fix merge conflicts

This commit is contained in:
EmperorOrokuSaki 2022-12-12 23:47:54 +03:30
commit 03615bf2b9
46 changed files with 3 additions and 9194 deletions

3
.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "lib/forge-std"]
path = lib/forge-std
url = https://github.com/foundry-rs/forge-std

View File

@ -1,89 +0,0 @@
name: CI
on:
workflow_dispatch:
pull_request:
push:
branches:
- master
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install Foundry
uses: onbjerg/foundry-toolchain@v1
with:
version: nightly
- name: Install dependencies
run: forge install
# Backwards compatibility checks.
- name: Check compatibility with 0.8.0
if: always()
run: forge build --skip test --use solc:0.8.0
- name: Check compatibility with 0.7.6
if: always()
run: forge build --skip test --use solc:0.7.6
- name: Check compatibility with 0.7.0
if: always()
run: forge build --skip test --use solc:0.7.0
- name: Check compatibility with 0.6.12
if: always()
run: forge build --skip test --use solc:0.6.12
- name: Check compatibility with 0.6.2
if: always()
run: forge build --skip test --use solc:0.6.2
# via-ir compilation time checks.
- name: Measure compilation time of Test with 0.8.17 --via-ir
if: always()
run: forge build --skip test --contracts test/compilation/CompilationTest.sol --use solc:0.8.17 --via-ir
- name: Measure compilation time of TestBase with 0.8.17 --via-ir
if: always()
run: forge build --skip test --contracts test/compilation/CompilationTestBase.sol --use solc:0.8.17 --via-ir
- name: Measure compilation time of Script with 0.8.17 --via-ir
if: always()
run: forge build --skip test --contracts test/compilation/CompilationScript.sol --use solc:0.8.17 --via-ir
- name: Measure compilation time of ScriptBase with 0.8.17 --via-ir
if: always()
run: forge build --skip test --contracts test/compilation/CompilationScriptBase.sol --use solc:0.8.17 --via-ir
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install Foundry
uses: onbjerg/foundry-toolchain@v1
with:
version: nightly
- name: Install dependencies
run: forge install
- name: Run tests
run: forge test -vvv
fmt:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Install Foundry
uses: onbjerg/foundry-toolchain@v1
with:
version: nightly
- name: Check formatting
run: forge fmt --check

View File

@ -1,4 +0,0 @@
cache/
out/
.vscode
.idea

View File

@ -1,3 +0,0 @@
[submodule "lib/ds-test"]
path = lib/ds-test
url = https://github.com/dapphub/ds-test

View File

@ -1,203 +0,0 @@
Copyright Contributors to Forge Standard Library
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

View File

@ -1,25 +0,0 @@
Copyright Contributors to Forge Standard Library
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE O THE USE OR OTHER
DEALINGS IN THE SOFTWARE.R

View File

@ -1,250 +0,0 @@
# Forge Standard Library • [![CI status](https://github.com/foundry-rs/forge-std/actions/workflows/ci.yml/badge.svg)](https://github.com/foundry-rs/forge-std/actions/workflows/ci.yml)
Forge Standard Library is a collection of helpful contracts and libraries for use with [Forge and Foundry](https://github.com/foundry-rs/foundry). It leverages Forge's cheatcodes to make writing tests easier and faster, while improving the UX of cheatcodes.
**Learn how to use Forge-Std with the [📖 Foundry Book (Forge-Std Guide)](https://book.getfoundry.sh/forge/forge-std.html).**
## Install
```bash
forge install foundry-rs/forge-std
```
## Contracts
### stdError
This is a helper contract for errors and reverts. In Forge, this contract is particularly helpful for the `expectRevert` cheatcode, as it provides all compiler builtin errors.
See the contract itself for all error codes.
#### Example usage
```solidity
import "forge-std/Test.sol";
contract TestContract is Test {
ErrorsTest test;
function setUp() public {
test = new ErrorsTest();
}
function testExpectArithmetic() public {
vm.expectRevert(stdError.arithmeticError);
test.arithmeticError(10);
}
}
contract ErrorsTest {
function arithmeticError(uint256 a) public {
uint256 a = a - 100;
}
}
```
### stdStorage
This is a rather large contract due to all of the overloading to make the UX decent. Primarily, it is a wrapper around the `record` and `accesses` cheatcodes. It can *always* find and write the storage slot(s) associated with a particular variable without knowing the storage layout. The one _major_ caveat to this is while a slot can be found for packed storage variables, we can't write to that variable safely. If a user tries to write to a packed slot, the execution throws an error, unless it is uninitialized (`bytes32(0)`).
This works by recording all `SLOAD`s and `SSTORE`s during a function call. If there is a single slot read or written to, it immediately returns the slot. Otherwise, behind the scenes, we iterate through and check each one (assuming the user passed in a `depth` parameter). If the variable is a struct, you can pass in a `depth` parameter which is basically the field depth.
I.e.:
```solidity
struct T {
// depth 0
uint256 a;
// depth 1
uint256 b;
}
```
#### Example usage
```solidity
import "forge-std/Test.sol";
contract TestContract is Test {
using stdStorage for StdStorage;
Storage test;
function setUp() public {
test = new Storage();
}
function testFindExists() public {
// Lets say we want to find the slot for the public
// variable `exists`. We just pass in the function selector
// to the `find` command
uint256 slot = stdstore.target(address(test)).sig("exists()").find();
assertEq(slot, 0);
}
function testWriteExists() public {
// Lets say we want to write to the slot for the public
// variable `exists`. We just pass in the function selector
// to the `checked_write` command
stdstore.target(address(test)).sig("exists()").checked_write(100);
assertEq(test.exists(), 100);
}
// It supports arbitrary storage layouts, like assembly based storage locations
function testFindHidden() public {
// `hidden` is a random hash of a bytes, iteration through slots would
// not find it. Our mechanism does
// Also, you can use the selector instead of a string
uint256 slot = stdstore.target(address(test)).sig(test.hidden.selector).find();
assertEq(slot, uint256(keccak256("my.random.var")));
}
// If targeting a mapping, you have to pass in the keys necessary to perform the find
// i.e.:
function testFindMapping() public {
uint256 slot = stdstore
.target(address(test))
.sig(test.map_addr.selector)
.with_key(address(this))
.find();
// in the `Storage` constructor, we wrote that this address' value was 1 in the map
// so when we load the slot, we expect it to be 1
assertEq(uint(vm.load(address(test), bytes32(slot))), 1);
}
// If the target is a struct, you can specify the field depth:
function testFindStruct() public {
// NOTE: see the depth parameter - 0 means 0th field, 1 means 1st field, etc.
uint256 slot_for_a_field = stdstore
.target(address(test))
.sig(test.basicStruct.selector)
.depth(0)
.find();
uint256 slot_for_b_field = stdstore
.target(address(test))
.sig(test.basicStruct.selector)
.depth(1)
.find();
assertEq(uint(vm.load(address(test), bytes32(slot_for_a_field))), 1);
assertEq(uint(vm.load(address(test), bytes32(slot_for_b_field))), 2);
}
}
// A complex storage contract
contract Storage {
struct UnpackedStruct {
uint256 a;
uint256 b;
}
constructor() {
map_addr[msg.sender] = 1;
}
uint256 public exists = 1;
mapping(address => uint256) public map_addr;
// mapping(address => Packed) public map_packed;
mapping(address => UnpackedStruct) public map_struct;
mapping(address => mapping(address => uint256)) public deep_map;
mapping(address => mapping(address => UnpackedStruct)) public deep_map_struct;
UnpackedStruct public basicStruct = UnpackedStruct({
a: 1,
b: 2
});
function hidden() public view returns (bytes32 t) {
// an extremely hidden storage slot
bytes32 slot = keccak256("my.random.var");
assembly {
t := sload(slot)
}
}
}
```
### stdCheats
This is a wrapper over miscellaneous cheatcodes that need wrappers to be more dev friendly. Currently there are only functions related to `prank`. In general, users may expect ETH to be put into an address on `prank`, but this is not the case for safety reasons. Explicitly this `hoax` function should only be used for address that have expected balances as it will get overwritten. If an address already has ETH, you should just use `prank`. If you want to change that balance explicitly, just use `deal`. If you want to do both, `hoax` is also right for you.
#### Example usage:
```solidity
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import "forge-std/Test.sol";
// Inherit the stdCheats
contract StdCheatsTest is Test {
Bar test;
function setUp() public {
test = new Bar();
}
function testHoax() public {
// we call `hoax`, which gives the target address
// eth and then calls `prank`
hoax(address(1337));
test.bar{value: 100}(address(1337));
// overloaded to allow you to specify how much eth to
// initialize the address with
hoax(address(1337), 1);
test.bar{value: 1}(address(1337));
}
function testStartHoax() public {
// we call `startHoax`, which gives the target address
// eth and then calls `startPrank`
//
// it is also overloaded so that you can specify an eth amount
startHoax(address(1337));
test.bar{value: 100}(address(1337));
test.bar{value: 100}(address(1337));
vm.stopPrank();
test.bar(address(this));
}
}
contract Bar {
function bar(address expectedSender) public payable {
require(msg.sender == expectedSender, "!prank");
}
}
```
### Std Assertions
Expand upon the assertion functions from the `DSTest` library.
### `console.log`
Usage follows the same format as [Hardhat](https://hardhat.org/hardhat-network/reference/#console-log).
It's recommended to use `console2.sol` as shown below, as this will show the decoded logs in Forge traces.
```solidity
// import it indirectly via Test.sol
import "forge-std/Test.sol";
// or directly import it
import "forge-std/console2.sol";
...
console2.log(someValue);
```
If you need compatibility with Hardhat, you must use the standard `console.sol` instead.
Due to a bug in `console.sol`, logs that use `uint256` or `int256` types will not be properly decoded in Forge traces.
```solidity
// import it indirectly via Test.sol
import "forge-std/Test.sol";
// or directly import it
import "forge-std/console.sol";
...
console.log(someValue);
```
## License
Forge Standard Library is offered under either [MIT](LICENSE-MIT) or [Apache 2.0](LICENSE-APACHE) license.

