diff --git a/claims/is-environmental-footprint.md b/claims/is-environmental-footprint.md index 54f4f79..7c682f8 100644 --- a/claims/is-environmental-footprint.md +++ b/claims/is-environmental-footprint.md @@ -1,75 +1,163 @@ -# Is crypto mining harmful to the environment? -**Bitcoin [mining](../concepts/mining.md) is enormously harmful to the environment**. the design of the Proof of Work (PoW) [consensus algorithm](../concepts/consensus-algorithm.md) is energy wasteful as part of its design. There are three factors that give rise to its inordinate environmental footprint which is incommensurate with its generated utility. +--- +title: Crypto is harmful to the environment +description: Evaluating the claim that crypto is harmful to the environment. +category: + - claim: y + - featured: y + - interview: n + - deepdive: n +claim: + - evaluation: YY + - confidence: HH +--- + +# Claim Steel-Manned + +Crypto is harmful to the environment because crypto [mining](../concepts/mining.md) has a huge environmental footprint. The design of the [Proof of Work](../concepts/proof-of-work.md) (PoW) [consensus algorithm](../concepts/consensus-algorithm.md) is energy wasteful as part of its design. + +# Evidence of claim being made + +Diehl, S. (2021) ‘The Crypto Chernobyl’, 10 February. Available at: https://www.stephendiehl.com/blog/chernobyl.html (Accessed: 25 February 2022). + +> It is an enormously power-hungry and wasteful system that involves doing massive number of trial computations (a process called mining) in parallel across the world in a form of lottery in which computers race to confirm transactions. The more power you can waste, the more bitcoins you can probabilistically win in exchange for your energy waste... +> The protocol itself is a runway environmental disaster that incentives an ever increasing amount of waste that can only increase with time. Increasing energy waste is an central and irremovable part of the design. + +Elon Musk [@elonmusk]. ‘Tesla & Bitcoin Https://T.Co/YSswJmVZhP’. Tweet. Twitter, 12 May 2021. https://twitter.com/elonmusk/status/1392602041025843203. + +> Tesla has suspended vehicle purchases using Bitcoin. We are concerened about rapidly increasing use of fossil fuels for Bitcoin mining and transactions, espeically coal, which has the worst emissions of any fuel. + +Igini, M. (2022) 8 Bitcoin Facts: Why is This Cryptocurrency Bad for The Environment?, Earth.Org. Available at: https://earth.org/bitcoin-facts/ (Accessed: 20 September 2022). + +> Bitcoin’s energy consumption is off the charts and each transaction consumes more energy than countries like Sweden or the Netherlands. + +Martin, Katie, and Billy Nauman. ‘Bitcoin’s Growing Energy Problem: “It’s a Dirty Currency”’. Financial Times, 20 May 2021. + +> Bitcoin alone consumes as much electricity as a medium-sized European country,” says Professor Brian Lucey at Trinity College Dublin. “This is a stunning amount of electricity. It’s a dirty business. It’s a dirty currency. + +# Evaluation + +Bitcoin [mining](../concepts/mining.md) **is** enormously harmful to the environment. There are three factors that give rise to its inordinate environmental footprint which is incommensurate with its generated utility. 1. E-waste from discarded or broken ASIC mining equipment, graphics cards and servers. -2. Carbon release from fossil fuels used to power mining data centres -3. Opportunity cost of the energy used to run [consensus algorithm](../concepts/consensus-algorithm.md) compared to more efficient of efficient [real time gross settlement systems](../concepts/rtgs.md) and traditional [payment rails](is-transnational-payment.md) such as SWIFT, SEPA, Visa and ACH. +2. Carbon release from fossil fuels used to power mining data centres. +3. Opportunity cost of the energy used to run [consensus algorithm](../concepts/consensus-algorithm.md) compared to more efficient [real time gross settlement systems](../concepts/rtgs.md) and traditional payment rails such as SWIFT, SEPA, Visa and ACH. BItcoin mining has the equivalent power consumption of the state of Argentina, a country with a population of 45 million people. Bitcoin mining has an e-waste footprint comparable to that of entire population of Germany. Bitcoin mining collectively consumes more power than all data centres run by