typst/crates/typst/src/layout/grid/layout.rs

2990 lines
122 KiB
Rust

use std::fmt::Debug;
use std::hash::Hash;
use std::num::NonZeroUsize;
use std::sync::Arc;
use ecow::eco_format;
use super::lines::{
generate_line_segments, hline_stroke_at_column, vline_stroke_at_row, Line,
LinePosition, LineSegment,
};
use super::rowspans::{Rowspan, UnbreakableRowGroup};
use crate::diag::{
bail, At, Hint, HintedStrResult, HintedString, SourceResult, StrResult,
};
use crate::engine::Engine;
use crate::foundations::{
Array, CastInfo, Content, Context, Fold, FromValue, Func, IntoValue, Reflect,
Resolve, Smart, StyleChain, Value,
};
use crate::layout::{
Abs, Alignment, Axes, Dir, Fr, Fragment, Frame, FrameItem, LayoutMultiple, Length,
Point, Regions, Rel, Sides, Size, Sizing,
};
use crate::syntax::Span;
use crate::text::TextElem;
use crate::util::{MaybeReverseIter, NonZeroExt, Numeric};
use crate::visualize::{Geometry, Paint, Stroke};
/// A value that can be configured per cell.
#[derive(Debug, Clone, PartialEq, Hash)]
pub enum Celled<T> {
/// A bare value, the same for all cells.
Value(T),
/// A closure mapping from cell coordinates to a value.
Func(Func),
/// An array of alignment values corresponding to each column.
Array(Vec<T>),
}
impl<T: Default + Clone + FromValue> Celled<T> {
/// Resolve the value based on the cell position.
pub fn resolve(
&self,
engine: &mut Engine,
styles: StyleChain,
x: usize,
y: usize,
) -> SourceResult<T> {
Ok(match self {
Self::Value(value) => value.clone(),
Self::Func(func) => func
.call(engine, &Context::new(None, Some(styles)), [x, y])?
.cast()
.at(func.span())?,
Self::Array(array) => x
.checked_rem(array.len())
.and_then(|i| array.get(i))
.cloned()
.unwrap_or_default(),
})
}
}
impl<T: Default> Default for Celled<T> {
fn default() -> Self {
Self::Value(T::default())
}
}
impl<T: Reflect> Reflect for Celled<T> {
fn input() -> CastInfo {
T::input() + Array::input() + Func::input()
}
fn output() -> CastInfo {
T::output() + Array::output() + Func::output()
}
fn castable(value: &Value) -> bool {
Array::castable(value) || Func::castable(value) || T::castable(value)
}
}
impl<T: IntoValue> IntoValue for Celled<T> {
fn into_value(self) -> Value {
match self {
Self::Value(value) => value.into_value(),
Self::Func(func) => func.into_value(),
Self::Array(arr) => arr.into_value(),
}
}
}
impl<T: FromValue> FromValue for Celled<T> {
fn from_value(value: Value) -> StrResult<Self> {
match value {
Value::Func(v) => Ok(Self::Func(v)),
Value::Array(array) => Ok(Self::Array(
array.into_iter().map(T::from_value).collect::<StrResult<_>>()?,
)),
v if T::castable(&v) => Ok(Self::Value(T::from_value(v)?)),
v => Err(Self::error(&v)),
}
}
}
impl<T: Fold> Fold for Celled<T> {
fn fold(self, outer: Self) -> Self {
match (self, outer) {
(Self::Value(inner), Self::Value(outer)) => Self::Value(inner.fold(outer)),
(self_, _) => self_,
}
}
}
impl<T: Resolve> Resolve for Celled<T> {
type Output = ResolvedCelled<T>;
fn resolve(self, styles: StyleChain) -> Self::Output {
match self {
Self::Value(value) => ResolvedCelled(Celled::Value(value.resolve(styles))),
Self::Func(func) => ResolvedCelled(Celled::Func(func)),
Self::Array(values) => ResolvedCelled(Celled::Array(
values.into_iter().map(|value| value.resolve(styles)).collect(),
)),
}
}
}
/// The result of resolving a Celled's value according to styles.
/// Holds resolved values which depend on each grid cell's position.
/// When it is a closure, however, it is only resolved when the closure is
/// called.
#[derive(Default, Clone)]
pub struct ResolvedCelled<T: Resolve>(Celled<T::Output>);
impl<T> ResolvedCelled<T>
where
T: FromValue + Resolve,
<T as Resolve>::Output: Default + Clone,
{
/// Resolve the value based on the cell position.
pub fn resolve(
&self,
engine: &mut Engine,
styles: StyleChain,
x: usize,
y: usize,
) -> SourceResult<T::Output> {
Ok(match &self.0 {
Celled::Value(value) => value.clone(),
Celled::Func(func) => func
.call(engine, &Context::new(None, Some(styles)), [x, y])?
.cast::<T>()
.at(func.span())?
.resolve(styles),
Celled::Array(array) => x
.checked_rem(array.len())
.and_then(|i| array.get(i))
.cloned()
.unwrap_or_default(),
})
}
}
/// Represents a cell in CellGrid, to be laid out by GridLayouter.
#[derive(Clone)]
pub struct Cell {
/// The cell's body.
pub body: Content,
/// The cell's fill.
pub fill: Option<Paint>,
/// The amount of columns spanned by the cell.
pub colspan: NonZeroUsize,
/// The amount of rows spanned by the cell.
pub rowspan: NonZeroUsize,
/// The cell's stroke.
///
/// We use an Arc to avoid unnecessary space usage when all sides are the
/// same, or when the strokes come from a common source.
pub stroke: Sides<Option<Arc<Stroke<Abs>>>>,
/// Which stroke sides were explicitly overridden by the cell, over the
/// grid's global stroke setting.
///
/// This is used to define whether or not this cell's stroke sides should
/// have priority over adjacent cells' stroke sides, if those don't
/// override their own stroke properties (and thus have less priority when
/// defining with which stroke to draw grid lines around this cell).
pub stroke_overridden: Sides<bool>,
/// Whether rows spanned by this cell can be placed in different pages.
/// By default, a cell spanning only fixed-size rows is unbreakable, while
/// a cell spanning at least one `auto`-sized row is breakable.
pub breakable: bool,
}
impl From<Content> for Cell {
/// Create a simple cell given its body.
fn from(body: Content) -> Self {
Self {
body,
fill: None,
colspan: NonZeroUsize::ONE,
rowspan: NonZeroUsize::ONE,
stroke: Sides::splat(None),
stroke_overridden: Sides::splat(false),
breakable: true,
}
}
}
impl LayoutMultiple for Cell {
fn layout(
&self,
engine: &mut Engine,
styles: StyleChain,
regions: Regions,
) -> SourceResult<Fragment> {
self.body.layout(engine, styles, regions)
}
}
/// A grid entry.
#[derive(Clone)]
pub(super) enum Entry {
/// An entry which holds a cell.
Cell(Cell),
/// An entry which is merged with another cell.
Merged {
/// The index of the cell this entry is merged with.
parent: usize,
},
}
impl Entry {
/// Obtains the cell inside this entry, if this is not a merged cell.
fn as_cell(&self) -> Option<&Cell> {
match self {
Self::Cell(cell) => Some(cell),
Self::Merged { .. } => None,
}
}
}
/// A repeatable grid header. Starts at the first row.
pub(super) struct Header {
/// The index after the last row included in this header.
pub(super) end: usize,
}
/// A repeatable grid footer. Stops at the last row.
pub(super) struct Footer {
/// The first row included in this footer.
pub(super) start: usize,
}
/// A possibly repeatable grid object.
/// It still exists even when not repeatable, but must not have additional
/// considerations by grid layout, other than for consistency (such as making
/// a certain group of rows unbreakable).
pub(super) enum Repeatable<T> {
Repeated(T),
NotRepeated(T),
}
impl<T> Repeatable<T> {
/// Gets the value inside this repeatable, regardless of whether
/// it repeats.
pub(super) fn unwrap(&self) -> &T {
match self {
Self::Repeated(repeated) => repeated,
Self::NotRepeated(not_repeated) => not_repeated,
}
}
/// Returns `Some` if the value is repeated, `None` otherwise.
pub(super) fn as_repeated(&self) -> Option<&T> {
match self {
Self::Repeated(repeated) => Some(repeated),
Self::NotRepeated(_) => None,
}
}
}
/// A grid item, possibly affected by automatic cell positioning. Can be either
/// a line or a cell.
pub enum ResolvableGridItem<T: ResolvableCell> {
/// A horizontal line in the grid.
HLine {
/// The row above which the horizontal line is drawn.
y: Smart<usize>,
start: usize,
end: Option<NonZeroUsize>,
stroke: Option<Arc<Stroke<Abs>>>,
/// The span of the corresponding line element.
span: Span,
/// The line's position. "before" here means on top of row `y`, while
/// "after" means below it.
position: LinePosition,
},
/// A vertical line in the grid.
VLine {
/// The column before which the vertical line is drawn.
x: Smart<usize>,
start: usize,
end: Option<NonZeroUsize>,
stroke: Option<Arc<Stroke<Abs>>>,
/// The span of the corresponding line element.
span: Span,
/// The line's position. "before" here means to the left of column `x`,
/// while "after" means to its right (both considering LTR).
position: LinePosition,
},
/// A cell in the grid.
Cell(T),
}
/// Any grid child, which can be either a header or an item.
pub enum ResolvableGridChild<T: ResolvableCell, I> {
Header { repeat: bool, span: Span, items: I },
Footer { repeat: bool, span: Span, items: I },
Item(ResolvableGridItem<T>),
}
/// Used for cell-like elements which are aware of their final properties in
/// the table, and may have property overrides.
pub trait ResolvableCell {
/// Resolves the cell's fields, given its coordinates and default grid-wide
/// fill, align, inset and stroke properties, plus the expected value of
/// the `breakable` field.
/// Returns a final Cell.
#[allow(clippy::too_many_arguments)]
fn resolve_cell(
self,
x: usize,
y: usize,
fill: &Option<Paint>,
align: Smart<Alignment>,
inset: Sides<Option<Rel<Length>>>,
stroke: Sides<Option<Option<Arc<Stroke<Abs>>>>>,
breakable: bool,
styles: StyleChain,
) -> Cell;
/// Returns this cell's column override.
fn x(&self, styles: StyleChain) -> Smart<usize>;
/// Returns this cell's row override.
fn y(&self, styles: StyleChain) -> Smart<usize>;
/// The amount of columns spanned by this cell.
fn colspan(&self, styles: StyleChain) -> NonZeroUsize;
/// The amount of rows spanned by this cell.
fn rowspan(&self, styles: StyleChain) -> NonZeroUsize;
/// The cell's span, for errors.
fn span(&self) -> Span;
}
/// A grid of cells, including the columns, rows, and cell data.
pub struct CellGrid {
/// The grid cells.
pub(super) entries: Vec<Entry>,
/// The column tracks including gutter tracks.
pub(super) cols: Vec<Sizing>,
/// The row tracks including gutter tracks.
pub(super) rows: Vec<Sizing>,
/// The vertical lines before each column, or on the end border.
/// Gutter columns are not included.