View File

@ -1,20 +0,0 @@
[profile.default]
fs_permissions = [{ access = "read-write", path = "./"}]
[rpc_endpoints]
# The RPC URLs are modified versions of the default for testing initialization.
mainnet = "https://mainnet.infura.io/v3/7a8769b798b642f6933f2ed52042bd70" # Different API key.
optimism_goerli = "https://goerli.optimism.io/" # Adds a trailing slash.
arbitrum_one_goerli = "https://goerli-rollup.arbitrum.io/rpc/" # Adds a trailing slash.
[fmt]
# These are all the `forge fmt` defaults.
line_length = 120
tab_width = 4
bracket_spacing = false
int_types = 'long'
multiline_func_header = 'attributes_first'
quote_style = 'double'
number_underscore = 'preserve'
single_line_statement_blocks = 'preserve'
ignore = ["src/console.sol", "src/console2.sol"]

View File

@ -1,3 +0,0 @@
/.dapple
/build
/out

View File

@ -1,674 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU General Public License is a free, copyleft license for
software and other kinds of works.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.
Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.
For the developers' and authors' protection, the GPL clearly explains
that there is no warranty for this free software. For both users' and
authors' sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.
Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users' freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.
Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Use with the GNU Affero General Public License.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If the program does terminal interaction, make it output a short
notice like this when it starts in an interactive mode:
<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, your program's commands
might be different; for a GUI interface, you would use an "about box".
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.
The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first, please read
<http://www.gnu.org/philosophy/why-not-lgpl.html>.

View File

@ -1,14 +0,0 @@
all:; dapp build
test:
-dapp --use solc:0.4.23 build
-dapp --use solc:0.4.26 build
-dapp --use solc:0.5.17 build
-dapp --use solc:0.6.12 build
-dapp --use solc:0.7.5 build
demo:
DAPP_SRC=demo dapp --use solc:0.7.5 build
-hevm dapp-test --verbose 3
.PHONY: test demo

View File

@ -1,4 +0,0 @@
{ solidityPackage, dappsys }: solidityPackage {
name = "ds-test";
src = ./src;
}

View File

@ -1,222 +0,0 @@
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.5.0;
import "../src/test.sol";
contract DemoTest is DSTest {
function test_this() public pure {
require(true);
}
function test_logs() public {
emit log("-- log(string)");
emit log("a string");
emit log("-- log_named_uint(string, uint)");
emit log_named_uint("uint", 512);
emit log("-- log_named_int(string, int)");
emit log_named_int("int", -512);
emit log("-- log_named_address(string, address)");
emit log_named_address("address", address(this));
emit log("-- log_named_bytes32(string, bytes32)");
emit log_named_bytes32("bytes32", "a string");
emit log("-- log_named_bytes(string, bytes)");
emit log_named_bytes("bytes", hex"cafefe");
emit log("-- log_named_string(string, string)");
emit log_named_string("string", "a string");
emit log("-- log_named_decimal_uint(string, uint, uint)");
emit log_named_decimal_uint("decimal uint", 1.0e18, 18);
emit log("-- log_named_decimal_int(string, int, uint)");
emit log_named_decimal_int("decimal int", -1.0e18, 18);
}
event log_old_named_uint(bytes32,uint);
function test_old_logs() public {
emit log_old_named_uint("key", 500);
emit log_named_bytes32("bkey", "val");
}
function test_trace() public view {
this.echo("string 1", "string 2");
}
function test_multiline() public {
emit log("a multiline\\nstring");
emit log("a multiline string");
emit log_bytes("a string");
emit log_bytes("a multiline\nstring");
emit log_bytes("a multiline\\nstring");
emit logs(hex"0000");
emit log_named_bytes("0x0000", hex"0000");
emit logs(hex"ff");
}
function echo(string memory s1, string memory s2) public pure
returns (string memory, string memory)
{
return (s1, s2);
}
function prove_this(uint x) public {
emit log_named_uint("sym x", x);
assertGt(x + 1, 0);
}
function test_logn() public {
assembly {
log0(0x01, 0x02)
log1(0x01, 0x02, 0x03)
log2(0x01, 0x02, 0x03, 0x04)
log3(0x01, 0x02, 0x03, 0x04, 0x05)
}
}
event MyEvent(uint, uint indexed, uint, uint indexed);
function test_events() public {
emit MyEvent(1, 2, 3, 4);
}
function test_asserts() public {
string memory err = "this test has failed!";
emit log("## assertTrue(bool)\n");
assertTrue(false);
emit log("\n");
assertTrue(false, err);
emit log("\n## assertEq(address,address)\n");
assertEq(address(this), msg.sender);
emit log("\n");
assertEq(address(this), msg.sender, err);
emit log("\n## assertEq32(bytes32,bytes32)\n");
assertEq32("bytes 1", "bytes 2");
emit log("\n");
assertEq32("bytes 1", "bytes 2", err);
emit log("\n## assertEq(bytes32,bytes32)\n");
assertEq32("bytes 1", "bytes 2");
emit log("\n");
assertEq32("bytes 1", "bytes 2", err);
emit log("\n## assertEq(uint,uint)\n");
assertEq(uint(0), 1);
emit log("\n");
assertEq(uint(0), 1, err);
emit log("\n## assertEq(int,int)\n");
assertEq(-1, -2);
emit log("\n");
assertEq(-1, -2, err);
emit log("\n## assertEqDecimal(int,int,uint)\n");
assertEqDecimal(-1.0e18, -1.1e18, 18);
emit log("\n");
assertEqDecimal(-1.0e18, -1.1e18, 18, err);
emit log("\n## assertEqDecimal(uint,uint,uint)\n");
assertEqDecimal(uint(1.0e18), 1.1e18, 18);
emit log("\n");
assertEqDecimal(uint(1.0e18), 1.1e18, 18, err);
emit log("\n## assertGt(uint,uint)\n");
assertGt(uint(0), 0);
emit log("\n");
assertGt(uint(0), 0, err);
emit log("\n## assertGt(int,int)\n");
assertGt(-1, -1);
emit log("\n");
assertGt(-1, -1, err);
emit log("\n## assertGtDecimal(int,int,uint)\n");
assertGtDecimal(-2.0e18, -1.1e18, 18);
emit log("\n");
assertGtDecimal(-2.0e18, -1.1e18, 18, err);
emit log("\n## assertGtDecimal(uint,uint,uint)\n");
assertGtDecimal(uint(1.0e18), 1.1e18, 18);
emit log("\n");
assertGtDecimal(uint(1.0e18), 1.1e18, 18, err);
emit log("\n## assertGe(uint,uint)\n");
assertGe(uint(0), 1);
emit log("\n");
assertGe(uint(0), 1, err);
emit log("\n## assertGe(int,int)\n");
assertGe(-1, 0);
emit log("\n");
assertGe(-1, 0, err);
emit log("\n## assertGeDecimal(int,int,uint)\n");
assertGeDecimal(-2.0e18, -1.1e18, 18);
emit log("\n");
assertGeDecimal(-2.0e18, -1.1e18, 18, err);
emit log("\n## assertGeDecimal(uint,uint,uint)\n");
assertGeDecimal(uint(1.0e18), 1.1e18, 18);
emit log("\n");
assertGeDecimal(uint(1.0e18), 1.1e18, 18, err);
emit log("\n## assertLt(uint,uint)\n");
assertLt(uint(0), 0);
emit log("\n");
assertLt(uint(0), 0, err);
emit log("\n## assertLt(int,int)\n");
assertLt(-1, -1);
emit log("\n");
assertLt(-1, -1, err);
emit log("\n## assertLtDecimal(int,int,uint)\n");
assertLtDecimal(-1.0e18, -1.1e18, 18);
emit log("\n");
assertLtDecimal(-1.0e18, -1.1e18, 18, err);
emit log("\n## assertLtDecimal(uint,uint,uint)\n");
assertLtDecimal(uint(2.0e18), 1.1e18, 18);
emit log("\n");
assertLtDecimal(uint(2.0e18), 1.1e18, 18, err);
emit log("\n## assertLe(uint,uint)\n");
assertLe(uint(1), 0);
emit log("\n");
assertLe(uint(1), 0, err);
emit log("\n## assertLe(int,int)\n");
assertLe(0, -1);
emit log("\n");
assertLe(0, -1, err);
emit log("\n## assertLeDecimal(int,int,uint)\n");
assertLeDecimal(-1.0e18, -1.1e18, 18);
emit log("\n");
assertLeDecimal(-1.0e18, -1.1e18, 18, err);
emit log("\n## assertLeDecimal(uint,uint,uint)\n");
assertLeDecimal(uint(2.0e18), 1.1e18, 18);
emit log("\n");
assertLeDecimal(uint(2.0e18), 1.1e18, 18, err);
emit log("\n## assertEq(string,string)\n");
string memory s1 = "string 1";
string memory s2 = "string 2";
assertEq(s1, s2);
emit log("\n");
assertEq(s1, s2, err);
emit log("\n## assertEq0(bytes,bytes)\n");
assertEq0(hex"abcdef01", hex"abcdef02");
emit log("\n");
assertEq0(hex"abcdef01", hex"abcdef02", err);
}
}
contract DemoTestWithSetUp {
function setUp() public {
}
function test_pass() public pure {
}
}