Google, Amazon, Microsoft, Apple, Netflix, Facebook and YouTube put together. -Bitcoin is simply one of thousands of crypto assets which use PoW algorithm, including the second largest asset Ethereum which together with all other assets sum to an even larger and difficult to calculate environmental footprint. +Bitcoin is simply one of thousands of crypto assets which use PoW algorithm, including the second largest asset Ethereum, which together with all other assets sum to an even larger and difficult to calculate environmental footprint. ## References -1. Ahl, Amanda, Masaru Yarime, Kenji Tanaka, and Daishi Sagawa. ‘Review of Blockchain-Based Distributed Energy: Implications for Institutional Development’. Renewable and Sustainable Energy Reviews 107 (2019): 200–211. https://doi.org/10.1016/j.rser.2019.03.002. -1. Amenta, Carlo, E Riva Sanseverino, and Carlo Stagnaro. ‘Regulating Blockchain for Sustainability? The Critical Relationship between Digital Innovation, Regulation, and Electricity Governance’. Energy Research & Social Science 76 (2021): 102060. https://doi.org/10.1016/j.erss.2021.102060. -1. Ante, L., F. Steinmetz, and I. Fiedler. ‘Blockchain and Energy: A Bibliometric Analysis and Review’. Renewable and Sustainable Energy Reviews 137, no. October 2020 (2021): 110597. https://doi.org/10.1016/j.rser.2020.110597. -1. Badea, Liana, and Mariana Claudia Mungiu-Pupazan. ‘The Economic and Environmental Impact of Bitcoin’. IEEE Access 9 (2021): 48091–104. https://doi.org/10.1109/ACCESS.2021.3068636. -1. Benetton, Matteo, Giovanni Compiani, and Adair Morse. ‘When Cryptomining Comes to Town: High Electricity-Use Spillovers to the Local Economy’. SSRN Electronic Journal, 2021. https://doi.org/10.2139/ssrn.3779720. -1. Bogensperger, Alexander, Andreas Zeiselmair, Michael Hinterstocker, Patrick Dossow, Johannes Hilpert, Maximilian Wimmer, Carsten von Gneisenau, et al. ‘Welche Zukunft Hat Die Blockchain-Technologie in Der Energiewirtschaft?’, 2021. https://www.econstor.eu/handle/10419/237670. -1. Brilliantova, Vlada, and Thomas Wolfgang Thurner. ‘Blockchain and the Future of Energy’. Technology in Society 57 (2019): 38–45. https://doi.org/10.1016/j.techsoc.2018.11.001. -1. Buth, M C (Annemarie), A J (Anna) Wieczorek, and G P J (Geert) Verbong. ‘The Promise of Peer-to-Peer Trading? The Potential Impact of Blockchain on the Actor Configuration in the Dutch Electricity System’. Energy Research & Social Science 53 (2019): 194–205. https://doi.org/10.1016/j.erss.2019.02.021. -1. Campbell-Verduyn, Malcolm. ‘Conjuring a Cooler World? Blockchains, Imaginaries and the Legitimacy of Climate Governance’. Global Cooperation Research Papers 28 (2021). https://doi.org/doi:10.14282/2198-0411-GCRP-28. -1. Diehl, Stephen. ‘The Crypto Chernobyl’, 10 February 2021. https://www.stephendiehl.com/blog/chernobyl.html. -1. Dindar, B., and Ö. Gül. ‘The Detection of Illicit Cryptocurrency Mining Farms with Innovative Approaches for the Prevention of Electricity Theft’. Energy & Environment, no. April (2021): 0958305X211045066. https://doi.org/10.1177/0958305x211045066. -1. Dorfleitner, Gregor, Franziska Muck, and Isabel Scheckenbach. ‘Blockchain Applications for Climate Protection: A Global Empirical Investigation’. Renewable and Sustainable Energy Reviews 149, no. June (October 2021): 111378. https://doi.org/10.1016/j.rser.2021.111378. -1. Gallersdörfer, Ulrich, Lena Klaaßen, and Christian Stoll. ‘Accounting for Carbon Emissions Caused by Cryptocurrency and Token Systems’, 2021. https://arxiv.org/abs/2111.06477. -1. ———. ‘Energy Consumption of Cryptocurrencies Beyond Bitcoin’. Joule, 2020. -1. Gallersdörfer, Ulrich, Lena Klaaßen, Christian Stoll, Ulrich Gallersdo, Lena Klaaßen, Christian Stoll, and Ulrich Gallersdo. ‘Energy Consumption of Cryptocurrencies Beyond Bitcoin’. Joule 4, no. 2018 (September 2020): 2018–21. https://doi.org/10.1016/j.joule.2020.07.013. -1. Goodkind, Andrew L, Benjamin A Jones, and Robert P Berrens. ‘Cryptodamages: Monetary Value Estimates of the Air Pollution and Human Health Impacts of Cryptocurrency Mining’. Energy Research & Social Science 59 (2020): 101281. -1. Goodkind, Andrew L., Benjamin A. Jones, and Robert P. Berrens. ‘Cryptodamages: Monetary Value Estimates of the Air Pollution and Human Health Impacts of Cryptocurrency Mining’. Energy Research and Social Science 