npSa9evYiPjy8wT0IIIcqnmKsxvLfr01tORxXnsaEAHx8fbXlHnsWxY8eK9NhU3LtiY2MZMGAAv/322w3zLCOjbYPBgly/fh1HR0cqVKjA7t27GT9+PJGRkSWd5WKRc0AIIcrexbSLhBxdx5oTG7iUGY3Wit+fORKhtfa52TSlj2IRKaUeBR5t3rx5WWdF3OPi4uIYNmwYJpOJSpUqMW/evLLOkhBCiDJyLfMa60/8yLKj33M69TAoTU56I+o5PM7QVgN4iQ63lL60KBbTvdai6O/vz/Xr13NNW7x4MW3bti1wvYSEBHr06HHD9K1bt+Ls7FyieSxt5akspaU8nwNCCHGnuZ5zna2nd7Do8GqOXt2LJhtTpjPVs/0Y4NaPp319edDZ6FqllJIWRVF69u7de1PrOTs7l/nj0JJSnsoihBDi7pRjymHP+X0sPLyG/Zd2kE0apuzqVEzvzMON+vCsTxAeDWsV+BaQmyGBohBCCCHEHUhrzdGEoyw8vIZtZzeToZPQOZVRaW3xvb8Hz3j3onOzujg6lGxwaEsCRSGEEEKIO0jctTi+/X0tG06FcjX7HFo7YkpthXuNETzd4RF6uzemSsXb8/OsEigKIYQQQpSxy+mXWRP1Ayui1hGfcRytFTlpbjSu9BQj2vRniFdLajlVvO35kkBRCCGEEKIMpGSm8GPMFpb+vpYTyQcATU5GfWqbHmNwiwE86eNJw9pOhaa2bzhKAAAgAElEQVRTmuSF2+VEbGwsHh4eJZ6uq6srly9ftjvvypUrBAcHl/g2bc2ZM4dFixYVuExkZCShoaHFTtt2n4WHh/PKK6/cVB5vhxEjRuDp6Wl9GbcQQoi7U5Ypi21x23nmh1cIWBbEtD2TiUqIocK1nvSr8wkrH13JLy+8x5s9/cs8SARpURS3wBIoTpgwodS28cILLxS6TGRkJOHh4fTr1++mt+Pj44OPz02/PaBUXbhwgV9//VV+jk8IIe5SWmsOXz7M4iOr2X72J67rZEzZ1VCpvnSs24sxnbvSqZlLqQ5KuVkSKJaw/933v/yR+EeJptnqvla87fd2octlZ2czevRoDh48SMuWLVm0aBG7d+9m4sSJZGdn4+vry9dff03lypVxdXVl9OjRrF+/nqysLFasWEGrVq1ISEhgxIgRXLp0CT8/Pwp6z+akSZOIjo7Gy8uLXr16MXPmTN566y02btyIUop3332X4cOH2113+/btTJ06lXr16hEZGcmQIUNo27Ytn332Genp6axdu5ZmzZoxbdo0qlevzsSJE+nWrRv+/v5s27aNK1euMH/+fPz9/ZkyZQrp6ens2rWLd955x+42d+zYwauvvgqAUoqwsLAb8jNr1iw2bNjAtGnTiI6O5ty5c5w5c4a33nqLsWPHsn37dqZMmYKzszNRUVEEBQURHByMg4MD48ePZ//+/aSnpzN06FCmT58OQGhoKG+88QYuLi54e3tz6tQpNmzYQGpqKi+//DJHjhwhOzubadOmMWjQILv7qnfv3ly8eBEvLy+++OILGjRowIsvvsilS5eoWrUq8+bNo1WrVly6dIkXXniBuLg4AGbPnk1AQECh9UYIIUTpiLsWx3fH1rLu5AauZsejTRXISXGndY1uPNWhD33dG+JU6fYMSrlZEiiWI1FRUcyfP5+AgACeffZZPvnkE/7973+zdetWWrZsydNPP83XX3/Na6+9BoCLiwsHDhwgODiYWbNm8Z///Ifp06cTGBjIlClT+OGHH5g7d26+2/voo4/47bffrO8YXLVqFZGRkRw6dIjLly/j6+tLUFAQ9evXt7v+oUOHOHbsGPfddx9NmzblueeeY9++fXz22Wd88cUXzJ49+4Z1srOz2bdvH6GhoUyfPp0tW7bw3nvvER4ezpdffplvXmfNmsVXX31FQEAAKSkpVKlSpcB9efjwYfbs2UNqairt27enf//+AOzbt4+jR4/y4IMP0rdvX1avXs3QoUP58MMPue+++8jJyaFHjx4cPnyYli1b8vzzzxMWFoabmxsjRoywpv/hhx/SvXt3vvnmG65cuYKfnx89e/bM9dvTFuvWrWPAgAHW/dyjRw/mzJlDixYt2Lt3LxMmTODnn3/m1Vdf5fXXXycwMJC4uDj69OnDsWPHCiynEEKIkpWUkcT3J37gu2Pfcy79D/OglGbUd3yaJ9z787f2zXCuXrmss1lkEiiWsKK0/JWWxo0bW1uQRo0axfvvv4+bmxstW7YEYPTo0Xz11VfWQHHIkCEAdOjQgdWrVwMQFhZm/bt///7UqVOnyNvftWsXI0aMwNHRkXr16tG1a1f279/PwIED7S7v6+trDSKbNWtG7969AWjbti3btm2zu45tnmNjY4uct4CAAN544w1GjhzJkCFDaNSoUYHLDxo0CCcnJ5ycnHj44YfZt28ftWvXxs/Pj6ZNmwJGv8Fdu3YxdOhQli9fzty5c8nOziY+Pp6jR49iMplo2rQpbm5u1uUtgffmzZtZt24ds2bNAiAjI4O4uLhCf90kJSWFX3/9lccff9w6zfLLOVu2bOHo0aPW6deuXSM5OZkaNWoUeT8JIYQovozsDLbGbWPxkTUcvbIPTQ45GQ9QPXsQA5v1Z6SPJ24uNzYE3A0kUCxHivs29sqVjTsaR0dHsrOzbzodi+L+HKRl+wAODg7Wzw4ODrnyY2+dvHkuzKRJk+jfvz+hoaF07NiRLVu2FNiqmHcfWD7bmx4TE8OsWbPYv38/derUYcyYMWRkZBS4P7TWrFq1ioceeqjIZQAwmUzUrl3b7i/FmEwmdu/ejZNT2Xd+FkKI8i7HlMP+C/tZdGQNuy9sI5t0TFk1cUwLonujPox+uDPtG9cu8V9Kud1k1HM5EhcXx+7duwFYtmwZPXv2JDY2lpMnTwLGbzR37dq1wDSCgoJYunQpABs3biQpKSnfZWvUqEFycnKudUNCQsjJyeHSpUuEhYXh5+d3q8UqVN582BMdHU3btm15++238fHx4Y8/Cu5H+v3335ORkUFCQgLbt2/H19cXMB49x8TEYDKZCAkJITAwkGvXrlGtWjVq1arFn3/+ycaNGwFo1aoVp06dsrZ8hoSEWNPv06cPX3zxhTWYPHjwYJHKWrNmTdzc3FixYgVgBJyHDh0CjL6Mto/f5WcHhRCi5B1POs7Unf9L56XdGfvTWMLObeX61TZ4Or7N7M4riHhxNp8N6Y93kzp3fZAIEiiWK61bt2bhwoV4enqSmJjI66+/zoIFC3j88cdp27YtDg4OhY4injp1KmFhYXh7e7N582aaNGmS77LOzs4EBATg4eHBm2++yeDBg/H09KRdu3Z0796dmTNn8sADD5R0MW/w8MMPc/ToUby8vHIFY7Zmz56Nh4cH7dq1w8nJiUceeaTANP38/Ojfvz8dO3Zk8uTJNGjQAIBOnToxadIkPDw8cHNzY/DgwbRr14727dvTpk0bnn32WevjfycnJ4KDg+nbty+BgYHUq1ePWrVqATB58mSysrLw9PTEw8ODyZMnF7m8S5cuZf78+bRr1442bdrw/fffA/D5558THh6Op6cn7u7uzJkzp8hpCiGEyN+F1At8FTGP7sse5W/r/saq6G+5dq0uTbLH8U+P79g7bi5LR42il3sDKjqWr9BKFfdx4b3Ox8dHh4eH55p27NixQvuWibuH7UhrW7Yjo4sqJSWF6tWro7XmxRdfpEWLFrz++uslneUyJ+eAEKK8SclMYVPMZpb8vobo5EOAJietCc50Ymirfgz3dueBWgUPjLwTKKUitNY3/f436aMoRCmaN28eCxcuJDMzk/bt2/P888+XdZaEEELkI8uUxS/nfmHxkTWEX9qJiSxMmc5UyuhN3wf78XRvH1rXr1nW2bytpEWxmO7FFsWEhAR69Ohxw/StW7fi7Oxc4LpHjhzhqaeeyjWtcuXK7N27t0TzaLFgwQI+++yzXNMCAgL46quvSmV7JenHH3/k7bdzj5p3c3NjzZo1ZZSjoivv54AQovzSWnPk8hG+O7qWn+J+JMN0DVN2VXSKF/7392RMh64Etrj/jnwZdlHcaouiBIrFdC8GikIURs4BIcTd5kzyGVZFfc/qE+tJyjyPNlUgO8WdZk5BPOXZiwHtmlC98t3/4FUePQshhBBCFEFyZjIbT/3It0dXE518xPwybDdqm57k8db9GObdgkZ1qpZ1Nu8oEigKIYQQotzKNmXz6/lfWfLbavb9GUYOWeRcv58Kaf3o8+AjjOrhRbtGtcrFq2xKgwSKQgghhCh3ohKj+O7YakJjQknLuYIpuyqmZF/a39eDpzt3oXurelSqUL5eZVMaJFAUQgghRLlwKe0S35/YQMgfa7iQEYPWjmQnt6JxxScY6dmbQe0epE61SmWdzbuKhNLlRGxsLB4eHrdtezNmzCi1tPv168eVK1e4cuUKwcHB1unbt29nwIABha5f1OVKS7du3bAMeLKU5U60YsUKWrduzcMPP1zWWRFCiJuWkZ3BD9GhjFj3d7qv6MFnkZ9wLimbKleH8kS9//DDE//hpxdeZEznFhIk3gRpURRkZ2dToULxqsKMGTP45z//WSr5CQ0NBYzgNzg4mAkTJpRIujdTzltlKcudaP78+QQHB0ugKIS465i0iQN/HuDbo6vZfnYrWToNU1YtVMrDBNbvy9OBvnR0c8bhLn2lzZ1EAsUSdmHGDK4fK/h3hIurcutWPFCEoCw7O5vRo0dz8OBBWrZsyaJFi3B3dyc8PBwXFxfCw8OZOHEi27dvZ9q0aZw/f57Y2FhcXFzo3bs369atIy0tjejoaAYPHszMmTPtbmfSpEmkp6fj5eVFmzZtWLp0KZ988gnffPMNAM899xyvvfaa3XVnzpxJlSpVeOWVV3j99dc5dOgQP//8M1u3bmXBggUsWbIEV1dXwsPDmTRpEtHR0Xh5edGrVy/69+9PSkoKQ4cO5bfffqNDhw4sWbIEpRSbNm3itddew8XFBW9vb+v28pZzxowZPPXUU6SmpgLw5Zdf0rlzZyZMmEDfvn0ZOHAggwcPpk6dOnzzzTfMnz+fmJgYPvjggxvKkpqayrBhwzh79iw5OTlMnjyZ4cOH51rGUpaUlBT69u2Lv79/ruNTtWpVXF1dGT58ONu2bQPg22+/pXnz5qxfv54PPviAzMxMnJ2dWbp0KfXq1ePSpUs8+eSTJCQk4Ovry6ZNm4iIiMDFxYUlS5bw+eefk5mZib+/P8HBwTg6Ot6Q9/fee49du3YRExPDwIED+eijj5g0aRLbt2/n+vXrvPjii9aXg3/88ccsX76c69evM3jwYKZPn15YVRRCiFJx+tppVkZ9z5oT67ia9Sc6pxLZyW1pVeNhnvbuTl+P+lStJKFNSZJHz+VIVFQU48aN4/Dhw9SsWTPXY1t7IiIi+P777/n2228BiIyMJCQkhCNHjhASEsKZM2fsrvfRRx/h5OREZGQkS5cuJSIiggULFrB371727NnDvHnzOHjwoN11g4KC2LlzJ4A1gMrKymLXrl106dLlhu00a9aMyMhIPv74YwAOHjzI7NmzOXr0KKdOneKXX34hIyODsWPHsn79enbu3MmFCxfyLWfdunX56aefOHDgACEhIbzyyis35OvcuXMcPXoUwG6+LDZt2kSDBg04dOgQv/32G3379i1wfxd0fGrWrMm+fft46aWXrEF2YGAge/bs4eDBgzzxxBPWwH369Ol0796dAwcOMHjwYOLi4gDjXYYhISH88ssvREZG4ujoyNKlS+3mZcqUKfj4+LB06VI+/vhj5s+fT61atdi/fz/79+9n3rx5xMTEsHnzZk6cOMG+ffuIjIwkIiKCsLCwAssphBAl6er1q4T8sZxBq59gwJoBLPj9PyQk1aRWytO84LaI7WPmsPbZ0QzxbixBYimQPVrCitLyV1oaN25MQEAAAKNGjeLzzz8vcPmBAwfi5ORk/dyjRw9q1aoFgLu7O6dPn6Zx48aFbnfXrl0MHjyYatWqATBkyBB27txJ+/btb1i2Q4cOREREkJycTOXKlfH29iY8PJydO3cWml8APz8/GjVqBICXlxexsbFUr14dNzc3WrRoYS373Llz7ZYzKyuLl156yRpIHT9+HIAuXbpYA1B3d3eSkpKIj49n9+7d+earbdu2TJw4kbfffpsBAwbkG1Ba2Ds+lt+THjFihPV/y29Bnz17luHDhxMfH09mZiZubm6Asb8tv9bSt29f6tSpAxi/lBMREYGvry8A6enp1K1bt9B9CrB582YOHz7MypUrAbh69SonTpxg8+bNbN682XosU1JSOHHiBEFBQUVKVwghboblp/SWHV3Nngs7MZFNzvW6VEjrzyMP9uOpnu3waFhTXmlzG9zTgaJSqhoQDGQC27XW9ptf7hJ5TxilFBUqVMBkMgGQkZGRa74lsLOoXLmy9W9HR0eys7OLtN3i/LpPxYoVcXV1ZcGCBXTu3BlPT0+2bdtGdHR0kX7ZI788FnSxsC3np59+Sr169Th06BAmk4kqVYwfdG/YsCFJSUls2rSJoKAgEhMTWb58OdWrV6dGjRp2023ZsiURERGEhobyzjvv0Lt3b6ZMmZJvPuwdn4L+fvnll3njjTcYOHCgtbsA5L+/tdaMHj2af/3rX/nmIT9aa7744gv69OmTa/qPP/7IO++8I79RLYQodVprjiUeY2XUWn44FUpazlVM2dXIueZPuzo9ebpjZ3q616NyhRu704jSU+4ePSulvlFKXVRK/ZZnel+lVJRS6qRSapJ58hBgpdZ6LDDwtme2hMXFxbF7924Ali1bRmBgIK6urkRERACwatWqEttWxYoVycrKAozHtmvXriUtLY3U1FTWrFlTYOtaUFAQs2bNIigoiC5dujBnzhy8vLxuCKRq1KhBcnJyoXlp1aoVMTExREdHA0bZ83P16lXq16+Pg4MDixcvJicnxzqvU6dOzJ4925qvWbNmFViO8+fPU7VqVUaNGsXEiRM5cOBAgfm0d3wsQkJCrP936tTJmteGDRsCsHDhQuuygYGBLF++HDBaApOSkgCjRXjlypVcvHgRgMTERE6fPl1gniz69OnD119/bT2mx48fJzU1lT59+vDNN9+QkpICGI/lLekLIURJuJR2iflHvqHPioEM3zCc5VHLuZrUhNrXnufFZgsJ+/tsQsYMpb9nAwkSy0B5bFH8L/AlsMgyQSnlCHwF9ALOAvuVUuuARsAR82I5FMMjjzxCeno6AFOnTsXBwYFatWrxwAMPAEZ/tLzq1KlD3bp1ycnJ4eTJkzfMd3Z2xsXFhaysLE6dOnXD/Pvvv5/77ruPzMxMYmJics07e/YsDz30EAsXLmTcuHHUr1+fF198kQceeIDx48fj4uJiDUDS0tK4fPkyaWlp1nzGx8dbg4SUlBRSUlKIi4vLVY7GjRtTtWpVrl27xtChQ2nVqhXu7u7MmjWLfv364evri1KKkSNHUrVq1Rv2gZubG5UqVaJdu3bEx8fj7OzMlStXcHBw4KGHHiIrK4uKFStiMpk4efIkderUoW3btrRs2ZIuXbrw5JNPAnDx4kWSkpKsj4dPnz7NlClT6N+/Py4uLrRv3574+HiioqKs5Tx+/DgtW7ZkwoQJDBo0iMWLF+Pn52fNp6OjI126dGHz5s1UqVKFatWqkZCQQNOmTYmKiqJixYo0bdoUMAK+9PR0du7cyccff4yDgwOVKlVi/vz5gNFyGxsbS40aNcjKyuLkyZPk5OTQunVrFi5cyDPPPEOTJk148cUXiYqKIisri0uXLuHv74/JZOKjjz4iKiqKsWPH8thjj1GvXj3r42QwHlu/8cYbLFq0CF9fX+6//35SU1Nxd3fngw8+oGvXrphMJipUqMCUKVPIyMiwW/fS0tKs+XzssceIjY2lffv2ZGZmUqdOHb766isefPBBevbsiZ+fH46OjlSrVo3333+fJk2a5Dq2aWlp1npvr/Xx3XffpWfPnkRGRtod6DRjxgw6d+7Mr7/+anc0/ezZs/Hy8mLLli12Bxb9+9//5qGHHmL9+vX83//93w3zFy9eTOPGjQkJCeHrr7++Yf7KlStxcXHhv//9L//9739vmB8aGkrVqlUJDg62Bum2tm/fDsCsWbPYsGFDrnlOTk5s3LgRgPfff5+tW7fmmu/s7Gy9iXvnnXesNxMWjRo1YsmSJQC89tprREZG5prfsmVLa1eLcePGWbtTWHh5eTF79mzAqDtnz57NNb9Tp07WVui//e1vJCQk5Jrfo0cPJk+eDOS+7lkMGDDA2oWiW7du5DVs2DAmTJhAWloa/fr1u2H+mDFjGDNmDJcvX2bo0KE3zB8/fjzDhw/nzJkzPPXUUzfM/8c//sGjjz4qde8uq3vaQePa0xUHrypEXNqNRpOT1oTspAFUPlWROvHH6eWfxIRuDwFS926l7t2qchcoaq3DlFKueSb7ASe11qcAlFLfAYMwgsZGQCQFtK4qpcYB4wDrF+TevXsxmUx4eXmVcAluTqNGjdizZw+1a9cmIyPD2pLk4+PDjz/+CED9+vWpWbMmaWlpvPzyy7nWHzJkiLX1CowKWJCJEydaT1CAZ555hmnTplGlShWuXLnCn3/+me+6Xbt25bff/mrwteTP4sCBA9YvK9vK37x5c3r06GFt0bJ9zNulSxeee+45AC5cuMDVq1cBbihnixYt2LJli7Wl8h//+Id13t///nf+/ve/c/bsWSpWrJjvgBzbbVpaHCtXroyrqysA3333HdevXwfg559/BuDy5cs4ODgwZ84cTp06ZQ3KLUaPHm0tqyWw7NGjBz169ACM1tUGDRpY//7Pf/5DhQoVOHjwIHv37rU+kh8+fHiR6+TixYutfzs4ODBjxgymT59+w03K008/zT/+8Y98b1KEuFXdunWz3iiK8kujyXHOIaNlFtebZpJY6QCm8zXJvtqVSvENqHYqFqekfThoo91GqTZlnGMBoIrTv+xuYQ4UN2itPcyfhwJ9tdbPmT8/BfgDb2O0PmYAu4rSR9HHx0eHh4db7162b9/OsWPHitS/Tty7YmNjGTBgQK4A2cLyCh0XF5cipXXixAmGDRuGyWSiUqVKBAcH52pxLAtyDohbYXs9FeXP5fTLrI/ewHfHVnM+LQZtqkB2chtcCOBJzx78zbsJ9WpWKetslltKqQittc/Nrl/uWhTzYW+kg9ZapwLP3O7M3E38/f2trWMWixcvpm3btgWul5CQYG0Ns7V161acnZ1LNI+lrSTK4urqajdIBCOILI4WLVoU2tpp62aPoRBC3KysnCx2nN3BsqOr2H/xVzQmctKa4Jj2N/q59WVEj4fwalxbRi3fBe6VQPEsYPugvhFw/lYStLyixUJrXS4r/N69e29qPWdn5xv6s9yt7vay3OwxLKry+FRC3F55r6fi7qS15o/EP1gRtZoNp0JJz7mGKasG2de64FW7F6M6+9LLvR5VKsqAlLvJvRIo7gdaKKXcgHPAE8CTt5KgpYMvQJUqVUhISMDZ2blcBotC5EdrTUJCgvU1Q0LcDNvrqbj7JKQnsCH6B747toqzaafMj5bdcSGAJ9r2YKj3gzxQS64Rd6tyFygqpZYB3QAXpdRZYKrWer5S6iXgR8AR+EZr/Xsx030UeLR58+Y3zGvUqBFnz57l0qVLt5x/Ie42VapUkRYhIe4xWTlZhJ0LI+TYavZc+AVNDjnpjXFMHUJft7482aMV7eXRcrlQLgezlCbLYBbLUHfL0H8hhBA3R66nd48/Ev9g9fE1rIv+gdTsq5iya5B9tT3uNXow2sefvh4PyKPlO4wMZikjd3OfNSGEuJPI9fTOlpiRSOipUEL+WE1s8gnQjmQlu1MjqxPD2/Rg2GOuNHGuWtbZFKVEAkUhhBBC5JJlymLX2V2sOL6GX86FYSKHnPRGmK4NIqhBb0b2aU1gcxccHeTRcnkngaIQQgghADh15RSrT6xm9Yl1JGclobOrk3U1gEYVujCqgz+DvBpyX7VKZZ1NcRtJoFhEBQ1mEUIIIe5WKZkp/Bj7IyF/rORY0m+gHchKbk3FtMcY2PJhRvRpikfDmjIw5R4lgWIRaa3XA+t9fHzGgvEbl0IIIW6dXE9vP601By4eYNXx1WyK/ZEs03VM1+uSeaUf7ev04MnANjIwRQAy6rnYLKOehRBCiLvNxbSLrItex/I/VhOfdgZMlcm82o5a2Z0Z3jaAx32ayMCUckZGPQshhBAiX1k5WYSdDWN51Cp2x/+CxkR2qhum5GE83LAnI/o1l4EpIl8SKN6kcePGATB37twyzokQQtzd5HpaOqKvRLP6xGrWnFhHctYVdHYNMq8E0aRiV0Z26CADU0SRSKB4k44fP17WWRBCiHJBrqclJyUzhU2xm1getZpjiUdsBqYMMQ9McZOBKaJYJFAsIhn1LIQQpaOaYw5pOQ5lnY27ltaaiD8jWH1iDT/GbibTlGEemNKftjUfZlRAG/q1rS8DU8RNkUCxiPKOehZCCFEyJj4UR4NzisSlS7lv5Miyzs5d48/UP1l/aj0rolZzPvWvgSlVr3diqEdnnhjchGb3Vy/rbIq7XJkHikqpQKCF1nqBUup+oLrWOqas8yWEEOL2aF0jlcunXEiPPAQSKBYoKyeLHWd3sOrEan45ZwxMyUlzI+vK4/jW7cbI7i3o5V6PShWkhVaUjDINFJVSUwEf4CFgAVARWAIElGW+isLLy6ussyCEEHe/yyepfV2TlKWo1tG/rHNzx7IMTPn+5HquZiZBTi2uJ3WlVnYnnmjvzTCfxjS+T15rI0peWbcoDgbaAwcAtNbnlVI1yjZLRTN79uyyzoIQQtz9Dn1LynknAKp17FjGmbmzpGWl8WPsj6w8vorDlw+htCOZya3JuTqIoMYBjHjEjW4P3U8FR2k9FKWnSIGiUspba30gv8+3IFNrrZVS2pxutRJIUwghxN0gOxMdvoik0/dRtWMHKjZsWNY5uiP8nvA7q46vYkP0D6TnpEHW/WQk9uN+1ZknO7gztENjHqhVpayzKe4RRW1RHA+MLeDzzVqulPo3UFspNRZ4FphXAumWulGjRgGwZMmSMs6JEELcpQ4sJPl4MtlXKxJy8SLvlnV+ytC1zGuEngpl5fFVRCX9gdIVybzaFtM1P3q6dWTE4CYENHPBQV6KLW6zIgWKWuuxBX2+WVrrWUqpXsA1jH6KU7TWP5VE2iUt7+txzp49W7YZEkKIu1n6FfTPH3HpWD3iHU38nJpyzwWKWmsOXjzIqhOr2BTzI5mm63C9ARlJg2hYsTMjfVoxxLshztUrl3VWxT2s0EBRGW/lHAk01Vq/p5RqAjygtd53qxtXSrkBOy3BoVLKSSnlqrWOvdW0S5q8HkcIIUrQj/9D4sHrZCZWYk3t2pjuoRdAJ2Yksj56PSuiVnI6ORalq3D9ihcq2Z9HWvowoteD+LrWkZdiiztCUVoUgwET0B14D0gGVgG+JbD9FUBnm8855mklkbYQQog70R+hXA9bxqWjDajRqztHjhwu6xyVOpM2sSd+D6uOr2Jr3M/k6Gx0xoNkJA6lWdXOjPRvwSCvhtRyqljWWRUil6IEiv5aa2+l1EEArXWSUqqkfhyygtY60/JBa51ZgmkLIYS40ySewrTiBc7ta4BD1erUm/wuDBtW1rkqNX+m/snak2tZdWI18anncTBVIyPJH4fUjooA8RgAACAASURBVDzauj1P9nuQdo1qSeuhuGMVJVDMUko5ApaRyfdjtDCWhEtKqYFa63XmtAcBl0so7VLVqVOnss6CEELcXa6nQMjTXNhXmesJJhrP/ZiKdeuWu+tptimbnWd3surEKsLO7kRjQqc3JyNxBM2q+jOyUzMea9+QmlWk9VDc+ZTWuuAFlBoJDAe8gYXAUOBdrfWKW964Us2ApUADQAFngKe11idvNe3S4uPjo8PDw8s6G0IIcXfJzoRlw0kM3c+fB2vgMmE897/ySlnnqkSdST7DmhNrWHNyDZfTL+NoqklaojcqxZ/+rT0Y6d8E7ybS91DcXkqpCK21z82uX2iLotZ6qVIqAuiBEcw9prU+drMbzJN2NNBRKVUdI2hNLol0hRBC3EFMJvh+Ate2/cqfkfdRo1cvXF58saxzVSIyczL5Oe5nVp5Yyd74vYCCtFakJzzCg1V9eMXfjSHeDaldVXpVibtTUUY93wdc5P/Zu+/oqqrsgePf89ILCelAKgldOkGkCYKoIFUQsOso9vazjH107F101BF7l1BEikgRkC69IwmQBAKkh/Set39/vOBEJPACacD+rDWL3Jtzzzl3reG4ufeeveGHKuecRKTsdAc1xlwvIt8aYx467jwAIvL26fZdX8aOHQvAzJkzG3gmSinViFmtMP8RChbP5sj6QNy6daXFG69jHBz+bHI2rqf7s/czc+9M5uyfS05JNo5WP0oyh0BeT4a2b8e1l4dxYUtffXqoznr2fKO4GQgFjmJ7otgUSDbGpAGTRGTTaYx7rALLWVGuD/6eRzEzM7NhJ6SUUo2dtQLmPkDBghiSVgfh3DKSkA/ex+L616oiZ8t6WlxezOIDi5kRN4PNaZsxOCAFF1CYeRWhbl24+8IIxvYIwddDnx6qc4c9geICYJaILAQwxlwGXAFMw5Y6p8ZV3EVkSuUGmVwReaem1zcEzaOolFI1UFEOs++hYPGPJK0Kwjm8JWFffoGjj09Dz6zG4rPjmR43nTn755BbmouTNZDi9KGQH81l7Vpx3WVh9I7y06eH6pxkT6AYLSJ3HjsQkUXGmJdF5CFjzGmnixeRCmPMSOCsCBSVUkrZqSQfZtxC3vLlHF4bhHNES8K+/BJHP7+GnpndSipKWHxgMdNjp7M5bTMWHJCCThRmRNPCtSOTLozg6ugQ/LVqijrH2RMoZhljHgOmVh5PAI5WPhE80zQ5a4wx7wMxQMGxkyKy+Qz7VUop1RDyUuD78WSv2UfyBn9c27cj9OMpZ02QGJ8Tz4y4GczZN4ec0hycJYCStKFU5EUzpE0U114aRr9WWnNZnT/sCRSvBZ4FfsL2jeKqynMOwJlmST1WleX5KucEWxWYRm3w4MENPQWllGpc0vYg344jc30B6Vu98ejbh5D33sXi4XHSyxp6PS2tKP3z28ONqRsxOGAKO1KYHk0T547ccmE446NDCfRyPXVnSp1jTplHscYdGuMOPAyEicgkY0xroK2IzKvVgRqI5lFUSqkT2DMfmXkHKRvcyd5jwWvECFq89CLGufFu7EjMSWRG3Axm759Ndkk2LgSQl9aDspweXNIqiusvCufiNgE46NNDdRar8zyKxpg2wCNARNX2IlLdU78vgE3AsVT7h7DVb/4zUDTG9AI+BqKAHcA/ais3o1JKqXpktcKK1ylf+CqHN4ZRmFSG3223EvDQQxiLpaFn9zelFaUsObiE6XHT2ZCyAQsOOBR3pDBtLE6059ae4VxzYRihvu4NPVWlGgV7Xj1PBz4CPgUq7GgfJSITjDHXAIhIkfn7VrAPsAWfK4CRwGTgcrtn3QgMHToUgF9++aWBZ6KUUg2kOAd+vIPi9Ys5tK4l5QVWWrz2Kt6jRtWom/pYTw/kHmBm3Ex+2vcTR0uO4mr8Kc+4guKsHkSHhnH9iHCu6NgMF0eHU3em1HnEnkCxXET+W4M+S40xbvyvNnQUUHJcG4uILK78ebox5oka9N8oFBUVNfQUlFKq4aTuhmk3kLfjCEfWB2Np0oTwb/6DW5cuNe6qrtbTsooyliQtYUbsDNalrMNgwbWsE4XJY7CWtWVs91Cuvy6cds286mR8pc4F9gSKc40xdwOzqBLwiUhWNe2fxZZ7MdQY8x3QF7j5uDZNjTFXVXcsIj/aMS+llFL1TQQ2fYHMf4L0nU3J3N4U145tCfngfZyCghp6dgAczD3IjL0zmL1vNlnFWbhb/CHrCvIyu9PcL5j7hoQzplswni72/CdQqfObPX9Lbqr889Eq5wSIPFFjEVlsjNkMXIRtl/QDIpJxXLPlwIhqjgVodIHi8ZVZlFLqvFOUDXPvp2zjXA5vaUlRUhFNJ0wg6MknsLg0bD7BsooyliYtZUbcDH5P/h0LFjytnSk8NIri4jYM7RjMDWPCiQ730cTYStXAKQNFEWlZkw6NMWOApSLyc+VxU2PMaBH5qUqft9R4pg1MK7Mopc5rSRtgxj8o2JvO4Q0RWMuhxRuv4z1ixKmvrctp5SUxM24ms/bNIqs4Cw8HfxxzhpKd1hVPz2Y81C+M8dGhBDTRxNhKnQ67nrsbYzoCHYA/k0iJyNfVNH9WRGZVaZdtjDmWh/GcMXz48IaeglJK1T1rBayejCx5mYx9zcjY5ItzVDDh776LS1RUrQxR0/W0wlrBysMrmRo7ldWHV2Ow4EMXig+NIj+/NQPaBHHDkHAGtg3U1DZKnaFT5lGsDPIGYgsU5wNDgVUiMq6a9ttFpPNx53aISKdamXED0zyKSqnzRuZ++OkuyvZs5Mj2VhQeyMN71EiaPfssFvf6Tx+TWZTJrH2zmBY7jeSCZDwcfJHcXqQd6UpTZ3/G9wzlugvDCfPT1DZKHVPneRSBcUAXYIuI3GKMCcKWKqc6G40xb2NLgSPAfdjyKv6NMcZFREpOdU4ppVQ9EoENn8Lif5FzwJWUjeFABc1feQXv0aPq9Rs/EWFr+lam7pnKogOLKLeW42fpQHnypaRkt6N7mB+PXRXOsE7NcXXS1DZK1TZ7AsUiEbEaY8qNMV5AGtVsZKl0H/AMtvrNBlgE3FNN27VAdzvONToDBw4E4LfffmvQeSilVK3KOQxz7qXij2WkxLUld2cubl3b0eKN13EODa2TIU+0nhaWFTIvfh4xsTHEHY3DxeKOZ0l/Dh/sRrk0Z3S3FlzXK5yOwd51MiellI09geJGY0xT4BNsTwbzgfXVNRaRAuDxk3VojGkGBANuxphu2AJKAC9A3xkopVR9E4Ed02H+IxQmWzmyqS1lRwvwv/de/O+8A+NYP6lk4rPjmRo7lTn751BQVoCPYziOWVeTkdaRCF8fnrosgnE9QvB2c6qX+Sh1vrNn1/PdlT9+ZIxZAHiJyPbj2xljJovIg8aYuVQm2z6un5FVDi/HllsxBHi7yvk84En7p6+UUuqM5RyCeQ9h3bOQjINtydxQgFOwNxHvT8Gta9c6H16MUBpWyq0Lb2V9ynocjRO+RJN5oCtJRWFc0jaIG4eFc3HrACy6OUWpemXvrudgIPxYe2PMxSKy4rhm31T++eap+hORr4CvjDFjRWRmDearlFKqtlitsOlzWPwcRRmQvK0jJYez8B57FUFPPImDp0edDp9akMrMvTM5Ov4o4i7EZiTiVTiKI4c6UeHUlJt7hnL9ReGE+9XtPJRS1TtloGiMeQ2YAOzmf7WeBVud5j+JyCZjjAMwSUSut3P8JZUbXy6uPF4OPC8iOXZer5RS6nRk7IU592NNWEPG4Y5krsvG0c+R0Ckf4TlgQJ0NKyKsT1lPTGwMSw8uxSpWpDCIorRLyCvqRPvmTbl/dDgjuwTj5qybU5RqaPY8URwNtLVnJ7KIVBhjAowxziJSakffnwE7gfGVxzcAXwBXVXtFIzF+/PhTN1JKqcamogxWvwvLX6co153krV0oSUrHe8wYgp54HAevuql7nFuay9z9c4mJjSEhJwF3xyb4W4ewf38nTJkvbdwLefHOvvTQyilKNSr2BIrxgBNV6jyfQiKw2hgzByg4dlJE3j5B2ygRGVvl+N/GmK12jtOg7r777lM3UkqpxuTIFph9H3JkBxlp0WSsSsHRzxDy0X9pUrnzuLbtydpDTGwMP8f/TFF5EUEurfHIvY6UI+2wenrywIAwrr0wjEAv11N3ppSqd9UGisaY/2B7xVwIbDXGLKFKsCgi91dz6ZHK/1mAJqcYv8gY009EVlWO2Rcosn/6DaewsBAA9wZIOquUUjVSnANLX4INn1BUFEjy1h6UJB7Be/Ro21NE79pNMVNaUcqiA4uI2RPD1vStOFmcaebQm4SkzuzLDyY63IenJkZw+QXNcHa0UFhYSGFhoa6nSjVCJ3uieKz8yCZgjj2dGWMCgJ+BfSKSbccld2Hb1OKNLUVOFnCTPWPVN2PMCGBEq1atABg2bBigeRSVUo2YCOycCQufxJqdTnp6b7JWHsDRr5yQ/35Ik0suqdXhDucfZnrsdH7c+yNHS47i59KCwNKr2Z/QngKLJ6O7BnND77/nPtT1VKnG62SB4nwgQER2Vz1ZWfc59fjGxpjbgJeB/UBLY8ztInLSAFNEtgJdKhN5IyK5NZx/vRGRucDc6OjoSQ09F6WUOqWMvfDzw5CwnPySDqSsCaIsNYGmEycQ+PDDODQ51Qsf+1jFyurDq4mJjWHFoRUYDKGu0RRmdCcxPYxQXw+euiKCq6NDaOruXCtjKqXqz8kCxf8A/z3B+WBsuQ6vPe78g8AFIpJujIkEvuMUTyKNMX7As0A/QIwxq7Dtes60c/5KKaWqKiuClW/B6ncpL3MjNWkQuWv34BwVRfjbk3Hv0aNWhskuzv6z7vKh/EN4OfkS7jCCPXsvYGeJNwPaBHDTleEMaBOIg+Y+VOqsdbJAsZOILD/+pIgsNMa8dYL2pSKSXtkm3hjjYsf4U7Gl2Tm2oeU6bKX/LrXjWqWUUlXtXQzzH0GyEsmpGEja4hSshfvxv/de/G6fhMX5zJ7oiQg7M3YyNXYqCxIWUGotJdyjIwFFlxH/RyS5Lq7cEB3K9ReFERngWUs3pZRqSCcLFE9WH+lEvwsxxrxX3XE1m198ReSFKscvGmNGn2RcpZRSx8s+CAufhD/mUurYiuTYQRRu3YNb9+40f+F5XKKizqj7ovIiFiQsYGrsVHZn7sbN0Z1I10vYH9+ZnUf9iArw4IXRLbmqWzAeLvVT6k8pVT9O9jd6rzFmmIjMr3rSGDMUW8qc4z163PEmO8ZfZoyZCEyrPB6HbTNMo3fzzTc39BSUUue70kJbTsTVk5EKQ2bpKDJmbcc4HaLZc8/RdPzVGIvltLtPzElkWtw0ftr3E3mleYR4tKSt401s2xNJWpkLl7QN4JYxLenXyv+MSuvpeqpU42VE/laW2fYLY9oA84A1/C/oiwZ6A8NFJO6MBzcmD/AArJWnLPwv96KISN1kfj0D0dHRsnHjxlM3VEqpuiICu2fDoqchJ4kC90tJWZpPaeJBmgwZQtDTT+MUFHhaXZdby1l+aDkxe2JYm7wWR+NIe+++HE2O5o9EfzxdnBjXI4Sb+kTQ0l9L6ynV2BljNolI9OleX+0TRRGJM8Z0wrZppWPl6eXAHSJSfLoDHjdG7Wy7awAZGRkA+Pv7N/BMlFLnldRd8MtjkLiScs8LSE27itylv+MUEnJGibMzijKYGTeT6XHTSS1MJcAtiJ5e17Azth1rdrsQ4efOsyMiGNcjhCauJ/sy6TTG1vVUqUar2ieKdTqoMeFA9rGazsaYS7CVCkwEPrCz/F+DOPZEcWDlYqx5v5RS9aIwC357BTZ8ijh7c1SGkz5rPVJcjO9tt+J/++1Y3Nxq1KWIsDltMzF7Ylh8cDHl1nI6+fbEIb8v63YFUVpu6N/an1v6RjCwTeAZvV4+GV1Plao7dfZEsY5NA8YAOcaYrsB04BWgK/AhcFsDzUsppRoXawVs+sJWWaU4m6LAsaQszKB4zxI8+vQm6OlncIlsWaMuC8oKmLd/HlNjp7Ivex+eTk24yH8ERw52Y81qZ9ycHBgfHczNfSJoFXjWvvhRStWCWgsUq5T8O6Hjdj27iciRyp+vBz4XkbeMMRbgrKj1rJRSdS5xte01c+oOKoL6kJbRmuypv+Lo70/w22/RZOhQjLH/Kd/eo3uJiY1h7v65FJYX0rppWwb63sPGXWH8sl0I8XHjqWERjI8Oxdu9dl8vK6XOTnYFisYYNyBMRGJP0uzYDo++QAds+RABrubvO6CrrmyDgCcARMRak0VPKaXOSVkJ8OuzsHs24hVCjt/9pH29hIrcpfjeeAP+992Hg6d9eQrLKspYcnAJU2Onsil1E84WZ3o3G0TZ0d78tsGVzeVC70hf/j0igsHtgzQ5tlLqL04ZKFbWOH4TcMZWmq8rtuopI6u2E5GvKtvfDFwiImWVxx8Bi47rdqkxZhqQDPgASyvbNgca7feJSilVp4qyYeWbsG4KWBwpbn0nKfMOUrRlBm5du9LsuWdxbdfOrq5SClKYHjedmXEzySzOJNgzmCtDJrF/f3vmLSnFxdHCVd2DualPBO2aNboEE0qpRsKeJ4rPARcCv4GtPrMxJuIk7VsATYCsymPPynNVPQhMAJoD/Y4FlUAz4Ck75tTg7rrrroaeglLqXFFRBhu/sG1WKTpKRdvxpO/24+hLc3Dw8qL5Sy/iPWbMKXMiWsXKuuR1xMTGsCxpGSJC7+b98Ldewm/bfJh6tIQW3hYeu6IdE3uG4uPROGov63qqVONlT6BYLiI5NXgl/CqwxRizrPJ4ALZg809i22o99fgLRWSLvYM0tAkTJjT0FJRSZzsRiFtoy4eYuRcJ70922SDS351ORW4uPhMn4H/ffTj6+Jy0m5ySHObsn8O02Gkk5ibi4+LDqJbXkZfegwUryygqq+DCCA+eGnYBl3UIwtHh9JNw1wVdT5VqvOwJFHcaY64FHIwxrYH7sSXhPiER+cIY8wvQq/LU4yKScuZTbVySkpIACA0NbeCZKKXOSik7YOFTkLAc/FpT2PUVUr9eQvHuT3CL7kGzp57CtX37k3axO3M3MbExzI+fT3FFMV0CunBT6yfYHhvO1z9n4+xQysiuLbi5TwQdg73r6cZqTtdTpRqvU+ZRNMa4Y3sdfBm2TSgLgReqS7ptbI8erwMiReR5Y0wY0ExE1tfqzBuI5lFUSp2RvBRY+gJs+Q7cmlLW9X7Sfk0md+48HIOCCPzno3gNG1btbuaSihIWJi4kZk8M2zO24+boxuXhQ/GzDmT+Jgtxqfn4ezpz/UXhXNcrnIAmLvV8gzWn66lSdafO8yiKSCG2QNHebwc/xFaSbxDwPJAHzAR6nqixMcYZaFN5GFvle0WllDp3lBbC2vdh1WSoKEV63kVWUjAZT3yBlJXhd8cd+N8+CYvHicviJeUlMT12OrP2zSK7JJsIrwju6fwwWamdmbEsk6yCQto1a8Ib4zozoksLXJ0c6vkGlVLnInt2Pc/l7/kRc7Clw5lygieLvUSkuzFmC4CIHK0MBk/U90DgK2wVWQwQaoy5SURW1Ogu6kHl7u8RrVq1auipKKXOJtYK2B4DS16AvCPQYRT5nsNJfe8LShN/wvOSSwh6/DGcw8P/dmmFtYLVR1bzw54fWH14NRZjYVDYIC70G8663T68NSOZcmsyg9sF8o9+Lekd6VejvIpKKXUq9nyjGA8EAD9UHk8AUrE9BfwEuOG49mXGGAcqg0tjTAC2J4wn8hZw2bH8jMaYNpXj9KjBPdQLEZkLzI2Ojp7U0HNRSp0FRGDvYvj1OUjbBS26U9rnVVK/Xkj+smdxjogg9OMpeF588d8uzSrOYtbeWUyPm87h/MP4u/kzqfPtBDGQmevzeDwhC3fnUq69MIyb+7akpf+Jn0IqpdSZsidQ7CYiVVeyucaYFSJysTFm1wnavwfMAgKNMS8B44Cnq+nbqWoSbxGJM8ZoOQCl1Nnt8CZY/CwkrgSflliHTyFjZTJZtz+DcXIi8JGH8b3xRozz/162iAjb0rcRExvDwsSFlFnL6NmsJ3d1foD01FZ88+shDmQeILipG08Oa8eEnmF4u+lyqZSqW/YEigHGmDAROQhQuTnFv/J3f0uOLSLfGWM2AYOxvU4eLSJ/VNP3RmPMZ8A3lcfX8fcqLo3Sww8/3NBTUEo1NlnxsOR52DUL3P2RK14nN60ZaY9MpjwlBe9RIwl46GGcggL/vKSwrJD5CfOJiY1hT9YePJw8GNdmHAOajWTZDgtPf5tEXkkc3cOa8s/L23H5BY0vvc2Z0vVUqcbLnl3Pw4CPgP3YAr+WwN3YEnBPEpHJx7X/DPiPiGytcu45EXnuBH27APcA/Sr7XgF8ICKNtjrLsV3PSin1p/x0WPE6bPwcHJyh970UNRlE6tv/oWjLFlw6tKfZ00/j3r37n5ck5CQQExvDnH1zyCvLo7VPaya2nUgLxz58tzaVhbtSMMYwrFNz/tE3gm5hJ8+lqJRSJ3Kmu55PGShWDuICtMMWzO2pLjVOZdtDQAbwtoh8XXlus4h0P0HbB0Tk3VOda0yOBYqxsbY35m3btm3gGSmlGkxpAaz9AFa/C2VF0P1GytrfStrH35A7Zy4O/v4EPviAraqKgwPl1nJ+S/qNqbFTWZe8DkeLI5eFX8a41uM5nBLE56sT2X4oB283J665MIyb+oTT3Nutoe+yzul6qlTdqa9AsSPQAXA9du5YEHiCtpuBgcB3wEHgAWCDiHQ7UdvjA0hjzJYTtW0sNI+iUoqKctjyNfz2KuSnQrvhWPs+Tuas38j8/HOwWvG95Rb8Jk3CwdOD9MJ0ZuydwYy4GaQVptHMoxnj24xnUPBwFmwv4Ou1iaTmlhDp78Et/Voytnsw7s72fBl0btD1VKm6U+d5FI0xz2IL/DoA84GhwCrghIEituAzFxhhjHkOWA78pSSAMeYa4FqgpTFmTpVfNQEya3YLSilVT0Rgzzz49d+QuRdCL0LGfUXutjTSrruX8rQ0vIYNtX2HGNyCjakbmbpxKksPLqVcyunboi9P93qaFi7d+WrNQa6cvpXiMiv9W/vz6lWdGdAmAItF09sopRoPe/7JOg7oAmwRkVuMMUHApydp/2fgJyLPGWM2Ag8d12YNkIxtU8xbVc7nAdvtmbhSStWrg7/D4n9B0jrwbwMTv6ewoBmpj7xK8c6duHbqRPDkd7B2bMOM/XOImR1DfE48Xs5eXNf+Oq5uczUHUt35fEkCv8WuwtnRwpiuwfyjX0vaNmvS0HenlFInZE+gWCQiVmNMuTHGC0gDIqtrLCLPHnc8D5h33LkDwAGgd82nrJRS9Shlp63kXtwC8GwGI96lNOAS0t6ZTN4vC3AMCqLF66+R3Kc1b+2dwdzpd1JUXkRHv4680PcFBgYPYeHOTCZ9nlBZXs+Fh4a04bpeYfh5Nv7yekqp85s9geJGY0xTbMm1NwH5wN/qNhtjVolIP2NMHn+t5GIAERGv2piwUkrVi6x4WPYy7JgBrl4w+F9UXHA9mV98R9ZXI8HBAZ977mLL4FBePDCTzT9vxsXBhaEthzKh7QSau7bm298PcunUNWTkl9KhuRdvXd2F4V2a4+Ko5fWUUmcHe2o9313540fGmAWAl4j87fWwiPSr/PO8eIfy9NPV5RBXSp3VcpNh+Wuw5RuwOEG/B5GL7iX7l2WkPzGOiowMnIYNYcnQZnyfNZOsDVmENgnlkehHGN1qNOk5Dny2IoEfNy+lpNzKJW0DmNQ/kt5RWl6vOrqeKtV42ZNHcYmIDLbjnO/J+hGRrGr6dwPCqlZoacw0j6JS56jCLFj1Dqz/GKzl0ONmuPhRCnYlkvrqa5Ts2UNZx1bMHubDDMdtAFwccjET207kouYXsS7hKJ+tTGDJnjScHS2M7R7Mrf1a0irwvPi3s1KqkaqzXc/GGFfAHfA3xvhge4UM4AW0OMElm7C9cj7RP5mFE3zXaIwZAbwJOGPbAd0VeF5ERtbkJhrC1q22fOJdu3Zt4Jkopc5IST78/l9Y8x6U5EHn8TDwCUpzDamPv0j+kiWUBHgxbWIgcyMS8HXL5dbWtzKuzTgC3Jrx8/ZkRs5cw64jufh5OPPgpa25/qJw/PX7Q7vpeqpU43WyV893AA9iCwo38b8AMBf44PjGItLyNMZ/DrgQW5UXRGSrMSbiNPqpdw8++CCgeb+UOmuVl8DGL2Dlm1CQDm2HwaCnqXANIePD/5L53XeUO8CPlzgxJ7qATi3a8Vrbx7g0/FKKSg0/rD/Il6uXkZJbTKtAT169qhOjuwXj6qTfH9aUrqdKNV7VBoqV1VHeNcbcJyL/qUmnlU8gW/PXBN0rTtC0XERy9LsdpVS9sVbAtqm2ZNk5ByGiP0z8HmnenfQfviP1PzfikFfI0s6G2YPcubjzKH5oO562vm1Jyirk5Z/3Mm1jEoWlFfSJ8uOVqzpp/kOl1DnLns0s/zHG9AEiqrY/SWWW27BVYwkBtgIXAWuBQSdovtMYcy3gYIxpDdyPLceiUkrVLhH4Yy4sfREyYqF5VxgxGaIGEb/oRzJueoAmR7LZE25YenM4Fw+6iVmRI/B09mTTgaPc/csmFuxMwWIMI7u04Nb+Lbmghfepx1VKqbOYPZVZvgGisAV9FZWnheorszwA9AR+F5FLjDHtgH9X0/Y+4CmgBPgeWAi8aPfslVLKHvuXwZLn4chm8GsNV39FRbvhrF4zjYJH+xLxx1EKfAxr7+xBnwn382GznlgFFu1K4ZOV29h8MBsvV0fuGBDFTb0jaObteuoxlVLqHGBPHsVooIPYUxTaplhEio0xGGNcRGSPMaa6Su9tReQpbMGiUkrVrkObYMlzkLACvENh1AdktrmMuVunUvKP3vRdn4+Hi2HfDf248N7nuMQ7mIKScr5ck8jnqxNIyioizNed50Z04OroUDxczp/6y0opBfYFijuBZthK7tnjUGWCuuBWtgAAIABJREFU7p+AxcaYo8CRatq+bYxpDkwHporILjvHaHAvv/xyQ09BKVWdlB22ZNmx88HdH7n8FbaG92DanhlYHnuNMSvLcSuDwuH96fT4i/TwCyQ5p4hXfvmD79cdJK+4nB7hPjw1rD1DOjTDQb8/rFO6nirVeNmTR3EZ0BVbNZaSY+ftSWFjjBkAeAMLRKS0mjbNgPHABGypd2JEpNG+ftY8iko1YumxtgBx90/g4k3hRXcyLzCUmH2z8Fofy03LICjLiundg5ZPPYdLq1bsPJzDZ6sSmLvtCFYRhnZszq39W9I9zKeh70Yppc7YmeZRtCdQHHCi8yKy/CTX9ANai8gXxpgAwFNEEk4xTifgn8AEEXE+5cwbyLFAcc0a256bPn36NPCMlFJk7rdVU9kxHZzc2d/jWmI83Zl7YBF+h/K4a7krkfsLcIpsSbPHH8e9X39+i0vjkxUJrI3PxMPZgQk9w7ilbwShvu4NfTfnHV1Plao7dR4oVg4Sji3w+9UY4w44iEheNW2fxfZdY1sRaWOMaQFMF5G+J2jbHtuTxHFAJjAVmCkiaad7Q3XtWKA4cOBAQPN+KdWgsg/Cijdgy3eUOTizpNNQYhzL2JixDb9CRx7aHESrVQdx9PbG/757cRszllk70vhsVTz70wto7u3KzX0imHhhGN5uTg19N+ctXU+Vqjt1VpmlygCTgNsBX2y7n4OBj4DB1VwyBugGbAYQkSPGmOpqWH0B/ABcJiLVfceolFJ/lZsMK9+CTV+S7OjA9A4X82NFFpnZGwl3acEbB/sQ8dNGpOQwvjfeiOWmW/lq11G+fWslmQWldAz24t2JXRnWqTlODpaGvhullGq07NnMcg+26inrAERkrzEm8CTtS0VEjDECYIzxqK6hiFxUk8kqpc5z+emwejLWDZ+y1tmBqa06saIsCymMZ0DwxVyfGoXfJz9TdngFHoMGUXrbPbx7oIKZH26kpNzK4HaB3NY/kosifdFE/0opdWr2BIolIlJ6bFE1xjhiy6NYnWnGmClA08qnkf8APq3awBgzTUTGG2N2HNeXAUREOtfkJpRS57jCLFj7Ptnrp/CTq4VpYWEkSTG+DlZubXcro8s7YX33M4o2fYylbVuKX32XyXm+LJqegJODhbHdg7m1XyStAj0b+k6UUuqsYk+guNwY8yTgZowZAtwNzK2usYi8WdkuF2gL/EtEFh/X7IHKP4efxpyVUueL4lxk7Yds3/QR01wNC1r4UYrQPaAD97WbyECXThx9931yZv8XBz8/Mu94mMnO7dj4ew7eblnce0krbuwdQUATl4a+E6WUOivZs+vZAtwKXIbtid9C4FN7E3AbYxyAiSLy3Ql+95qIPHaqc3XFGBOJLdm3t4iMs+eaY5tZtm7dCkDXrl3rcIZKnadKCyj8/UN+2foxMa4W/nBxxsPBjeGtRjKh7QSiXEPI/OxzMj/7DCkvJ+WyMbzudxF/5FoJ8XHjtn4tGd8zFHdnTZB9NtD1VKm6Ux/pcTywVVupqDx2AFxEpPC4dl7YvmcMBuYAiyuPHwW2isioE/S9WUS6H3duuz2vno0xn2N7IpkmIh2rnL8CeBdwwBbQvmpHXzNqGigqpepAWTHxa95i2u5vmeNiIc/BQmvPECZ2vIUrI6/E3cGN3HnzSHvrbcpTU0np1pdXwy4l1jShc4g3t18cyRUXNMNRN6gopRRQD7uegSXApUB+5bEbsAg4PuHVN8BRYC1wG7YA0RkYJSJbj5v0XdheYUcaY7ZX+VUTYLWdc/8SeJ8qNacrg9gPgCHAIWCDMWYOtqDxleOu/8eZpOH59ddfAbj00ktPtwulVKWy0gKWrnyeafHzWO9swcndkSFBvZjY/R66BnTFGEPh5i0kvvIKxTt2kBkcyVsD72VL0wgGtQvk3xdH0qulblA5W+l6qlTjZU+g6Coix4JERCS/Mpfi8SJFpBOAMeZTIAMIqybf4vfAL9iCt8ernM8TkSx7Ji4iK4wxEcedvhDYJyLxlfOYii1QfYVa/h7yxRdtxWN0YVPq9KXkHmbG6uf5MWUN6RYIdnLigYgrGXPhQ/i5+QFQdvgwaW+9Re78X8hv4sNHPSayKjyaUd1DeL1/JK2Dqsu+pc4Wup4q1XjZEygWGGO6i8hmAGNMD6DoBO3Kjv0gIhXGmITqknKLSA6QA1xT2Wcg4Ap4GmM8ReRgDe/jmGAgqcrxIaBXdY2NMX7AS0A3Y8wTlQHlidrdji2XJGFhYac5NaUUgFWs/H54DTEb3mF5ThxWhP7izHPtbqJv9D04ONiWpYr8AjKmTCHzyy8pE8P0tkNY2OlSru7Xhlf6RBDo5drAd6KUUuc+ewLFB4DpxphjCbGbY6umcrwuxpjcyp8Ntl3Sufwv5Y3X8RcYY0YAbwMtgDQgHPgDuKBGd1GlyxOcq/YjTBHJBO48Vaci8jHwMdi+