View File

@ -1,15 +0,0 @@
{
"name": "ds-test",
"version": "1.0.0",
"description": "Assertions, equality checks and other test helpers ",
"bugs": "https://github.com/dapphub/ds-test/issues",
"license": "GPL-3.0",
"author": "Contributors to ds-test",
"files": [
"src/*"
],
"repository": {
"type": "git",
"url": "https://github.com/dapphub/ds-test.git"
}
}

View File

@ -1,469 +0,0 @@
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity >=0.5.0;
contract DSTest {
event log (string);
event logs (bytes);
event log_address (address);
event log_bytes32 (bytes32);
event log_int (int);
event log_uint (uint);
event log_bytes (bytes);
event log_string (string);
event log_named_address (string key, address val);
event log_named_bytes32 (string key, bytes32 val);
event log_named_decimal_int (string key, int val, uint decimals);
event log_named_decimal_uint (string key, uint val, uint decimals);
event log_named_int (string key, int val);
event log_named_uint (string key, uint val);
event log_named_bytes (string key, bytes val);
event log_named_string (string key, string val);
bool public IS_TEST = true;
bool private _failed;
address constant HEVM_ADDRESS =
address(bytes20(uint160(uint256(keccak256('hevm cheat code')))));
modifier mayRevert() { _; }
modifier testopts(string memory) { _; }
function failed() public returns (bool) {
if (_failed) {
return _failed;
} else {
bool globalFailed = false;
if (hasHEVMContext()) {
(, bytes memory retdata) = HEVM_ADDRESS.call(
abi.encodePacked(
bytes4(keccak256("load(address,bytes32)")),
abi.encode(HEVM_ADDRESS, bytes32("failed"))
)
);
globalFailed = abi.decode(retdata, (bool));
}
return globalFailed;
}
}
function fail() internal {
if (hasHEVMContext()) {
(bool status, ) = HEVM_ADDRESS.call(
abi.encodePacked(
bytes4(keccak256("store(address,bytes32,bytes32)")),
abi.encode(HEVM_ADDRESS, bytes32("failed"), bytes32(uint256(0x01)))
)
);
status; // Silence compiler warnings
}
_failed = true;
}
function hasHEVMContext() internal view returns (bool) {
uint256 hevmCodeSize = 0;
assembly {
hevmCodeSize := extcodesize(0x7109709ECfa91a80626fF3989D68f67F5b1DD12D)
}
return hevmCodeSize > 0;
}
modifier logs_gas() {
uint startGas = gasleft();
_;
uint endGas = gasleft();
emit log_named_uint("gas", startGas - endGas);
}
function assertTrue(bool condition) internal {
if (!condition) {
emit log("Error: Assertion Failed");
fail();
}
}
function assertTrue(bool condition, string memory err) internal {
if (!condition) {
emit log_named_string("Error", err);
assertTrue(condition);
}
}
function assertEq(address a, address b) internal {
if (a != b) {
emit log("Error: a == b not satisfied [address]");
emit log_named_address(" Expected", b);
emit log_named_address(" Actual", a);
fail();
}
}
function assertEq(address a, address b, string memory err) internal {
if (a != b) {
emit log_named_string ("Error", err);
assertEq(a, b);
}
}
function assertEq(bytes32 a, bytes32 b) internal {
if (a != b) {
emit log("Error: a == b not satisfied [bytes32]");
emit log_named_bytes32(" Expected", b);
emit log_named_bytes32(" Actual", a);
fail();
}
}
function assertEq(bytes32 a, bytes32 b, string memory err) internal {
if (a != b) {
emit log_named_string ("Error", err);
assertEq(a, b);
}
}
function assertEq32(bytes32 a, bytes32 b) internal {
assertEq(a, b);
}
function assertEq32(bytes32 a, bytes32 b, string memory err) internal {
assertEq(a, b, err);
}
function assertEq(int a, int b) internal {
if (a != b) {
emit log("Error: a == b not satisfied [int]");
emit log_named_int(" Expected", b);
emit log_named_int(" Actual", a);
fail();
}
}
function assertEq(int a, int b, string memory err) internal {
if (a != b) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
function assertEq(uint a, uint b) internal {
if (a != b) {
emit log("Error: a == b not satisfied [uint]");
emit log_named_uint(" Expected", b);
emit log_named_uint(" Actual", a);
fail();
}
}
function assertEq(uint a, uint b, string memory err) internal {
if (a != b) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
function assertEqDecimal(int a, int b, uint decimals) internal {
if (a != b) {
emit log("Error: a == b not satisfied [decimal int]");
emit log_named_decimal_int(" Expected", b, decimals);
emit log_named_decimal_int(" Actual", a, decimals);
fail();
}
}
function assertEqDecimal(int a, int b, uint decimals, string memory err) internal {
if (a != b) {
emit log_named_string("Error", err);
assertEqDecimal(a, b, decimals);
}
}
function assertEqDecimal(uint a, uint b, uint decimals) internal {
if (a != b) {
emit log("Error: a == b not satisfied [decimal uint]");
emit log_named_decimal_uint(" Expected", b, decimals);
emit log_named_decimal_uint(" Actual", a, decimals);
fail();
}
}
function assertEqDecimal(uint a, uint b, uint decimals, string memory err) internal {
if (a != b) {
emit log_named_string("Error", err);
assertEqDecimal(a, b, decimals);
}
}
function assertGt(uint a, uint b) internal {
if (a <= b) {
emit log("Error: a > b not satisfied [uint]");
emit log_named_uint(" Value a", a);
emit log_named_uint(" Value b", b);
fail();
}
}
function assertGt(uint a, uint b, string memory err) internal {
if (a <= b) {
emit log_named_string("Error", err);
assertGt(a, b);
}
}
function assertGt(int a, int b) internal {
if (a <= b) {
emit log("Error: a > b not satisfied [int]");
emit log_named_int(" Value a", a);
emit log_named_int(" Value b", b);
fail();
}
}
function assertGt(int a, int b, string memory err) internal {
if (a <= b) {
emit log_named_string("Error", err);
assertGt(a, b);
}
}
function assertGtDecimal(int a, int b, uint decimals) internal {
if (a <= b) {
emit log("Error: a > b not satisfied [decimal int]");
emit log_named_decimal_int(" Value a", a, decimals);
emit log_named_decimal_int(" Value b", b, decimals);
fail();
}
}
function assertGtDecimal(int a, int b, uint decimals, string memory err) internal {
if (a <= b) {
emit log_named_string("Error", err);
assertGtDecimal(a, b, decimals);
}
}
