typst/src/layout/stack.rs

408 lines
15 KiB
Rust

use smallvec::smallvec;
use crate::size::ValueBox;
use super::*;
/// The stack layouter stack boxes onto each other along the secondary layouting
/// axis.
#[derive(Debug, Clone)]
pub struct StackLayouter {
/// The context for layouting.
ctx: StackContext,
/// The output layouts.
layouts: MultiLayout,
/// The currently active layout space.
space: Space,
}
/// The context for stack layouting.
#[derive(Debug, Clone)]
pub struct StackContext {
/// The spaces to layout in.
pub spaces: LayoutSpaces,
/// The initial layouting axes, which can be updated by the
/// [`StackLayouter::set_axes`] method.
pub axes: LayoutAxes,
/// Which alignment to set on the resulting layout. This affects how it will
/// be positioned in a parent box.
pub alignment: LayoutAlignment,
/// Whether to have repeated spaces or to use only the first and only once.
pub repeat: bool,
/// Whether to output a command which renders a debugging box showing the
/// extent of the layout.
pub debug: bool,
}
/// A layout space composed of subspaces which can have different axes and
/// alignments.
#[derive(Debug, Clone)]
struct Space {
/// The index of this space in the list of spaces.
index: usize,
/// Whether to add the layout for this space even if it would be empty.
hard: bool,
/// The so-far accumulated layouts.
layouts: Vec<(LayoutAxes, Layout)>,
/// The specialized size of this space.
size: Size2D,
/// The specialized remaining space.
usable: Size2D,
/// The specialized extra-needed dimensions to affect the size at all.
extra: Size2D,
/// The rulers of a space dictate which alignments for new boxes are still
/// allowed and which require a new space to be started.
rulers: ValueBox<Alignment>,
/// The last added spacing if the last added thing was spacing.
last_spacing: LastSpacing,
}
impl StackLayouter {
/// Create a new stack layouter.
pub fn new(ctx: StackContext) -> StackLayouter {
let space = ctx.spaces[0];
StackLayouter {
ctx,
layouts: MultiLayout::new(),
space: Space::new(0, true, space.usable()),
}
}
/// Add a layout to the stack.
pub fn add(&mut self, layout: Layout) -> LayoutResult<()> {
// If the alignment cannot be fit in this space, finish it.
if !self.update_rulers(layout.alignment) {
self.finish_space(true)?;
}
// Now, we add a possibly cached soft space. If the secondary alignment
// changed before, a possibly cached space would have already been
// discarded.
if let LastSpacing::Soft(spacing, _) = self.space.last_spacing {
self.add_spacing(spacing, SpacingKind::Hard);
}
// Find the first space that fits the layout.
while !self.space.usable.fits(layout.dimensions) {
if self.space_is_last() && self.space_is_empty() {
error!("cannot fit box of size {} into usable size of {}",
layout.dimensions, self.space.usable);
}
self.finish_space(true)?;
}
// Change the usable space and size of the space.
self.update_metrics(layout.dimensions.generalized(self.ctx.axes));
// Add the box to the vector and remember that spacings are allowed
// again.
self.space.layouts.push((self.ctx.axes, layout));
self.space.last_spacing = LastSpacing::None;
Ok(())
}
/// Add multiple layouts to the stack.
///
/// This function simply calls `add` repeatedly for each layout.
pub fn add_multiple(&mut self, layouts: MultiLayout) -> LayoutResult<()> {
for layout in layouts {
self.add(layout)?;
}
Ok(())
}
/// Add secondary spacing to the stack.
pub fn add_spacing(&mut self, mut spacing: Size, kind: SpacingKind) {
match kind {
// A hard space is simply an empty box.
SpacingKind::Hard => {
// Reduce the spacing such that it definitely fits.
spacing.min_eq(self.space.usable.get_secondary(self.ctx.axes));
let dimensions = Size2D::with_y(spacing);
self.update_metrics(dimensions);
self.space.layouts.push((self.ctx.axes, Layout {
dimensions: dimensions.specialized(self.ctx.axes),
alignment: LayoutAlignment::new(Origin, Origin),
actions: vec![]
}));
self.space.last_spacing = LastSpacing::Hard;
}
// A soft space is cached if it is not consumed by a hard space or
// previous soft space with higher level.