59, no. March 2019 (2020): 101281. https://doi.org/10.1016/j.erss.2019.101281. -1. Greenberg, Pierce, and Dylan Bugden. ‘Energy Consumption Boomtowns in the United States: Community Responses to a Cryptocurrency Boom’. Energy Research and Social Science 50, no. December 2018 (2019): 162–67. https://doi.org/10.1016/j.erss.2018.12.005. -1. Howson, Peter. ‘Building Trust and Equity in Marine Conservation and Fisheries Supply Chain Management with Blockchain’. Marine Policy 115 (May 2020): 103873. https://doi.org/10.1016/J.MARPOL.2020.103873. -1. ———. ‘Climate Crises and Crypto-Colonialism: Conjuring Value on the Blockchain Frontiers of the Global South’. Frontiers in Blockchain 3, no. May (2020). https://doi.org/10.3389/fbloc.2020.00022. -1. ———. ‘Distributed Degrowth Technology: Challenges for Blockchain beyond the Green Economy’. Ecological Economics 184, no. June 2020 (June 2021): 107020. https://doi.org/10.1016/j.ecolecon.2021.107020. -1. ———. ‘Tackling Climate Change with Blockchain’. Nature Climate Change 9, no. 9 (2019): 644–45. https://doi.org/10.1038/s41558-019-0567-9. -1. Howson, Peter, Sarah Oakes, Zachary Baynham-Herd, and Jon Swords. ‘Cryptocarbon: The Promises and Pitfalls of Forest Protection on a Blockchain’. Geoforum 100, no. February 2019 (2019): 1–9. https://doi.org/10.1016/j.geoforum.2019.02.011. -1. Howson, Peter, and Alex de Vries. ‘Preying on the Poor? Opportunities and Challenges for Tackling the Social and Environmental Threats of Cryptocurrencies for Vulnerable and Low-Income Communities’. Energy Research and Social Science 84, no. xxxx (2022): 102394. https://doi.org/10.1016/j.erss.2021.102394. -1. Hull, Jed, Aarti Gupta, and Sanneke Kloppenburg. ‘Interrogating the Promises and Perils of Climate Cryptogovernance: Blockchain Discourses in International Climate Politics’. Earth System Governance 9 (2021): 100117. https://doi.org/10.1016/j.esg.2021.100117. -1. Huston, Jacob. ‘The Energy Consumption of Bitcoin Mining and Potential for Regulation’. George Washington Journal of Energy and Environmental Law 11, no. 1 (2020): 32–41. https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/gwjeel11§ion=6. -1. Jana, Rabin K., Indranil Ghosh, Debojyoti Das, and Anupam Dutta. ‘Determinants of Electronic Waste Generation in Bitcoin Network: Evidence from the Machine Learning Approach’. Technological Forecasting and Social Change 173 (2021). https://doi.org/10.1016/j.techfore.2021.121101. -1. Koomey, Jonathan, and Eric Masanet. ‘Does Not Compute: Avoiding Pitfalls Assessing the Internet’s Energy and Carbon Impacts’. Joule 5, no. 7 (2021): 1625–28. https://doi.org/10.1016/j.joule.2021.05.007. -1. Küfeoğlu, Sinan, and Mahmut Özkuran. ‘Bitcoin Mining: A Global Review of Energy and Power Demand’. Energy Research and Social Science 58 (2019): 101273. https://doi.org/10.1016/j.erss.2019.101273. -1. Li, Jingming, Nianping Li, Jinqing Peng, Haijiao Cui, and Zhibin Wu. ‘Energy Consumption of Cryptocurrency Mining: A Study of Electricity Consumption in Mining Cryptocurrencies’. Energy 168 (2019): 160–68. https://doi.org/10.1016/j.energy.2018.11.046. -1. ———. ‘Energy Consumption of Cryptocurrency Mining: A Study of Electricity Consumption in Mining Cryptocurrencies’. Energy 168 (2019): 160–68. https://doi.org/10.1016/j.energy.2018.11.046. -1. McDonald, Kyle. ‘Ethereum Emissions: A Bottom-up Estimate’, 2021. http://arxiv.org/abs/2112.01238. -1. Miglani, Arzoo, Neeraj Kumar, Vinay Chamola, and Sherali Zeadally. ‘Blockchain for Internet of Energy Management: Review, Solutions, and Challenges’. Computer Communications 151 (2020): 395–418. https://doi.org/10.1016/j.comcom.2020.01.014. -1. Mollah, Muhammad Baqer, Jun Zhao, Dusit Niyato, Kwok Yan Lam, Xin Zhang, Amer M.Y.M. Ghias, Leong Hai Koh, and Lei Yang. ‘Blockchain for Future Smart Grid: A Comprehensive Survey’. IEEE Internet of Things Journal 8, no. 1 (2021): 18–43. https://doi.org/10.1109/JIOT.2020.2993601. -1. Mora, Camilo, Randi L Rollins, Katie Taladay, Michael B Kantar, Mason K Chock, Mio Shimada, and Erik C Franklin. ‘Bitcoin Emissions Alone Could Push Global Warming above 2 C’. Nature Climate Change 8, no. 11 (2018): 931–33. -1. Náñez Alonso, Sergio Luis, Javier Jorge‐vázquez, Miguel Ángel Echarte Fernández, and Ricardo Francisco Reier Forradellas. ‘Cryptocurrency Mining from an Economic and