function assertGtDecimal(uint a, uint b, uint decimals) internal {
if (a <= b) {
emit log("Error: a > b not satisfied [decimal uint]");
emit log_named_decimal_uint(" Value a", a, decimals);
emit log_named_decimal_uint(" Value b", b, decimals);
fail();
}
}
function assertGtDecimal(uint a, uint b, uint decimals, string memory err) internal {
if (a <= b) {
emit log_named_string("Error", err);
assertGtDecimal(a, b, decimals);
}
}
function assertGe(uint a, uint b) internal {
if (a < b) {
emit log("Error: a >= b not satisfied [uint]");
emit log_named_uint(" Value a", a);
emit log_named_uint(" Value b", b);
fail();
}
}
function assertGe(uint a, uint b, string memory err) internal {
if (a < b) {
emit log_named_string("Error", err);
assertGe(a, b);
}
}
function assertGe(int a, int b) internal {
if (a < b) {
emit log("Error: a >= b not satisfied [int]");
emit log_named_int(" Value a", a);
emit log_named_int(" Value b", b);
fail();
}
}
function assertGe(int a, int b, string memory err) internal {
if (a < b) {
emit log_named_string("Error", err);
assertGe(a, b);
}
}
function assertGeDecimal(int a, int b, uint decimals) internal {
if (a < b) {
emit log("Error: a >= b not satisfied [decimal int]");
emit log_named_decimal_int(" Value a", a, decimals);
emit log_named_decimal_int(" Value b", b, decimals);
fail();
}
}
function assertGeDecimal(int a, int b, uint decimals, string memory err) internal {
if (a < b) {
emit log_named_string("Error", err);
assertGeDecimal(a, b, decimals);
}
}
function assertGeDecimal(uint a, uint b, uint decimals) internal {
if (a < b) {
emit log("Error: a >= b not satisfied [decimal uint]");
emit log_named_decimal_uint(" Value a", a, decimals);
emit log_named_decimal_uint(" Value b", b, decimals);
fail();
}
}
function assertGeDecimal(uint a, uint b, uint decimals, string memory err) internal {
if (a < b) {
emit log_named_string("Error", err);
assertGeDecimal(a, b, decimals);
}
}
function assertLt(uint a, uint b) internal {
if (a >= b) {
emit log("Error: a < b not satisfied [uint]");
emit log_named_uint(" Value a", a);
emit log_named_uint(" Value b", b);
fail();
}
}
function assertLt(uint a, uint b, string memory err) internal {
if (a >= b) {
emit log_named_string("Error", err);
assertLt(a, b);
}
}
function assertLt(int a, int b) internal {
if (a >= b) {
emit log("Error: a < b not satisfied [int]");
emit log_named_int(" Value a", a);
emit log_named_int(" Value b", b);
fail();
}
}
function assertLt(int a, int b, string memory err) internal {
if (a >= b) {
emit log_named_string("Error", err);
assertLt(a, b);
}
}
function assertLtDecimal(int a, int b, uint decimals) internal {
if (a >= b) {
emit log("Error: a < b not satisfied [decimal int]");
emit log_named_decimal_int(" Value a", a, decimals);
emit log_named_decimal_int(" Value b", b, decimals);
fail();
}
}
function assertLtDecimal(int a, int b, uint decimals, string memory err) internal {
if (a >= b) {
emit log_named_string("Error", err);
assertLtDecimal(a, b, decimals);
}
}
function assertLtDecimal(uint a, uint b, uint decimals) internal {
if (a >= b) {
emit log("Error: a < b not satisfied [decimal uint]");
emit log_named_decimal_uint(" Value a", a, decimals);
emit log_named_decimal_uint(" Value b", b, decimals);
fail();
}
}
function assertLtDecimal(uint a, uint b, uint decimals, string memory err) internal {
if (a >= b) {
emit log_named_string("Error", err);
assertLtDecimal(a, b, decimals);
}
}
function assertLe(uint a, uint b) internal {
if (a > b) {
emit log("Error: a <= b not satisfied [uint]");
emit log_named_uint(" Value a", a);
emit log_named_uint(" Value b", b);
fail();
}
}
function assertLe(uint a, uint b, string memory err) internal {
if (a > b) {
emit log_named_string("Error", err);
assertLe(a, b);
}
}
function assertLe(int a, int b) internal {
if (a > b) {
emit log("Error: a <= b not satisfied [int]");
emit log_named_int(" Value a", a);
emit log_named_int(" Value b", b);
fail();
}
}
function assertLe(int a, int b, string memory err) internal {
if (a > b) {
emit log_named_string("Error", err);
assertLe(a, b);
}
}
function assertLeDecimal(int a, int b, uint decimals) internal {
if (a > b) {
emit log("Error: a <= b not satisfied [decimal int]");
emit log_named_decimal_int(" Value a", a, decimals);
emit log_named_decimal_int(" Value b", b, decimals);
fail();
}
}
function assertLeDecimal(int a, int b, uint decimals, string memory err) internal {
if (a > b) {
emit log_named_string("Error", err);
assertLeDecimal(a, b, decimals);
}
}
function assertLeDecimal(uint a, uint b, uint decimals) internal {
if (a > b) {
emit log("Error: a <= b not satisfied [decimal uint]");
emit log_named_decimal_uint(" Value a", a, decimals);
emit log_named_decimal_uint(" Value b", b, decimals);
fail();
}
}
function assertLeDecimal(uint a, uint b, uint decimals, string memory err) internal {
if (a > b) {
emit log_named_string("Error", err);
assertGeDecimal(a, b, decimals);
}
}
function assertEq(string memory a, string memory b) internal {
if (keccak256(abi.encodePacked(a)) != keccak256(abi.encodePacked(b))) {
emit log("Error: a == b not satisfied [string]");
emit log_named_string(" Expected", b);
emit log_named_string(" Actual", a);
fail();
}
}
function assertEq(string memory a, string memory b, string memory err) internal {
if (keccak256(abi.encodePacked(a)) != keccak256(abi.encodePacked(b))) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
function checkEq0(bytes memory a, bytes memory b) internal pure returns (bool ok) {
ok = true;
if (a.length == b.length) {
for (uint i = 0; i < a.length; i++) {
if (a[i] != b[i]) {
ok = false;
}
}
} else {
ok = false;
}
}
function assertEq0(bytes memory a, bytes memory b) internal {
if (!checkEq0(a, b)) {
emit log("Error: a == b not satisfied [bytes]");
emit log_named_bytes(" Expected", b);
emit log_named_bytes(" Actual", a);
fail();
}
}
function assertEq0(bytes memory a, bytes memory b, string memory err) internal {
if (!checkEq0(a, b)) {
emit log_named_string("Error", err);
assertEq0(a, b);
}
}
}