SpacingKind::Soft(level) => {
let consumes = match self.space.last_spacing {
LastSpacing::None => true,
LastSpacing::Soft(_, prev) if level < prev => true,
_ => false,
};
if consumes {
self.space.last_spacing = LastSpacing::Soft(spacing, level);
}
}
}
}
/// Update the size metrics to reflect that a layout or spacing with the
/// given generalized dimensions has been added.
fn update_metrics(&mut self, dimensions: Size2D) {
let axes = self.ctx.axes;
let mut size = self.space.size.generalized(axes);
let mut extra = self.space.extra.generalized(axes);
size.x += (dimensions.x - extra.x).max(Size::ZERO);
size.y += (dimensions.y - extra.y).max(Size::ZERO);
extra.x.max_eq(dimensions.x);
extra.y = (extra.y - dimensions.y).max(Size::ZERO);
self.space.size = size.specialized(axes);
self.space.extra = extra.specialized(axes);
*self.space.usable.get_secondary_mut(axes) -= dimensions.y;
}
/// Update the rulers to account for the new layout. Returns true if a
/// space break is necessary.
fn update_rulers(&mut self, alignment: LayoutAlignment) -> bool {
let allowed = self.is_fitting_alignment(alignment);
if allowed {
*self.space.rulers.get_mut(self.ctx.axes.secondary, Origin)
= alignment.secondary;
}
allowed
}
/// Whether a layout with the given alignment can still be layouted in the
/// active space.
pub fn is_fitting_alignment(&mut self, alignment: LayoutAlignment) -> bool {
self.is_fitting_axis(self.ctx.axes.primary, alignment.primary)
&& self.is_fitting_axis(self.ctx.axes.secondary, alignment.secondary)
}
/// Whether the given alignment is still allowed according to the rulers.
fn is_fitting_axis(&mut self, direction: Direction, alignment: Alignment) -> bool {
alignment >= *self.space.rulers.get_mut(direction, Origin)
&& alignment <= self.space.rulers.get_mut(direction, End).inv()
}
/// Change the layouting axes used by this layouter.
pub fn set_axes(&mut self, axes: LayoutAxes) {
// Forget the spacing because it is not relevant anymore.
if axes.secondary != self.ctx.axes.secondary {
self.space.last_spacing = LastSpacing::Hard;
}
self.ctx.axes = axes;
}
/// Change the layouting spaces to use.
///
/// If `replace_empty` is true, the current space is replaced if there are
/// no boxes laid into it yet. Otherwise, only the followup spaces are
/// replaced.
pub fn set_spaces(&mut self, spaces: LayoutSpaces, replace_empty: bool) {
if replace_empty && self.space_is_empty() {
self.ctx.spaces = spaces;
self.start_space(0, self.space.hard);
} else {
self.ctx.spaces.truncate(self.space.index + 1);
self.ctx.spaces.extend(spaces);
}
}
/// The remaining unpadded, unexpanding spaces. If a multi-layout is laid
/// out into these spaces, it will fit into this stack.
pub fn remaining(&self) -> LayoutSpaces {
let dimensions = self.usable();
let mut spaces = smallvec![LayoutSpace {
dimensions,
padding: SizeBox::ZERO,
expansion: LayoutExpansion::new(false, false),
}];
for space in &self.ctx.spaces[self.next_space()..] {
spaces.push(space.usable_space());
}
spaces
}
/// The remaining usable size.
pub fn usable(&self) -> Size2D {
self.space.usable
- Size2D::with_y(self.space.last_spacing.soft_or_zero())
.specialized(self.ctx.axes)
}
/// Whether the current layout space (not subspace) is empty.
pub fn space_is_empty(&self) -> bool {
self.space.size == Size2D::ZERO && self.space.layouts.is_empty()
}
/// Whether the current layout space is the last is the followup list.
pub fn space_is_last(&self) -> bool {
self.space.index == self.ctx.spaces.len() - 1
}
/// Compute the finished multi-layout.
pub fn finish(mut self) -> LayoutResult<MultiLayout> {
if self.space.hard || !self.space_is_empty() {
self.finish_space(false)?;
}
Ok(self.layouts)
}
/// Finish the current space and start a new one.
pub fn finish_space(&mut self, hard: bool) -> LayoutResult<()> {
if !self.ctx.repeat && hard {
error!("cannot create new space in a non-repeating context");
}
let space = self.ctx.spaces[self.space.index];
// ------------------------------------------------------------------ //
// Step 1: Determine the full dimensions of the space.