/// Contains up to 'cols_without_gutter.len() + 1' vectors of lines.
pub(super) vlines: Vec<Vec<Line>>,
/// The horizontal lines on top of each row, or on the bottom border.
/// Gutter rows are not included.
/// Contains up to 'rows_without_gutter.len() + 1' vectors of lines.
pub(super) hlines: Vec<Vec<Line>>,
/// The repeatable header of this grid.
pub(super) header: Option<Repeatable<Header>>,
/// The repeatable footer of this grid.
pub(super) footer: Option<Repeatable<Footer>>,
/// Whether this grid has gutters.
pub(super) has_gutter: bool,
}
impl CellGrid {
/// Generates the cell grid, given the tracks and cells.
pub fn new(
tracks: Axes<&[Sizing]>,
gutter: Axes<&[Sizing]>,
cells: impl IntoIterator<Item = Cell>,
) -> Self {
let entries = cells.into_iter().map(Entry::Cell).collect();
Self::new_internal(tracks, gutter, vec![], vec![], None, None, entries)
}
/// Resolves and positions all cells in the grid before creating it.
/// Allows them to keep track of their final properties and positions
/// and adjust their fields accordingly.
/// Cells must implement Clone as they will be owned. Additionally, they
/// must implement Default in order to fill positions in the grid which
/// weren't explicitly specified by the user with empty cells.
#[allow(clippy::too_many_arguments)]
pub fn resolve<T, C, I>(
tracks: Axes<&[Sizing]>,
gutter: Axes<&[Sizing]>,
children: C,
fill: &Celled<Option<Paint>>,
align: &Celled<Smart<Alignment>>,
inset: &Celled<Sides<Option<Rel<Length>>>>,
stroke: &ResolvedCelled<Sides<Option<Option<Arc<Stroke>>>>>,
engine: &mut Engine,
styles: StyleChain,
span: Span,
) -> SourceResult<Self>
where
T: ResolvableCell + Default,
I: Iterator<Item = ResolvableGridItem<T>>,
C: IntoIterator<Item = ResolvableGridChild<T, I>>,
C::IntoIter: ExactSizeIterator,
{
// Number of content columns: Always at least one.
let c = tracks.x.len().max(1);
// Lists of lines.
// Horizontal lines are only pushed later to be able to check for row
// validity, since the amount of rows isn't known until all items were
// analyzed in the for loop below.
// We keep their spans so we can report errors later.
let mut pending_hlines: Vec<(Span, Line)> = vec![];
// For consistency, only push vertical lines later as well.
let mut pending_vlines: Vec<(Span, Line)> = vec![];
let has_gutter = gutter.any(|tracks| !tracks.is_empty());
let mut header: Option<Header> = None;
let mut repeat_header = false;
// Stores where the footer is supposed to end, its span, and the
// actual footer structure.
let mut footer: Option<(usize, Span, Footer)> = None;
let mut repeat_footer = false;
// Resolve the breakability of a cell, based on whether or not it spans
// an auto row.
let resolve_breakable = |y, rowspan| {
let auto = Sizing::Auto;
let zero = Sizing::Rel(Rel::zero());
tracks
.y
.iter()
.chain(std::iter::repeat(tracks.y.last().unwrap_or(&auto)))
.skip(y)
.take(rowspan)
.any(|row| row == &Sizing::Auto)
|| gutter
.y
.iter()
.chain(std::iter::repeat(gutter.y.last().unwrap_or(&zero)))
.skip(y)
.take(rowspan - 1)
.any(|row_gutter| row_gutter == &Sizing::Auto)
};
// We can't just use the cell's index in the 'cells' vector to
// determine its automatic position, since cells could have arbitrary
// positions, so the position of a cell in 'cells' can differ from its
// final position in 'resolved_cells' (see below).
// Therefore, we use a counter, 'auto_index', to determine the position
// of the next cell with (x: auto, y: auto). It is only stepped when
// a cell with (x: auto, y: auto), usually the vast majority, is found.
let mut auto_index: usize = 0;
// We have to rebuild the grid to account for arbitrary positions.
// Create at least 'children.len()' positions, since there could be at
// least 'children.len()' cells (if no explicit lines were specified),
// even though some of them might be placed in arbitrary positions and
// thus cause the grid to expand.
// Additionally, make sure we allocate up to the next multiple of 'c',
// since each row will have 'c' cells, even if the last few cells
// weren't explicitly specified by the user.
// We apply '% c' twice so that the amount of cells potentially missing
// is zero when 'children.len()' is already a multiple of 'c' (thus
// 'children.len() % c' would be zero).
let children = children.into_iter();
let Some(child_count) = children.len().checked_add((c - children.len() % c) % c)
else {
bail!(span, "too many cells or lines were given")
};
let mut resolved_cells: Vec<Option<Entry>> = Vec::with_capacity(child_count);
for child in children {
let mut is_header = false;
let mut is_footer = false;
let mut child_start = usize::MAX;
let mut child_end = 0;
let mut child_span = Span::detached();
let mut min_auto_index = 0;
let (header_footer_items, simple_item) = match child {
ResolvableGridChild::Header { repeat, span, items, .. } => {
if header.is_some() {
bail!(span, "cannot have more than one header");
}
is_header = true;
child_span = span;
repeat_header = repeat;
// If any cell in the header is automatically positioned,
// have it skip to the next row. This is to avoid having a
// header after a partially filled row just add cells to
// that row instead of starting a new one.
// FIXME: Revise this approach when headers can start from
// arbitrary rows.
min_auto_index = auto_index.next_multiple_of(c);
(Some(items), None)
}
ResolvableGridChild::Footer { repeat, span, items, .. } => {
if footer.is_some() {
bail!(span, "cannot have more than one footer");
}
is_footer = true;
child_span = span;
repeat_footer = repeat;
// If any cell in the footer is automatically positioned,
// have it skip to the next row. This is to avoid having a
// footer after a partially filled row just add cells to
// that row instead of starting a new one.
min_auto_index = auto_index.next_multiple_of(c);
(Some(items), None)
}
ResolvableGridChild::Item(item) => (None, Some(item)),
};
let items = header_footer_items
.into_iter()
.flatten()
.chain(simple_item.into_iter());
for item in items {
let cell = match item {
ResolvableGridItem::HLine {
y,
start,
end,
stroke,
span,
position,
} => {
let y = y.unwrap_or_else(|| {
// When no 'y' is specified for the hline, we place
// it under the latest automatically positioned
// cell.
// The current value of the auto index is always
// the index of the latest automatically positioned
// cell placed plus one (that's what we do in
// 'resolve_cell_position'), so we subtract 1 to
// get that cell's index, and place the hline below
// its row. The exception is when the auto_index is
// 0, meaning no automatically positioned cell was
// placed yet. In that case, we place the hline at
// the top of the table.
//
// Exceptionally, the hline will be placed before
// the minimum auto index if the current auto index
// from previous iterations is smaller than the
// minimum it should have for the current grid
// child. Effectively, this means that a hline at
// the start of a header will always appear above
// that header's first row. Similarly for footers.
auto_index
.max(min_auto_index)
.checked_sub(1)
.map_or(0, |last_auto_index| last_auto_index / c + 1)
});
if end.is_some_and(|end| end.get() < start) {
bail!(span, "line cannot end before it starts");
}
let line = Line { index: y, start, end, stroke, position };
// Since the amount of rows is dynamic, delay placing
// hlines until after all cells were placed so we can
// properly verify if they are valid. Note that we
// can't place hlines even if we already know they
// would be in a valid row, since it's possible that we
// pushed pending hlines in the same row as this one in
// previous iterations, and we need to ensure that
// hlines from previous iterations are pushed to the
// final vector of hlines first - the order of hlines
// must be kept, as this matters when determining which
// one "wins" in case of conflict. Pushing the current
// hline before we push pending hlines later would
// change their order!
pending_hlines.push((span, line));
continue;
}
ResolvableGridItem::VLine {
x,
start,
end,
stroke,
span,
position,
} => {
let x = x.unwrap_or_else(|| {
// When no 'x' is specified for the vline, we place
// it after the latest automatically positioned
// cell.
// The current value of the auto index is always
// the index of the latest automatically positioned
// cell placed plus one (that's what we do in
// 'resolve_cell_position'), so we subtract 1 to
// get that cell's index, and place the vline after
// its column. The exception is when the auto_index
// is 0, meaning no automatically positioned cell
// was placed yet. In that case, we place the vline
// to the left of the table.
//
// Exceptionally, a vline is also placed to the
// left of the table if the current auto index from
// past iterations is smaller than the minimum auto
// index. For example, this means that a vline at
// the beginning of a header will be placed to its
// left rather than after the previous
// automatically positioned cell. Same for footers.
auto_index
.checked_sub(1)
.filter(|last_auto_index| {
last_auto_index >= &min_auto_index
})
.map_or(0, |last_auto_index| last_auto_index % c + 1)
});
if end.is_some_and(|end| end.get() < start) {
bail!(span, "line cannot end before it starts");
}
let line = Line { index: x, start, end, stroke, position };
// For consistency with hlines, we only push vlines to
// the final vector of vlines after processing every
// cell.
pending_vlines.push((span, line));
continue;
}
ResolvableGridItem::Cell(cell) => cell,
};
let cell_span = cell.span();
// Let's calculate the cell's final position based on its
// requested position.
let resolved_index = {
let cell_x = cell.x(styles);
let cell_y = cell.y(styles);
resolve_cell_position(
cell_x,
cell_y,
&resolved_cells,
&mut auto_index,
min_auto_index,
c,
)
.at(cell_span)?
};
let x = resolved_index % c;
let y = resolved_index / c;
let colspan = cell.colspan(styles).get();
let rowspan = cell.rowspan(styles).get();
if colspan > c - x {
bail!(
cell_span,
"cell's colspan would cause it to exceed the available column(s)";
hint: "try placing the cell in another position or reducing its colspan"
)
}
let Some(largest_index) = c
.checked_mul(rowspan - 1)
.and_then(|full_rowspan_offset| {
resolved_index.checked_add(full_rowspan_offset)
})
.and_then(|last_row_pos| last_row_pos.checked_add(colspan - 1))
else {
bail!(
cell_span,
"cell would span an exceedingly large position";
hint: "try reducing the cell's rowspan or colspan"
)
};
// Let's resolve the cell so it can determine its own fields
// based on its final position.
let cell = cell.resolve_cell(
x,
y,
&fill.resolve(engine, styles, x, y)?,
align.resolve(engine, styles, x, y)?,
inset.resolve(engine, styles, x, y)?,
stroke.resolve(engine, styles, x, y)?,
resolve_breakable(y, rowspan),
styles,
);
if largest_index >= resolved_cells.len() {
// Ensure the length of the vector of resolved cells is
// always a multiple of 'c' by pushing full rows every
// time. Here, we add enough absent positions (later
// converted to empty cells) to ensure the last row in the
// new vector length is completely filled. This is
// necessary so that those positions, even if not
// explicitly used at the end, are eventually susceptible
// to show rules and receive grid styling, as they will be
// resolved as empty cells in a second loop below.
let Some(new_len) = largest_index
.checked_add(1)
.and_then(|new_len| new_len.checked_add((c - new_len % c) % c))
else {
bail!(cell_span, "cell position too large")
};
// Here, the cell needs to be placed in a position which
// doesn't exist yet in the grid (out of bounds). We will
// add enough absent positions for this to be possible.
