--- title: Crypto is harmful to the environment description: Evaluating the claim that crypto is harmful to the environment. category: - claim: y - featured: y - interview: n - deepdive: n claim: - evaluation: YY - confidence: HH --- # Claim Steel-Manned Crypto is harmful to the environment because crypto [mining](../concepts/mining.md) has a huge environmental footprint. The design of the [Proof of Work](../concepts/proof-of-work.md) (PoW) [consensus algorithm](../concepts/consensus-algorithm.md) is energy wasteful as part of its design. # Evidence of claim being made Diehl, S. (2021) ‘The Crypto Chernobyl’, 10 February. Available at: https://www.stephendiehl.com/blog/chernobyl.html (Accessed: 25 February 2022). > It is an enormously power-hungry and wasteful system that involves doing massive number of trial computations (a process called mining) in parallel across the world in a form of lottery in which computers race to confirm transactions. The more power you can waste, the more bitcoins you can probabilistically win in exchange for your energy waste... > The protocol itself is a runway environmental disaster that incentives an ever increasing amount of waste that can only increase with time. Increasing energy waste is an central and irremovable part of the design. Elon Musk [@elonmusk]. ‘Tesla & Bitcoin Https://T.Co/YSswJmVZhP’. Tweet. Twitter, 12 May 2021. https://twitter.com/elonmusk/status/1392602041025843203. > Tesla has suspended vehicle purchases using Bitcoin. We are concerened about rapidly increasing use of fossil fuels for Bitcoin mining and transactions, espeically coal, which has the worst emissions of any fuel. Igini, M. (2022) 8 Bitcoin Facts: Why is This Cryptocurrency Bad for The Environment?, Earth.Org. Available at: https://earth.org/bitcoin-facts/ (Accessed: 20 September 2022). > Bitcoin’s energy consumption is off the charts and each transaction consumes more energy than countries like Sweden or the Netherlands. Martin, Katie, and Billy Nauman. ‘Bitcoin’s Growing Energy Problem: “It’s a Dirty Currency”’. Financial Times, 20 May 2021. > Bitcoin alone consumes as much electricity as a medium-sized European country,” says Professor Brian Lucey at Trinity College Dublin. “This is a stunning amount of electricity. It’s a dirty business. It’s a dirty currency. # Evaluation Bitcoin [mining](../concepts/mining.md) **is** enormously harmful to the environment. There are three factors that give rise to its inordinate environmental footprint which is incommensurate with its generated utility. 1. E-waste from discarded or broken ASIC mining equipment, graphics cards and servers. 2. Carbon release from fossil fuels used to power mining data centres. 3. Opportunity cost of the energy used to run [consensus algorithm](../concepts/consensus-algorithm.md) compared to more efficient [real time gross settlement systems](../concepts/rtgs.md) and traditional payment rails such as SWIFT, SEPA, Visa and ACH. BItcoin mining has the equivalent power consumption of the state of Argentina, a country with a population of 45 million people. Bitcoin mining has an e-waste footprint comparable to that of entire population of Germany. Bitcoin mining collectively consumes more power than all data centres run by Google, Amazon, Microsoft, Apple, Netflix, Facebook and YouTube put together. Bitcoin is simply one of thousands of crypto assets which use PoW algorithm, including the second largest asset Ethereum, which together with all other assets sum to an even larger and difficult to calculate environmental footprint. ## References Ahl, A. _et al._ (2019) ‘Review of blockchain-based distributed