Environmental Perspective. Analysis of the Most and Least Sustainable Countries’. Energies 14, no. 14 (2021). https://doi.org/10.3390/en14144254. -1. Okorie, David I. ‘A Network Analysis of Electricity Demand and the Cryptocurrency Markets’. International Journal of Finance and Economics 26, no. 2 (2021): 3093–3108. https://doi.org/10.1002/ijfe.1952. -1. Peplow, Mark. ‘Bitcoin Poses Major Electronic-Waste Problem’. Chemical & Engineering News. American Chemical Society, March 2019. http://cen.acs.org/environment/sustainability/Bitcoin-poses-major-electronic-waste/97/i11. -1. Petri, Ioan, Masoud Barati, Yacine Rezgui, and Omer F Rana. ‘Blockchain for Energy Sharing and Trading in Distributed Prosumer Communities’. Computers in Industry 123 (2020): 103282. https://doi.org/10.1016/j.compind.2020.103282. -1. Platt, Moritz, Johannes Sedlmeir, Daniel Platt, Jiahua Xu, Paolo Tasca, Nikhil Vadgama, and Juan Ignacio Ibanez. ‘Energy Footprint of Blockchain Consensus Mechanisms Beyond Proof-of-Work’, 2021. https://arxiv.org/abs/2109.03667. -1. Qin, Shize, Lena Klaaßen, Ulrich Gallersdörfer, Christian Stoll, and Da Zhang. ‘Bitcoin’s Future Carbon Footprint’, 2020. http://arxiv.org/abs/2011.02612. -1. Scharnowski, Stefan, and Yanghua Shi. ‘Bitcoin Blackout: Proof-of-Work and the Centralization of Mining’. SSRN Electronic Journal, 2021. https://doi.org/10.2139/ssrn.3936787. -1. Schinckus, Christophe. ‘The Good, the Bad and the Ugly: An Overview of the Sustainability of Blockchain Technology’. Energy Research and Social Science 69, no. May (2020): 101614. https://doi.org/10.1016/j.erss.2020.101614. -1. Schneiders, Alexandra, and David Shipworth. ‘Community Energy Groups: Can They Shield Consumers from the Risks of Using Blockchain for Peer-to-Peer Energy Trading?’ Energies 14, no. 12 (2021). https://doi.org/10.3390/en14123569. -1. Schulz, Karsten, and Marian Feist. ‘Leveraging Blockchain Technology for Innovative Climate Finance under the Green Climate Fund’. SSRN Electronic Journal 7 (2020): 100084. https://doi.org/10.2139/ssrn.3663176. -1. Sedlmeir, Johannes, Hans Ulrich Buhl, Gilbert Fridgen, and Robert Keller. ‘Ein Blick Auf Aktuelle Entwicklungen Bei Blockchains Und Deren Auswirkungen Auf Den Energieverbrauch’. Informatik-Spektrum 43, no. 6 (2020): 391–404. https://doi.org/10.1007/s00287-020-01321-z. -1. Sedlmeir, Johannes, Hans Ulrich, Buhl Gilbert, and Robert Keller. ‘The Energy Consumption of Blockchain Technology : Beyond Myth’. Business & Information Systems Engineering 62, no. 6 (2020): 599–608. https://doi.org/10.1007/s12599-020-00656-x. -1. Stoll, Christian, Lena Klaaßen, and Ulrich Gallersdörfer. ‘The Carbon Footprint of Bitcoin’. Joule 3, no. 7 (2019): 1647–61. https://doi.org/10.1016/j.joule.2019.05.012. -1. Teng, Fei, Qi Zhang, Ge Wang, Jiangfeng Liu, and Hailong Li. ‘A Comprehensive Review of Energy Blockchain: Application Scenarios and Development Trends’. International Journal of Energy Research 45, no. 12 (2021): 17515–31. https://doi.org/10.1002/er.7109. -1. Teufel, Bernd, Anton Sentic, and Mathias Barmet. ‘Blockchain Energy: Blockchain in Future Energy Systems’. Journal of Electronic Science and Technology 17, no. 4 (2019): 100011. https://doi.org/10.1016/j.jnlest.2020.100011. -1. Truby, Jon. ‘Decarbonizing Bitcoin: Law and Policy Choices for Reducing the Energy Consumption of Blockchain Technologies and Digital Currencies’. Energy Research and Social Science 44, no. June (2018): 399–410. https://doi.org/10.1016/j.erss.2018.06.009. -1. Valdivia, A. Diaz, and M. Poblet Balcell. ‘Connecting the Grids: A Review of Blockchain Governance in Distributed Energy Transitions’. Energy Research and Social Science 84 (2022): 102383. https://doi.org/10.1016/j.erss.2021.102383. -1. Vries, Alex De. ‘Bitcoin’s Energy Consumption Is Underestimated : A Market Dynamics Approach’. Energy Research & Social Science 70, no. July (2020): 101721. https://doi.org/10.1016/j.erss.2020.101721. -1. Vries, Alex de. ‘Bitcoin’s Growing Energy Problem’. Joule 2, no. 5 (2018): 801–5. https://doi.org/10.1016/j.joule.2018.04.016. -1. Vries, Alex de, and Christian Stoll. ‘Bitcoin’s Growing e-Waste Problem’. Resources, Conservation and Recycling 175, no. September (2021): 105901. https://doi.org/10.1016/j.resconrec.2021.105901. -1. Wanat, Emanuel. ‘Are Crypto-Assets Green Enough? – An Analysis of Draft EU Regulation on Markets in Crypto Assets from the Perspective of the European Green Deal’. Osteuropa Recht 67, no. 2 (2021): 237–50. https://doi.org/10.5771/0030-6444-2021-2-237. -1. Yan, Lei, Nawazish Mirza, and Muhammad Umar. ‘The Cryptocurrency Uncertainties and Investment Transitions: Evidence from High and Low Carbon Energy Funds in China’. Technological Forecasting and Social Change, 2021, 121326. https://doi.org/10.1016/j.techfore.2021.121326. -1. Yapa, Charithri, Chamitha de Alwis, and Madhusanka Liyanage. ‘Can Blockchain Strengthen the Energy Internet?’ Network 1, no. 2 (2021): 95–115. https://doi.org/10.3390/network1020007. -1. Yildizbasi, Abdullah. ‘Blockchain and Renewable Energy: Integration Challenges in Circular Economy Era’. Renewable Energy 176 (2021): 183–97. https://doi.org/10.1016/j.renene.2021.05.053. -1. Zannini, Alice. ‘Blockchain Technology as the Digital Enabler to Scale up Renewable Energy Communities and Cooperatives in Spain’, 2020. -1. Zhu, Shuai, Malin Song, Ming Kim Lim, Jianlin Wang, and Jiajia Zhao. ‘The Development of Energy Blockchain and Its Implications for China’s Energy Sector’. Resources Policy 66 (2020): 101595. https://doi.org/10.1016/j.resourpol.2020.101595. + +Ahl, A. _et al._ (2019) ‘Review of blockchain-based distributed energy: Implications for institutional development’, _Renewable and Sustainable Energy Reviews_, 107, pp. 200–211. Available at: [https://doi.org/10.1016/j.rser.2019.03.002](https://doi.org/10.1016/j.rser.2019.03.002). + +Amenta, C., Riva Sanseverino, E. and Stagnaro, C. (2021) ‘Regulating blockchain for sustainability? The critical relationship between digital innovation, regulation, and electricity governance’, _Energy Research & Social Science_, 76, p. 102060. Available at: [https://doi.org/10.1016/j.erss.2021.102060](https://doi.org/10.1016/j.erss.2021.102060). + +Ante, L., Steinmetz, F. and Fiedler, I. (2021) ‘Blockchain and energy: A bibliometric analysis and review’, _Renewable and Sustainable Energy Reviews_, 137(October 2020), p. 110597. Available at: [https://doi.org/10.1016/j.rser.2020.110597](https://doi.org/10.1016/j.rser.2020.110597). + +Badea, L. and Mungiu-Pupazan, M.C. (2021) ‘The Economic and Environmental Impact of Bitcoin’, _IEEE Access_, 9, pp. 48091–48104. Available at: [https://doi.org/10.1109/ACCESS.2021.3068636](https://doi.org/10.1109/ACCESS.2021.3068636). + +Benetton, M., Compiani, G. and Morse, A. (2021) ‘When Cryptomining Comes to Town: High Electricity-Use Spillovers to the Local Economy’, _SSRN Electronic Journal_ [Preprint]. Available at: [https://doi.org/10.2139/ssrn.3779720](https://doi.org/10.2139/ssrn.3779720). + +Bogensperger, A. _et al._ (2021) ‘Welche Zukunft hat die Blockchain-Technologie in der Energiewirtschaft?’ Available at: [https://www.econstor.eu/handle/10419/237670](https://www.econstor.eu/handle/10419/237670). + +Brilliantova, V. and Thurner, T.W. (2019) ‘Blockchain and the future of energy’, _Technology in Society_, 57, pp. 38–45. Available at: [https://doi.org/10.1016/j.techsoc.2018.11.001](https://doi.org/10.1016/j.techsoc.2018.11.001). + +Buth, M.C. (Annemarie), Wieczorek, A.J. (Anna) and Verbong, G.P.J. (Geert) (2019) ‘The promise of peer-to-peer trading? The potential impact of blockchain on the actor configuration in the Dutch electricity system’, _Energy Research & Social Science_, 53, pp. 194–205. Available at: [https://doi.org/10.1016/j.erss.2019.02.021](https://doi.org/10.1016/j.erss.2019.02.021). + +Campbell-Verduyn, M. (2021) ‘Conjuring a Cooler World? Blockchains, Imaginaries and the Legitimacy of Climate Governance’, _Global Cooperation Research Papers_, 28. Available at: [https://doi.org/doi:10.14282/2198-0411-GCRP-28](https://doi.org/doi:10.14282/2198-0411-GCRP-28). + +Diehl, S. (2021) ‘The Crypto Chernobyl’, 10 February. Available at: [https://www.stephendiehl.com/blog/chernobyl.html](https://www.stephendiehl.com/blog/chernobyl.html) (Accessed: 25 February 2022). + +Dindar, B. and Gül, Ö. (2021) ‘The detection of illicit cryptocurrency mining farms with innovative approaches for the prevention of electricity theft’, _Energy & Environment_, (April), p. 0958305X211045066. Available at: [https://doi.org/10.1177/0958305x211045066](https://doi.org/10.1177/0958305x211045066). + +Dorfleitner, G., Muck, F. and