// They must be absent as no cells actually occupy them
// (they can be overridden later); however, if no cells
// occupy them as we finish building the grid, then such
// positions will be replaced by empty cells.
resolved_cells.resize(new_len, None);
}
// The vector is large enough to contain the cell, so we can
// just index it directly to access the position it will be
// placed in. However, we still need to ensure we won't try to
// place a cell where there already is one.
let slot = &mut resolved_cells[resolved_index];
if slot.is_some() {
bail!(
cell_span,
"attempted to place a second cell at column {x}, row {y}";
hint: "try specifying your cells in a different order"
);
}
*slot = Some(Entry::Cell(cell));
// Now, if the cell spans more than one row or column, we fill
// the spanned positions in the grid with Entry::Merged
// pointing to the original cell as its parent.
for rowspan_offset in 0..rowspan {
let spanned_y = y + rowspan_offset;
let first_row_index = resolved_index + c * rowspan_offset;
for (colspan_offset, slot) in resolved_cells[first_row_index..]
[..colspan]
.iter_mut()
.enumerate()
{
let spanned_x = x + colspan_offset;
if spanned_x == x && spanned_y == y {
// This is the parent cell.
continue;
}
if slot.is_some() {
bail!(
cell_span,
"cell would span a previously placed cell at column {spanned_x}, row {spanned_y}";
hint: "try specifying your cells in a different order or reducing the cell's rowspan or colspan"
)
}
*slot = Some(Entry::Merged { parent: resolved_index });
}
}
if is_header || is_footer {
// Ensure each cell in a header or footer is fully
// contained within it.
child_start = child_start.min(y);
child_end = child_end.max(y + rowspan);
}
}
if (is_header || is_footer) && child_start == usize::MAX {
// Empty header/footer: consider the header/footer to be
// one row after the latest auto index.
child_start = auto_index.div_ceil(c);
child_end = child_start + 1;
if resolved_cells.len() <= c * child_start {
// Ensure the automatically chosen row actually exists.
resolved_cells.resize_with(c * (child_start + 1), || None);
}
}
if is_header {
if child_start != 0 {
bail!(
child_span,
"header must start at the first row";
hint: "remove any rows before the header"
);
}
header = Some(Header {
// Later on, we have to correct this number in case there
// is gutter. But only once all cells have been analyzed
// and the header has fully expanded in the fixup loop
// below.
end: child_end,
});
}
if is_footer {
// Only check if the footer is at the end later, once we know
// the final amount of rows.
footer = Some((
child_end,
child_span,
Footer {
// Later on, we have to correct this number in case there
// is gutter, but only once all cells have been analyzed
// and the header's and footer's exact boundaries are
// known. That is because the gutter row immediately
// before the footer might not be included as part of
// the footer if it is contained within the header.
start: child_start,
},
));
}
if is_header || is_footer {
// Next automatically positioned cell goes under this header.
// FIXME: Consider only doing this if the header has any fully
// automatically positioned cells. Otherwise,
// `resolve_cell_position` should be smart enough to skip
// upcoming headers.
// Additionally, consider that cells with just an 'x' override
// could end up going too far back and making previous
// non-header rows into header rows (maybe they should be
// placed at the first row that is fully empty or something).
// Nothing we can do when both 'x' and 'y' were overridden, of
// course.
// None of the above are concerns for now, as headers must
// start at the first row.
auto_index = auto_index.max(c * child_end);
}
}
// Fixup phase (final step in cell grid generation):
// 1. Replace absent entries by resolved empty cells, and produce a
// vector of 'Entry' from 'Option<Entry>'.
// 2. If any cells were added to the header's rows after the header's
// creation, ensure the header expands enough to accommodate them
// across all of their spanned rows. Same for the footer.
// 3. If any cells before the footer try to span it, error.
let resolved_cells = resolved_cells
.into_iter()
.enumerate()
.map(|(i, cell)| {
if let Some(cell) = cell {
if let Some(parent_cell) = cell.as_cell() {
if let Some(header) = &mut header
{
let y = i / c;
if y < header.end {
// Ensure the header expands enough such that
// all cells inside it, even those added later,
// are fully contained within the header.
// FIXME: check if start < y < end when start can
// be != 0.
// FIXME: when start can be != 0, decide what
// happens when a cell after the header placed
// above it tries to span the header (either
// error or expand upwards).
header.end = header.end.max(y + parent_cell.rowspan.get());
}
}
if let Some((end, footer_span, footer)) = &mut footer {
let x = i % c;
let y = i / c;
let cell_end = y + parent_cell.rowspan.get();
if y < footer.start && cell_end > footer.start {
// Don't allow a cell before the footer to span
// it. Surely, we could move the footer to
// start at where this cell starts, so this is
// more of a design choice, as it's unlikely
// for the user to intentionally include a cell
// before the footer spanning it but not
// being repeated with it.
bail!(
*footer_span,
"footer would conflict with a cell placed before it at column {x} row {y}";
hint: "try reducing that cell's rowspan or moving the footer"
);
}
if y >= footer.start && y < *end {
// Expand the footer to include all rows
// spanned by this cell, as it is inside the
// footer.
*end = (*end).max(cell_end);
}
}
}
Ok(cell)
} else {
let x = i % c;
let y = i / c;
// Ensure all absent entries are affected by show rules and
// grid styling by turning them into resolved empty cells.
let new_cell = T::default().resolve_cell(
x,
y,
&fill.resolve(engine, styles, x, y)?,
align.resolve(engine, styles, x, y)?,
inset.resolve(engine, styles, x, y)?,
stroke.resolve(engine, styles, x, y)?,
resolve_breakable(y, 1),
styles,
);
Ok(Entry::Cell(new_cell))
}
})
.collect::<SourceResult<Vec<Entry>>>()?;
// Populate the final lists of lines.
// For each line type (horizontal or vertical), we keep a vector for
// every group of lines with the same index.
let mut vlines: Vec<Vec<Line>> = vec![];
let mut hlines: Vec<Vec<Line>> = vec![];
let row_amount = resolved_cells.len().div_ceil(c);
for (line_span, line) in pending_hlines {
let y = line.index;
if y > row_amount {
bail!(line_span, "cannot place horizontal line at invalid row {y}");
}
if y == row_amount && line.position == LinePosition::After {
bail!(
line_span,
"cannot place horizontal line at the 'bottom' position of the bottom border (y = {y})";
hint: "set the line's position to 'top' or place it at a smaller 'y' index"
);
}
let line = if line.position == LinePosition::After
&& (!has_gutter || y + 1 == row_amount)
{
// Just place the line on top of the next row if
// there's no gutter and the line should be placed
// after the one with given index.
//
// Note that placing after the last row is also the same as
// just placing on the grid's bottom border, even with
// gutter.
Line {
index: y + 1,
position: LinePosition::Before,
..line
}
} else {
line
};
let y = line.index;
if hlines.len() <= y {
hlines.resize_with(y + 1, Vec::new);
}
hlines[y].push(line);
}
for (line_span, line) in pending_vlines {
let x = line.index;
if x > c {
bail!(line_span, "cannot place vertical line at invalid column {x}");
}
if x == c && line.position == LinePosition::After {
bail!(
line_span,
"cannot place vertical line at the 'end' position of the end border (x = {c})";
hint: "set the line's position to 'start' or place it at a smaller 'x' index"
);
}
let line =
if line.position == LinePosition::After && (!has_gutter || x + 1 == c) {
// Just place the line before the next column if
// there's no gutter and the line should be placed
// after the one with given index.
//
// Note that placing after the last column is also the
// same as just placing on the grid's end border, even
// with gutter.
Line {
index: x + 1,
position: LinePosition::Before,
..line
}
} else {
line
};
let x = line.index;
if vlines.len() <= x {
vlines.resize_with(x + 1, Vec::new);
}
vlines[x].push(line);
}
let header = header
.map(|mut header| {
// Repeat the gutter below a header (hence why we don't
// subtract 1 from the gutter case).
// Don't do this if there are no rows under the header.
if has_gutter {
// - 'header.end' is always 'last y + 1'. The header stops
// before that row.
// - Therefore, '2 * header.end' will be 2 * (last y + 1),
// which is the adjusted index of the row before which the
// header stops, meaning it will still stop right before it
// even with gutter thanks to the multiplication below.
// - This means that it will span all rows up to
// '2 * (last y + 1) - 1 = 2 * last y + 1', which equates
// to the index of the gutter row right below the header,
// which is what we want (that gutter spacing should be
// repeated across pages to maintain uniformity).
header.end *= 2;
// If the header occupies the entire grid, ensure we don't
// include an extra gutter row when it doesn't exist, since
// the last row of the header is at the very bottom,
// therefore '2 * last y + 1' is not a valid index.
let row_amount = (2 * row_amount).saturating_sub(1);
header.end = header.end.min(row_amount);
}
header
})
.map(|header| {
if repeat_header {
Repeatable::Repeated(header)
} else {
Repeatable::NotRepeated(header)
}
});
let footer = footer
.map(|(footer_end, footer_span, mut footer)| {
if footer_end != row_amount {
bail!(footer_span, "footer must end at the last row");
}
let header_end =
header.as_ref().map(Repeatable::unwrap).map(|header| header.end);
if has_gutter {
// Convert the footer's start index to post-gutter coordinates.
footer.start *= 2;
// Include the gutter right before the footer, unless there is
// none, or the gutter is already included in the header (no
// rows between the header and the footer).
if header_end.map_or(true, |header_end| header_end != footer.start) {
footer.start = footer.start.saturating_sub(1);
}
}
if header_end.is_some_and(|header_end| header_end > footer.start) {
bail!(footer_span, "header and footer must not have common rows");
}
Ok(footer)
})
.transpose()?
.map(|footer| {
if repeat_footer {
Repeatable::Repeated(footer)
} else {
Repeatable::NotRepeated(footer)
}
});
Ok(Self::new_internal(
tracks,
gutter,
vlines,
hlines,
header,
footer,
resolved_cells,
))
}
/// Generates the cell grid, given the tracks and resolved entries.
pub(super) fn new_internal(
tracks: Axes<&[Sizing]>,
gutter: Axes<&[Sizing]>,
vlines: Vec<Vec<Line>>,
hlines: Vec<Vec<Line>>,
header: Option<Repeatable<Header>>,
footer: Option<Repeatable<Footer>>,
entries: Vec<Entry>,
) -> Self {
let mut cols = vec![];
let mut rows = vec![];
// Number of content columns: Always at least one.
let c = tracks.x.len().max(1);
// Number of content rows: At least as many as given, but also at least
// as many as needed to place each item.
let r = {
let len = entries.len();
let given = tracks.y.len();
let needed = len / c + (len % c).clamp(0, 1);
given.max(needed)
};
let has_gutter = gutter.any(|tracks| !tracks.is_empty());
let auto = Sizing::Auto;
let zero = Sizing::Rel(Rel::zero());
let get_or = |tracks: &[_], idx, default| {
tracks.get(idx).or(tracks.last()).copied().unwrap_or(default)
};
// Collect content and gutter columns.
for x in 0..c {
cols.push(get_or(tracks.x, x, auto));
if has_gutter {
cols.push(get_or(gutter.x, x, zero));
}
}
// Collect content and gutter rows.
for y in 0..r {
rows.push(get_or(tracks.y, y, auto));
if has_gutter {
rows.push(get_or(gutter.y, y, zero));
}
}
// Remove superfluous gutter tracks.
if has_gutter {
cols.pop();
rows.pop();
}
Self {
cols,
rows,
entries,
vlines,
hlines,
header,
footer,
has_gutter,
}
}
/// Get the grid entry in column `x` and row `y`.