View File

@ -1,16 +0,0 @@
{
"name": "forge-std",
"version": "1.1.1",
"description": "Forge Standard Library is a collection of helpful contracts and libraries for use with Forge and Foundry.",
"homepage": "https://book.getfoundry.sh/forge/forge-std",
"bugs": "https://github.com/foundry-rs/forge-std/issues",
"license": "(Apache-2.0 OR MIT)",
"author": "Contributors to Forge Standard Library",
"files": [
"src/*"
],
"repository": {
"type": "git",
"url": "https://github.com/foundry-rs/forge-std.git"
}
}

View File

@ -1,13 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import {StdStorage, Vm} from "./Components.sol";
abstract contract CommonBase {
address internal constant VM_ADDRESS = address(uint160(uint256(keccak256("hevm cheat code"))));
uint256 internal constant UINT256_MAX =
115792089237316195423570985008687907853269984665640564039457584007913129639935;
StdStorage internal stdstore;
Vm internal constant vm = Vm(VM_ADDRESS);
}

View File

@ -1,13 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import "./console.sol";
import "./console2.sol";
import "./StdAssertions.sol";
import "./StdCheats.sol";
import "./StdError.sol";
import "./StdJson.sol";
import "./StdMath.sol";
import "./StdStorage.sol";
import "./StdUtils.sol";
import "./Vm.sol";

View File

@ -1,14 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import {CommonBase} from "./Common.sol";
// forgefmt: disable-next-line
import {console, console2, StdCheatsSafe, stdJson, stdMath, StdStorage, stdStorageSafe, StdUtils, VmSafe} from "./Components.sol";
abstract contract ScriptBase is CommonBase {
VmSafe internal constant vmSafe = VmSafe(VM_ADDRESS);
}
abstract contract Script is ScriptBase, StdCheatsSafe, StdUtils {
bool public IS_SCRIPT = true;
}

View File

@ -1,209 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import "ds-test/test.sol";
import "./StdMath.sol";
abstract contract StdAssertions is DSTest {
event log_array(uint256[] val);
event log_array(int256[] val);
event log_array(address[] val);
event log_named_array(string key, uint256[] val);
event log_named_array(string key, int256[] val);
event log_named_array(string key, address[] val);
function fail(string memory err) internal virtual {
emit log_named_string("Error", err);
fail();
}
function assertFalse(bool data) internal virtual {
assertTrue(!data);
}
function assertFalse(bool data, string memory err) internal virtual {
assertTrue(!data, err);
}
function assertEq(bool a, bool b) internal virtual {
if (a != b) {
emit log("Error: a == b not satisfied [bool]");
emit log_named_string(" Expected", b ? "true" : "false");
emit log_named_string(" Actual", a ? "true" : "false");
fail();
}
}
function assertEq(bool a, bool b, string memory err) internal virtual {
if (a != b) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
function assertEq(bytes memory a, bytes memory b) internal virtual {
assertEq0(a, b);
}
function assertEq(bytes memory a, bytes memory b, string memory err) internal virtual {
assertEq0(a, b, err);
}
function assertEq(uint256[] memory a, uint256[] memory b) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log("Error: a == b not satisfied [uint[]]");
emit log_named_array(" Expected", b);
emit log_named_array(" Actual", a);
fail();
}
}
function assertEq(int256[] memory a, int256[] memory b) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log("Error: a == b not satisfied [int[]]");
emit log_named_array(" Expected", b);
emit log_named_array(" Actual", a);
fail();
}
}
function assertEq(address[] memory a, address[] memory b) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log("Error: a == b not satisfied [address[]]");
emit log_named_array(" Expected", b);
emit log_named_array(" Actual", a);
fail();
}
}
function assertEq(uint256[] memory a, uint256[] memory b, string memory err) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
function assertEq(int256[] memory a, int256[] memory b, string memory err) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
function assertEq(address[] memory a, address[] memory b, string memory err) internal virtual {
if (keccak256(abi.encode(a)) != keccak256(abi.encode(b))) {
emit log_named_string("Error", err);
assertEq(a, b);
}
}
// Legacy helper
function assertEqUint(uint256 a, uint256 b) internal virtual {
assertEq(uint256(a), uint256(b));
}
function assertApproxEqAbs(uint256 a, uint256 b, uint256 maxDelta) internal virtual {
uint256 delta = stdMath.delta(a, b);
if (delta > maxDelta) {
emit log("Error: a ~= b not satisfied [uint]");
emit log_named_uint(" Expected", b);
emit log_named_uint(" Actual", a);
emit log_named_uint(" Max Delta", maxDelta);
emit log_named_uint(" Delta", delta);
fail();
}
}
function assertApproxEqAbs(uint256 a, uint256 b, uint256 maxDelta, string memory err) internal virtual {
uint256 delta = stdMath.delta(a, b);
if (delta > maxDelta) {
emit log_named_string("Error", err);
assertApproxEqAbs(a, b, maxDelta);
}
}
function assertApproxEqAbs(int256 a, int256 b, uint256 maxDelta) internal virtual {
uint256 delta = stdMath.delta(a, b);
if (delta > maxDelta) {
emit log("Error: a ~= b not satisfied [int]");
emit log_named_int(" Expected", b);
emit log_named_int(" Actual", a);
emit log_named_uint(" Max Delta", maxDelta);
emit log_named_uint(" Delta", delta);
fail();
}
}
function assertApproxEqAbs(int256 a, int256 b, uint256 maxDelta, string memory err) internal virtual {
uint256 delta = stdMath.delta(a, b);
if (delta > maxDelta) {
emit log_named_string("Error", err);
assertApproxEqAbs(a, b, maxDelta);
}
}
function assertApproxEqRel(
uint256 a,
uint256 b,
uint256 maxPercentDelta // An 18 decimal fixed point number, where 1e18 == 100%
) internal virtual {
if (b == 0) return assertEq(a, b); // If the expected is 0, actual must be too.
uint256 percentDelta = stdMath.percentDelta(a, b);
if (percentDelta > maxPercentDelta) {
emit log("Error: a ~= b not satisfied [uint]");
emit log_named_uint(" Expected", b);
emit log_named_uint(" Actual", a);
emit log_named_decimal_uint(" Max % Delta", maxPercentDelta, 18);
emit log_named_decimal_uint(" % Delta", percentDelta, 18);
fail();
}
}
function assertApproxEqRel(
uint256 a,
uint256 b,
uint256 maxPercentDelta, // An 18 decimal fixed point number, where 1e18 == 100%
string memory err
) internal virtual {
if (b == 0) return assertEq(a, b, err); // If the expected is 0, actual must be too.
uint256 percentDelta = stdMath.percentDelta(a, b);
if (percentDelta > maxPercentDelta) {
emit log_named_string("Error", err);
assertApproxEqRel(a, b, maxPercentDelta);
}
}
function assertApproxEqRel(int256 a, int256 b, uint256 maxPercentDelta) internal virtual {
if (b == 0) return assertEq(a, b); // If the expected is 0, actual must be too.
uint256 percentDelta = stdMath.percentDelta(a, b);
if (percentDelta > maxPercentDelta) {
emit log("Error: a ~= b not satisfied [int]");
emit log_named_int(" Expected", b);
emit log_named_int(" Actual", a);
emit log_named_decimal_uint(" Max % Delta", maxPercentDelta, 18);
emit log_named_decimal_uint(" % Delta", percentDelta, 18);
fail();
}
}
function assertApproxEqRel(int256 a, int256 b, uint256 maxPercentDelta, string memory err) internal virtual {
if (b == 0) return assertEq(a, b, err); // If the expected is 0, actual must be too.
uint256 percentDelta = stdMath.percentDelta(a, b);
if (percentDelta > maxPercentDelta) {
emit log_named_string("Error", err);
assertApproxEqRel(a, b, maxPercentDelta);
}
}
}