Scheckenbach, I. (2021) ‘Blockchain applications for climate protection: A global empirical investigation’, _Renewable and Sustainable Energy Reviews_, 149(June), p. 111378. Available at: [https://doi.org/10.1016/j.rser.2021.111378](https://doi.org/10.1016/j.rser.2021.111378). + +Gallersdörfer, U. _et al._ (2020) ‘Energy Consumption of Cryptocurrencies Beyond Bitcoin’, _Joule_, 4(2018), pp. 2018–2021. Available at: [https://doi.org/10.1016/j.joule.2020.07.013](https://doi.org/10.1016/j.joule.2020.07.013). + +Gallersdörfer, U., Klaaßen, L. and Stoll, C. (2021) ‘Accounting for carbon emissions caused by cryptocurrency and token systems’. Available at: [https://arxiv.org/abs/2111.06477](https://arxiv.org/abs/2111.06477). + +Goodkind, A.L., Jones, B.A. and Berrens, R.P. (2020) ‘Cryptodamages: Monetary value estimates of the air pollution and human health impacts of cryptocurrency mining’, _Energy Research and Social Science_, 59(March 2019), p. 101281. Available at: [https://doi.org/10.1016/j.erss.2019.101281](https://doi.org/10.1016/j.erss.2019.101281). + +Greenberg, P. and Bugden, D. (2019) ‘Energy consumption boomtowns in the United States: Community responses to a cryptocurrency boom’, _Energy Research and Social Science_, 50(December 2018), pp. 162–167. Available at: [https://doi.org/10.1016/j.erss.2018.12.005](https://doi.org/10.1016/j.erss.2018.12.005). + +Howson, P. _et al._ (2019) ‘Cryptocarbon: The promises and pitfalls of forest protection on a blockchain’, _Geoforum_, 100(February 2019), pp. 1–9. Available at: [https://doi.org/10.1016/j.geoforum.2019.02.011](https://doi.org/10.1016/j.geoforum.2019.02.011). + +Howson, P. (2019) ‘Tackling climate change with blockchain’, _Nature Climate Change_, 9(9), pp. 644–645. Available at: [https://doi.org/10.1038/s41558-019-0567-9](https://doi.org/10.1038/s41558-019-0567-9). + +Howson, P. (2020a) ‘Building trust and equity in marine conservation and fisheries supply chain management with blockchain’, _Marine Policy_, 115, p. 103873. Available at: [https://doi.org/10.1016/J.MARPOL.2020.103873](https://doi.org/10.1016/J.MARPOL.2020.103873). + +Howson, P. (2020b) ‘Climate Crises and Crypto-Colonialism: Conjuring Value on the Blockchain Frontiers of the Global South’, _Frontiers in Blockchain_, 3(May). Available at: [https://doi.org/10.3389/fbloc.2020.00022](https://doi.org/10.3389/fbloc.2020.00022). + +Howson, P. (2021) ‘Distributed degrowth technology: Challenges for blockchain beyond the green economy’, _Ecological Economics_, 184(June 2020), p. 107020. Available at: [https://doi.org/10.1016/j.ecolecon.2021.107020](https://doi.org/10.1016/j.ecolecon.2021.107020). + +Howson, P. and de Vries, A. (2022) ‘Preying on the poor? Opportunities and challenges for tackling the social and environmental threats of cryptocurrencies for vulnerable and low-income communities’, _Energy Research and Social Science_, 84(xxxx), p. 102394. Available at: [https://doi.org/10.1016/j.erss.2021.102394](https://doi.org/10.1016/j.erss.2021.102394). + +Hull, J., Gupta, A. and Kloppenburg, S. (2021) ‘Interrogating the promises and perils of climate cryptogovernance: Blockchain discourses in international climate politics’, _Earth System Governance_, 9, p. 100117. Available at: [https://doi.org/10.1016/j.esg.2021.100117](https://doi.org/10.1016/j.esg.2021.100117). + +Huston, J. (2020) ‘The Energy Consumption of Bitcoin Mining and Potential for Regulation’, _George Washington Journal of Energy and Environmental Law_, 11(1), pp. 32–41. Available at: [https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/gwjeel11§ion=6](https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/gwjeel11§ion=6). + +Jana, R.K. _et al._ (2021) ‘Determinants of electronic waste generation in Bitcoin network: Evidence from the machine learning approach’, _Technological Forecasting and Social Change_, 173. Available at: [https://doi.org/10.1016/j.techfore.2021.121101](https://doi.org/10.1016/j.techfore.2021.121101). + +Koomey, J. and Masanet, E. (2021) ‘Does not compute: Avoiding pitfalls assessing the Internet’s energy and carbon impacts’, _Joule_, 5(7), pp. 1625–1628. Available at: [https://doi.org/10.1016/j.joule.2021.05.007](https://doi.org/10.1016/j.joule.2021.05.007). + +Küfeoğlu, S. and Özkuran, M. (2019) ‘Bitcoin mining: A global review of energy and power demand’, _Energy