typst/src/eval/mod.rs

560 lines
16 KiB
Rust

//! Evaluation of syntax trees.
#[macro_use]
mod value;
mod capture;
mod ops;
mod scope;
pub use capture::*;
pub use scope::*;
pub use value::*;
use std::collections::HashMap;
use std::rc::Rc;
use super::*;
use crate::color::Color;
use crate::diag::{Diag, DiagSet};
use crate::geom::{Angle, Length, Relative};
use crate::syntax::visit::Visit;
use crate::syntax::*;
/// Evaluate all expressions in a syntax tree.
///
/// The `scope` consists of the base definitions that are present from the
/// beginning (typically, the standard library).
pub fn eval(env: &mut Env, tree: &Tree, scope: &Scope) -> Pass<ExprMap> {
let mut ctx = EvalContext::new(env, scope);
let map = tree.eval(&mut ctx);
Pass::new(map, ctx.diags)
}
/// A map from expressions to the values they evaluated to.
///
/// The raw pointers point into the expressions contained in some [tree](Tree).
/// Since the lifetime is erased, the tree could go out of scope while the hash
/// map still lives. Though this could lead to lookup panics, it is not unsafe
/// since the pointers are never dereferenced.
pub type ExprMap = HashMap<*const Expr, Value>;
/// The context for evaluation.
#[derive(Debug)]
pub struct EvalContext<'a> {
/// The environment from which resources are gathered.
pub env: &'a mut Env,
/// The active scopes.
pub scopes: Scopes<'a>,
/// Evaluation diagnostics.
pub diags: DiagSet,
}
impl<'a> EvalContext<'a> {
/// Create a new execution context with a base scope.
pub fn new(env: &'a mut Env, scope: &'a Scope) -> Self {
Self {
env,
scopes: Scopes::with_base(scope),
diags: DiagSet::new(),
}
}
/// Add a diagnostic.
pub fn diag(&mut self, diag: Diag) {
self.diags.insert(diag);
}
}
/// Evaluate an expression.
pub trait Eval {
/// The output of evaluating the expression.
type Output;
/// Evaluate the expression to the output value.
fn eval(&self, ctx: &mut EvalContext) -> Self::Output;
}
impl Eval for Tree {
type Output = ExprMap;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
struct ExprVisitor<'a, 'b> {
map: ExprMap,
ctx: &'a mut EvalContext<'b>,
}
impl<'ast> Visit<'ast> for ExprVisitor<'_, '_> {
fn visit_expr(&mut self, item: &'ast Expr) {
self.map.insert(item as *const _, item.eval(self.ctx));
}
}
let mut visitor = ExprVisitor { map: ExprMap::new(), ctx };
visitor.visit_tree(self);
visitor.map
}
}
impl Eval for Expr {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
match self {
Self::Lit(lit) => lit.eval(ctx),
Self::Ident(v) => match ctx.scopes.get(&v) {
Some(slot) => slot.borrow().clone(),
None => {
ctx.diag(error!(v.span, "unknown variable"));
Value::Error
}
},
Self::Array(v) => Value::Array(v.eval(ctx)),
Self::Dict(v) => Value::Dict(v.eval(ctx)),
Self::Template(v) => Value::Template(vec![v.eval(ctx)]),
Self::Group(v) => v.eval(ctx),
Self::Block(v) => v.eval(ctx),
Self::Call(v) => v.eval(ctx),
Self::Closure(v) => v.eval(ctx),
Self::Unary(v) => v.eval(ctx),
Self::Binary(v) => v.eval(ctx),
Self::Let(v) => v.eval(ctx),
Self::If(v) => v.eval(ctx),
Self::While(v) => v.eval(ctx),
Self::For(v) => v.eval(ctx),
}
}
}
impl Eval for Lit {
type Output = Value;
fn eval(&self, _: &mut EvalContext) -> Self::Output {
match self.kind {
LitKind::None => Value::None,
LitKind::Bool(v) => Value::Bool(v),
LitKind::Int(v) => Value::Int(v),
LitKind::Float(v) => Value::Float(v),
LitKind::Length(v, unit) => Value::Length(Length::with_unit(v, unit)),
LitKind::Angle(v, unit) => Value::Angle(Angle::with_unit(v, unit)),
LitKind::Percent(v) => Value::Relative(Relative::new(v / 100.0)),
LitKind::Color(v) => Value::Color(Color::Rgba(v)),
LitKind::Str(ref v) => Value::Str(v.clone()),
}
}
}
impl Eval for ExprArray {
type Output = ValueArray;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
self.items.iter().map(|expr| expr.eval(ctx)).collect()
}
}
impl Eval for ExprDict {
type Output = ValueDict;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
self.items
.iter()
.map(|Named { name, expr }| (name.string.clone(), expr.eval(ctx)))
.collect()
}
}
impl Eval for ExprTemplate {
type Output = TemplateNode;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let tree = Rc::clone(&self.tree);
let map = self.tree.eval(ctx);
TemplateNode::Tree { tree, map }
}
}
impl Eval for ExprGroup {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
self.expr.eval(ctx)
}
}
impl Eval for ExprBlock {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
if self.scoping {
ctx.scopes.enter();
}
let mut output = Value::None;