///
/// Returns `None` if it's a gutter cell.
#[track_caller]
pub(super) fn entry(&self, x: usize, y: usize) -> Option<&Entry> {
assert!(x < self.cols.len());
assert!(y < self.rows.len());
if self.has_gutter {
// Even columns and rows are children, odd ones are gutter.
if x % 2 == 0 && y % 2 == 0 {
let c = 1 + self.cols.len() / 2;
self.entries.get((y / 2) * c + x / 2)
} else {
None
}
} else {
let c = self.cols.len();
self.entries.get(y * c + x)
}
}
/// Get the content of the cell in column `x` and row `y`.
///
/// Returns `None` if it's a gutter cell or merged position.
#[track_caller]
pub(super) fn cell(&self, x: usize, y: usize) -> Option<&Cell> {
self.entry(x, y).and_then(Entry::as_cell)
}
/// Returns the position of the parent cell of the grid entry at the given
/// position. It is guaranteed to have a non-gutter, non-merged cell at
/// the returned position, due to how the grid is built.
/// - If the entry at the given position is a cell, returns the given
/// position.
/// - If it is a merged cell, returns the parent cell's position.
/// - If it is a gutter cell, returns None.
#[track_caller]
pub(super) fn parent_cell_position(&self, x: usize, y: usize) -> Option<Axes<usize>> {
self.entry(x, y).map(|entry| match entry {
Entry::Cell(_) => Axes::new(x, y),
Entry::Merged { parent } => {
let c = if self.has_gutter {
1 + self.cols.len() / 2
} else {
self.cols.len()
};
let factor = if self.has_gutter { 2 } else { 1 };
Axes::new(factor * (*parent % c), factor * (*parent / c))
}
})
}
/// Returns the position of the actual parent cell of a merged position,
/// even if the given position is gutter, in which case we return the
/// parent of the nearest adjacent content cell which could possibly span
/// the given gutter position. If the given position is not a gutter cell,
/// then this function will return the same as `parent_cell_position` would.
/// If the given position is a gutter cell, but no cell spans it, returns
/// `None`.
///
/// This is useful for lines. A line needs to check if a cell next to it
/// has a stroke override - even at a gutter position there could be a
/// stroke override, since a cell could be merged with two cells at both
/// ends of the gutter cell (e.g. to its left and to its right), and thus
/// that cell would impose a stroke under the gutter. This function allows
/// getting the position of that cell (which spans the given gutter
/// position, if it is gutter), if it exists; otherwise returns None (it's
/// gutter and no cell spans it).
#[track_caller]
pub(super) fn effective_parent_cell_position(
&self,
x: usize,
y: usize,
) -> Option<Axes<usize>> {
if self.has_gutter {
// If (x, y) is a gutter cell, we skip it (skip a gutter column and
// row) to the nearest adjacent content cell, in the direction
// which merged cells grow toward (increasing x and increasing y),
// such that we can verify if that adjacent cell is merged with the
// gutter cell by checking if its parent would come before (x, y).
// Otherwise, no cell is merged with this gutter cell, and we
// return None.
self.parent_cell_position(x + x % 2, y + y % 2)
.filter(|&parent| parent.x <= x && parent.y <= y)
} else {
self.parent_cell_position(x, y)
}
}
/// Checks if the track with the given index is gutter.
/// Does not check if the index is a valid track.
#[inline]
pub(super) fn is_gutter_track(&self, index: usize) -> bool {
self.has_gutter && index % 2 == 1
}
/// Returns the effective colspan of a cell, considering the gutters it
/// might span if the grid has gutters.
#[inline]
pub(super) fn effective_colspan_of_cell(&self, cell: &Cell) -> usize {
if self.has_gutter {
2 * cell.colspan.get() - 1
} else {
cell.colspan.get()
}
}
/// Returns the effective rowspan of a cell, considering the gutters it
/// might span if the grid has gutters.
#[inline]
pub(super) fn effective_rowspan_of_cell(&self, cell: &Cell) -> usize {
if self.has_gutter {
2 * cell.rowspan.get() - 1
} else {
cell.rowspan.get()
}
}
}
/// Given a cell's requested x and y, the vector with the resolved cell
/// positions, the `auto_index` counter (determines the position of the next
/// `(auto, auto)` cell) and the amount of columns in the grid, returns the
/// final index of this cell in the vector of resolved cells.
///
/// The `min_auto_index` parameter is used to bump the auto index to that value
/// if it is currently smaller than it and a cell requests fully automatic
/// positioning. Useful with headers: if a cell in a header has automatic
/// positioning, it should start at the header's first row, and not at the end
/// of the previous row.
fn resolve_cell_position(
cell_x: Smart<usize>,
cell_y: Smart<usize>,
resolved_cells: &[Option<Entry>],
auto_index: &mut usize,
min_auto_index: usize,
columns: usize,
) -> HintedStrResult<usize> {
// Translates a (x, y) position to the equivalent index in the final cell vector.
// Errors if the position would be too large.
let cell_index = |x, y: usize| {
y.checked_mul(columns)
.and_then(|row_index| row_index.checked_add(x))
.ok_or_else(|| HintedString::from(eco_format!("cell position too large")))
};
match (cell_x, cell_y) {
// Fully automatic cell positioning. The cell did not
// request a coordinate.
(Smart::Auto, Smart::Auto) => {
// Let's find the first available position starting from the
// automatic position counter, searching in row-major order.
let mut resolved_index = min_auto_index.max(*auto_index);
while let Some(Some(_)) = resolved_cells.get(resolved_index) {
// Skip any non-absent cell positions (`Some(None)`) to
// determine where this cell will be placed. An out of bounds
// position (thus `None`) is also a valid new position (only
// requires expanding the vector).
resolved_index += 1;
}
// Ensure the next cell with automatic position will be
// placed after this one (maybe not immediately after).
*auto_index = resolved_index + 1;
Ok(resolved_index)
}
// Cell has chosen at least its column.
(Smart::Custom(cell_x), cell_y) => {
if cell_x >= columns {
return Err(HintedString::from(eco_format!(
"cell could not be placed at invalid column {cell_x}"
)));
}
if let Smart::Custom(cell_y) = cell_y {
// Cell has chosen its exact position.
cell_index(cell_x, cell_y)
} else {
// Cell has only chosen its column.
// Let's find the first row which has that column available.
let mut resolved_y = 0;
while let Some(Some(_)) =
resolved_cells.get(cell_index(cell_x, resolved_y)?)
{
// Try each row until either we reach an absent position
// (`Some(None)`) or an out of bounds position (`None`),
// in which case we'd create a new row to place this cell in.
resolved_y += 1;
}
cell_index(cell_x, resolved_y)
}
}
// Cell has only chosen its row, not its column.
(Smart::Auto, Smart::Custom(cell_y)) => {
// Let's find the first column which has that row available.
let first_row_pos = cell_index(0, cell_y)?;
let last_row_pos = first_row_pos
.checked_add(columns)
.ok_or_else(|| eco_format!("cell position too large"))?;
(first_row_pos..last_row_pos)
.find(|possible_index| {
// Much like in the previous cases, we skip any occupied
// positions until we either reach an absent position
// (`Some(None)`) or an out of bounds position (`None`),
// in which case we can just expand the vector enough to
// place this cell. In either case, we found an available
// position.
!matches!(resolved_cells.get(*possible_index), Some(Some(_)))
})
.ok_or_else(|| {
eco_format!(
"cell could not be placed in row {cell_y} because it was full"
)
})
.hint("try specifying your cells in a different order")
}
}
}
/// Performs grid layout.
pub struct GridLayouter<'a> {
/// The grid of cells.
pub(super) grid: &'a CellGrid,
/// The regions to layout children into.
pub(super) regions: Regions<'a>,
/// The inherited styles.
pub(super) styles: StyleChain<'a>,
/// Resolved column sizes.
pub(super) rcols: Vec<Abs>,
/// The sum of `rcols`.
pub(super) width: Abs,
/// Resolve row sizes, by region.
pub(super) rrows: Vec<Vec<RowPiece>>,
/// Rows in the current region.
pub(super) lrows: Vec<Row>,
/// The amount of unbreakable rows remaining to be laid out in the
/// current unbreakable row group. While this is positive, no region breaks
/// should occur.
pub(super) unbreakable_rows_left: usize,
/// Rowspans not yet laid out because not all of their spanned rows were
/// laid out yet.
pub(super) rowspans: Vec<Rowspan>,
/// The initial size of the current region before we started subtracting.
pub(super) initial: Size,
/// Frames for finished regions.
pub(super) finished: Vec<Frame>,
/// Whether this is an RTL grid.
pub(super) is_rtl: bool,
/// The simulated header height.
/// This field is reset in `layout_header` and properly updated by
/// `layout_auto_row` and `layout_relative_row`, and should not be read
/// before all header rows are fully laid out. It is usually fine because
/// header rows themselves are unbreakable, and unbreakable rows do not
/// need to read this field at all.
pub(super) header_height: Abs,
/// The simulated footer height for this region.
/// The simulation occurs before any rows are laid out for a region.
pub(super) footer_height: Abs,
/// The span of the grid element.
pub(super) span: Span,
}
/// Details about a resulting row piece.
#[derive(Debug)]
pub struct RowPiece {
/// The height of the segment.
pub height: Abs,
/// The index of the row.
pub y: usize,
}
/// Produced by initial row layout, auto and relative rows are already finished,
/// fractional rows not yet.
pub(super) enum Row {
/// Finished row frame of auto or relative row with y index.
/// The last parameter indicates whether or not this is the last region
/// where this row is laid out, and it can only be false when a row uses
/// `layout_multi_row`, which in turn is only used by breakable auto rows.
Frame(Frame, usize, bool),
/// Fractional row with y index.
Fr(Fr, usize),
}
impl Row {
/// Returns the `y` index of this row.
fn index(&self) -> usize {
match self {
Self::Frame(_, y, _) => *y,
Self::Fr(_, y) => *y,
}
}
}
impl<'a> GridLayouter<'a> {
/// Create a new grid layouter.