View File

@ -1,572 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
import "./StdStorage.sol";
import "./Vm.sol";
abstract contract StdCheatsSafe {
VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code")))));
/// @dev To hide constructor warnings across solc versions due to different constructor visibility requirements and
/// syntaxes, we put the constructor in a private method and assign an unused return value to a variable. This
/// forces the method to run during construction, but without declaring an explicit constructor.
uint256 private CONSTRUCTOR = _constructor();
struct Chain {
// The chain name, using underscores as the separator to match `foundry.toml` conventions.
string name;
// The chain's Chain ID.
uint256 chainId;
// A default RPC endpoint for this chain.
// NOTE: This default RPC URL is included for convenience to facilitate quick tests and
// experimentation. Do not use this RPC URL for production test suites, CI, or other heavy
// usage as you will be throttled and this is a disservice to others who need this endpoint.
string rpcUrl;
}
// Maps from a chain's name (matching what's in the `foundry.toml` file) to chain data.
mapping(string => Chain) internal stdChains;
// Data structures to parse Transaction objects from the broadcast artifact
// that conform to EIP1559. The Raw structs is what is parsed from the JSON
// and then converted to the one that is used by the user for better UX.
struct RawTx1559 {
string[] arguments;
address contractAddress;
string contractName;
// json value name = function
string functionSig;
bytes32 hash;
// json value name = tx
RawTx1559Detail txDetail;
// json value name = type
string opcode;
}
struct RawTx1559Detail {
AccessList[] accessList;
bytes data;
address from;
bytes gas;
bytes nonce;
address to;
bytes txType;
bytes value;
}
struct Tx1559 {
string[] arguments;
address contractAddress;
string contractName;
string functionSig;
bytes32 hash;
Tx1559Detail txDetail;
string opcode;
}
struct Tx1559Detail {
AccessList[] accessList;
bytes data;
address from;
uint256 gas;
uint256 nonce;
address to;
uint256 txType;
uint256 value;
}
// Data structures to parse Transaction objects from the broadcast artifact
// that DO NOT conform to EIP1559. The Raw structs is what is parsed from the JSON
// and then converted to the one that is used by the user for better UX.
struct TxLegacy {
string[] arguments;
address contractAddress;
string contractName;
string functionSig;
string hash;
string opcode;
TxDetailLegacy transaction;
}
struct TxDetailLegacy {
AccessList[] accessList;
uint256 chainId;
bytes data;
address from;
uint256 gas;
uint256 gasPrice;
bytes32 hash;
uint256 nonce;
bytes1 opcode;
bytes32 r;
bytes32 s;
uint256 txType;
address to;
uint8 v;
uint256 value;
}
struct AccessList {
address accessAddress;
bytes32[] storageKeys;
}
// Data structures to parse Receipt objects from the broadcast artifact.
// The Raw structs is what is parsed from the JSON
// and then converted to the one that is used by the user for better UX.
struct RawReceipt {
bytes32 blockHash;
bytes blockNumber;
address contractAddress;
bytes cumulativeGasUsed;
bytes effectiveGasPrice;
address from;
bytes gasUsed;
RawReceiptLog[] logs;
bytes logsBloom;
bytes status;
address to;
bytes32 transactionHash;
bytes transactionIndex;
}
struct Receipt {
bytes32 blockHash;
uint256 blockNumber;
address contractAddress;
uint256 cumulativeGasUsed;
uint256 effectiveGasPrice;
address from;
uint256 gasUsed;
ReceiptLog[] logs;
bytes logsBloom;
uint256 status;
address to;
bytes32 transactionHash;
uint256 transactionIndex;
}
// Data structures to parse the entire broadcast artifact, assuming the
// transactions conform to EIP1559.
struct EIP1559ScriptArtifact {
string[] libraries;
string path;
string[] pending;
Receipt[] receipts;
uint256 timestamp;
Tx1559[] transactions;
TxReturn[] txReturns;
}
struct RawEIP1559ScriptArtifact {
string[] libraries;
string path;
string[] pending;
RawReceipt[] receipts;
TxReturn[] txReturns;
uint256 timestamp;
RawTx1559[] transactions;
}
struct RawReceiptLog {
// json value = address
address logAddress;
bytes32 blockHash;
bytes blockNumber;
bytes data;
bytes logIndex;
bool removed;
bytes32[] topics;
bytes32 transactionHash;
bytes transactionIndex;
bytes transactionLogIndex;
}
struct ReceiptLog {
// json value = address
address logAddress;
bytes32 blockHash;
uint256 blockNumber;
bytes data;
uint256 logIndex;
bytes32[] topics;
uint256 transactionIndex;
uint256 transactionLogIndex;
bool removed;
}
struct TxReturn {
string internalType;
string value;
}
function _constructor() private returns (uint256) {
// Initialize `stdChains` with the defaults.
stdChains["anvil"] = Chain("Anvil", 31337, "http://127.0.0.1:8545");
stdChains["hardhat"] = Chain("Hardhat", 31337, "http://127.0.0.1:8545");
stdChains["mainnet"] = Chain("Mainnet", 1, "https://mainnet.infura.io/v3/6770454bc6ea42c58aac12978531b93f");
stdChains["goerli"] = Chain("Goerli", 5, "https://goerli.infura.io/v3/6770454bc6ea42c58aac12978531b93f");
stdChains["sepolia"] = Chain("Sepolia", 11155111, "https://rpc.sepolia.dev");
stdChains["optimism"] = Chain("Optimism", 10, "https://mainnet.optimism.io");
stdChains["optimism_goerli"] = Chain("Optimism Goerli", 420, "https://goerli.optimism.io");
stdChains["arbitrum_one"] = Chain("Arbitrum One", 42161, "https://arb1.arbitrum.io/rpc");
stdChains["arbitrum_one_goerli"] = Chain("Arbitrum One Goerli", 421613, "https://goerli-rollup.arbitrum.io/rpc");
stdChains["arbitrum_nova"] = Chain("Arbitrum Nova", 42170, "https://nova.arbitrum.io/rpc");
stdChains["polygon"] = Chain("Polygon", 137, "https://polygon-rpc.com");
stdChains["polygon_mumbai"] = Chain("Polygon Mumbai", 80001, "https://rpc-mumbai.matic.today");
stdChains["avalanche"] = Chain("Avalanche", 43114, "https://api.avax.network/ext/bc/C/rpc");
stdChains["avalanche_fuji"] = Chain("Avalanche Fuji", 43113, "https://api.avax-test.network/ext/bc/C/rpc");
stdChains["bnb_smart_chain"] = Chain("BNB Smart Chain", 56, "https://bsc-dataseed1.binance.org");
stdChains["bnb_smart_chain_testnet"] = Chain("BNB Smart Chain Testnet", 97, "https://data-seed-prebsc-1-s1.binance.org:8545");// forgefmt: disable-line
stdChains["gnosis_chain"] = Chain("Gnosis Chain", 100, "https://rpc.gnosischain.com");
// Loop over RPC URLs in the config file to replace the default RPC URLs
Vm.Rpc[] memory rpcs = vm.rpcUrlStructs();
for (uint256 i = 0; i < rpcs.length; i++) {
stdChains[rpcs[i].name].rpcUrl = rpcs[i].url;
}
return 0;
}
function assumeNoPrecompiles(address addr) internal view virtual {
// Assembly required since `block.chainid` was introduced in 0.8.0.
uint256 chainId;
assembly {
chainId := chainid()
}
assumeNoPrecompiles(addr, chainId);
}
function assumeNoPrecompiles(address addr, uint256 chainId) internal view virtual {
// Note: For some chains like Optimism these are technically predeploys (i.e. bytecode placed at a specific
// address), but the same rationale for excluding them applies so we include those too.
// These should be present on all EVM-compatible chains.
vm.assume(addr < address(0x1) || addr > address(0x9));
// forgefmt: disable-start
if (chainId == stdChains["optimism"].chainId || chainId == stdChains["optimism_goerli"].chainId) {
// https://github.com/ethereum-optimism/optimism/blob/eaa371a0184b56b7ca6d9eb9cb0a2b78b2ccd864/op-bindings/predeploys/addresses.go#L6-L21
vm.assume(addr < address(0x4200000000000000000000000000000000000000) || addr > address(0x4200000000000000000000000000000000000800));
} else if (chainId == stdChains["arbitrum_one"].chainId || chainId == stdChains["arbitrum_one_goerli"].chainId) {
// https://developer.arbitrum.io/useful-addresses#arbitrum-precompiles-l2-same-on-all-arb-chains
vm.assume(addr < address(0x0000000000000000000000000000000000000064) || addr > address(0x0000000000000000000000000000000000000068));
} else if (chainId == stdChains["avalanche"].chainId || chainId == stdChains["avalanche_fuji"].chainId) {
// https://github.com/ava-labs/subnet-evm/blob/47c03fd007ecaa6de2c52ea081596e0a88401f58/precompile/params.go#L18-L59
vm.assume(addr < address(0x0100000000000000000000000000000000000000) || addr > address(0x01000000000000000000000000000000000000ff));
vm.assume(addr < address(0x0200000000000000000000000000000000000000) || addr > address(0x02000000000000000000000000000000000000FF));
vm.assume(addr < address(0x0300000000000000000000000000000000000000) || addr > address(0x03000000000000000000000000000000000000Ff));
}
// forgefmt: disable-end
}
function readEIP1559ScriptArtifact(string memory path)
internal
view
virtual
returns (EIP1559ScriptArtifact memory)
{
string memory data = vm.readFile(path);
bytes memory parsedData = vm.parseJson(data);
RawEIP1559ScriptArtifact memory rawArtifact = abi.decode(parsedData, (RawEIP1559ScriptArtifact));
EIP1559ScriptArtifact memory artifact;
artifact.libraries = rawArtifact.libraries;
artifact.path = rawArtifact.path;
artifact.timestamp = rawArtifact.timestamp;
artifact.pending = rawArtifact.pending;
artifact.txReturns = rawArtifact.txReturns;
artifact.receipts = rawToConvertedReceipts(rawArtifact.receipts);
artifact.transactions = rawToConvertedEIPTx1559s(rawArtifact.transactions);
return artifact;
}
function rawToConvertedEIPTx1559s(RawTx1559[] memory rawTxs) internal pure virtual returns (Tx1559[] memory) {
Tx1559[] memory txs = new Tx1559[](rawTxs.length);
for (uint256 i; i < rawTxs.length; i++) {
txs[i] = rawToConvertedEIPTx1559(rawTxs[i]);
