use std::str::FromStr; use crate::prelude::*; use crate::text::Case; /// # Blind Text /// Create blind text. /// /// This function yields a Latin-like _Lorem Ipsum_ blind text with the given /// number of words. The sequence of words generated by the function is always /// the same but randomly chosen. As usual for blind texts, it does not make any /// sense. Use it as a placeholder to try layouts. /// /// ## Example /// ``` /// = Blind Text /// #lorem(30) /// /// = More Blind Text /// #lorem(15) /// ``` /// /// ## Parameters /// - words: usize (positional, required) /// The length of the blind text in words. /// /// ## Category /// utility #[func] pub fn lorem(args: &mut Args) -> SourceResult { let words: usize = args.expect("number of words")?; Ok(Value::Str(lipsum::lipsum(words).into())) } /// # Numbering /// Apply a numbering pattern to a sequence of numbers. /// /// Numbering patterns are strings that define how a sequence of numbers should /// be rendered as text. The patterns consist of [counting /// symbols](#parameters--pattern) for which the actual number is substituted, /// their prefixes, and one suffix. The prefixes and the suffix are repeated as-is. /// /// ## Example /// ``` /// #numbering("1.1)", 1, 2, 3) \ /// #numbering("1.b.i", 1, 2) \ /// #numbering("I – 1", 12, 2) /// ``` /// /// ## Parameters /// - pattern: NumberingPattern (positional, required) /// A string that defines how the numbering works. /// /// **Counting symbols** are `1`, `a`, `A`, `i`, `I` and `*`. They are replaced /// by the number in the sequence, in the given case. /// /// The `*` character means that symbols should be used to count, in the order /// of `*`, `†`, `‡`, `§`, `¶`, and `‖`. If there are more than six items, the /// number is represented using multiple symbols. /// /// **Suffixes** are all characters after the last counting symbol. They are /// repeated as-is at the end of any rendered number. /// /// **Prefixes** are all characters that are neither counting symbols nor /// suffixes. They are repeated as-is at in front of their rendered equivalent /// of their counting symbol. /// /// - numbers: NonZeroUsize (positional, variadic) /// The numbers to apply the pattern to. Must be positive. /// /// If more numbers than counting symbols are given, the last counting symbol /// with its prefix is repeated. /// /// ## Category /// utility #[func] pub fn numbering(args: &mut Args) -> SourceResult { let pattern = args.expect::("pattern")?; let numbers = args.all::()?; Ok(Value::Str(pattern.apply(&numbers).into())) } /// How to turn a number into text. /// /// A pattern consists of a prefix, followed by one of `1`, `a`, `A`, `i`, `I` /// or `*`, and then a suffix. /// /// Examples of valid patterns: /// - `1)` /// - `a.` /// - `(I)` #[derive(Debug, Clone, Eq, PartialEq, Hash)] pub struct NumberingPattern { pieces: Vec<(EcoString, NumberingKind, Case)>, suffix: EcoString, } impl NumberingPattern { /// Apply the pattern to the given number. pub fn apply(&self, numbers: &[NonZeroUsize]) -> EcoString { let mut fmt = EcoString::new(); let mut numbers = numbers.into_iter(); for ((prefix, kind, case), &n) in self.pieces.iter().zip(&mut numbers) { fmt.push_str(prefix); fmt.push_str(&kind.apply(n, *case)); } for ((prefix, kind, case), &n) in self.pieces.last().into_iter().cycle().zip(numbers) { if prefix.is_empty() { fmt.push_str(&self.suffix); } else { fmt.push_str(prefix); } fmt.push_str(&kind.apply(n, *case)); } fmt.push_str(&self.suffix); fmt } } impl FromStr for NumberingPattern { type Err = &'static str; fn from_str(pattern: &str) -> Result { let mut pieces = vec![]; let mut handled = 0; for (i, c) in pattern.char_indices() { let kind = match c.to_ascii_lowercase() { '1' => NumberingKind::Arabic, 'a' => NumberingKind::Letter, 'i' => NumberingKind::Roman, '*' => NumberingKind::Symbol, _ => continue, }; let prefix = pattern[handled..i].into(); let case = if c.is_uppercase() { Case::Upper } else { Case::Lower }; pieces.push((prefix, kind, case)); handled = i + 1; } let suffix = pattern[handled..].into(); if pieces.is_empty() { Err("invalid numbering pattern")?; } Ok(Self { pieces, suffix }) } } castable! { NumberingPattern, string: EcoString => string.parse()?, } /// Different kinds of numberings. #[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)] enum NumberingKind { Arabic, Letter, Roman, Symbol, } impl NumberingKind { /// Apply the numbering to the given number. pub fn apply(self, n: NonZeroUsize, case: Case) -> EcoString { let mut n = n.get(); match self { Self::Arabic => { format_eco!("{n}") } Self::Letter => { n -= 1; let mut letters = vec![]; loop { let c = b'a' + (n % 26) as u8; letters.push(match case { Case::Lower => c, Case::Upper => c.to_ascii_uppercase(), }); n /= 26; if n == 0 { break; } } letters.reverse(); String::from_utf8(letters).unwrap().into() } Self::Roman => { // Adapted from Yann Villessuzanne's roman.rs under the // Unlicense, at https://github.com/linfir/roman.rs/ let mut fmt = EcoString::new(); for &(name, value) in &[ ("M̅", 1000000), ("D̅", 500000), ("C̅", 100000), ("L̅", 50000), ("X̅", 10000), ("V̅", 5000), ("I̅V̅", 4000), ("M", 1000), ("CM", 900), ("D", 500), ("CD", 400), ("C", 100), ("XC", 90), ("L", 50), ("XL", 40), ("X", 10), ("IX", 9), ("V", 5), ("IV", 4), ("I", 1), ] { while n >= value { n -= value; for c in name.chars() { match case { Case::Lower => fmt.extend(c.to_lowercase()), Case::Upper => fmt.push(c), } } } } fmt } Self::Symbol => { const SYMBOLS: &[char] = &['*', '†', '‡', '§', '¶', '‖']; let symbol = SYMBOLS[(n - 1) % SYMBOLS.len()]; let amount = ((n - 1) / SYMBOLS.len()) + 1; std::iter::repeat(symbol).take(amount).collect() } } } }