///
/// This prepares grid layout by unifying content and gutter tracks.
pub fn new(
grid: &'a CellGrid,
regions: Regions<'a>,
styles: StyleChain<'a>,
span: Span,
) -> Self {
// We use these regions for auto row measurement. Since at that moment,
// columns are already sized, we can enable horizontal expansion.
let mut regions = regions;
regions.expand = Axes::new(true, false);
Self {
grid,
regions,
styles,
rcols: vec![Abs::zero(); grid.cols.len()],
width: Abs::zero(),
rrows: vec![],
lrows: vec![],
unbreakable_rows_left: 0,
rowspans: vec![],
initial: regions.size,
finished: vec![],
is_rtl: TextElem::dir_in(styles) == Dir::RTL,
header_height: Abs::zero(),
footer_height: Abs::zero(),
span,
}
}
/// Determines the columns sizes and then layouts the grid row-by-row.
pub fn layout(mut self, engine: &mut Engine) -> SourceResult<Fragment> {
self.measure_columns(engine)?;
if let Some(Repeatable::Repeated(footer)) = &self.grid.footer {
// Ensure rows in the first region will be aware of the possible
// presence of the footer.
self.prepare_footer(footer, engine)?;
if matches!(self.grid.header, None | Some(Repeatable::NotRepeated(_))) {
// No repeatable header, so we won't subtract it later.
self.regions.size.y -= self.footer_height;
}
}
for y in 0..self.grid.rows.len() {
if let Some(Repeatable::Repeated(header)) = &self.grid.header {
if y < header.end {
if y == 0 {
self.layout_header(header, engine)?;
self.regions.size.y -= self.footer_height;
}
// Skip header rows during normal layout.
continue;
}
}
if let Some(Repeatable::Repeated(footer)) = &self.grid.footer {
if y >= footer.start {
if y == footer.start {
self.layout_footer(footer, engine)?;
}
continue;
}
}
self.layout_row(y, engine)?;
}
self.finish_region(engine)?;
// Layout any missing rowspans.
// There are only two possibilities for rowspans not yet laid out
// (usually, a rowspan is laid out as soon as its last row, or any row
// after it, is laid out):
// 1. The rowspan was fully empty and only spanned fully empty auto
// rows, which were all prevented from being laid out. Those rowspans
// are ignored by 'layout_rowspan', and are not of any concern.
//
// 2. The rowspan's last row was an auto row at the last region which
// was not laid out, and no other rows were laid out after it. Those
// might still need to be laid out, so we check for them.
for rowspan in std::mem::take(&mut self.rowspans) {
self.layout_rowspan(rowspan, None, engine)?;
}
self.render_fills_strokes()
}
/// Layout the given row.
fn layout_row(&mut self, y: usize, engine: &mut Engine) -> SourceResult<()> {
// Skip to next region if current one is full, but only for content
// rows, not for gutter rows, and only if we aren't laying out an
// unbreakable group of rows.
let is_content_row = !self.grid.is_gutter_track(y);
if self.unbreakable_rows_left == 0 && self.regions.is_full() && is_content_row {
self.finish_region(engine)?;
}
if is_content_row {
// Gutter rows have no rowspans or possibly unbreakable cells.
self.check_for_rowspans(y);
self.check_for_unbreakable_rows(y, engine)?;
}
// Don't layout gutter rows at the top of a region.
if is_content_row || !self.lrows.is_empty() {
match self.grid.rows[y] {
Sizing::Auto => self.layout_auto_row(engine, y)?,
Sizing::Rel(v) => self.layout_relative_row(engine, v, y)?,
Sizing::Fr(v) => self.lrows.push(Row::Fr(v, y)),
}
}
self.unbreakable_rows_left = self.unbreakable_rows_left.saturating_sub(1);
Ok(())
}
/// Add lines and backgrounds.
fn render_fills_strokes(mut self) -> SourceResult<Fragment> {
let mut finished = std::mem::take(&mut self.finished);
let frame_amount = finished.len();
for ((frame_index, frame), rows) in
finished.iter_mut().enumerate().zip(&self.rrows)
{
if self.rcols.is_empty() || rows.is_empty() {
continue;
}
// Render grid lines.
// We collect lines into a vector before rendering so we can sort
// them based on thickness, such that the lines with largest
// thickness are drawn on top; and also so we can prepend all of
// them at once in the frame, as calling prepend() for each line,
// and thus pushing all frame items forward each time, would result
// in quadratic complexity.
let mut lines = vec![];
// Which line position to look for in the list of lines for a
// track, such that placing lines with those positions will
// correspond to placing them before the given track index.
//
// If the index represents a gutter track, this means the list of
// lines will actually correspond to the list of lines in the
// previous index, so we must look for lines positioned after the
// previous index, and not before, to determine which lines should
// be placed before gutter.
//
// Note that the maximum index is always an odd number when
// there's gutter, so we must check for it to ensure we don't give
// it the same treatment as a line before a gutter track.
let expected_line_position = |index, is_max_index: bool| {
if self.grid.is_gutter_track(index) && !is_max_index {
LinePosition::After
} else {
LinePosition::Before
}
};
// Render vertical lines.
// Render them first so horizontal lines have priority later.
for (x, dx) in points(self.rcols.iter().copied()).enumerate() {
let dx = if self.is_rtl { self.width - dx } else { dx };
let is_end_border = x == self.grid.cols.len();
let expected_vline_position = expected_line_position(x, is_end_border);
let vlines_at_column = self
.grid
.vlines
.get(if !self.grid.has_gutter {
x
} else if is_end_border {
// The end border has its own vector of lines, but
// dividing it by 2 and flooring would give us the
// vector of lines with the index of the last column.
// Add 1 so we get the border's lines.
x / 2 + 1
} else {
// If x is a gutter column, this will round down to the
// index of the previous content column, which is
// intentional - the only lines which can appear before
// a gutter column are lines for the previous column
// marked with "LinePosition::After". Therefore, we get
// the previous column's lines. Worry not, as
// 'generate_line_segments' will correctly filter lines
// based on their LinePosition for us.
//
// If x is a content column, this will correctly return
// its index before applying gutters, so nothing
// special here (lines with "LinePosition::After" would
// then be ignored for this column, as we are drawing
// lines before it, not after).
x / 2
})
.into_iter()
.flatten()
.filter(|line| line.position == expected_vline_position);
let tracks = rows.iter().map(|row| (row.y, row.height));
// Determine all different line segments we have to draw in
// this column, and convert them to points and shapes.
//
// Even a single, uniform line might generate more than one
// segment, if it happens to cross a colspan (over which it
// must not be drawn).
let segments = generate_line_segments(
self.grid,
tracks,
x,
vlines_at_column,
vline_stroke_at_row,
)
.map(|segment| {
let LineSegment { stroke, offset: dy, length, priority } = segment;
let stroke = (*stroke).clone().unwrap_or_default();
let thickness = stroke.thickness;
let half = thickness / 2.0;
let target = Point::with_y(length + thickness);
let vline = Geometry::Line(target).stroked(stroke);
(
thickness,
priority,
Point::new(dx, dy - half),
FrameItem::Shape(vline, self.span),
)
});
lines.extend(segments);
}
// Render horizontal lines.
// They are rendered second as they default to appearing on top.
// First, calculate their offsets from the top of the frame.
let hline_offsets = points(rows.iter().map(|piece| piece.height));
// Additionally, determine their indices (the indices of the
// rows they are drawn on top of). In principle, this will
// correspond to the rows' indices directly, except for the
// last hline index, which must be (amount of rows) in order to
// draw the table's bottom border.
let hline_indices = rows
.iter()
.map(|piece| piece.y)
.chain(std::iter::once(self.grid.rows.len()));
// Converts a row to the corresponding index in the vector of
// hlines.
let hline_index_of_row = |y: usize| {
if !self.grid.has_gutter {
y
} else if y == self.grid.rows.len() {
y / 2 + 1
} else {
// Check the vlines loop for an explanation regarding
// these index operations.
y / 2
}
};
let get_hlines_at = |y| {
self.grid
.hlines
.get(hline_index_of_row(y))
.map(Vec::as_slice)
.unwrap_or(&[])
};
let mut prev_y = None;
for (y, dy) in hline_indices.zip(hline_offsets) {
// Position of lines below the row index in the previous iteration.
let expected_prev_line_position = prev_y
.map(|prev_y| {
expected_line_position(
prev_y + 1,
prev_y + 1 == self.grid.rows.len(),
)
})
.unwrap_or(LinePosition::Before);
// If some grid rows were omitted between the previous resolved
// row and the current one, we ensure lines below the previous
// row don't "disappear" and are considered, albeit with less
// priority. However, don't do this when we're below a header,
// as it must have more priority instead of less, so it is
// chained later instead of before.
let prev_lines = prev_y
.filter(|prev_y| {
prev_y + 1 != y
&& !self
.grid
.header
.as_ref()
.and_then(Repeatable::as_repeated)
.is_some_and(|header| prev_y + 1 == header.end)
})
.map(|prev_y| get_hlines_at(prev_y + 1))
.unwrap_or(&[]);
let expected_hline_position =
expected_line_position(y, y == self.grid.rows.len());
let hlines_at_y = get_hlines_at(y)
.iter()
.filter(|line| line.position == expected_hline_position);
let top_border_hlines = if prev_y.is_none() && y != 0 {
// For lines at the top of the region, give priority to
// the lines at the top border.
get_hlines_at(0)
} else {
&[]
};
// The header lines, if any, will correspond to the lines under
// the previous row, so they function similarly to 'prev_lines'.
let expected_header_line_position = expected_prev_line_position;
let header_hlines = if let Some((Repeatable::Repeated(header), prev_y)) =
self.grid.header.as_ref().zip(prev_y)
{
if prev_y + 1 != y
&& prev_y + 1 == header.end
&& !self.grid.has_gutter
{
// For lines below a header, give priority to the
// lines originally below the header rather than
// the lines of what's below the repeated header.
// However, no need to do that when we're laying
// out the header for the first time, since the
// lines being normally laid out then will be
// precisely the lines below the header.
//
// Additionally, we don't append header lines when
// gutter is enabled, since, in that case, there will
// be a gutter row between header and content, so no
// lines should overlap.
get_hlines_at(header.end)
} else {
&[]
}
} else {
&[]
};
// The effective hlines to be considered at this row index are
// chained in order of increasing priority:
// 1. Lines from the row right above us, if needed;
// 2. Lines from the current row (usually, only those are
// present);
// 3. Lines from the top border (above the top cells, hence
// 'before' position only);
// 4. Lines from the header above us, if present.
let hlines_at_row =
prev_lines
.iter()
.filter(|line| line.position == expected_prev_line_position)
.chain(hlines_at_y)
.chain(
top_border_hlines
.iter()
.filter(|line| line.position == LinePosition::Before),
)
.chain(header_hlines.iter().filter(|line| {
line.position == expected_header_line_position
}));
let tracks = self.rcols.iter().copied().enumerate();
// Normally, given an hline above row y, the row above it is
// 'y - 1' (if y > 0). However, sometimes that's not true, for
// example if 'y - 1' is in a previous region, or if 'y - 1'
// was an empty auto row which was removed. Therefore, we tell
// the hlines at this index which row is actually above them in
// the laid out region so they can include that row's bottom
// strokes in the folding process.
let local_top_y = prev_y;
// When we're in the last region, the bottom border stroke
// doesn't necessarily gain priority like it does in previous
// regions.
let in_last_region = frame_index + 1 == frame_amount;
// Determine all different line segments we have to draw in
// this row, and convert them to points and shapes.
let segments = generate_line_segments(
self.grid,
tracks,
y,
hlines_at_row,
|grid, y, x, stroke| {
hline_stroke_at_column(
grid,
rows,
local_top_y,
in_last_region,
y,
x,
stroke,
)
},
)
.map(|segment| {
let LineSegment { stroke, offset: dx, length, priority } = segment;
let stroke = (*stroke).clone().unwrap_or_default();
let thickness = stroke.thickness;
let half = thickness / 2.0;
let dx = if self.is_rtl { self.width - dx - length } else { dx };
let target = Point::with_x(length + thickness);
let hline = Geometry::Line(target).stroked(stroke);
(
thickness,
priority,
Point::new(dx - half, dy),
FrameItem::Shape(hline, self.span),
)
});
// Draw later (after we sort all lines below.)
lines.extend(segments);
prev_y = Some(y);
}
// Sort by increasing thickness, so that we draw larger strokes
// on top. When the thickness is the same, sort by priority.