}
return txs;
}
function rawToConvertedEIPTx1559(RawTx1559 memory rawTx) internal pure virtual returns (Tx1559 memory) {
Tx1559 memory transaction;
transaction.arguments = rawTx.arguments;
transaction.contractName = rawTx.contractName;
transaction.functionSig = rawTx.functionSig;
transaction.hash = rawTx.hash;
transaction.txDetail = rawToConvertedEIP1559Detail(rawTx.txDetail);
transaction.opcode = rawTx.opcode;
return transaction;
}
function rawToConvertedEIP1559Detail(RawTx1559Detail memory rawDetail)
internal
pure
virtual
returns (Tx1559Detail memory)
{
Tx1559Detail memory txDetail;
txDetail.data = rawDetail.data;
txDetail.from = rawDetail.from;
txDetail.to = rawDetail.to;
txDetail.nonce = _bytesToUint(rawDetail.nonce);
txDetail.txType = _bytesToUint(rawDetail.txType);
txDetail.value = _bytesToUint(rawDetail.value);
txDetail.gas = _bytesToUint(rawDetail.gas);
txDetail.accessList = rawDetail.accessList;
return txDetail;
}
function readTx1559s(string memory path) internal view virtual returns (Tx1559[] memory) {
string memory deployData = vm.readFile(path);
bytes memory parsedDeployData = vm.parseJson(deployData, ".transactions");
RawTx1559[] memory rawTxs = abi.decode(parsedDeployData, (RawTx1559[]));
return rawToConvertedEIPTx1559s(rawTxs);
}
function readTx1559(string memory path, uint256 index) internal view virtual returns (Tx1559 memory) {
string memory deployData = vm.readFile(path);
string memory key = string(abi.encodePacked(".transactions[", vm.toString(index), "]"));
bytes memory parsedDeployData = vm.parseJson(deployData, key);
RawTx1559 memory rawTx = abi.decode(parsedDeployData, (RawTx1559));
return rawToConvertedEIPTx1559(rawTx);
}
// Analogous to readTransactions, but for receipts.
function readReceipts(string memory path) internal view virtual returns (Receipt[] memory) {
string memory deployData = vm.readFile(path);
bytes memory parsedDeployData = vm.parseJson(deployData, ".receipts");
RawReceipt[] memory rawReceipts = abi.decode(parsedDeployData, (RawReceipt[]));
return rawToConvertedReceipts(rawReceipts);
}
function readReceipt(string memory path, uint256 index) internal view virtual returns (Receipt memory) {
string memory deployData = vm.readFile(path);
string memory key = string(abi.encodePacked(".receipts[", vm.toString(index), "]"));
bytes memory parsedDeployData = vm.parseJson(deployData, key);
RawReceipt memory rawReceipt = abi.decode(parsedDeployData, (RawReceipt));
return rawToConvertedReceipt(rawReceipt);
}
function rawToConvertedReceipts(RawReceipt[] memory rawReceipts) internal pure virtual returns (Receipt[] memory) {
Receipt[] memory receipts = new Receipt[](rawReceipts.length);
for (uint256 i; i < rawReceipts.length; i++) {
receipts[i] = rawToConvertedReceipt(rawReceipts[i]);
}
return receipts;
}
function rawToConvertedReceipt(RawReceipt memory rawReceipt) internal pure virtual returns (Receipt memory) {
Receipt memory receipt;
receipt.blockHash = rawReceipt.blockHash;
receipt.to = rawReceipt.to;
receipt.from = rawReceipt.from;
receipt.contractAddress = rawReceipt.contractAddress;
receipt.effectiveGasPrice = _bytesToUint(rawReceipt.effectiveGasPrice);
receipt.cumulativeGasUsed = _bytesToUint(rawReceipt.cumulativeGasUsed);
receipt.gasUsed = _bytesToUint(rawReceipt.gasUsed);
receipt.status = _bytesToUint(rawReceipt.status);
receipt.transactionIndex = _bytesToUint(rawReceipt.transactionIndex);
receipt.blockNumber = _bytesToUint(rawReceipt.blockNumber);
receipt.logs = rawToConvertedReceiptLogs(rawReceipt.logs);
receipt.logsBloom = rawReceipt.logsBloom;
receipt.transactionHash = rawReceipt.transactionHash;
return receipt;
}
function rawToConvertedReceiptLogs(RawReceiptLog[] memory rawLogs)
internal
pure
virtual
returns (ReceiptLog[] memory)
{
ReceiptLog[] memory logs = new ReceiptLog[](rawLogs.length);
for (uint256 i; i < rawLogs.length; i++) {
logs[i].logAddress = rawLogs[i].logAddress;
logs[i].blockHash = rawLogs[i].blockHash;
logs[i].blockNumber = _bytesToUint(rawLogs[i].blockNumber);
logs[i].data = rawLogs[i].data;
logs[i].logIndex = _bytesToUint(rawLogs[i].logIndex);
logs[i].topics = rawLogs[i].topics;
logs[i].transactionIndex = _bytesToUint(rawLogs[i].transactionIndex);
logs[i].transactionLogIndex = _bytesToUint(rawLogs[i].transactionLogIndex);
logs[i].removed = rawLogs[i].removed;
}
return logs;
}
// Deploy a contract by fetching the contract bytecode from
// the artifacts directory
// e.g. `deployCode(code, abi.encode(arg1,arg2,arg3))`
function deployCode(string memory what, bytes memory args) internal virtual returns (address addr) {
bytes memory bytecode = abi.encodePacked(vm.getCode(what), args);
/// @solidity memory-safe-assembly
assembly {
addr := create(0, add(bytecode, 0x20), mload(bytecode))
}
require(addr != address(0), "StdCheats deployCode(string,bytes): Deployment failed.");
}
function deployCode(string memory what) internal virtual returns (address addr) {
bytes memory bytecode = vm.getCode(what);
/// @solidity memory-safe-assembly
assembly {
addr := create(0, add(bytecode, 0x20), mload(bytecode))
}
require(addr != address(0), "StdCheats deployCode(string): Deployment failed.");
}
/// @dev deploy contract with value on construction
function deployCode(string memory what, bytes memory args, uint256 val) internal virtual returns (address addr) {
bytes memory bytecode = abi.encodePacked(vm.getCode(what), args);
/// @solidity memory-safe-assembly
assembly {
addr := create(val, add(bytecode, 0x20), mload(bytecode))
}
require(addr != address(0), "StdCheats deployCode(string,bytes,uint256): Deployment failed.");
}
function deployCode(string memory what, uint256 val) internal virtual returns (address addr) {
bytes memory bytecode = vm.getCode(what);
/// @solidity memory-safe-assembly
assembly {
addr := create(val, add(bytecode, 0x20), mload(bytecode))
}
require(addr != address(0), "StdCheats deployCode(string,uint256): Deployment failed.");
}
// creates a labeled address and the corresponding private key
function makeAddrAndKey(string memory name) internal virtual returns (address addr, uint256 privateKey) {
privateKey = uint256(keccak256(abi.encodePacked(name)));
addr = vm.addr(privateKey);
vm.label(addr, name);
}
// creates a labeled address
function makeAddr(string memory name) internal virtual returns (address addr) {
(addr,) = makeAddrAndKey(name);
}
function deriveRememberKey(string memory mnemonic, uint32 index)
internal
virtual
returns (address who, uint256 privateKey)
{
privateKey = vm.deriveKey(mnemonic, index);
who = vm.rememberKey(privateKey);
}
function _bytesToUint(bytes memory b) private pure returns (uint256) {
require(b.length <= 32, "StdCheats _bytesToUint(bytes): Bytes length exceeds 32.");
return abi.decode(abi.encodePacked(new bytes(32 - b.length), b), (uint256));
}
}
// Wrappers around cheatcodes to avoid footguns
abstract contract StdCheats is StdCheatsSafe {
using stdStorage for StdStorage;
StdStorage private stdstore;
Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
// Skip forward or rewind time by the specified number of seconds
function skip(uint256 time) internal virtual {
vm.warp(block.timestamp + time);
}
function rewind(uint256 time) internal virtual {
vm.warp(block.timestamp - time);
}
// Setup a prank from an address that has some ether
function hoax(address who) internal virtual {
vm.deal(who, 1 << 128);
vm.prank(who);
}
function hoax(address who, uint256 give) internal virtual {
vm.deal(who, give);
vm.prank(who);
}
function hoax(address who, address origin) internal virtual {
vm.deal(who, 1 << 128);
vm.prank(who, origin);
}
function hoax(address who, address origin, uint256 give) internal virtual {
vm.deal(who, give);
vm.prank(who, origin);
}
// Start perpetual prank from an address that has some ether
function startHoax(address who) internal virtual {
vm.deal(who, 1 << 128);
vm.startPrank(who);
}
function startHoax(address who, uint256 give) internal virtual {
vm.deal(who, give);
vm.startPrank(who);
}
// Start perpetual prank from an address that has some ether
// tx.origin is set to the origin parameter
function startHoax(address who, address origin) internal virtual {
vm.deal(who, 1 << 128);
vm.startPrank(who, origin);
}
function startHoax(address who, address origin, uint256 give) internal virtual {
vm.deal(who, give);
vm.startPrank(who, origin);
}
function changePrank(address who) internal virtual {
vm.stopPrank();
vm.startPrank(who);
}
// The same as Vm's `deal`
// Use the alternative signature for ERC20 tokens
function deal(address to, uint256 give) internal virtual {
vm.deal(to, give);
}
// Set the balance of an account for any ERC20 token
// Use the alternative signature to update `totalSupply`
function deal(address token, address to, uint256 give) internal virtual {
deal(token, to, give, false);
}
function deal(address token, address to, uint256 give, bool adjust) internal virtual {
// get current balance
(, bytes memory balData) = token.call(abi.encodeWithSelector(0x70a08231, to));
uint256 prevBal = abi.decode(balData, (uint256));
// update balance
stdstore.target(token).sig(0x70a08231).with_key(to).checked_write(give);
// update total supply
if (adjust) {
(, bytes memory totSupData) = token.call(abi.encodeWithSelector(0x18160ddd));
uint256 totSup = abi.decode(totSupData, (uint256));
if (give < prevBal) {
totSup -= (prevBal - give);
} else {
totSup += (give - prevBal);
}
stdstore.target(token).sig(0x18160ddd).checked_write(totSup);
}
}
}