// (Mostly done already while collecting the boxes, but here we
// expand if necessary.)
let usable = space.usable();
if space.expansion.horizontal { self.space.size.x = usable.x; }
if space.expansion.vertical { self.space.size.y = usable.y; }
let dimensions = self.space.size.padded(space.padding);
// ------------------------------------------------------------------ //
// Step 2: Forward pass. Create a bounding box for each layout in which
// it will be aligned. Then, go forwards through the boxes and remove
// what is taken by previous layouts from the following layouts.
let start = space.start();
let mut bounds = vec![];
let mut bound = SizeBox {
left: start.x,
top: start.y,
right: start.x + self.space.size.x,
bottom: start.y + self.space.size.y,
};
for (axes, layout) in &self.space.layouts {
// First, we store the bounds calculated so far (which were reduced
// by the predecessors of this layout) as the initial bounding box
// of this layout.
bounds.push(bound);
// Then, we reduce the bounding box for the following layouts. This
// layout uses up space from the origin to the end. Thus, it reduces
// the usable space for following layouts at it's origin by its
// extent along the secondary axis.
*bound.get_mut(axes.secondary, Origin)
+= axes.secondary.factor() * layout.dimensions.get_secondary(*axes);
}
// ------------------------------------------------------------------ //
// Step 3: Backward pass. Reduce the bounding boxes from the previous
// layouts by what is taken by the following ones.
// The `x` field stores the maximal primary extent in one axis-aligned
// run, while the `y` fields stores the accumulated secondary extent.
let mut extent = Size2D::ZERO;
let mut rotation = Vertical;
for (bound, entry) in bounds.iter_mut().zip(&self.space.layouts).rev() {
let (axes, layout) = entry;
// When the axes get rotated, the the maximal primary size
// (`extent.x`) dictates how much secondary extent the whole run
// had. This value is thus stored in `extent.y`. The primary extent
// is reset for this new axis-aligned run.
if rotation != axes.secondary.axis() {
extent.y = extent.x;
extent.x = Size::ZERO;
rotation = axes.secondary.axis();
}
// We reduce the bounding box of this layout at it's end by the
// accumulated secondary extent of all layouts we have seen so far,
// which are the layouts after this one since we iterate reversed.
*bound.get_mut(axes.secondary, End)
-= axes.secondary.factor() * extent.y;
// Then, we add this layout's secondary extent to the accumulator.
let size = layout.dimensions.generalized(*axes);
extent.x.max_eq(size.x);
extent.y += size.y;
}
// ------------------------------------------------------------------ //
// Step 4: Align each layout in its bounding box and collect everything
// into a single finished layout.
let mut actions = LayoutActions::new();
if self.ctx.debug {
actions.add(LayoutAction::DebugBox(dimensions));
}
let layouts = std::mem::replace(&mut self.space.layouts, vec![]);
for ((axes, layout), bound) in layouts.into_iter().zip(bounds) {
let size = layout.dimensions.specialized(axes);
let alignment = layout.alignment;
// The space in which this layout is aligned is given by the
// distances between the borders of it's bounding box.
let usable =
Size2D::new(bound.right - bound.left, bound.bottom - bound.top)
.generalized(axes);
let local = usable.anchor(alignment, axes) - size.anchor(alignment, axes);
let pos = Size2D::new(bound.left, bound.top) + local.specialized(axes);
actions.add_layout(pos, layout);
}
self.layouts.push(Layout {
dimensions,
alignment: self.ctx.alignment,
actions: actions.to_vec(),
});
// ------------------------------------------------------------------ //
// Step 5: Start the next space.
Ok(self.start_space(self.next_space(), hard))
}
/// Start a new space with the given index.
fn start_space(&mut self, index: usize, hard: bool) {
let space = self.ctx.spaces[index];
self.space = Space::new(index, hard, space.usable());
}
/// The index of the next space.
fn next_space(&self) -> usize {
(self.space.index + 1).min(self.ctx.spaces.len() - 1)
}
}
impl Space {
fn new(index: usize, hard: bool, usable: Size2D) -> Space {
Space {
index,
hard,
layouts: vec![],
size: Size2D::ZERO,
usable,
extra: Size2D::ZERO,
rulers: ValueBox::with_all(Origin),
last_spacing: LastSpacing::Hard,
}
}
}