UTzNuSl1XsspyeGnvbOYtuNzDpYexaeigput7oyLfpCQLtdB5WtjqaggY8ZMkt+ejFPOUZaGdGdB76u46vLu/NYzFA8X3aCilFL15aQrbuWOZ2egHbZUNwbYIyJlx7cVEYfTGP9F4CLgVxHpZoy5hMqnjKfpEBBa5TgE0IovSjUQEWFnxk5iYqeyIH4+JVJOt+Ji7jY+DOn7JM4dRv0ZIAKkLF/NwRdeosmhBPb6hvPruDsZevWl/NRRN6gopVRDOGmgKCJWY8xbItIb2FkH45eJSKYxxmKMsYjIMmPMa2fQ3wagtTGmJXAYmAhcWyszVUrZraCsgPkJ85keO40/svbgJjAqL4/xjkG0HfAStBsOlv8FfonbYol7/mVCd62n0K0py0bcRf87ruHDKH/doKKUUg3Innc4i4wxY4Ef7c2dWAPZxhhPYAXwnTEmDSi350JjzA/AQMDfGHMIeFZEPjPG3Ist16MD8LmI7KrlOQMwZcqUuuhWqbPanqw9TI+dzrz4eRSWF9KmwvDU0SyGu4XiOegFaD/yLwHitj2H2PnaZDr9vgB/iwMbB0+g5z/v4bHwgAa8C1XfdD1VqvGyJ49iHuABVGDbxFLtN4c1HrwyR2Nln9cB3sB3ld8ONiqV31OOaNWq1aS9e/c29HSUajSKyotYkLCA6XHT2ZGxAxfjyOWlMD79EJ29WmIGPA4dRv8ZIFqtwrLdR9j036/pv3ImXqWFJF14CZ3/9RgtWulmMaWUqk11nnBb/dWxhNtz59qqGI4YMaKBZ6RUw9h3dB/T46Yzd/9c8sryiHQN4OqcXEak7MPbtzUMeAwuGAMW2+fLJeUV/LTlMCt+mM+Vq6bRMjeZnNYX0Ob5Z/Dt1qWB70Y1JF1Plao79VGZ5djTvpYi8oIxJhRoLiLrT3tQ21PKqgObyuNae1pZV44FigMHDgTgt99+a9D5KFWfSipKWJS4iBlxM9icthknixNDfDpw9eG99Ejeg/GrDBA7XvVngJhTWMa36w6wYMF6rlo3k4tSdlMa2IywJx6j6RWX6zeIStdTpepQfVRm+RCwAoOAF7BVaPkA6Hm6g4qIZshV6iySkJPAjLgZzN4/m5ySHMKahPFw6FBGxa3CZ/9c8I2CMR9Dp3F/BohJWYV8vjqBeatjGb1jIa8krMa4uBDw0EP43nQjFheXBr4rpZRSp2JPoNhLRLobY7YAiMhRY4xzbU3AGNMPaC0iXxhj/IEmIpJQW/0rpU5PWUUZSw4uYVrcNDakbMDRODIobBBXu4Vz4ZZpWLZPAd9IGP0RdLoaKhNl7zqSw8cr4pm/9RBDE9by8d7FuBYV0HTcOAIeuB9Hf/8GvjOllFL2sidQLKusoSwAxpgAbE8Yz5gx5lkgGluOxi+w5Wz8FuhbG/3XpiqbWRp6KkrVqaTcJGbsncFP+34iqziLYM9gHuh2P6ONN/5rPoDkT8EnAkZ9CJ0ngIMjIsLafRn8d/l+Vu7NoG9mHN/Gzccr9RDuvXoR9PhjuLZv39C3ppRSqobsCRTfA2YBgcaYl4BxwNO1NP4YoBuwGUBEjhhjGuVraRGZC8yNjo6e1NBzUaq2lVnLWJ60nGmx01ibvBYH48CAkAFc3WYcfQoKsCx/DY5shqbhMPJ96DIRHJyosAq/bD/ClOXx7DicQ+eKo3wbvwC/XZtwCgsj6IP38Rw0SL9DVEqps9QpA0UR+c4YswkYjG2zyWgR+aOWxi8VETHGHHta6VFL/da5b775pqGnoNQZO5J/hJl7ZzJr7yzSi9IJcg/i7q53c1WrMQQd2Qm/PAeHN4J3GIx4D7peCw5OFJdVMH3DAT5ZEc/BrEI6egpfF6wiYOk8LG5u+P/zn/hcfx0W51r7SkWdw3Q9VarxqjZQNMa4YquD3ArYAUwREbuSYdfANGPMFKCpMWYS8A/g01oeo06EhoaeupFSjdCxp4cz9s5gzeE1APQL7se/2v6Lfi364piwAn64Hg5tAO9QGD4Zul4Hjs5kF5byzdq9fLkmkcyCUrq18OQVnwT8Z36DNT+fphPGE3DffTj6+jbwXaqzia6nSjVeJ3ui+BVQBqwEhgLtgQdrc3ARedMYMwTIxfad4r9EZHFtjlFXYmJiAJgwYUIDz0Qp+xzIPcDMvTOZvW82WcVZBLoHcnvn27mq9VW08GgO+5bAF8Pg0HrwCoYr34ZuN4CjM4eOFvLZqr3EbEiisLSCS9r4c697Gk2/eo3ShATc+vQh8PHHcG3TpqFvU52FdD1VqvGqNo+iMWaHiHSq/NkRWC8i3et0MrZNMxNF5Lu6HOdMaB5FdTYpqSjh1wO/MnPvTDakbMDBONA/pD/jWo+jb3BfHI0D7F0My1+zvWL2CoH+/1cZILrwR3IuH6+IZ862IxhgZNcWTAoFj0/fp2D1apwjIgh8/DE8BwzQ7xDVadP1VKm6U5d5FMuO/SAi5bX5HwFjjBdwDxAMzAEWVx4/CmwFGl2gqLue1dlk39F9zNw7k7nxc8kpySHYM5j7u93PqFajCHQPBBGIW2ALEI9ssX2DWPmKWRyc+D0+i4+Wb2N5XDruzg7c3CeCWzr74fj1pxz99w8UeXgQ9OQT+EyciNHvEJVS6px1skCxizEmt/JnA7hVHtdG9ZRvgKPAWuA2bAGiMzBKRLaeQb91Rnc9q8ausKyQhYkLmbF3BtvTt+NocWRw2GDGth5Lr+a9sBiLLUDc87MtQEzeVrmL+T/QeSIVFicW7kphyvL9bDuUg7+nM49c1obre4Yi82aRPv49KnJzbd8h3n8/jj4+DX3LSiml6li1gaKIONThuJFVXmt/CmQAYSKSV4djKnVO2pW5i5lxM5mfMJ+CsgJaerfkkehHGBE1Al/Xyk0lVivsmWsLEFN2gE9LGPUBdJ5AsdXCzE2H+GRFPImZhUT4ufPSmI6M7R5CxZZNpF7/KCWxsbj37EnQU0/i2q5dw96wUkqpemNPHsW6UPW1doUxJkGDRKXsl1eax/z4+czcO5M/sv7AxcGFyyMuZ2zrsXQL7Pa/7wWtVvhjDqx4A1J32krtVVZSySkRvlmeyJdrEsnIL6VziDcfXtedyy9ohjX5CKmPPkLeggU4tmhO8OR3aHK51mVWSqnzTbWbWep0UGMqgIJjh4AbUEjtvNauU8c2s2RkZADgr+XIVD0REbamb2VG3AwWJS6iuKKYtj5tGdtmLFdGXomXc5W/NlYr7P7JFiCm7Qa/1nDxo9BxLEfyyvhsVQI/rD9IYWkFA9oEcOeAKC6K9EWKi8n85FMyP/sMjMFv0m343XorFlfXhrtxdc7T9VSpulOXm1nqTB2/1q4XuqCp+pJRlMHP8T8za+8s9ufsx93RneFRwxnXehwd/Dr89SmftQJ2zbIFiOl7wL8NXPUpdLyK2LRCpszcyZytRxBgROfm3DEgivbNvRAR8n75hdQ33qQ8ORmvYUMJfOQRnFq0aLD7VucPXU+Varwa6tXzWe/LL78E4Oabb27QeahzU7m1nFWHVzFr7yxWHFpBuZTT2b8z/+7zb66IuAJ3J/e/XmCtgJ0zbQFiRhwEtIdxnyPtR7HuQA5TvtrEsth03JwcuKF3OLf2a0mIj62P4t27SXn5ZYo2bsKlfXuC33gd9+jT/senUjWm66lSjVeDvHo+G1VJjzNp7969mvdL1Yn4nHh+2vcTc/fPJaMoAz9XP0ZGjWR0q9FENo38+wUV5bBzhi1AzNwHgR1gwD+paDeSxX+k8dHyeLYmZePr4czNfSK44aJwfDxs6WzKs7JIn/wu2dOn49C0KQEPPkjTcWMxDmf9A391ltH1VKm6c1a+ej4baXocVVfyS/NZmLiQWftmsS19Gw7GgYtDLmZMqzH0C+mHk8Xp7xdVlMP2GFj5JmTFQ1AnGP8Nxa2GMmtrMp+8s5L4jALCfN15YXRHxnUPwc3ZFgBKWRlHv/+e9Pc/wFpUhO+NN+B/9904eHvX850rpZRq7DRQVKoBiAibUjcxa98sFh9YTFF5EZHekTwS/QhXRl6Jv1s132xVlMG2qbYA8WgiNOsME74jJ3wI365L4osfl5ORX0LHYC/ev7YbV1zQDEcHy5+X569aTeorr1C6fz8effsS9OQTuERF1c9NK6WUOutooKhUPUopSGHO/jn8tO8nkvKS8HDy4MrIKxnTagyd/DtVn36mvBS2/QAr34LsA9C8K1wzleSgAXy+OpHvf1hGQWkF/Vv7c+eArvSJ8vtLX6WHDpP66ivk/7oEp7AwQj78EM9LBmq6G6WUUielgaJSday0opRlScuYtW8Wa4+sxSpWLmx2IXd1uYtLwy/FzdGt+ovLS2Hrt7DyHcg5CC26w7A3iPPqzZQVCcze+hsCXNmpOXcMiOSCFn99fWwtKSHz00/J/PgTsFgI+L//w/eWm7Fo2T2llFJ20M0sNXQsj2JhYSEA7u7up7hCnY9EhD1Ze5i9fzbz4ueRU5JDM49mjIoaxahWowhtEnryDspLYMs3tgAx9xCE9IQBj7PRsRv/XR7Pkj1puDpZmNgzjFv7tSTU9+//P8xbtozUl1+hLCmJJldcQdBj/8SpefM6umOlTp+up0rVHd3M0kB0QVMnkl6Yzs/xPzN7/2z2Ze/DyeLE4LDBjGk1hl7Ne+FgOcWO4rJi2Pw1rHoH8o5AaC9k5HssK7uA/y6JZ0Pi7/i4O/HA4Nbc1CcCX4+/PxksPXiQ1JdeJn/5cpyjogj74nM8eveuoztW6szpeqpU46WB4mn68MMPAbj77rsbeCaqoRWXF7MsaRmz98/+89Vy54DOPHPRM1wecTneLnbsJi4rgk1fwerJkJcMYX0oH/Uhc3Nb8dHcBGJTN9HC25VnR3RgQs9Q3J3//lfXWlRExscfk/XpZxgnJwIffRTfG67H6Gtm1cjpeqpU46Wvnu2keRRVVSLC5rTNzN0/l4WJC8kvy6e5R3OGRw5nZNRIIrwj7OuotBA2fQGr34X8VAjvR0nfR5maHs7HKxM4nF1E60BP7hwQxciuLXCqsoO56lzyFi8m9dVXKT+SjNfw4QQ++ihOQYG1e9NK1RFdT5WqO/rquZ5oHkUFkJSXxLz985izfw6H8g/h5ujGkPAhjIoaRXSzaCzm74HcCZXkwYZPYc37UJgBEf3JGz6FLw6H8GVMIlkFu+kR7sO/R17AoHaBWCwn3p1cEp9A6ksvUbB6NS5t2hD8zWu49+xZi3eslFLqfKaBolKnkFeax6LERczZP4fNaZsxGHo178XdXe9mcNjgv5fTO5mibFj/Mfz+IRQdhajBZPR4gI/iA/j++4MUlsYxqF0gdw2MomeEb7XdWAsKyPjoIzK//AqLiwtBTz6Jz7XXYBz1r7RSSqnao/9VUeoEyq3l/J78O3P2zWFp0lJKKkqI8Irgge4PMDxyOM08mtWsw8IsW3C4bgqU5EKboSR1uof39njx03eHsUoBIzo3544BUbRv7lVtNyJC3i+/kPra65SnpuI9ZgyBDz+Eo381CbqVUkqpM6CBolKVRITdWbv5Of5nFiQsIL0oHS9nL0a3Gs2oqFF09O9Y8wTV+emw9j+w4TMozYf2I9nT5g7e2enKou9TcXbI59oLw7itf+QJU9xUVZKQQOoLL1CwZi0uHdoT/M47uHfvdgZ3rJRSSp2cbmapoWN5FNW5Iykvifnx85kXP4/E3EQcLY70D+7PyKiRXBxyMc4Op7FrODcZ1rwHG7+AihLkgqvYGPYP3tpq4ff4LLxcHbmpTwQ39YnA39PlpF1ZS0rInPIxmZ98gnFxIeDBB/G5ZiLG4RSpdpRSSp33dDOLUqchqziLhYkL+Tn+Z7albwOgR1APbrzgRi4Lv8y+lDYnkp1kS3Gz+RuwlmPtNJ5lgTfw1iYruzdmE+TlwlPD2nNNrzA8XU791y9/5SpSXniBsoMH8brySgIf+ydOgbqbWSmlVP3QQPE0vfnmmwA88sgjDTwTZa/CskKWJS3j5/ifWXtkLeVSTmuf1jzY/UGGtRxGc88zqFqSlWBLkr31ewDKO1/DPK+JvL2xlIPrs4kM8OD1sZ0Z1a0FLo6nfhJYlppK6iuvkrdgAc4REYR9/hkeffqc/vyUasR0PVWq8dJXzzV07NWz5v06OxzblPJz/M8sObiEovIigtyDGBY5jCtbXklb37ZnNkDGPlj5FmyPAYsjpV2uZ6rzGN7bWEJGfgldQry5a2ArLusQVG2Km6qkvJyj339P+rvvIWVl+N15B3633aa1mdU5TddTpeqOvnpW6jgiwo6MHbZNKYkLyCrOoolzE4a1HMaVkVfSI6iH/fkOq5P2B6x4E3b9CA4uFHa7lc9kBFM2FZFfkkv/1v7cNbArvSP97N4AU7RtG8nP/ZuSP/7Ao39/mj3zNM5hYWc2T6WUUuoMaKBopyqVWRp6KuoERIS4o3EsTFzIgsQFJOUl4WxxZkDoAK6MvJL+wf1Pb1PK8ZK3w4o34I854ORBTrc7+U/xUL5eV0C5NY+hnZpz14AoOgbb/41jRU4OaW+/Q/a0aTgGBBA8+R2aXH55zXdYK6WUUrVMA0U7aWWWxik+J56FCbbgMD4nHoux0KtZLyZ1msSl4ZfSxLlJ7Qx0eBMsfwPifgEXL9K63s+buYOYsbYQR4cCxkWHcHv/SCL8PezuUkTInTOH1NdepyI7G98bb8D/vvtw8PSsnTkrpZRSZ0gDxdPk5ubW0FM4byXlJdmeHCYsIPZoLAZD96DuPN3uaS4NvxQ/N7/aG+zg77D8ddi/BHFtysHOD/Jy5sUs/L2YJi6l3DEgilv6RhDYxLVG3ZYmJpL87HMUrluHa5fOhH32Ka7t29fevJU6i+h6qlTjpZtZakjzKDaMlIKUP4PDnZk7Aegc0JmhEUMZEj6EII+g2htMBBJXwfLXIHEl4u5PXORN/OvIRaw7Uoa/pwu39mvJdReF4eXqVLOuy8rI/OxzMj78EOPsTODDD9F0wgSM5Qy/mVRKKaVOQDezqHNWRlEGixIXsSBxAVvStgDQ3rc9/9fj/7g84nKCPYNrd0AR2L/U9g3iwbWIZxBb2z/KUwej2b2xgnA/J14a05ax3UNwdap5suuibdtIfuZflMTF0eSyywh66imcgjQnolJKqcZLA8XT9MILLwDwzDPPNPBMzi0ZRRksPbiURYmL2JC6AatYadW0Ffd2vZcrWl5BuFd47Q8qAnELYcXrcHgT1iYtWNPmMZ5I6ErSFuGCFh68f20UQzs2x8GOFDfHq8gvIH3yZI5+9x2OgYGEfPA+TQYPrv37UOospeupUo2XvnquIc2jWPtSC1L59eCvLD6wmM2pmxGEcK9wroi4gisirqCVTx3tNLdaYc882xPElO1UeIWxxP86nojvSGaxoU+UH3cOiKJ/a//T3oGct3QZKc8/T3lqKj7XXkvA/z2om1WUOo6up0rVHX31rM5Kh/MP8+sBW3B4rIReq6atuKPLHQwJH0Lrpq3rLj2MtQJ2zbIlyk7bTVnTSOaGPskzCR0oTLdweYdm3Dkwiq6hTU97iLK0NFJfepm8hQtxad2akMnv4Na1ay3ehFJKKVX3NFBU9eZA7gEWH1jMrwd+ZVfmLgDa+bbjvm73cWn4pUR6R9btBCrKYcd0W4CYuZcSnzbENH+aFw60h3QLV3UL4fYBkUQFnP4TP7FayZ4+g7Q330RKSgh48EH8/nELRiurKKX+v737Dq+iSh84/n3TCKFDKDEJVWARgVCkSG8qxe5PZcWVXZRFbOxaVhTsiq6goNKFRcEuuiuWtYH0jkgTAZGFQOg1kJ7z++OcK5dwU0lyc8P7eZ77ZGbuzJl35s7c++bMzDlKBSBNFFWR+vXYr3z7v2/59n/fsvXoVgCaRTbjb63/Ru/avYmtGFv0QaSnwk/vweJX4OhOTlVpwr8iRzE2vjERYaEM6libwZ3qU6tS/pq4ySrlt99IGDWKpNVriGjXjqinnyKsbt3C2QallFLKDzRRLKBq1Qqxrb5SJNNksvnwZubtmsf3u75nx/EdCEJcjTgeuewRetXuRVT5qOIJJi0ZfpwFS8bD8d0cr3IpEys9wZSExlQtV4a/967L7R3qUDni/Gr7THo6R956i4OvvY6UKUPU889T6YbrtWcVpfJIv0+VKrn0YZZ80nYUz5WWkcbKfSuZv3s+83fN50DSAYIlmFY1W9G7Tm961u5JjYhibAYm9TSsfcsmiCcTOFQljrEp1/LekUbEVIlgSJf6/F/rWMqG5b+Jm6xStm1j72OPk7xhA+V79aTWE08QWkObvFFKKVUy6MMsxUT7ej7bydSTLN6zmHm75rF4z2IS0xIpG1KWjhd1pEftHnSJ6UKlMnnv77hQpCTC6umw9HU4dZCEKm14IXQocxMu5g+1KjL+1gb0axZFSPD5N25t0tI4/OabHJw4ieDy5Yl+ZSwV+vTRWkSllFKlitYo5pOnRnHEiBEAjB492s8RFZ99p/bxw+4fmL97Piv3rSQ9M52q4VXpFtuNHrE9aBeNbXouAAAgAElEQVTVjvCQ87vPr0CSjsGqabBsIiQdYVfldjx9oh/fn76YNnWqMKx7A7o3rlFoSVzy5s3sfXwkKT//TMW+fag5ciQhVasWStlKXYguxO9TpYqL1ij6ybJly/wdQpEzxrD92Hbm757PvF3zfn9SuU7FOtze5Ha61+5O88jmBAed/yXcAjl1GJZPhJVTIeUE2yt3ZNTpvizbV49ujavzYbeLaVuv8BK4zNRUDk2axOFpbxJcuTLRr79Gxd69C618pS5UF8L3qVKBShNFdZbk9GRW7lvJwviFLIxfSMKpBACaRzbngVYP0CO2B/Uq1fPvJdaT++zl5dUzMGlJbKzUlZGnrmTD/jr0bRbFF90a0PSiwr3snbR+PQmPP07Ktu1Uuu46aj76D4IrF7ydRaWUUioQaKKo2Hdq3++J4YqEFSRnJFM2pCztotoxpPkQusR0Kd6HUbJzbJd9QGXtLExmGqsr9OTxU73Zeag2N7aOYXyX+tSNLFeoq8xMTeXQ669zePoMQmrUIHbKZMp37Vqo61BKKaVKKk0UL0AZmRlsOLSBhfELWRC/4Pf2DaPLR3N9w+vpGtOVNrXaUCa4jJ8jdQ7/attA/Ol9MhEWRfRm1OHeHMq4iNs61mZW5/rUrFj490Ymb97M3n88Ssq2bVT+v5uo8cgjBFeoUOjrUUoppUoqTRQLKCYmxt8h5MuJ1BMs3bOUBfELWLxnMcdSjhEswbSs0ZK/t/47XWK6UL9S/ZL11O7+zbBoLGbTJ2QGhfJNeF+eOdKbZGoxqGc97rj8/NtA9MWkp3N42jQOTphISJUqWouoVBELtO9TpS4k+tRzPgVKO4oZmRlsOryJJXuXsHTPUjYc2kCGyaBymcp0iu5E15iudLioQ/E3YZMXe3+EhWNgy+ekh0TwaXAfXjrei9BKNbmrc31ubRtLRFjR/I+TsmMHex8dQfL69VTs149ao0bqvYhKKaUClj71rH534PQBluxZwtK9S1mWsIzjKccRhKbVmjK42WA6R3emWWQz/z2lnJtdy22CuP1bUkMq8G7oLYw72YOq1WvxyE0NuC4umrCQ828D0ReTmcnR2bM5MPYVgsLDiX71FSr26VMk61JKKaUChSaKBTR8+HAAxo0b57cYUjJSWLt/LUv2LGHJ3iVsP7YdgMiykXSN6UrHizrS4aIOVAmv4rcYc2UM/LbAJog7F5EUWpnpQbcxObE79aKjGH1NA65oWovgoKK7JJ4av4eExx7j9MqVlO/alVrPPqO9qyhVjErC96lSyjdNFAto3bp1xb5OYwy/Hf+NpXuXsmTvElbvW01yRjKhQaG0qtGKa1pfw+UXXU6jKo1K1r2GvhgDW7+GRWMgfhWJYdWZyCD+dbILcfWjmdS9AZ0ujizS7TDGcPyTT9j/gm3kN+r556h0ww0lf98pVcr44/tUKZU3miiWcPtO7WN5wnJWJKxgZcJKDiQdAKBuxbrc0PAGOkZ3pE3NNkSERvg50jzKzISfP7MJ4r4NHA2LYnzmnbx3ohNdLonl3W4NaFm76GtA048eJWHUKBK/+56Itm2JeuEFwmKii3y9SimlVCDRRLGEOZZ8jJX7VrIiYQUr9q3gfyf+B0DV8Kq0rdWWdlHtaB/VnpgKAfaUYEY6bJwDi8bCoV84EBbLmPSh/Ce1I/3iajO3awMa1SyepmcSlywh4dERZBw7Ro1HHqHqoDuQoKK591EppZQKZJoo+tnptNOsPbDWJoYJK9hyZAsGQ0RIBG1qteHmRjfTLqodDas0JEgCMJlJT4Gf3oPFr8LRncSH1efFtPv4Pr0DN19Wh++71CemSvHUhmampnLwlVc5MnMmYQ0aEDt1CuFNmhTLupVSSqlApIliATVq1KhAy51OO81PB39izf41rNq3ivWH1pOemU5oUCgtqrdgWNww2ke1p2lkU0KDQgs56mKUlgRr38YsGY+c2MOvYY0ZnfogK7mM27vUY1HHekSWL74GvVO2b2fPQw+TsmULVf44gBoPP0xQ2bLFtn6lVPYK+n2qlCp62o5iPuW3HcXE1ER+PPAjq/evZs3+NWw6tIl0k06QBNGkahPaRrWlfa32tKzZkrIhpSBxSTkJq6Zjlr2BnDrIptCmvHjqan4u24bBnetzW/vaVAwvvgTYGMPR997jwEv/JCgigqgXnqdC9+7Ftn6llFLKn7QdxRLmeMpx1uxfw5r9a1i9fzVbjmwh02QSIiE0jWzKHU3voE2tNsRVj6N8WHl/h1t4ko7CiqmY5ROR5GOsCW7JP1OGkhDRiiHXNGBa6xjCQ4u3/cb0w4dJeOxxEhcsoFynTlw0+gVCqlcv1hiUUkqpQKaJYgENGTIEgGdffZZ1B9f9nhhuO7oNgLCgMJpXb85dze6iTa02tKjeonTUGGaVeBCWT8CsnIakJrI46DLGpFxNco2W3N2/Af2bRxESXPz3Vp5atow9Dz9C5okT1HzsMaoMvE0fWFGqhPJ8n06dOtXPkSilstJEMZ+S05N59+d3WVNrDek10+n1cS8AyoaUpUX1FlwZdyWta7amWfVmlAkuvnvwit2JvbD0dczqf0F6Mt9IB15NuYZytVtwf7cGdG9cg6AibCQ7OyY9nUMTJ3Jo0mTC6ten9vQ3CW/cuNjjUErl3datW/0dglIqG5oo5pGIXA1cHV43nNErRyO1hNADoQzvPpyWNVrSuGrjwH74JK+O7oTF4zDr3sFkZDDXdGJ86tXENmzB090a0LZeVb81WJ22fz97H3yI06tXU+n666k1aiRBEQHSvqRSSilVAmmimEfGmLnA3IbNGt71zY3fcGv/WxGE25+63d+hFY9D22DRK5j1H5BBEB9ldGViWn+aN2vBa10bcGl0Jb+Gl7hwIXv/8SiZyclEvTiaytdd59d4lFJKqdJAE8V8qlSmElHloxAukG7e9m2ERWMxmz4lTcKYnX4FMzL706lVc97u2oB6keX8Gp5JS+Pg+PEcfnM6ZRo1Inrcq5SpX9+vMSmllFKlhSaKBRQXF+fvEIpW/Brbzd4vX5IkEfwr/WreDerPVe2a8XHn+tSqFO7vCEnbs4c9Dz5E0rp1VL7lFmqOeJSgcP/HpZTKn1L/fapUANN2FPMpv+0oBpydSzCLxiC/ziNRyjM19So+DevHjR0v5Y4OdalSLszfEQKQuGABex75B6SnU+uZp6nUr5+/Q1JKKaVKHG1HUZ0/Y+DXeZiFLyO7lnFMKjM5bQDfRvTntp5N+bptLBFhJeNQMZmZHJowkUMTJ1KmcWNixo8jrE4df4ellFJKlUol49c/AA0cOBCA2bNn+zmS85CZCVv/S+bClwnau5aDUo0JaXewsnI//tz3Eh5sGU1YSMlpezDj2DH2PPIIpxYuotK111LrqSe1Gz6lSoFS8X2qVCmliWIBxcfH+zuEgsvMgM3/JnPBGIIObiaBGryedidbavZjSPcmPNG0FsF+aAMxJ8mbNxN/3/2kHThAraeepPItt/itGR6lVOEK6O9TpUo5TRQvJBlpsOEjMhaMIfjor+wkmtdSh3GgTj+Gdm/M6IaRJTL5OjbnE/Y9/TTBVatSd/YsyrZo4e+QlFJKqQuCJooXgvQU+HE26YteJeTEbraZOoxPe4D0Rv25u0dDWtWu4u8IfcpMSWH/c89z7KOPiGjfnuhXxhJStaq/w1JKKaUuGJoolmapp2DNW6QvHk/IqX1szLyYNzIepmKzfgzvdjGNa1Xwd4TZStt/gPj77yP5p/VUu+suqj9wPxKih6tSSilVnPSXt4A6dOjg7xCyl3wCVk0jfckEQpIPsyrzEiabwdRu1YcnuzYgtmrJ7tYuacMG4u+5l4zERKJfG0/FK67wd0hKqSJUor9PlbrAaTuK+VSi21E8fQSzfBIZyycTknqC+RktmBF0I5d2uJK/dKxH9Qpl/B1hro5/9hkJI0cRUr06MRMnEN64sb9DUkoppQKWtqOo4OR+zNI3yFg1nZD0U3yXcRmzw27i8m69mNC+DhXDQ/0dYa5MRgYHX32Vw29OJ+Kyy4h+bTwhVUrmvZNKKaXUhUITxQK68cYbAZgzZ47/gjgeT+bi8Zg1b0FmGl9ktOfjiJu5olt33mwTS3hosP9iy4eMkyfZ89BDnFqwkMoDbqXWY48hoSU/uVVKFY4S8X2qlPJJE8UCOnz4sB9X/ivpC8ci6z/AGMMn6Z34stIArunZmRktLiI0uOQ0kp2b1J072T3sHlJ37aLWU09S5dZb/R2SUqqY+fX7VCmVI00UA8n+TaT/MIagn/9NOiG8n96DRdUHcHOvy5nRpCZBJayR7NycXrOG+GH3gAi1Z0ynXNu2/g5JKaWUUl40UQwE8WtI/eGfhG3/LymEMyu9Hz/F/JGBvdpyR4NqJbKR7Nwc//wLEkaMIDQ6mtipUwirXdvfISmllFIqC00USypjYOciUua/TJldC0ky5ZiQfiM7Lx7IoJ4tGVpCG8nOjTGGw1OmcHDceMq2aU3sG28QXLmyv8NSSimllA+aKBZQz549i6ZgY2DbN6TM+ydl9q3mhKnEmxkDONbkdv7Ss3mJbiQ7NyYtjYSnnuL4nE+oePXVRD3/HEFhYf4OSynlZ0X2faqUOm/ajmI+FVk7ipkZ8PNnJM97mfDDm9hjIpmWeQ0m7jYGd7uE2tVKdiPZuck4cYL4Bx7g9LLlRA67m8j77gvIS+ZKKaVUINF2FANdRhps+Ijk+S8TfnwHezKjmM7dVGx7G3d3aUjNiuH+jvC8pe3fz+477yTlt51EvfAClW+43t8hKaWUUioPNFEsoD59+gDw1VdfFayAtGTMj7NIWfAq4af2sCOzDjOD/0Z051t4pGMDKkeUjkuyKTt+Y9edg8k8dpza06ZSTrvqUkplcd7fp0qpIqOJYgElJSUVbMGURDJXzSB18WuEJx9kU2ZDZoc+RtMeN/FkuzqUK1N6PpKkDRvYPeSvtvmbt9+m7KVN/R2SUqoEKvD3qVKqyJWerKSkSzpKxvIppC+dSJm046zOaMpHEffTvse1vNg6hjIhgdGLSl4lLl5C/P33E1K1KrXfnEZY3br+DkkppZRS+aSJYlFLPED6kjfIXPkmYRmnmJfRis8rDqBH736MbRZFSAD1opJXxz//gr0jRlCmQQNip04htEYNf4eklFJKqQLQRLGoHNtN6sJxBK2bRVBmKl9ltOP76rfTv1dvXv1DjYDrRSWvjsx+h/3PP09E69bETJpIcIXAbc5HKaWUutBd8ImiiFwH9ANqABOMMd/kZbn+/fv7fuPwr6T8MIaQjR8ixjAnvTOrY/7EDb278Wr9qqW6SZhDU6dx8JVXKN+zJ9GvjCWoTBl/h6SUCgDZfp8qpfwuoNtRFJEZQH/ggDHmUq/pVwHjgWDgTWPMi3koqwowxhgzOKf5sm1Hcf8mkub9kzK/fEaqCeb9jO5sqT+IAb070iK2dPc8Yozh0BsTODRhAhX79eOil15EQi74/0GUUkopvzvfdhQDPVHsAiQCb3sSRREJBrYCvYF4YBUwAJs0js5SxF+MMQfccmOBd4wxa3NapydR7NOnD0lJSfyhwiluq3eEzlUPkWjCeSezN3ua/IXvZk0gLOnwWcvefPPNDBs2jNOnT9O3b99zyh40aBCDBg3i0KFD3HTTTee8f/fdd3PLLbewe/dubr/99nPef/DBB7n66qv55Zdf+Otf/3rO+yNHjqRXr16sW7eO4cOHn/P+Cy+8wOWXX87SpUt57LHHznl/3LhxxMXF8d133/Hcc8/ZicZwXWIiV546DT178ofXxvP5l18yduzYc5afNWsWsbGxfPDBB0yaNOmc9z/++GMiIyOZOXMmM2fOPOf9L7/8koiICCZOnMiHH354zvs//PADAGPGjOHzzz8/672yZcv+3vTGs88+y/fff3/W+9WqVWPOnDkAjBgxgmXLlp31fkxMDLNnzwZg+PDhrFu37qz3GzVqxNSpUwEYMmQIW7duPev9uLg4xo0bB8DAgQOJj48/6/0OHTowerQ9PG+88UYOHz772OnZsyejRo0C+P3Y89a/f38eeughALp160ZWpfLY8zJlyhQaN27M3Llz9djTY+8seuzpsXehH3sXdKIIICJ1gc+9EsUOwFPGmCvd+AgAY0zWJNGzvAAvAt8aY77LZp4hwBA32hj45TzDrgQcP88y/LWewiizoGUUZLn8LJPXeSOBQ/mMozQpruM3v4ozLj238r6Mnld5p+dW4a/Ln+dVQZYtit+sxsaYgj8wYIwJ6BdQF9joNX4T9nKzZ/x24I0clr8fWANMBoYWU8xTA3U9hVFmQcsoyHL5WSav8wKri+PzK6mv4jp+S3Jcem7l63zR86oYj4FAj6uw1+XP86ogy5bE36zSeCOZr6dFsq02Nca8BrxWdOH4NDeA11MYZRa0jIIsl59liutzCXQldT8VZ1x6buV9mZJ6vJREJXVfBfK55c/zqiDLlrjfrAv+0rNS+SUiq8153O+hlDqXnldKFY3zPbdKX2vP9uGVhiJST0TCgFuBz/wckypdpvo7AKVKIT2vlCoa53VuBXSNooi8B3TD3gS9H3jSGDNdRPoC47BPOs8wxjzvvyiVUkoppQJTQCeKSimllFKq6JTGS89KKaWUUqoQaKKolFJKKaV80kRRKaWUUkr5pImiUoVEROqLyHQR+djfsSgV6ESknIi8JSLTROQ2f8ejVGmR398qTRSVAkRkhogcEJGNWaZfJSK/iMh2EXk0pzKMMTuMMYOLNlKlAlc+z7MbgI+NMXcB1xR7sEoFkPycW/n9rdJEUSlrJnCV9wQRCQYmAH2AS4ABInKJiDQTkc+zvGoUf8hKBZyZ5PE8A2KA3W62jGKMUalANJO8n1v5Uhq78FMq34wxC10vP97aAtuNMTsAROR94FrXy0//4o1QqcCXn/MMiMcmi+vQSg2lcpTPc2tzfsrWk0+p7EVzpkYD7A9XdHYzi0g1EZkMtPR0HamUylV259knwI0iMomS2weyUiWZz3Mrv79VWqOoVPbEx7RsW6g3xhwGhhZdOEqVSj7PM2PMKeDPxR2MUqVIdudWvn6rtEZRqezFA7Fe4zHAXj/FolRppeeZUkWjUM4tTRSVyt4qoKGI1BORMOBW4DM/x6RUaaPnmVJFo1DOLU0UlQJE5D1gGdBYROJFZLAxJh24F/ga+Bn40BizyZ9xKhXI9DxTqmgU5bklxmR7y5VSSimllLqAaY2iUkoppZTySRNFpZRSSinlkyaKSimllFLKJ00UlVJKKaWUT5ooKqWUUkopnzRRVEoppZRSPmmiqFSAcP1zrnOvfSKyx2s8rATEd4OI/MFr/HkR6V5E6woWkUVFUXagEZG/i0h4PpfpJiKbRORH72NHRKqKyFCv8V4i8u/CjNeVO1tEfhORn0Rkq4i8JSIXZZnnMhExItLTa1qIiBzzUV6IiGS4c2GjiPxHRCoWdtxKXYg0UVQqQBhjDhtj4owxccBk4FXPuDEmFUAsf53XNwC/J4rGmMeNMfOLYkXGmAxjTOeiKLs4iEhwIRb3dyBfiSIwEHjRGNPSc+w4VSm+/sr/ZoxpgT1mNgDzRCTU6/0BwGL3Ny9OunPhUiARuLtQo/UiIiFFVbZSJY0mikoFOBG52NWiTAbWAlEiMlVEVrtaoye85o0XkadcTdJ6EWnkpvdwtTvrRGStiJQTkYoiMs+NrxeR/l7l/NlN+0lE/iUinYG+wKuujLqu1ug6N39vN32DiEzz1GJlF0+W7WsmIqvc8utFpL53zZKrufTUrO4VkWlu+h0istJNn+grgRaRp13ZG0VksoiIm/43Ednstm+2j+XuFJFPReRrEflFREZ6vXfOej3xishzIrISaCsi7URkmVvHChGJcPO94pZfLyJ3ujJ7icj3IvKJW9/bnjiBGsAiEfnOR5zn7HexNYY3AM94yvHyIrZnh3Ui8qKbViHrel3Zl4nIAhFZIyJfiUhNH+v/QkT+6IbvEZG3ss5jjMk0xowBjgBXuHmDgBuBO4A+kv8a82VAtFccj3rt0yfctAou7p/c539TTtslIovdsbYQuF9sjajneCkvIrvc59fQHRdrRGShr2NaqYBijNGXvvQVYC/gKeAhN3wxkAlc5vV+Vfc3BFgEXOLG44G73fD9wGQ3/BXQzg2XB4KBUKCCm1YD2OaGWwBbvNbh+TsbuM4rhtnAdUAEsBto4Ka/A9ybUzxZtnUScIsbLoOtPQsBjmWZrwqwEYgDLgX+DYS496YCf/RRtid2Ad4D+rjxBCDMDVf2sdydwB63znLA5pzW6+I1wA1uejjwG9DKjVdy+3wY8KjXtv4I1AZ6AUeBKDffKqC91z70FWNO+/2sz8prmYuBdV7jPtfrYlsKRLr5bgOm+igvCtgOdAZ+8cTpa/3AG8CDbrgb8LUb/hC4xut4PuZjPb9Pd3F+AvRy432Bie4zDgL+C1wO3AJM8iqjUk7bha3dfN1r/i+Azl7zec6l+V77vCPwjb+/L/Slr/N5afW5UqXDr8aYVV7jA0RkMPYH9CLgEmwyA/ZHFGAN9kcUYAkwTkTeBeYYYxLFXh59SUQ6YRPRWBGJBHoAHxhjjgB4/uagCTbJ/NWNvw0MxiYG2cXjbSkwUkTqAJ8YY7ZLlkt/rgbqXeAlY8w6ERkOXAasdpU+ZbFJU1Y9ReRhbOIW6WL4CtgEzBaR/2ATP1++NsYcdev/N9AJu7+zW28q8KnXPtlljFkLYIw57sq5AmgiIre6+SoBDd3wcmNMgptvHVAXWJ5NbJ515LTf88rXepOBpsB3bjuDsQnrWYwxCSLyDDZ5utoYc879hV7Ea3gA8L4bft+Nf5ZLnBW84lvh1gm2lrIPNukG+49QIzfPi67mdK4xZomIxOWyXe97DX+ATTYXAbcCr4hIZWwiPcctD+jvrApsegArVTqc8gyISEPgAaCtMeaYu3TqfQ9bivubgfsOMMY8JyKfAf2AVSLSDeiKTVRaGWPSRSTelSPY2rG8klzePyceb8aYWSKyzMX2rYjcgU0evT2LTZZnea1zhjFmVLZBiURgk6ZWxpg9IvIcZ/bTldjtvxabpF5qjMnIGpqPcZ/rdYltkjHGs0x2+1CAYcaY77Ms34sz+wmy2Vc+yioMvtYrwHqTt/tEmwGHsf+w5CQO+ELsfYrXA31F5ElsLWBlESmXJZasThpj4lyy9iXwV87UJD5njJmedQERaYP95+RlEfkc+09CTtt1ymv439jL90+6bVyAPV8OGXsfsVKlgt6jqFTpUxE4CZwQkShs0pMjEWlgjFlvjBmNrXlpjP3RO+CSxN6cuefrO+BWEanqlq3qpp8EKvgofjPQUETqu/GB2B/VPBGR+saY7caY8djLfc2zvH8d0AX4m9fk74CbXQ2o54nx2lmKLoutKT0kIhWw98R5HjSJMcbMAx4GqmMv42Z1hYhUdgnntdha2bysF2yNZR0RaeXmq+jW+zUwzFNjKiKNRaRsLruoMPd7dmX5KjtaRNq6OMNEpGnWmUSkA9ATaAWM8LUvxPobUA34FlsDuMoYE2uMqWuMqQ3MBa7JQ1y4WssHgIe99ulgl2giIjEiEiki0UCi++fiFRdjnrbLrecE9lwZB3xm7L2WR4EEEbneLR8kIi3yErdSJZXWKCpV+qzF/uBtBHZgE5jcPCT2gZRMYD3wDbASmCsiq12Z2wCMMetF5J/AQhFJx16uHYy9x2+KiDyIvTcRN/9pdxn8E/fDvQKYlo/t+aOIDADSgL3AyCzvPwjEYGtCwV6efkZEnsZeQgxyyw4FdnnFdVjswxUbgf+5uMB+L77rkscg7OXskz7iWoy93N0AmGWMWQf2ARkf693rvaAxJsVt0ySxTdskYS/pT8Hek7jObcsBbBKak6lufbuNMb281pHv/W6M2S/2IagN2KT8nAdkvOK/CXjN7acQYCw2Acbth7IutoGuxvYRYIb7pwPsg09PYxP2ZUAPY0ya2y+fcrY5wJ+Bj3LZF574VonIFuBmY8x7YpttWu726UnsfaOXYC89Z2JvCxial+3K4gPscd/Ja9qt2M/1KSAMez/mT3mJW6mSSM5cCVFKKZUXYp9GvtQYM9zfsSilVFHSS89KKaWUUsonrVFUSimllFI+aY2iUhc4EfnBPf2JiHzpnhrNy3KDRCS/Ta1kV9Yz7sleRGS4e0CkIOUUWkxZyq0rIhvzucxMd7+bZ3yAiDzuYjwotlHrLe5BjlJBRIaKyJ/c8CDx6pZPRHZ6HvLJpYw8zVeA2DqIbXS8m4gcF9vI+xYRGVPY61KqNNFEUakAJoXclZgxpm8ubd0VCWPME8YYz4MTw/H9lHGguwrb2DPYdijjsA0yPy4isUWxQvdEcbF9zxtjJhtjPL23DCL3JnHypJC2w3v/LzLGtARaAv1FpON5lp0tKdzuGpUqdpooKuVHrqbqZ1fTsUlEvvE0hyIicSKyXGy3Y5+KSBU3/QcReUFEFgAPuJqrSSIyX0R2iEhXEZnhyp3pta5JcqZbv6eziWenazpkqJzpFu83EZnv3v+ziGx16/b54yq2S76HvMY3uu3MaVtnishNInI/NrmY77Yn2L23UWw3dHmpfYsVkf+K7XLuSa84/u7K2Si2Qe7c9n9rsd27LQPu8SonWEReFtv133oR+aubLiLyhtiu/77A9mbjWUaw7QSu9Q7UGHMY23NJlJuvuojMcWWv8iQw7jP1fB4/in0iFxF52CuOp7Ns00S3vlFin1L3xDJIRF53wwPlTHeDU3JKakSkhoisccMtRMSIa+5GRH4V2wXhUyLykNia1DbAO65sTxM/94ntEnKD2CeRPU0IfeO2awqu/Ucf2xHr6xgWkbYi8okbvlZEksQ2axMuIju8NqEnWZ7iNsYkAetwTT+J7bpyhtunP4rItW56U6/9tF5sW6XZ7j8RSRRbS74CeExEPvTaj91EZK4bvkJsN8i2fhMAAAclSURBVI5rReQjESmf3f5Xym/83TWMvvR1Ib+wvUikA3Fu/ENscyJgm6np6oafAca54R+AiV5lzMT2GCHYplROYBsADsI2XeMp29NdXbAro7lXeW3c8E5c92VuPBTb88TV2GRmF7ZdwTBssztv+Nimp3DdC7rxjW47c9rWmcBNWWMAWgPfepXl6QJuKLY5k6zrHoTtfq8attmVjdiEpTWwAdvdXnlscyct87H/XwY2uuEhwEg3XAZYDdTD9p/8rdu/FwHHvLapFfC2V4xvuOHa2EQl3I2/C3Tyeu9nNzwX6OiGy2ObbbkC2/yMp2u6z7HtSdbFNnPk6eKvOrDdax99hW3OpYkrN9RNnwj8KZfjdRO2nc57sd353QbUAZZl/ezxOq68Ptf73PAw4E03/BrwhBvuh22IPDLrdmR3DLt98ZubPsbF1RHbYPp7bnokMN8NdwM+d8NVsOdILTf+gtfnXxnYij1mXgduc9PDsMdWtvvPbcPNbjgEe96Uc+OTsG1aRgILvab/w7Mf9KWvkvTSdhSV8r/fjGuDD/ujVVdEKmGTIk8DyW9xdhtyH2QpY64xxoht/26/MWYDgIhswv7grsM2BD0E+8MVhW1Hbn0usY0H5hlj5opt2PoHY8xBV/YH2K7Qzmtbc5l/B1Df1YB9gW3fEWPM5ByW+dbYmjpcTVMn7A/3p8aYU17TO2O7hcvL/p+F7QYObILWXM7cf+jpZq8LNjHJAPaKyDyvmK7CJmget4hId2zD5ncZY5Ld9F7AJXKm+7eKrvZwCbaLuHew7UTGi+3u7wrO7pquITYp+Z8xZrnbVwfF1jS3x7aF2diVdw82gfa0P1kW225jTpZik7Au2KTqKmyiuiiX5Ty8u2u8wQ138QwbY74QkaNe8/++Hc45x7Cx7XpuF5EmQFts49ldsMmkJ64rcMeO01lE1mP3xYvGmH1e810jZ2rEw7EJ+zLsLQIx2P2/TUR6kv3+y8C2/YixDdb/F7haRD7GJsOPYBPZS4Albvkwtx6lShRNFJXyv6xdpOXWEwec3ZWYdxmZWcrLBEJEpB7wEHCZMeao2EvS4eRARAZha4vu9Zqcl2YS0jn7thZf3QdCHrbVxdoC27vMPcDNwF9yWX92Xetlx1dMOXVTKNiasa/PmijSN4dlrsD1/OJ8YIy5V2zPJV+IyFcuWQkCOhh7SdTbi+5ydl9sw9G9XByjjTFTssRRl3OPjw+w+24LNmE27nL4W8aYEdnE7MsibIJdB/gPthbMYGsz8yK77hqz22/eXVPmdAwvwibyadjLyzOxiaIn4euDTSB/3w5jTH8RaQQsFpFP3T8LAtxojPklSxw/u8vI/YCvxbajmdP+SzZnd/n4Afb4PYLtdeak2//fGmMGZLPtSpUIeo+iUiWQMeY4cFRsbykAt5OPbu98qIj90T0uIjU5Uzvmk4i0xv7IDjTGZLrJK4Bu7p6yUOD/sll8J/ZSK2K7qKuXz1h/70ZO7NOvQcaYOcAoT7m56C0iVd19cddha88WAte5++jKYfsSzrYWzNgHeo6LiKfHjdu83v4auNvtA0SkkStzIbZrw2CxXSd2d+9XAkI8tZxZ1rMMW1v5gJv0DV6JuYjEub8NjDEbjDEvYS91/8HF8RfPfW0iEi0iNfDtE7cvBnCmNvp74CbPMm6f1XHDb4vrxi6LhdjLptvccXEEm7z66v0nr90BLsTtXxHpg70c7EtOx/BC7ENQy1yNdzXsPtrkErLm2Fr1sxhjtgKjsQkv2H16n1sGEWnp/tYHdhhjXsPWQjcnh/3nww/YY/cuzuz/5UBHEbnYLR/hElelShStUVSq5LoDmCy2qZgd2C7MCsQY85OI/Ii9xywv3frdC1TFPlQCsNoYc6fYbsmWYe8DXIuttclqDvAnEVmHvV9saz7DnQp8JSIJ2B//f8mZJ15HgG2GxW2Xr0vQi7HJ18XAu8aY1W6ZmdhuCcHeH/ejq33Lzp+xXc6dxiYQHm9iL5mvdQnFQWwS9im2G74N2G32JPa9yaYrPOclV9YLwP3ABHdZNASbAA0FhrtL1RnY7hm/Mra7uSbAMvcZJWKTuIysK3A1cJuxl2pXummbRWQk8I2c6W7wHmx3hs2xn3HWcna6dS10kxZj+8U+mnVebK3eZBFJAjrksP1PA++JyFrsPtvla6ZcjuEVQE2vuNZj+yk3Ypt++tEYk12t5WRsF5b1gGexfTevd5/tTqA/cAswUETSgH3AM8aYIznsv6yxZ4jI59j7U+9w0w66Wvv3RKSMm3Uk+T9flCpS2uC2UkoVIRF5E5uYLs915hJARCoC040x2dUYBxSXzG03xrzv71iUCkSaKCqllFJKKZ/0HkWllFJKKeWTJopKKaWUUsonTRSVUkoppZRPmigqpZRSSimfNFFUSimllFI+aaKolFJKKaV80kRRKaWUUkr59P/7qSzNadWxdQAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 720x360 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"fig, ax = plt.subplots(figsize=(10,5))\n",
|
|
"ax.hlines(phi, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.hlines(1, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.vlines(bound, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"ax.vlines(1, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"#ax.plot([ticks[0],ticks[-1]],[ticks[0]*phi,ticks[-1]*phi], 'k--')\n",
|
|
"pdf2.plot(x='tx_fraction', y = ['bond_to_mint_slippage', 'burn_to_withdraw_slippage','bond_to_mint_slippage_fee', 'burn_to_withdraw_slippage_fee'], logx=True, logy=True, ax=ax)\n",
|
|
"plt.title(\"Friction for Bond and Withdraw accounting With and Without Fee, phi=\"+str(phi))\n",
|
|
"plt.ylabel(\"\"\"Percentage Change:\n",
|
|
"Realized Price\n",
|
|
"Relative to Spot Price\"\"\")\n",
|
|
"plt.yticks(ticks)\n",
|
|
"plt.xlabel(\"\"\"Transaction size as percent of the xDAI Reserve\n",
|
|
"normalizd units: bonded/Reserve, withdraw/Reserve\"\"\")\n",
|
|
"axis = ax.axis()\n",
|
|
"ax.set(xlim=((1.0-(1.0-phi)**(1.0/kappa))*10, axis[1]), ylim=(phi, axis[3]))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig, ax = plt.subplots(figsize=(10,3))\n",
|
|
"ax.hlines(phi, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.hlines(1, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.vlines(bound, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"ax.vlines(1, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"pdf2.plot(x='tx_fraction', y = ['bond_to_mint_slippage_fee', 'burn_to_withdraw_slippage_fee'], logx=True, logy=True, ax=ax)\n",
|
|
"plt.title(\"Friction for Bond and Withdraw accounting With Fee, phi=\"+str(phi))\n",
|
|
"plt.ylabel(\"\"\"Percentage Change:\n",
|
|
"Realized Price\n",
|
|
"Relative to Spot Price\"\"\")\n",
|
|
"plt.yticks(ticks)\n",
|
|
"plt.xlabel(\"\"\"Transaction size as percent of the xDAI Reserve\n",
|
|
"normalizd units: bonded/Reserve, withdraw/Reserve\"\"\")\n",
|
|
"\n",
|
|
"#axis = ax.axis()\n",
|
|
"#ax.set(xlim=(bound*.99, axis[1]), ylim=(phi, axis[3]))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"fig, ax = plt.subplots(figsize=(10,3))\n",
|
|
"ax.hlines(phi, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.hlines(1, TXF[0],TXF[-1], linestyle='--')\n",
|
|
"ax.vlines(bound, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"ax.vlines(1, ticks[0],ticks[-1], linestyle='--')\n",
|
|
"pdf2.plot(x='tx_fraction', y = ['bond_to_mint_slippage_fee', 'burn_to_withdraw_slippage_fee'], logx=True, logy=True, ax=ax)\n",
|
|
"plt.title(\"Friction for Bond and Withdraw accounting With Fee, phi=\"+str(phi))\n",
|
|
"plt.ylabel(\"\"\"Percentage Change:\n",
|
|
"Realized Price\n",
|
|
"Relative to Spot Price\"\"\")\n",
|
|
"plt.yticks(ticks)\n",
|
|
"plt.xlabel(\"\"\"Transaction size as percent of the asset Burned or Bonded\n",
|
|
"normalizd units: bonded/Reserve, burned/Supply\"\"\")\n",
|
|
"\n",
|
|
"axis = ax.axis()\n",
|
|
"ax.set(xlim=(bound*.99, axis[1]), ylim=(phi, axis[3]))"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.8"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|