Research and Social Science_, 58, p. 101273. Available at: [https://doi.org/10.1016/j.erss.2019.101273](https://doi.org/10.1016/j.erss.2019.101273). + +Li, J. _et al._ (2019) ‘Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies’, _Energy_, 168, pp. 160–168. Available at: [https://doi.org/10.1016/j.energy.2018.11.046](https://doi.org/10.1016/j.energy.2018.11.046). + +McDonald, K. (2021) ‘Ethereum Emissions: A Bottom-up Estimate’. Available at: [http://arxiv.org/abs/2112.01238](http://arxiv.org/abs/2112.01238). + +Miglani, A. _et al._ (2020) ‘Blockchain for Internet of Energy management: Review, solutions, and challenges’, _Computer Communications_, 151, pp. 395–418. Available at: [https://doi.org/10.1016/j.comcom.2020.01.014](https://doi.org/10.1016/j.comcom.2020.01.014). + +Mollah, M.B. _et al._ (2021) ‘Blockchain for Future Smart Grid: A Comprehensive Survey’, _IEEE Internet of Things Journal_, 8(1), pp. 18–43. Available at: [https://doi.org/10.1109/JIOT.2020.2993601](https://doi.org/10.1109/JIOT.2020.2993601). + +Mora, C. _et al._ (2018) ‘Bitcoin emissions alone could push global warming above 2 C’, _Nature Climate Change_, 8(11), pp. 931–933. + +Náñez Alonso, S.L. _et al._ (2021) ‘Cryptocurrency mining from an economic and environmental perspective. Analysis of the most and least sustainable countries’, _Energies_, 14(14). Available at: [https://doi.org/10.3390/en14144254](https://doi.org/10.3390/en14144254). + +Okorie, D.I. (2021) ‘A network analysis of electricity demand and the cryptocurrency markets’, _International Journal of Finance and Economics_, 26(2), pp. 3093–3108. Available at: [https://doi.org/10.1002/ijfe.1952](https://doi.org/10.1002/ijfe.1952). + +Peplow, M. (2019) ‘Bitcoin poses major electronic-waste problem’, _Chemical & Engineering News_. American Chemical Society. Available at: [http://cen.acs.org/environment/sustainability/Bitcoin-poses-major-electronic-waste/97/i11](http://cen.acs.org/environment/sustainability/Bitcoin-poses-major-electronic-waste/97/i11). + +Petri, I. _et al._ (2020) ‘Blockchain for energy sharing and trading in distributed prosumer communities’, _Computers in Industry_, 123, p. 103282. Available at: [https://doi.org/10.1016/j.compind.2020.103282](https://doi.org/10.1016/j.compind.2020.103282). + +Platt, M. _et al._ (2021) ‘Energy Footprint of Blockchain Consensus Mechanisms Beyond Proof-of-Work’. Available at: [https://arxiv.org/abs/2109.03667](https://arxiv.org/abs/2109.03667). + +Qin, S. _et al._ (2020) ‘Bitcoin’s future carbon footprint’. Available at: [http://arxiv.org/abs/2011.02612](http://arxiv.org/abs/2011.02612). + +Scharnowski, S. and Shi, Y. (2021) ‘Bitcoin Blackout: Proof-of-Work and the Centralization of Mining’, _SSRN Electronic Journal_. Available at: [https://doi.org/10.2139/ssrn.3936787](https://doi.org/10.2139/ssrn.3936787). + +Schinckus, C. (2020) ‘The good, the bad and the ugly: An overview of the sustainability of blockchain technology’, _Energy Research and Social Science_, 69(May), p. 101614. Available at: [https://doi.org/10.1016/j.erss.2020.101614](https://doi.org/10.1016/j.erss.2020.101614). + +Schneiders, A. and Shipworth, D. (2021) ‘Community Energy Groups: Can They Shield Consumers from the Risks of Using Blockchain for Peer-to-Peer Energy Trading?’, _Energies_, 14(12). Available at: [https://doi.org/10.3390/en14123569](https://doi.org/10.3390/en14123569). + +Schulz, K. and Feist, M. (2020) ‘Leveraging Blockchain Technology for Innovative Climate Finance under the Green Climate Fund’, _SSRN Electronic Journal_, 7, p. 100084. Available at: [https://doi.org/10.2139/ssrn.3663176](https://doi.org/10.2139/ssrn.3663176). + +Sedlmeir, J., Buhl, H.U., _et al._ (2020) ‘Ein Blick auf aktuelle Entwicklungen bei Blockchains und deren Auswirkungen auf den Energieverbrauch’, _Informatik-Spektrum_, 43(6), pp. 391–404. Available at: [https://doi.org/10.1007/s00287-020-01321-z](https://doi.org/10.1007/s00287-020-01321-z). + +Sedlmeir, J., Ulrich, H., _et al._ (2020) ‘The Energy Consumption of Blockchain Technology : Beyond Myth’, _Business & Information Systems Engineering_, 62(6), pp. 599–608. Available at: [https://doi.org/10.1007/s12599-020-00656-x](https://doi.org/10.1007/s12599-020-00656-x). + +Stoll, C., Klaaßen, L. and Gallersdörfer, U. (2019) ‘The Carbon Footprint of Bitcoin’, _Joule_, 