//
// Sorting by thickness avoids layering problems where a smaller
// hline appears "inside" a larger vline. When both have the same
// size, hlines are drawn on top (since the sort is stable, and
// they are pushed later).
lines.sort_by_key(|(thickness, priority, ..)| (*thickness, *priority));
// Render cell backgrounds.
// We collect them into a vector so they can all be prepended at
// once to the frame, together with lines.
let mut fills = vec![];
// Reverse with RTL so that later columns start first.
let mut dx = Abs::zero();
for (x, &col) in self.rcols.iter().enumerate().rev_if(self.is_rtl) {
let mut dy = Abs::zero();
for row in rows {
// We want to only draw the fill starting at the parent
// positions of cells. However, sometimes the parent
// position is absent from the current region, either
// because the first few rows of a rowspan were empty auto
// rows and thus removed from layout, or because the parent
// cell was in a previous region (in which case we'd want
// to draw its fill again, in the current region).
// Therefore, we first analyze the parent position to see
// if the current row would be the first row spanned by the
// parent cell in this region. If so, this means we have to
// start drawing the cell's fill here. If not, we ignore
// the position `(x, row.y)`, as its fill will already have
// been rendered before.
//
// Note: In the case of gutter rows, we have to check the
// row below before discarding them fully, because a
// gutter row might be the first row spanned by a rowspan
// in this region (e.g. if the first row was empty and
// therefore removed), so its fill could start in that
// gutter row. That's why we use
// 'effective_parent_cell_position'.
let parent = self
.grid
.effective_parent_cell_position(x, row.y)
.filter(|parent| {
// Ensure this is the first column spanned by the
// cell before drawing its fill, otherwise we
// already rendered its fill in a previous
// iteration of the outer loop (and/or this is a
// gutter column, which we ignore).
//
// Additionally, we should only draw the fill when
// this row is the local parent Y for this cell,
// that is, the first row spanned by the cell's
// parent in this region, because if the parent
// cell's fill was already drawn in a previous
// region, we must render it again in later regions
// spanned by that cell. Note that said condition
// always holds when the current cell has a rowspan
// of 1 and we're not currently at a gutter row.
parent.x == x
&& (parent.y == row.y
|| rows
.iter()
.find(|row| row.y >= parent.y)
.is_some_and(|first_spanned_row| {
first_spanned_row.y == row.y
}))
});
if let Some(parent) = parent {
let cell = self.grid.cell(parent.x, parent.y).unwrap();
let fill = cell.fill.clone();
if let Some(fill) = fill {
let rowspan = self.grid.effective_rowspan_of_cell(cell);
let height = if rowspan == 1 {
row.height
} else {
rows.iter()
.filter(|row| {
(parent.y..parent.y + rowspan).contains(&row.y)
})
.map(|row| row.height)
.sum()
};
let width = self.cell_spanned_width(cell, x);
// In the grid, cell colspans expand to the right,
// so we're at the leftmost (lowest 'x') column
// spanned by the cell. However, in RTL, cells
// expand to the left. Therefore, without the
// offset below, cell fills would start at the
// rightmost visual position of a cell and extend
// over to unrelated columns to the right in RTL.
// We avoid this by ensuring the fill starts at the
// very left of the cell, even with colspan > 1.
let offset =
if self.is_rtl { -width + col } else { Abs::zero() };
let pos = Point::new(dx + offset, dy);
let size = Size::new(width, height);
let rect = Geometry::Rect(size).filled(fill);
fills.push((pos, FrameItem::Shape(rect, self.span)));
}
}
dy += row.height;
}
dx += col;
}
// Now we render each fill and stroke by prepending to the frame,
// such that both appear below cell contents. Fills come first so
// that they appear below lines.
frame.prepend_multiple(
fills
.into_iter()
.chain(lines.into_iter().map(|(_, _, point, shape)| (point, shape))),
);
}
Ok(Fragment::frames(finished))
}
/// Determine all column sizes.
fn measure_columns(&mut self, engine: &mut Engine) -> SourceResult<()> {
// Sum of sizes of resolved relative tracks.
let mut rel = Abs::zero();
// Sum of fractions of all fractional tracks.
let mut fr = Fr::zero();
// Resolve the size of all relative columns and compute the sum of all
// fractional tracks.
for (&col, rcol) in self.grid.cols.iter().zip(&mut self.rcols) {
match col {
Sizing::Auto => {}
Sizing::Rel(v) => {
let resolved =
v.resolve(self.styles).relative_to(self.regions.base().x);
*rcol = resolved;
rel += resolved;
}
Sizing::Fr(v) => fr += v,
}
}
// Size that is not used by fixed-size columns.
let available = self.regions.size.x - rel;
if available >= Abs::zero() {
// Determine size of auto columns.
let (auto, count) = self.measure_auto_columns(engine, available)?;
// If there is remaining space, distribute it to fractional columns,
// otherwise shrink auto columns.
let remaining = available - auto;
if remaining >= Abs::zero() {
self.grow_fractional_columns(remaining, fr);
} else {
self.shrink_auto_columns(available, count);
}
}
// Sum up the resolved column sizes once here.
self.width = self.rcols.iter().sum();
Ok(())
}
/// Total width spanned by the cell (among resolved columns).
/// Includes spanned gutter columns.
pub(super) fn cell_spanned_width(&self, cell: &Cell, x: usize) -> Abs {
let colspan = self.grid.effective_colspan_of_cell(cell);
self.rcols.iter().skip(x).take(colspan).sum()
}
/// Measure the size that is available to auto columns.
fn measure_auto_columns(
&mut self,
engine: &mut Engine,
available: Abs,
) -> SourceResult<(Abs, usize)> {
let mut auto = Abs::zero();
let mut count = 0;
let all_frac_cols = self
.grid
.cols
.iter()
.enumerate()
.filter(|(_, col)| col.is_fractional())
.map(|(x, _)| x)
.collect::<Vec<_>>();
// Determine size of auto columns by laying out all cells in those
// columns, measuring them and finding the largest one.
for (x, &col) in self.grid.cols.iter().enumerate() {
if col != Sizing::Auto {
continue;
}
let mut resolved = Abs::zero();
for y in 0..self.grid.rows.len() {
// We get the parent cell in case this is a merged position.
let Some(parent) = self.grid.parent_cell_position(x, y) else {
continue;
};
if parent.y != y {
// Don't check the width of rowspans more than once.
continue;
}
let cell = self.grid.cell(parent.x, parent.y).unwrap();
let colspan = self.grid.effective_colspan_of_cell(cell);
if colspan > 1 {
let last_spanned_auto_col = self
.grid
.cols
.iter()
.enumerate()
.skip(parent.x)
.take(colspan)
.rev()
.find(|(_, col)| **col == Sizing::Auto)
.map(|(x, _)| x);
if last_spanned_auto_col != Some(x) {
// A colspan only affects the size of the last spanned
// auto column.
continue;
}
}
if colspan > 1
&& self.regions.size.x.is_finite()
&& !all_frac_cols.is_empty()
&& all_frac_cols
.iter()
.all(|x| (parent.x..parent.x + colspan).contains(x))
{
// Additionally, as a heuristic, a colspan won't affect the
// size of auto columns if it already spans all fractional
// columns, since those would already expand to provide all
// remaining available after auto column sizing to that
// cell. However, this heuristic is only valid in finite
// regions (pages without 'auto' width), since otherwise
// the fractional columns don't expand at all.
continue;
}
// Sum the heights of spanned rows to find the expected
// available height for the cell, unless it spans a fractional
// or auto column.
let rowspan = self.grid.effective_rowspan_of_cell(cell);
let height = self
.grid
.rows
.iter()
.skip(y)
.take(rowspan)
.try_fold(Abs::zero(), |acc, col| {
// For relative rows, we can already resolve the correct
// base and for auto and fr we could only guess anyway.
match col {
Sizing::Rel(v) => Some(
acc + v
.resolve(self.styles)
.relative_to(self.regions.base().y),
),
_ => None,
}
})
.unwrap_or_else(|| self.regions.base().y);
// Don't expand this auto column more than the cell actually
// needs. To do this, we check how much the other, previously
// resolved columns provide to the cell in terms of width
// (if it is a colspan), and subtract this from its expected
// width when comparing with other cells in this column. Note
// that, since this is the last auto column spanned by this
// cell, all other auto columns will already have been resolved
// and will be considered.
// Only fractional columns will be excluded from this
// calculation, which can lead to auto columns being expanded
// unnecessarily when cells span both a fractional column and
// an auto column. One mitigation for this is the heuristic
// used above to not expand the last auto column spanned by a
// cell if it spans all fractional columns in a finite region.
let already_covered_width = self.cell_spanned_width(cell, parent.x);
let size = Size::new(available, height);
let pod = Regions::one(size, Axes::splat(false));
let frame = cell.measure(engine, self.styles, pod)?.into_frame();
resolved.set_max(frame.width() - already_covered_width);
}
self.rcols[x] = resolved;
auto += resolved;
count += 1;
}
Ok((auto, count))
}
/// Distribute remaining space to fractional columns.
fn grow_fractional_columns(&mut self, remaining: Abs, fr: Fr) {
if fr.is_zero() {
return;
}
for (&col, rcol) in self.grid.cols.iter().zip(&mut self.rcols) {
if let Sizing::Fr(v) = col {
*rcol = v.share(fr, remaining);
}
}
}
/// Redistribute space to auto columns so that each gets a fair share.
fn shrink_auto_columns(&mut self, available: Abs, count: usize) {
let mut last;
let mut fair = -Abs::inf();
let mut redistribute = available;
let mut overlarge = count;
let mut changed = true;
// Iteratively remove columns that don't need to be shrunk.
while changed && overlarge > 0 {
changed = false;
last = fair;
fair = redistribute / (overlarge as f64);
for (&col, &rcol) in self.grid.cols.iter().zip(&self.rcols) {
// Remove an auto column if it is not overlarge (rcol <= fair),
// but also hasn't already been removed (rcol > last).
if col == Sizing::Auto && rcol <= fair && rcol > last {
redistribute -= rcol;
overlarge -= 1;
changed = true;
}
}
}
// Redistribute space fairly among overlarge columns.
for (&col, rcol) in self.grid.cols.iter().zip(&mut self.rcols) {
if col == Sizing::Auto && *rcol > fair {
*rcol = fair;
}
}
}
/// Layout a row with automatic height. Such a row may break across multiple
/// regions.
fn layout_auto_row(&mut self, engine: &mut Engine, y: usize) -> SourceResult<()> {
// Determine the size for each region of the row. If the first region
// ends up empty for some column, skip the region and remeasure.
let mut resolved = match self.measure_auto_row(
engine,
y,
true,
self.unbreakable_rows_left,
None,
)? {
Some(resolved) => resolved,
None => {
self.finish_region(engine)?;
self.measure_auto_row(engine, y, false, self.unbreakable_rows_left, None)?