for expr in &self.exprs {
output = expr.eval(ctx);
}
if self.scoping {
ctx.scopes.exit();
}
output
}
}
impl Eval for ExprUnary {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let value = self.expr.eval(ctx);
if value == Value::Error {
return Value::Error;
}
let ty = value.type_name();
let out = match self.op {
UnOp::Pos => ops::pos(value),
UnOp::Neg => ops::neg(value),
UnOp::Not => ops::not(value),
};
if out == Value::Error {
ctx.diag(error!(
self.span,
"cannot apply '{}' to {}",
self.op.as_str(),
ty,
));
}
out
}
}
impl Eval for ExprBinary {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
match self.op {
BinOp::Add => self.apply(ctx, ops::add),
BinOp::Sub => self.apply(ctx, ops::sub),
BinOp::Mul => self.apply(ctx, ops::mul),
BinOp::Div => self.apply(ctx, ops::div),
BinOp::And => self.apply(ctx, ops::and),
BinOp::Or => self.apply(ctx, ops::or),
BinOp::Eq => self.apply(ctx, ops::eq),
BinOp::Neq => self.apply(ctx, ops::neq),
BinOp::Lt => self.apply(ctx, ops::lt),
BinOp::Leq => self.apply(ctx, ops::leq),
BinOp::Gt => self.apply(ctx, ops::gt),
BinOp::Geq => self.apply(ctx, ops::geq),
BinOp::Assign => self.assign(ctx, |_, b| b),
BinOp::AddAssign => self.assign(ctx, ops::add),
BinOp::SubAssign => self.assign(ctx, ops::sub),
BinOp::MulAssign => self.assign(ctx, ops::mul),
BinOp::DivAssign => self.assign(ctx, ops::div),
}
}
}
impl ExprBinary {
/// Apply a basic binary operation.
fn apply<F>(&self, ctx: &mut EvalContext, op: F) -> Value
where
F: FnOnce(Value, Value) -> Value,
{
// Short-circuit boolean operations.
let lhs = self.lhs.eval(ctx);
match (self.op, &lhs) {
(BinOp::And, Value::Bool(false)) => return lhs,
(BinOp::Or, Value::Bool(true)) => return lhs,
_ => {}
}
let rhs = self.rhs.eval(ctx);
if lhs == Value::Error || rhs == Value::Error {
return Value::Error;
}
// Save type names before we consume the values in case of error.
let types = (lhs.type_name(), rhs.type_name());
let out = op(lhs, rhs);
if out == Value::Error {
self.error(ctx, types);
}
out
}
/// Apply an assignment operation.
fn assign<F>(&self, ctx: &mut EvalContext, op: F) -> Value
where
F: FnOnce(Value, Value) -> Value,
{
let slot = if let Expr::Ident(id) = self.lhs.as_ref() {
match ctx.scopes.get(id) {
Some(slot) => Rc::clone(slot),
None => {
ctx.diag(error!(self.lhs.span(), "unknown variable"));
return Value::Error;
}
}
} else {
ctx.diag(error!(self.lhs.span(), "cannot assign to this expression"));
return Value::Error;
};
let rhs = self.rhs.eval(ctx);
let mut mutable = match slot.try_borrow_mut() {
Ok(mutable) => mutable,
Err(_) => {
ctx.diag(error!(self.lhs.span(), "cannot assign to a constant"));
return Value::Error;
}
};
let lhs = std::mem::take(&mut *mutable);
let types = (lhs.type_name(), rhs.type_name());
*mutable = op(lhs, rhs);
if *mutable == Value::Error {
self.error(ctx, types);
return Value::Error;
}
Value::None
}
fn error(&self, ctx: &mut EvalContext, (a, b): (&str, &str)) {
ctx.diag(error!(self.span, "{}", match self.op {
BinOp::Add => format!("cannot add {} and {}", a, b),
BinOp::Sub => format!("cannot subtract {1} from {0}", a, b),
BinOp::Mul => format!("cannot multiply {} with {}", a, b),
BinOp::Div => format!("cannot divide {} by {}", a, b),
_ => format!("cannot apply '{}' to {} and {}", self.op.as_str(), a, b),
}));
}
}
impl Eval for ExprCall {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let callee = self.callee.eval(ctx);
if let Value::Func(func) = callee {
let func = func.clone();
let mut args = self.args.eval(ctx);
let returned = func(ctx, &mut args);
args.finish(ctx);
return returned;
} else if callee != Value::Error {
ctx.diag(error!(
self.callee.span(),
"expected function, found {}",
callee.type_name(),
));
}
Value::Error
}
}
impl Eval for ExprArgs {
type Output = ValueArgs;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let items = self.items.iter().map(|arg| arg.eval(ctx)).collect();
ValueArgs { span: self.span, items }
}
}
impl Eval for ExprArg {
type Output = ValueArg;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
match self {
Self::Pos(expr) => ValueArg {
name: None,
value: Spanned::new(expr.eval(ctx), expr.span()),
},
Self::Named(Named { name, expr }) => ValueArg {
name: Some(Spanned::new(name.string.clone(), name.span)),
value: Spanned::new(expr.eval(ctx), expr.span()),
},
}
}
}
impl Eval for ExprClosure {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let params = Rc::clone(&self.params);
let body = Rc::clone(&self.body);
// Collect the captured variables.
let captured = {
let mut visitor = CapturesVisitor::new(&ctx.scopes);
visitor.visit_closure(self);
visitor.finish()
};
Value::Func(ValueFunc::new(None, move |ctx, args| {
// Don't leak the scopes from the call site. Instead, we use the
// scope of captured variables we collected earlier.
let prev = std::mem::take(&mut ctx.scopes);
ctx.scopes.top = captured.clone();
for param in params.iter() {
// Set the parameter to `none` if the argument is missing.
let value =
args.require::<Value>(ctx, param.as_str()).unwrap_or_default();
ctx.scopes.def_mut(param.as_str(), value);
}
let value = body.eval(ctx);
ctx.scopes = prev;
value
}))
}
}
impl Eval for ExprLet {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let value = match &self.init {
Some(expr) => expr.eval(ctx),
None => Value::None,
};
ctx.scopes.def_mut(self.binding.as_str(), value);
Value::None
}
}
impl Eval for ExprIf {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let condition = self.condition.eval(ctx);
if let Value::Bool(condition) = condition {
if condition {
self.if_body.eval(ctx)
} else if let Some(expr) = &self.else_body {
expr.eval(ctx)
} else {
Value::None
}
} else {
if condition != Value::Error {
ctx.diag(error!(
self.condition.span(),
"expected boolean, found {}",
condition.type_name(),
));
}
Value::Error
}
}
}
impl Eval for ExprWhile {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
let mut output = vec![];
loop {
let condition = self.condition.eval(ctx);
if let Value::Bool(condition) = condition {
if condition {
match self.body.eval(ctx) {
Value::Template(v) => output.extend(v),
Value::Str(v) => output.push(TemplateNode::Str(v)),
Value::Error => return Value::Error,
_ => {}
}
} else {
return Value::Template(output);
}
} else {
if condition != Value::Error {
ctx.diag(error!(
self.condition.span(),
"expected boolean, found {}",
condition.type_name(),
));
}
return Value::Error;
}
}
}
}
impl Eval for ExprFor {
type Output = Value;
fn eval(&self, ctx: &mut EvalContext) -> Self::Output {
macro_rules! iter {
(for ($($binding:ident => $value:ident),*) in $iter:expr) => {{
let mut output = vec![];
ctx.scopes.enter();
#[allow(unused_parens)]
for ($($value),*) in $iter {
$(ctx.scopes.def_mut($binding.as_str(), $value);)*
match self.body.eval(ctx) {
Value::Template(v) => output.extend(v),
Value::Str(v) => output.push(TemplateNode::Str(v)),
Value::Error => {
ctx.scopes.exit();
return Value::Error;
}
_ => {}
}
}
ctx.scopes.exit();
Value::Template(output)
}};
}
let iter = self.iter.eval(ctx);
match (self.pattern.clone(), iter) {
(ForPattern::Value(v), Value::Str(string)) => {
iter!(for (v => value) in string.chars().map(|c| Value::Str(c.into())))
}
(ForPattern::Value(v), Value::Array(array)) => {
iter!(for (v => value) in array.into_iter())
}
(ForPattern::KeyValue(i, v), Value::Array(array)) => {
iter!(for (i => idx, v => value) in array.into_iter().enumerate())
}
(ForPattern::Value(v), Value::Dict(dict)) => {
iter!(for (v => value) in dict.into_iter().map(|p| p.1))
}
(ForPattern::KeyValue(k, v), Value::Dict(dict)) => {
iter!(for (k => key, v => value) in dict.into_iter())
}
(ForPattern::KeyValue(_, _), Value::Str(_)) => {
ctx.diag(error!(self.pattern.span(), "mismatched pattern"));
Value::Error
}
(_, iter) => {
if iter != Value::Error {
ctx.diag(error!(
self.iter.span(),
"cannot loop over {}",
iter.type_name(),
));
}
Value::Error
}
}
}
}