#[cfg(feature = "layout-cache")] use std::collections::{hash_map::Entry, HashMap}; use std::ops::Deref; use super::*; /// Caches layouting artifacts. /// /// _This is only available when the `layout-cache` feature is enabled._ #[cfg(feature = "layout-cache")] #[derive(Debug, Default, Clone)] pub struct LayoutCache { /// Maps from node hashes to the resulting frames and regions in which the /// frames are valid. The right hand side of the hash map is a vector of /// results because across one or more compilations, multiple different /// layouts of the same node may have been requested. frames: HashMap>, /// In how many compilations this cache has been used. age: usize, } #[cfg(feature = "layout-cache")] impl LayoutCache { /// Create a new, empty layout cache. pub fn new() -> Self { Self::default() } /// Whether the cache is empty. pub fn is_empty(&self) -> bool { self.len() == 0 } /// Amount of items in the cache. pub fn len(&self) -> usize { self.frames.values().map(Vec::len).sum() } /// The number of levels stored in the cache. pub fn levels(&self) -> usize { self.entries().map(|entry| entry.level + 1).max().unwrap_or(0) } /// An iterator over all entries in the cache. pub fn entries(&self) -> impl Iterator + '_ { self.frames.values().flatten() } /// Fetch matching cached frames if there are any. pub fn get( &mut self, hash: u64, regions: &Regions, ) -> Option>>> { let entries = self.frames.get_mut(&hash)?; for entry in entries { if let Some(frames) = entry.check(regions) { return Some(frames); } } None } /// Insert a new frame entry into the cache. pub fn insert( &mut self, hash: u64, frames: Vec>>, level: usize, ) { let entry = FramesEntry::new(frames, level); match self.frames.entry(hash) { Entry::Occupied(o) => o.into_mut().push(entry), Entry::Vacant(v) => { v.insert(vec![entry]); } } } /// Clear the cache. pub fn clear(&mut self) { self.frames.clear(); } /// Retain all elements for which the closure on the level returns `true`. pub fn retain(&mut self, mut f: F) where F: FnMut(usize) -> bool, { for entries in self.frames.values_mut() { entries.retain(|entry| f(entry.level)); } } /// Prepare the cache for the next round of compilation. pub fn turnaround(&mut self) { self.age += 1; for entry in self.frames.values_mut().flatten() { for i in 0 .. (entry.temperature.len() - 1) { entry.temperature[i + 1] = entry.temperature[i]; } entry.temperature[0] = 0; entry.age += 1; } } } /// Cached frames from past layouting. /// /// _This is only available when the `layout-cache` feature is enabled._ #[cfg(feature = "layout-cache")] #[derive(Debug, Clone)] pub struct FramesEntry { /// The cached frames for a node. frames: Vec>>, /// How nested the frame was in the context is was originally appearing in. level: usize, /// For how long the element already exists. age: usize, /// How much the element was accessed during the last five compilations, the /// most recent one being the first element. temperature: [usize; 5], } #[cfg(feature = "layout-cache")] impl FramesEntry { /// Construct a new instance. pub fn new(frames: Vec>>, level: usize) -> Self { Self { frames, level, age: 1, temperature: [0; 5], } } /// Checks if the cached frames are valid in the given regions and returns /// them if so. pub fn check(&mut self, regions: &Regions) -> Option>>> { let mut iter = regions.iter(); for frame in &self.frames { let (current, base) = iter.next()?; if !frame.constraints.check(current, base, regions.expand) { return None; } } self.temperature[0] += 1; Some(self.frames.clone()) } /// How nested the frame was in the context is was originally appearing in. pub fn level(&self) -> usize { self.level } /// The number of compilation cycles this item has remained in the cache. pub fn age(&self) -> usize { self.age } /// Whether this element was used in the last compilation cycle. pub fn hit(&self) -> bool { self.temperature[0] != 0 } /// The amount of consecutive cycles in which this item has not been used. pub fn cooldown(&self) -> usize { let mut cycle = 0; for &temp in &self.temperature[.. self.age] { if temp > 0 { return cycle; } cycle += 1; } cycle } } /// Carries an item that is only valid in certain regions and the constraints /// that describe these regions. #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub struct Constrained { /// The item that is only valid if the constraints are fullfilled. pub item: T, /// Constraints on regions in which the item is valid. pub constraints: Constraints, } impl Deref for Constrained { type Target = T; fn deref(&self) -> &Self::Target { &self.item } } /// Describe regions that match them. #[derive(Debug, Copy, Clone, Eq, PartialEq)] pub struct Constraints { /// The minimum available length in the region. pub min: Spec>, /// The maximum available length in the region. pub max: Spec>, /// The available length in the region. pub exact: Spec>, /// The base length of the region used for relative length resolution. pub base: Spec>, /// The expand settings of the region. pub expand: Spec, } impl Constraints { /// Create a new region constraint. pub fn new(expand: Spec) -> Self { Self { min: Spec::default(), max: Spec::default(), exact: Spec::default(), base: Spec::default(), expand, } } /// Check whether the constraints are fullfilled in a region with the given /// properties. pub fn check(&self, current: Size, base: Size, expand: Spec) -> bool { let current = current.to_spec(); let base = base.to_spec(); self.expand == expand && current.eq_by(&self.min, |x, y| y.map_or(true, |y| x.fits(y))) && current.eq_by(&self.max, |x, y| y.map_or(true, |y| x < &y)) && current.eq_by(&self.exact, |x, y| y.map_or(true, |y| x.approx_eq(y))) && base.eq_by(&self.base, |x, y| y.map_or(true, |y| x.approx_eq(y))) } /// Set the appropriate base constraints for (relative) width and height /// metrics, respectively. pub fn set_base_using_linears( &mut self, size: Spec>, regions: &Regions, ) { // The full sizes need to be equal if there is a relative component in the sizes. if size.horizontal.map_or(false, |l| l.is_relative()) { self.base.horizontal = Some(regions.base.width); } if size.vertical.map_or(false, |l| l.is_relative()) { self.base.vertical = Some(regions.base.height); } } /// Changes all constraints by adding the `size` to them if they are `Some`. pub fn inflate(&mut self, size: Size, regions: &Regions) { for spec in [ &mut self.min, &mut self.max, &mut self.exact, &mut self.base, ] { if let Some(horizontal) = spec.horizontal.as_mut() { *horizontal += size.width; } if let Some(vertical) = spec.vertical.as_mut() { *vertical += size.height; } } let current = regions.current.to_spec(); let base = regions.base.to_spec(); self.exact.horizontal.and_set(Some(current.horizontal)); self.exact.vertical.and_set(Some(current.vertical)); self.base.horizontal.and_set(Some(base.horizontal)); self.base.vertical.and_set(Some(base.vertical)); } }