non-fungible-apps/lib/forge-std/src/StdAssertions.sol

210 lines
7.2 KiB
Solidity

// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import "ds-test/test.sol";
import "./StdMath.sol";
abstract contract StdAssertions is DSTest {
event log_array(uint256[] val);
event log_array(int256[] val);
event log_array(address[] val);
event log_named_array(string key, uint256[] val);
event log_named_array(string key, int256[] val);
event log_named_array(string key, address[] val);
function fail(string memory err) internal virtual {
emit log_named_string("Error", err);
fail();
}
function assertFalse(bool data) internal virtual {
assertTrue(!data);
}
function assertFalse(bool data, string memory err) internal virtual {
assertTrue(!data, err);
}
function assertEq(bool a, bool b) internal virtual {
if (a != b) {
emit log("Error: a == b not satisfied [bool]");
emit log_named_string(" Expected", b ? "true" : "false");
emit log_named_string(" Actual", a ? "true" : "false");
fail();
}
}
function assertEq(bool a, bool b, string memory err) internal virtual {
if (a != b) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
function assertEq(bytes memory a, bytes memory b) internal virtual {
assertEq0(a, b);
}
function assertEq(bytes memory a, bytes memory b, string memory err) internal virtual {
assertEq0(a, b, err);
}
function assertEq(uint256[] memory a, uint256[] memory b) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log("Error: a == b not satisfied [uint[]]");
emit log_named_array(" Expected", b);
emit log_named_array(" Actual", a);
fail();
}
}
function assertEq(int256[] memory a, int256[] memory b) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log("Error: a == b not satisfied [int[]]");
emit log_named_array(" Expected", b);
emit log_named_array(" Actual", a);
fail();
}
}
function assertEq(address[] memory a, address[] memory b) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log("Error: a == b not satisfied [address[]]");
emit log_named_array(" Expected", b);
emit log_named_array(" Actual", a);
fail();
}
}
function assertEq(uint256[] memory a, uint256[] memory b, string memory err) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
function assertEq(int256[] memory a, int256[] memory b, string memory err) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
function assertEq(address[] memory a, address[] memory b, string memory err) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
// Legacy helper
function assertEqUint(uint256 a, uint256 b) internal virtual {
assertEq(uint256(a), uint256(b));
}
function assertApproxEqAbs(uint256 a, uint256 b, uint256 maxDelta) internal virtual {
uint256 delta = stdMath.delta(a, b);
if (delta > maxDelta) {
emit log("Error: a ~= b not satisfied [uint]");
emit log_named_uint(" Expected", b);
emit log_named_uint(" Actual", a);
emit log_named_uint(" Max Delta", maxDelta);
emit log_named_uint(" Delta", delta);
fail();
}
}
function assertApproxEqAbs(uint256 a, uint256 b, uint256 maxDelta, string memory err) internal virtual {
uint256 delta = stdMath.delta(a, b);
if (delta > maxDelta) {
emit log_named_string("Error", err);
assertApproxEqAbs(a, b, maxDelta);
}
}
function assertApproxEqAbs(int256 a, int256 b, uint256 maxDelta) internal virtual {
uint256 delta = stdMath.delta(a, b);
if (delta > maxDelta) {
emit log("Error: a ~= b not satisfied [int]");
emit log_named_int(" Expected", b);
emit log_named_int(" Actual", a);
emit log_named_uint(" Max Delta", maxDelta);
emit log_named_uint(" Delta", delta);
fail();
}
}
function assertApproxEqAbs(int256 a, int256 b, uint256 maxDelta, string memory err) internal virtual {
uint256 delta = stdMath.delta(a, b);
if (delta > maxDelta) {
emit log_named_string("Error", err);
assertApproxEqAbs(a, b, maxDelta);
}
}
function assertApproxEqRel(
uint256 a,
uint256 b,
uint256 maxPercentDelta // An 18 decimal fixed point number, where 1e18 == 100%
) internal virtual {
if (b == 0) return assertEq(a, b); // If the expected is 0, actual must be too.
uint256 percentDelta = stdMath.percentDelta(a, b);
if (percentDelta > maxPercentDelta) {
emit log("Error: a ~= b not satisfied [uint]");
emit log_named_uint(" Expected", b);
emit log_named_uint(" Actual", a);
emit log_named_decimal_uint(" Max % Delta", maxPercentDelta, 18);
emit log_named_decimal_uint(" % Delta", percentDelta, 18);
fail();
}
}
function assertApproxEqRel(
uint256 a,
uint256 b,
uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
string memory err
) internal virtual {
if (b == 0) return assertEq(a, b, err); // If the expected is 0, actual must be too.
uint256 percentDelta = stdMath.percentDelta(a, b);
if (percentDelta > maxPercentDelta) {
emit log_named_string("Error", err);
assertApproxEqRel(a, b, maxPercentDelta);
}
}
function assertApproxEqRel(int256 a, int256 b, uint256 maxPercentDelta) internal virtual {
if (b == 0) return assertEq(a, b); // If the expected is 0, actual must be too.
uint256 percentDelta = stdMath.percentDelta(a, b);
if (percentDelta > maxPercentDelta) {
emit log("Error: a ~= b not satisfied [int]");
emit log_named_int(" Expected", b);
emit log_named_int(" Actual", a);
emit log_named_decimal_uint(" Max % Delta", maxPercentDelta, 18);
emit log_named_decimal_uint(" % Delta", percentDelta, 18);
fail();
}
}
function assertApproxEqRel(int256 a, int256 b, uint256 maxPercentDelta, string memory err) internal virtual {
if (b == 0) return assertEq(a, b, err); // If the expected is 0, actual must be too.
uint256 percentDelta = stdMath.percentDelta(a, b);
if (percentDelta > maxPercentDelta) {
emit log_named_string("Error", err);
assertApproxEqRel(a, b, maxPercentDelta);
}
}
}