.unwrap()
}
};
// Nothing to layout.
if resolved.is_empty() {
return Ok(());
}
// Layout into a single region.
if let &[first] = resolved.as_slice() {
let frame = self.layout_single_row(engine, first, y)?;
self.push_row(frame, y, true);
if self
.grid
.header
.as_ref()
.and_then(Repeatable::as_repeated)
.is_some_and(|header| y < header.end)
{
// Add to header height.
self.header_height += first;
}
return Ok(());
}
// Expand all but the last region.
// Skip the first region if the space is eaten up by an fr row.
let len = resolved.len();
for ((i, region), target) in self
.regions
.iter()
.enumerate()
.zip(&mut resolved[..len - 1])
.skip(self.lrows.iter().any(|row| matches!(row, Row::Fr(..))) as usize)
{
// Subtract header and footer heights from the region height when
// it's not the first.
target.set_max(
region.y
- if i > 0 {
self.header_height + self.footer_height
} else {
Abs::zero()
},
);
}
// Layout into multiple regions.
let fragment = self.layout_multi_row(engine, &resolved, y)?;
let len = fragment.len();
for (i, frame) in fragment.into_iter().enumerate() {
self.push_row(frame, y, i + 1 == len);
if i + 1 < len {
self.finish_region(engine)?;
}
}
Ok(())
}
/// Measure the regions sizes of an auto row. The option is always `Some(_)`
/// if `can_skip` is false.
/// If `unbreakable_rows_left` is positive, this function shall only return
/// a single frame. Useful when an unbreakable rowspan crosses this auto
/// row.
/// The `row_group_data` option is used within the unbreakable row group
/// simulator to predict the height of the auto row if previous rows in the
/// group were placed in the same region.
pub(super) fn measure_auto_row(
&self,
engine: &mut Engine,
y: usize,
can_skip: bool,
unbreakable_rows_left: usize,
row_group_data: Option<&UnbreakableRowGroup>,
) -> SourceResult<Option<Vec<Abs>>> {
let breakable = unbreakable_rows_left == 0;
let mut resolved: Vec<Abs> = vec![];
let mut pending_rowspans: Vec<(usize, usize, Vec<Abs>)> = vec![];
for x in 0..self.rcols.len() {
// Get the parent cell in case this is a merged position.
let Some(parent) = self.grid.parent_cell_position(x, y) else {
// Skip gutter columns.
continue;
};
if parent.x != x {
// Only check the height of a colspan once.
continue;
}
// The parent cell is never a gutter or merged position.
let cell = self.grid.cell(parent.x, parent.y).unwrap();
let rowspan = self.grid.effective_rowspan_of_cell(cell);
if rowspan > 1 {
let last_spanned_auto_row = self
.grid
.rows
.iter()
.enumerate()
.skip(parent.y)
.take(rowspan)
.rev()
.find(|(_, &row)| row == Sizing::Auto)
.map(|(y, _)| y);
if last_spanned_auto_row != Some(y) {
// A rowspan should only affect the height of its last
// spanned auto row.
continue;
}
}
let measurement_data = self.prepare_auto_row_cell_measurement(
parent,
cell,
breakable,
row_group_data,
);
let size = Axes::new(measurement_data.width, measurement_data.height);
let backlog =
measurement_data.backlog.unwrap_or(&measurement_data.custom_backlog);
let pod = if !breakable {
// Force cell to fit into a single region when the row is
// unbreakable, even when it is a breakable rowspan, as a best
// effort.
let mut pod = Regions::one(size, self.regions.expand);
pod.full = measurement_data.full;
if measurement_data.frames_in_previous_regions > 0 {
// Best effort to conciliate a breakable rowspan which
// started at a previous region going through an
// unbreakable auto row. Ensure it goes through previously
// laid out regions, but stops at this one when measuring.
pod.backlog = backlog;
}
pod
} else {
// This row is breakable, so measure the cell normally, with
// the initial height and backlog determined previously.
let mut pod = self.regions;
pod.size = size;
pod.backlog = backlog;
pod.full = measurement_data.full;
pod.last = measurement_data.last;
pod
};
let frames = cell.measure(engine, self.styles, pod)?.into_frames();
// Skip the first region if one cell in it is empty. Then,
// remeasure.
if let Some([first, rest @ ..]) =
frames.get(measurement_data.frames_in_previous_regions..)
{
if can_skip
&& breakable
&& first.is_empty()
&& rest.iter().any(|frame| !frame.is_empty())
{
return Ok(None);
}
}
// Skip frames from previous regions if applicable.
let mut sizes = frames
.iter()
.skip(measurement_data.frames_in_previous_regions)
.map(|frame| frame.height())
.collect::<Vec<_>>();
// Don't expand this row more than the cell needs.
// To figure out how much height the cell needs, we must first
// subtract, from the cell's expected height, the already resolved
// heights of its spanned rows. Note that this is the last spanned
// auto row, so all previous auto rows were already resolved, as
// well as fractional rows in previous regions.
// Additionally, we subtract the heights of fixed-size rows which
// weren't laid out yet, since those heights won't change in
// principle.
// Upcoming fractional rows are ignored.
// Upcoming gutter rows might be removed, so we need to simulate
// them.
if rowspan > 1 {
let should_simulate = self.prepare_rowspan_sizes(
y,
&mut sizes,
cell,
parent.y,
rowspan,
unbreakable_rows_left,
&measurement_data,
);
if should_simulate {
// Rowspan spans gutter and is breakable. We'll need to
// run a simulation to predict how much this auto row needs
// to expand so that the rowspan's contents fit into the
// table.
pending_rowspans.push((parent.y, rowspan, sizes));
continue;
}
}
let mut sizes = sizes.into_iter();
for (target, size) in resolved.iter_mut().zip(&mut sizes) {
target.set_max(size);
}
// New heights are maximal by virtue of being new. Note that
// this extend only uses the rest of the sizes iterator.
resolved.extend(sizes);
}
// Simulate the upcoming regions in order to predict how much we need
// to expand this auto row for rowspans which span gutter.
if !pending_rowspans.is_empty() {
self.simulate_and_measure_rowspans_in_auto_row(
y,
&mut resolved,
&pending_rowspans,
unbreakable_rows_left,
row_group_data,
engine,
)?;
}
debug_assert!(breakable || resolved.len() <= 1);
Ok(Some(resolved))
}
/// Layout a row with relative height. Such a row cannot break across
/// multiple regions, but it may force a region break.
fn layout_relative_row(
&mut self,
engine: &mut Engine,
v: Rel<Length>,
y: usize,
) -> SourceResult<()> {
let resolved = v.resolve(self.styles).relative_to(self.regions.base().y);
let frame = self.layout_single_row(engine, resolved, y)?;
if self
.grid
.header
.as_ref()
.and_then(Repeatable::as_repeated)
.is_some_and(|header| y < header.end)
{
// Add to header height.
self.header_height += resolved;
}
// Skip to fitting region, but only if we aren't part of an unbreakable
// row group. We use 'in_last_with_offset' so our 'in_last' call
// properly considers that a header and a footer would be added on each
// region break.
let height = frame.height();
while self.unbreakable_rows_left == 0
&& !self.regions.size.y.fits(height)
&& !in_last_with_offset(self.regions, self.header_height + self.footer_height)
{
self.finish_region(engine)?;
// Don't skip multiple regions for gutter and don't push a row.
if self.grid.is_gutter_track(y) {
return Ok(());
}
}
self.push_row(frame, y, true);
Ok(())
}
/// Layout a row with fixed height and return its frame.
fn layout_single_row(
&mut self,
engine: &mut Engine,
height: Abs,
y: usize,
) -> SourceResult<Frame> {
if !height.is_finite() {
bail!(self.span, "cannot create grid with infinite height");
}
let mut output = Frame::soft(Size::new(self.width, height));
let mut pos = Point::zero();
// Reverse the column order when using RTL.
for (x, &rcol) in self.rcols.iter().enumerate().rev_if(self.is_rtl) {
if let Some(cell) = self.grid.cell(x, y) {
// Rowspans have a separate layout step
if cell.rowspan.get() == 1 {
let width = self.cell_spanned_width(cell, x);
let size = Size::new(width, height);
let mut pod = Regions::one(size, Axes::splat(true));
if self.grid.rows[y] == Sizing::Auto {
pod.full = self.regions.full;
}
let frame = cell.layout(engine, self.styles, pod)?.into_frame();
let mut pos = pos;
if self.is_rtl {
// In the grid, cell colspans expand to the right,
// so we're at the leftmost (lowest 'x') column
// spanned by the cell. However, in RTL, cells
// expand to the left. Therefore, without the
// offset below, the cell's contents would be laid out
// starting at its rightmost visual position and extend
// over to unrelated cells to its right in RTL.
// We avoid this by ensuring the rendered cell starts at
// the very left of the cell, even with colspan > 1.
let offset = -width + rcol;
pos.x += offset;
}
output.push_frame(pos, frame);
}
}
pos.x += rcol;
}
Ok(output)
}
/// Layout a row spanning multiple regions.
fn layout_multi_row(
&mut self,
engine: &mut Engine,
heights: &[Abs],
y: usize,
) -> SourceResult<Fragment> {
// Prepare frames.
let mut outputs: Vec<_> = heights
.iter()
.map(|&h| Frame::soft(Size::new(self.width, h)))
.collect();
// Prepare regions.
let size = Size::new(self.width, heights[0]);
let mut pod = Regions::one(size, Axes::splat(true));
pod.full = self.regions.full;
pod.backlog = &heights[1..];
// Layout the row.
let mut pos = Point::zero();
for (x, &rcol) in self.rcols.iter().enumerate().rev_if(self.is_rtl) {
if let Some(cell) = self.grid.cell(x, y) {
// Rowspans have a separate layout step
if cell.rowspan.get() == 1 {
let width = self.cell_spanned_width(cell, x);
pod.size.x = width;
// Push the layouted frames into the individual output frames.
let fragment = cell.layout(engine, self.styles, pod)?;
for (output, frame) in outputs.iter_mut().zip(fragment) {
let mut pos = pos;
if self.is_rtl {
let offset = -width + rcol;
pos.x += offset;
}
output.push_frame(pos, frame);
}
}
}
pos.x += rcol;
}
Ok(Fragment::frames(outputs))
}
/// Push a row frame into the current region.
/// The `is_last` parameter must be `true` if this is the last frame which
/// will be pushed for this particular row. It can be `false` for rows
/// spanning multiple regions.
fn push_row(&mut self, frame: Frame, y: usize, is_last: bool) {
self.regions.size.y -= frame.height();
self.lrows.push(Row::Frame(frame, y, is_last));
}
/// Finish rows for one region.
pub(super) fn finish_region(&mut self, engine: &mut Engine) -> SourceResult<()> {
if self
.lrows
.last()
.is_some_and(|row| self.grid.is_gutter_track(row.index()))
{
// Remove the last row in the region if it is a gutter row.
self.lrows.pop().unwrap();
}
// If no rows other than the footer have been laid out so far, and
// there are rows beside the footer, then don't lay it out at all.