3(7), pp. 1647–1661. Available at: [https://doi.org/10.1016/j.joule.2019.05.012](https://doi.org/10.1016/j.joule.2019.05.012). + +Teng, F. _et al._ (2021) ‘A comprehensive review of energy blockchain: Application scenarios and development trends’, _International Journal of Energy Research_, 45(12), pp. 17515–17531. Available at: [https://doi.org/10.1002/er.7109](https://doi.org/10.1002/er.7109). + +Teufel, B., Sentic, A. and Barmet, M. (2019) ‘Blockchain energy: Blockchain in future energy systems’, _Journal of Electronic Science and Technology_, 17(4), p. 100011. Available at: [https://doi.org/10.1016/j.jnlest.2020.100011](https://doi.org/10.1016/j.jnlest.2020.100011). + +Truby, J. (2018) ‘Decarbonizing Bitcoin: Law and policy choices for reducing the energy consumption of Blockchain technologies and digital currencies’, _Energy Research and Social Science_, 44(June), pp. 399–410. Available at: [https://doi.org/10.1016/j.erss.2018.06.009](https://doi.org/10.1016/j.erss.2018.06.009). + +Valdivia, A.D. and Balcell, M.P. (2022) ‘Connecting the grids: A review of blockchain governance in distributed energy transitions’, _Energy Research and Social Science_, 84, p. 102383. Available at: [https://doi.org/10.1016/j.erss.2021.102383](https://doi.org/10.1016/j.erss.2021.102383). + +Vries, A.D. (2020) ‘Bitcoin’s energy consumption is underestimated : A market dynamics approach’, _Energy Research & Social Science_, 70(July), p. 101721. Available at: [https://doi.org/10.1016/j.erss.2020.101721](https://doi.org/10.1016/j.erss.2020.101721). + +Wanat, E. (2021) ‘Are Crypto-Assets Green Enough? – An analysis of draft EU Regulation on markets in crypto assets from the perspective of the European Green Deal’, _Osteuropa Recht_, 67(2), pp. 237–250. Available at: [https://doi.org/10.5771/0030-6444-2021-2-237](https://doi.org/10.5771/0030-6444-2021-2-237). + +Yan, L., Mirza, N. and Umar, M. (2021) ‘The cryptocurrency uncertainties and investment transitions: Evidence from high and low carbon energy funds in China’, _Technological Forecasting and Social Change_, p. 121326. Available at: [https://doi.org/10.1016/j.techfore.2021.121326](https://doi.org/10.1016/j.techfore.2021.121326). + +Yapa, C., de Alwis, C. and Liyanage, M. (2021) ‘Can Blockchain Strengthen the Energy Internet?’, _Network_, 1(2), pp. 95–115. Available at: [https://doi.org/10.3390/network1020007](https://doi.org/10.3390/network1020007). + +Yildizbasi, A. (2021) ‘Blockchain and renewable energy: Integration challenges in circular economy era’, _Renewable Energy_, 176, pp. 183–197. Available at: [https://doi.org/10.1016/j.renene.2021.05.053](https://doi.org/10.1016/j.renene.2021.05.053). + +Zannini, A. (2020) _Blockchain technology as the digital enabler to scale up renewable energy communities and cooperatives in Spain_. PhD Thesis. + +Zhu, S. _et al._ (2020) ‘The development of energy blockchain and its implications for China’s energy sector’, _Resources Policy_, 66, p. 101595. Available at: [https://doi.org/10.1016/j.resourpol.2020.101595](https://doi.org/10.1016/j.resourpol.2020.101595). \ No newline at end of file diff --git a/meta/editing.md b/meta/editing.md index 9a894ff..8b1f222 100644 --- a/meta/editing.md +++ b/meta/editing.md @@ -4,7 +4,7 @@ This is a guide to help people contribute content or manage contribution of cont ## How does the site work? -The [Making Sense of Crypto and Web3](https://web3.lifeitself.us/) website is a wiki site: a collaborative site where users can add or otherwise edit content. This guide is for users who wish to add or edit content on the site, such as key concepts or ideologies in the [Guide](https://web3.lifeitself.us/guide) section or sensemaking in the [Claims](https://web3.lifeitself.us/claims) section. +The [Making Sense of Crypto and Web3](https://web3.lifeitself.us/) website is a wiki site: a collaborative site where users can add or edit content. This guide is for users who wish to add or edit content on the site, such as key concepts or ideologies in the [Guide](https://web3.lifeitself.us/guide) section or sensemaking in the [Claims](https://web3.lifeitself.us/claims) section. All the content for the [Making Sense of Crypto & Web3 website](https://web3.lifeitself.us/) is contained within the life-itself/web3 [Github repo](https://github.com/life-itself/web3).