energy: Implications for institutional development’, _Renewable and Sustainable Energy Reviews_, 107, pp. 200–211. Available at: [https://doi.org/10.1016/j.rser.2019.03.002](https://doi.org/10.1016/j.rser.2019.03.002). Amenta, C., Riva Sanseverino, E. and Stagnaro, C. (2021) ‘Regulating blockchain for sustainability? The critical relationship between digital innovation, regulation, and electricity governance’, _Energy Research & Social Science_, 76, p. 102060. Available at: [https://doi.org/10.1016/j.erss.2021.102060](https://doi.org/10.1016/j.erss.2021.102060). Ante, L., Steinmetz, F. and Fiedler, I. (2021) ‘Blockchain and energy: A bibliometric analysis and review’, _Renewable and Sustainable Energy Reviews_, 137(October 2020), p. 110597. Available at: [https://doi.org/10.1016/j.rser.2020.110597](https://doi.org/10.1016/j.rser.2020.110597). Badea, L. and Mungiu-Pupazan, M.C. (2021) ‘The Economic and Environmental Impact of Bitcoin’, _IEEE Access_, 9, pp. 48091–48104. Available at: [https://doi.org/10.1109/ACCESS.2021.3068636](https://doi.org/10.1109/ACCESS.2021.3068636). Benetton, M., Compiani, G. and Morse, A. (2021) ‘When Cryptomining Comes to Town: High Electricity-Use Spillovers to the Local Economy’, _SSRN Electronic Journal_ [Preprint]. Available at: [https://doi.org/10.2139/ssrn.3779720](https://doi.org/10.2139/ssrn.3779720). Bogensperger, A. _et al._ (2021) ‘Welche Zukunft hat die Blockchain-Technologie in der Energiewirtschaft?’ Available at: [https://www.econstor.eu/handle/10419/237670](https://www.econstor.eu/handle/10419/237670). Brilliantova, V. and Thurner, T.W. (2019) ‘Blockchain and the future of energy’, _Technology in Society_, 57, pp. 38–45. Available at: [https://doi.org/10.1016/j.techsoc.2018.11.001](https://doi.org/10.1016/j.techsoc.2018.11.001). Buth, M.C. (Annemarie), Wieczorek, A.J. (Anna) and Verbong, G.P.J. (Geert) (2019) ‘The promise of peer-to-peer trading? The potential impact of blockchain on the actor configuration in the Dutch electricity system’, _Energy Research & Social Science_, 53, pp. 194–205. Available at: [https://doi.org/10.1016/j.erss.2019.02.021](https://doi.org/10.1016/j.erss.2019.02.021). Campbell-Verduyn, M. (2021) ‘Conjuring a Cooler World? Blockchains, Imaginaries and the Legitimacy of Climate Governance’, _Global Cooperation Research Papers_, 28. Available at: [https://doi.org/doi:10.14282/2198-0411-GCRP-28](https://doi.org/doi:10.14282/2198-0411-GCRP-28). Diehl, S. (2021) ‘The Crypto Chernobyl’, 10 February. Available at: [https://www.stephendiehl.com/blog/chernobyl.html](https://www.stephendiehl.com/blog/chernobyl.html) (Accessed: 25 February 2022). Dindar, B. and Gül, Ö. (2021) ‘The detection of illicit cryptocurrency mining farms with innovative approaches for the prevention of electricity theft’, _Energy & Environment_, (April), p. 0958305X211045066. Available at: [https://doi.org/10.1177/0958305x211045066](https://doi.org/10.1177/0958305x211045066). Dorfleitner, G., Muck, F. and Scheckenbach, I. (2021) ‘Blockchain applications for climate protection: A global empirical investigation’, _Renewable and Sustainable Energy Reviews_, 149(June), p. 111378. Available at: [https://doi.org/10.1016/j.rser.2021.111378](https://doi.org/10.1016/j.rser.2021.111378). Gallersdörfer, U. _et al._ (2020) ‘Energy Consumption of Cryptocurrencies Beyond Bitcoin’, _Joule_, 4(2018), pp. 2018–2021. Available at: [https://doi.org/10.1016/j.joule.2020.07.013](https://doi.org/10.1016/j.joule.2020.07.013). Gallersdörfer, U., Klaaßen, L. and Stoll, C. (2021) ‘Accounting for carbon emissions caused by cryptocurrency and token systems’. Available at: [https://arxiv.org/abs/2111.06477](https://arxiv.org/abs/2111.06477). Goodkind, A.L., Jones, B.A. and Berrens, R.P. (2020) ‘Cryptodamages: Monetary value estimates of the air pollution and human health impacts of cryptocurrency mining’, _Energy Research and Social Science_, 59(March 2019), p. 101281. Available at: [https://doi.org/10.1016/j.erss.2019.101281](https://doi.org/10.1016/j.erss.2019.101281). Greenberg, P. and Bugden, D. (2019) ‘Energy consumption boomtowns in the United States: Community responses to a cryptocurrency boom’, _Energy Research and Social Science_, 50(December 2018), pp. 162–167. Available at: [https://doi.org/10.1016/j.erss.2018.12.005](https://doi.org/10.1016/j.erss.2018.12.005). Howson, P. _et al._ (2019) ‘Cryptocarbon: The promises and pitfalls of forest protection on a blockchain’, _Geoforum_, 100(February 2019), pp. 1–9. Available at: [https://doi.org/10.1016/j.geoforum.2019.02.011](https://doi.org/10.1016/j.geoforum.2019.02.011). Howson, P. (2019) ‘Tackling climate change with blockchain’, _Nature Climate Change_, 9(9), pp. 644–645. Available at: [https://doi.org/10.1038/s41558-019-0567-9](https://doi.org/10.1038/s41558-019-0567-9). Howson, P. (2020a) ‘Building trust and equity in marine conservation and fisheries supply chain management with blockchain’, _Marine Policy_, 115, p. 103873. Available at: [https://doi.org/10.1016/J.MARPOL.2020.103873](https://doi.org/10.1016/J.MARPOL.2020.103873). Howson, P. (2020b) ‘Climate Crises and Crypto-Colonialism: Conjuring Value on the Blockchain Frontiers of the Global South’, _Frontiers in Blockchain_, 3(May). Available at: [https://doi.org/10.3389/fbloc.2020.00022](https://doi.org/10.3389/fbloc.2020.00022). Howson, P. (2021) ‘Distributed degrowth technology: Challenges for blockchain beyond the green economy’, _Ecological Economics_, 184(June 2020), p. 107020. Available at: [https://doi.org/10.1016/j.ecolecon.2021.107020](https://doi.org/10.1016/j.ecolecon.2021.107020). Howson, P. and de Vries, A. (2022) ‘Preying on the poor? Opportunities and challenges for tackling the social and environmental threats of cryptocurrencies for vulnerable and low-income communities’, _Energy Research and Social Science_, 84(xxxx), p. 102394. Available at: [https://doi.org/10.1016/j.erss.2021.102394](https://doi.org/10.1016/j.erss.2021.102394). Hull, J., Gupta, A. and Kloppenburg, S. (2021) ‘Interrogating the promises and perils of climate cryptogovernance: Blockchain discourses in international climate politics’, _Earth System Governance_, 9, p. 100117. Available at: [https://doi.org/10.1016/j.esg.2021.100117](https://doi.org/10.1016/j.esg.2021.100117). Huston, J. (2020) ‘The Energy Consumption of Bitcoin Mining and Potential for Regulation’, _George Washington Journal of Energy and Environmental Law_, 11(1), pp. 32–41. Available at: [https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/gwjeel11§ion=6](https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/gwjeel11§ion=6). Jana, R.K. _et al._ (2021) ‘Determinants of electronic waste generation in Bitcoin network: Evidence from the machine learning approach’, _Technological Forecasting and Social Change_, 173. Available at: [https://doi.org/10.1016/j.techfore.2021.121101](https://doi.org/10.1016/j.techfore.2021.121101). Koomey, J. and Masanet, E. (2021) ‘Does not compute: Avoiding pitfalls assessing the Internet’s energy and carbon impacts’, _Joule_, 5(7), pp. 1625–1628. Available at: [https://doi.org/10.1016/j.joule.2021.05.007](https://doi.org/10.1016/j.joule.2021.05.007). Küfeoğlu, S. and Özkuran, M. (2019) ‘Bitcoin mining: A global review of energy and power demand’, _Energy