// This check doesn't apply, and is thus overridden, when there is a
// header.
let mut footer_would_be_orphan = self.lrows.is_empty()
&& !in_last_with_offset(
self.regions,
self.header_height + self.footer_height,
)
&& self
.grid
.footer
.as_ref()
.and_then(Repeatable::as_repeated)
.is_some_and(|footer| footer.start != 0);
if let Some(Repeatable::Repeated(header)) = &self.grid.header {
if self.grid.rows.len() > header.end
&& self
.grid
.footer
.as_ref()
.and_then(Repeatable::as_repeated)
.map_or(true, |footer| footer.start != header.end)
&& self.lrows.last().is_some_and(|row| row.index() < header.end)
&& !in_last_with_offset(
self.regions,
self.header_height + self.footer_height,
)
{
// Header and footer would be alone in this region, but there are more
// rows beyond the header and the footer. Push an empty region.
self.lrows.clear();
footer_would_be_orphan = true;
}
}
let mut laid_out_footer_start = None;
if let Some(Repeatable::Repeated(footer)) = &self.grid.footer {
// Don't layout the footer if it would be alone with the header in
// the page, and don't layout it twice.
if !footer_would_be_orphan
&& self.lrows.iter().all(|row| row.index() < footer.start)
{
laid_out_footer_start = Some(footer.start);
self.layout_footer(footer, engine)?;
}
}
// Determine the height of existing rows in the region.
let mut used = Abs::zero();
let mut fr = Fr::zero();
for row in &self.lrows {
match row {
Row::Frame(frame, _, _) => used += frame.height(),
Row::Fr(v, _) => fr += *v,
}
}
// Determine the size of the grid in this region, expanding fully if
// there are fr rows.
let mut size = Size::new(self.width, used).min(self.initial);
if fr.get() > 0.0 && self.initial.y.is_finite() {
size.y = self.initial.y;
}
// The frame for the region.
let mut output = Frame::soft(size);
let mut pos = Point::zero();
let mut rrows = vec![];
let current_region = self.finished.len();
// Place finished rows and layout fractional rows.
for row in std::mem::take(&mut self.lrows) {
let (frame, y, is_last) = match row {
Row::Frame(frame, y, is_last) => (frame, y, is_last),
Row::Fr(v, y) => {
let remaining = self.regions.full - used;
let height = v.share(fr, remaining);
(self.layout_single_row(engine, height, y)?, y, true)
}
};
let height = frame.height();
// Ensure rowspans which span this row will have enough space to
// be laid out over it later.
for rowspan in self
.rowspans
.iter_mut()
.filter(|rowspan| (rowspan.y..rowspan.y + rowspan.rowspan).contains(&y))
.filter(|rowspan| {
rowspan.max_resolved_row.map_or(true, |max_row| y > max_row)
})
{
// If the first region wasn't defined yet, it will have the the
// initial value of usize::MAX, so we can set it to the current
// region's index.
if rowspan.first_region > current_region {
rowspan.first_region = current_region;
// The rowspan starts at this region, precisely at this
// row. In other regions, it will start at dy = 0.
rowspan.dy = pos.y;
// When we layout the rowspan later, the full size of the
// pod must be equal to the full size of the first region
// it appears in.
rowspan.region_full = self.regions.full;
}
let amount_missing_heights = (current_region + 1)
.saturating_sub(rowspan.heights.len() + rowspan.first_region);
// Ensure the vector of heights is long enough such that the
// last height is the one for the current region.
rowspan
.heights
.extend(std::iter::repeat(Abs::zero()).take(amount_missing_heights));
// Ensure that, in this region, the rowspan will span at least
// this row.
*rowspan.heights.last_mut().unwrap() += height;
if is_last {
// Do not extend the rowspan through this row again, even
// if it is repeated in a future region.
rowspan.max_resolved_row = Some(y);
}
}
// We use a for loop over indices to avoid borrow checking
// problems (we need to mutate the rowspans vector, so we can't
// have an iterator actively borrowing it). We keep a separate
// 'i' variable so we can step the counter back after removing
// a rowspan (see explanation below).
let mut i = 0;
while let Some(rowspan) = self.rowspans.get(i) {
// Layout any rowspans which end at this row, but only if this is
// this row's last frame (to avoid having the rowspan stop being
// laid out at the first frame of the row).
// Any rowspans ending before this row are laid out even
// on this row's first frame.
if laid_out_footer_start.map_or(true, |footer_start| {
// If this is a footer row, then only lay out this rowspan
// if the rowspan is contained within the footer.
y < footer_start || rowspan.y >= footer_start
}) && (rowspan.y + rowspan.rowspan < y + 1
|| rowspan.y + rowspan.rowspan == y + 1 && is_last)
{
// Rowspan ends at this or an earlier row, so we take
// it from the rowspans vector and lay it out.
// It's safe to pass the current region as a possible
// region for the rowspan to be laid out in, even if
// the rowspan's last row was at an earlier region,
// because the rowspan won't have an entry for this
// region in its 'heights' vector if it doesn't span
// any rows in this region.
//
// Here we don't advance the index counter ('i') because
// a new element we haven't checked yet in this loop
// will take the index of the now removed element, so
// we have to check the same index again in the next
// iteration.
let rowspan = self.rowspans.remove(i);
self.layout_rowspan(rowspan, Some((&mut output, &rrows)), engine)?;
} else {
i += 1;
}
}
output.push_frame(pos, frame);
rrows.push(RowPiece { height, y });
pos.y += height;
}
self.finish_region_internal(output, rrows);
if let Some(Repeatable::Repeated(footer)) = &self.grid.footer {
self.prepare_footer(footer, engine)?;
}
if let Some(Repeatable::Repeated(header)) = &self.grid.header {
// Add a header to the new region.
self.layout_header(header, engine)?;
}
// Ensure rows don't try to overrun the footer.
self.regions.size.y -= self.footer_height;
Ok(())
}
/// Advances to the next region, registering the finished output and
/// resolved rows for the current region in the appropriate vectors.
fn finish_region_internal(&mut self, output: Frame, resolved_rows: Vec<RowPiece>) {
self.finished.push(output);
self.rrows.push(resolved_rows);
self.regions.next();
self.initial = self.regions.size;
}
/// Layouts the header's rows.
/// Skips regions as necessary.
fn layout_header(
&mut self,
header: &Header,
engine: &mut Engine,
) -> SourceResult<()> {
let header_rows = self.simulate_header(header, &self.regions, engine)?;
let mut skipped_region = false;
while self.unbreakable_rows_left == 0
&& !self.regions.size.y.fits(header_rows.height + self.footer_height)
&& !self.regions.in_last()
{
// Advance regions without any output until we can place the
// header and the footer.
self.finish_region_internal(Frame::soft(Axes::splat(Abs::zero())), vec![]);
skipped_region = true;
}
// Reset the header height for this region.
// It will be re-calculated when laying out each header row.
self.header_height = Abs::zero();
if let Some(Repeatable::Repeated(footer)) = &self.grid.footer {
if skipped_region {
// Simulate the footer again; the region's 'full' might have
// changed.
self.footer_height =
self.simulate_footer(footer, &self.regions, engine)?.height;
}
}
// Header is unbreakable.
// Thus, no risk of 'finish_region' being recursively called from
// within 'layout_row'.
self.unbreakable_rows_left += header.end;
for y in 0..header.end {
self.layout_row(y, engine)?;
}
Ok(())
}
/// Simulate the header's group of rows.
pub(super) fn simulate_header(
&self,
header: &Header,
regions: &Regions<'_>,
engine: &mut Engine,
) -> SourceResult<UnbreakableRowGroup> {
// Note that we assume the invariant that any rowspan in a header is
// fully contained within that header. Therefore, there won't be any
// unbreakable rowspans exceeding the header's rows, and we can safely
// assume that the amount of unbreakable rows following the first row
// in the header will be precisely the rows in the header.
let header_row_group =
self.simulate_unbreakable_row_group(0, Some(header.end), regions, engine)?;
Ok(header_row_group)
}
/// Updates `self.footer_height` by simulating the footer, and skips to fitting region.
pub(super) fn prepare_footer(
&mut self,
footer: &Footer,
engine: &mut Engine,
) -> SourceResult<()> {
let footer_height = self.simulate_footer(footer, &self.regions, engine)?.height;
let mut skipped_region = false;
while self.unbreakable_rows_left == 0
&& !self.regions.size.y.fits(footer_height)
&& !self.regions.in_last()
{
// Advance regions without any output until we can place the
// footer.
self.finish_region_internal(Frame::soft(Axes::splat(Abs::zero())), vec![]);
skipped_region = true;
}
self.footer_height = if skipped_region {
// Simulate the footer again; the region's 'full' might have
// changed.
self.simulate_footer(footer, &self.regions, engine)?.height
} else {
footer_height
};
Ok(())
}
/// Lays out all rows in the footer.
/// They are unbreakable.
pub(super) fn layout_footer(
&mut self,
footer: &Footer,
engine: &mut Engine,
) -> SourceResult<()> {
// Ensure footer rows have their own height available.
// Won't change much as we're creating an unbreakable row group
// anyway, so this is mostly for correctness.
self.regions.size.y += self.footer_height;
let footer_len = self.grid.rows.len() - footer.start;
self.unbreakable_rows_left += footer_len;
for y in footer.start..self.grid.rows.len() {
self.layout_row(y, engine)?;
}
Ok(())
}
// Simulate the footer's group of rows.
pub(super) fn simulate_footer(
&self,
footer: &Footer,
regions: &Regions<'_>,
engine: &mut Engine,
) -> SourceResult<UnbreakableRowGroup> {
// Note that we assume the invariant that any rowspan in a footer is
// fully contained within that footer. Therefore, there won't be any
// unbreakable rowspans exceeding the footer's rows, and we can safely
// assume that the amount of unbreakable rows following the first row
// in the footer will be precisely the rows in the footer.
let footer_row_group = self.simulate_unbreakable_row_group(
footer.start,
Some(self.grid.rows.len() - footer.start),
regions,
engine,
)?;
Ok(footer_row_group)
}
}
/// Turn an iterator of extents into an iterator of offsets before, in between,
/// and after the extents, e.g. [10mm, 5mm] -> [0mm, 10mm, 15mm].
pub(super) fn points(
extents: impl IntoIterator<Item = Abs>,
) -> impl Iterator<Item = Abs> {
let mut offset = Abs::zero();
std::iter::once(Abs::zero()).chain(extents).map(move |extent| {
offset += extent;
offset
})
}
/// Checks if the first region of a sequence of regions is the last usable
/// region, assuming that the last region will always be occupied by some
/// specific offset height, even after calling `.next()`, due to some
/// additional logic which adds content automatically on each region turn (in
/// our case, headers).
pub(super) fn in_last_with_offset(regions: Regions<'_>, offset: Abs) -> bool {
regions.backlog.is_empty()
&& regions.last.map_or(true, |height| regions.size.y + offset == height)
}