Research and Social Science_, 58, p. 101273. Available at: [https://doi.org/10.1016/j.erss.2019.101273](https://doi.org/10.1016/j.erss.2019.101273). Li, J. _et al._ (2019) ‘Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies’, _Energy_, 168, pp. 160–168. Available at: [https://doi.org/10.1016/j.energy.2018.11.046](https://doi.org/10.1016/j.energy.2018.11.046). McDonald, K. (2021) ‘Ethereum Emissions: A Bottom-up Estimate’. Available at: [http://arxiv.org/abs/2112.01238](http://arxiv.org/abs/2112.01238). Miglani, A. _et al._ (2020) ‘Blockchain for Internet of Energy management: Review, solutions, and challenges’, _Computer Communications_, 151, pp. 395–418. Available at: [https://doi.org/10.1016/j.comcom.2020.01.014](https://doi.org/10.1016/j.comcom.2020.01.014). Mollah, M.B. _et al._ (2021) ‘Blockchain for Future Smart Grid: A Comprehensive Survey’, _IEEE Internet of Things Journal_, 8(1), pp. 18–43. Available at: [https://doi.org/10.1109/JIOT.2020.2993601](https://doi.org/10.1109/JIOT.2020.2993601). Mora, C. _et al._ (2018) ‘Bitcoin emissions alone could push global warming above 2 C’, _Nature Climate Change_, 8(11), pp. 931–933. Náñez Alonso, S.L. _et al._ (2021) ‘Cryptocurrency mining from an economic and environmental perspective. Analysis of the most and least sustainable countries’, _Energies_, 14(14). Available at: [https://doi.org/10.3390/en14144254](https://doi.org/10.3390/en14144254). Okorie, D.I. (2021) ‘A network analysis of electricity demand and the cryptocurrency markets’, _International Journal of Finance and Economics_, 26(2), pp. 3093–3108. Available at: [https://doi.org/10.1002/ijfe.1952](https://doi.org/10.1002/ijfe.1952). Peplow, M. (2019) ‘Bitcoin poses major electronic-waste problem’, _Chemical & Engineering News_. American Chemical Society. Available at: [http://cen.acs.org/environment/sustainability/Bitcoin-poses-major-electronic-waste/97/i11](http://cen.acs.org/environment/sustainability/Bitcoin-poses-major-electronic-waste/97/i11). Petri, I. _et al._ (2020) ‘Blockchain for energy sharing and trading in distributed prosumer communities’, _Computers in Industry_, 123, p. 103282. Available at: [https://doi.org/10.1016/j.compind.2020.103282](https://doi.org/10.1016/j.compind.2020.103282). Platt, M. _et al._ (2021) ‘Energy Footprint of Blockchain Consensus Mechanisms Beyond Proof-of-Work’. Available at: [https://arxiv.org/abs/2109.03667](https://arxiv.org/abs/2109.03667). Qin, S. _et al._ (2020) ‘Bitcoin’s future carbon footprint’. Available at: [http://arxiv.org/abs/2011.02612](http://arxiv.org/abs/2011.02612). Scharnowski, S. and Shi, Y. (2021) ‘Bitcoin Blackout: Proof-of-Work and the Centralization of Mining’, _SSRN Electronic Journal_. Available at: [https://doi.org/10.2139/ssrn.3936787](https://doi.org/10.2139/ssrn.3936787). Schinckus, C. (2020) ‘The good, the bad and the ugly: An overview of the sustainability of blockchain technology’, _Energy Research and Social Science_, 69(May), p. 101614. Available at: [https://doi.org/10.1016/j.erss.2020.101614](https://doi.org/10.1016/j.erss.2020.101614). Schneiders, A. and Shipworth, D. (2021) ‘Community Energy Groups: Can They Shield Consumers from the Risks of Using Blockchain for Peer-to-Peer Energy Trading?’, _Energies_, 14(12). Available at: [https://doi.org/10.3390/en14123569](https://doi.org/10.3390/en14123569). Schulz, K. and Feist, M. (2020) ‘Leveraging Blockchain Technology for Innovative Climate Finance under the Green Climate Fund’, _SSRN Electronic Journal_, 7, p. 100084. Available at: [https://doi.org/10.2139/ssrn.3663176](https://doi.org/10.2139/ssrn.3663176). Sedlmeir, J., Buhl, H.U., _et al._ (2020) ‘Ein Blick auf aktuelle Entwicklungen bei Blockchains und deren Auswirkungen auf den Energieverbrauch’, _Informatik-Spektrum_, 43(6), pp. 391–404. Available at: [https://doi.org/10.1007/s00287-020-01321-z](https://doi.org/10.1007/s00287-020-01321-z). Sedlmeir, J., Ulrich, H., _et al._ (2020) ‘The Energy Consumption of Blockchain Technology : Beyond Myth’, _Business & Information Systems Engineering_, 62(6), pp. 599–608. Available at: [https://doi.org/10.1007/s12599-020-00656-x](https://doi.org/10.1007/s12599-020-00656-x). Stoll, C., Klaaßen, L. and Gallersdörfer, U. (2019) ‘The Carbon Footprint of Bitcoin’, _Joule_, 3(7), pp. 1647–1661. Available at: [https://doi.org/10.1016/j.joule.2019.05.012](https://doi.org/10.1016/j.joule.2019.05.012). Teng, F. _et al._ (2021) ‘A comprehensive review of energy blockchain: Application scenarios and development trends’, _International Journal of Energy Research_, 45(12), pp. 17515–17531. Available at: [https://doi.org/10.1002/er.7109](https://doi.org/10.1002/er.7109). Teufel, B., Sentic, A. and Barmet, M. (2019) ‘Blockchain energy: Blockchain in future energy systems’, _Journal of Electronic Science and Technology_, 17(4), p. 100011. Available at: [https://doi.org/10.1016/j.jnlest.2020.100011](https://doi.org/10.1016/j.jnlest.2020.100011). Truby, J. (2018) ‘Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain technologies and digital currencies’, _Energy Research and Social Science_, 44(June), pp. 399–410. Available at: [https://doi.org/10.1016/j.erss.2018.06.009](https://doi.org/10.1016/j.erss.2018.06.009). Valdivia, A.D. and Balcell, M.P. (2022) ‘Connecting the grids: A review of blockchain governance in distributed energy transitions’, _Energy Research and Social Science_, 84, p. 102383. Available at: [https://doi.org/10.1016/j.erss.2021.102383](https://doi.org/10.1016/j.erss.2021.102383). Vries, A.D. (2020) ‘Bitcoin’s energy consumption is underestimated : A market dynamics approach’, _Energy Research & Social Science_, 70(July), p. 101721. Available at: [https://doi.org/10.1016/j.erss.2020.101721](https://doi.org/10.1016/j.erss.2020.101721). Wanat, E. (2021) ‘Are Crypto-Assets Green Enough? – An analysis of draft EU Regulation on markets in crypto assets from the perspective of the European Green Deal’, _Osteuropa Recht_, 67(2), pp. 237–250. Available at: [https://doi.org/10.5771/0030-6444-2021-2-237](https://doi.org/10.5771/0030-6444-2021-2-237). Yan, L., Mirza, N. and Umar, M. (2021) ‘The cryptocurrency uncertainties and investment transitions: Evidence from high and low carbon energy funds in China’, _Technological Forecasting and Social Change_, p. 121326. Available at: [https://doi.org/10.1016/j.techfore.2021.121326](https://doi.org/10.1016/j.techfore.2021.121326). Yapa, C., de Alwis, C. and Liyanage, M. (2021) ‘Can Blockchain Strengthen the Energy Internet?’, _Network_, 1(2), pp. 95–115. Available at: [https://doi.org/10.3390/network1020007](https://doi.org/10.3390/network1020007). Yildizbasi, A. (2021) ‘Blockchain and renewable energy: Integration challenges in circular economy era’, _Renewable Energy_, 176, pp. 183–197. Available at: [https://doi.org/10.1016/j.renene.2021.05.053](https://doi.org/10.1016/j.renene.2021.05.053). Zannini, A. (2020) _Blockchain technology as the digital enabler to scale up renewable energy communities and cooperatives in Spain_. PhD Thesis. Zhu, S. _et al._ (2020) ‘The development of energy blockchain and its implications for China’s energy sector’, _Resources Policy_, 66, p. 101595. Available at: [https://doi.org/10.1016/j.resourpol.2020.101595](https://doi.org/10.1016/j.resourpol.2020.101595).