View File

@ -1,15 +0,0 @@
// SPDX-License-Identifier: MIT
// Panics work for versions >=0.8.0, but we lowered the pragma to make this compatible with Test
pragma solidity >=0.6.2 <0.9.0;
library stdError {
bytes public constant assertionError = abi.encodeWithSignature("Panic(uint256)", 0x01);
bytes public constant arithmeticError = abi.encodeWithSignature("Panic(uint256)", 0x11);
bytes public constant divisionError = abi.encodeWithSignature("Panic(uint256)", 0x12);
bytes public constant enumConversionError = abi.encodeWithSignature("Panic(uint256)", 0x21);
bytes public constant encodeStorageError = abi.encodeWithSignature("Panic(uint256)", 0x22);
bytes public constant popError = abi.encodeWithSignature("Panic(uint256)", 0x31);
bytes public constant indexOOBError = abi.encodeWithSignature("Panic(uint256)", 0x32);
bytes public constant memOverflowError = abi.encodeWithSignature("Panic(uint256)", 0x41);
bytes public constant zeroVarError = abi.encodeWithSignature("Panic(uint256)", 0x51);
}

View File

@ -1,179 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.9.0;
pragma experimental ABIEncoderV2;
import "./Vm.sol";
// Helpers for parsing and writing JSON files
// To parse:
// ```
// using stdJson for string;
// string memory json = vm.readFile("some_peth");
// json.parseUint("<json_path>");
// ```
// To write:
// ```
// using stdJson for string;
// string memory json = "deploymentArtifact";
// Contract contract = new Contract();
// json.serialize("contractAddress", address(contract));
// json = json.serialize("deploymentTimes", uint(1));
// // store the stringified JSON to the 'json' variable we have been using as a key
// // as we won't need it any longer
// string memory json2 = "finalArtifact";
// string memory final = json2.serialize("depArtifact", json);
// final.write("<some_path>");
// ```
library stdJson {
VmSafe private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
function parseRaw(string memory json, string memory key) internal pure returns (bytes memory) {
return vm.parseJson(json, key);
}
function readUint(string memory json, string memory key) internal pure returns (uint256) {
return abi.decode(vm.parseJson(json, key), (uint256));
}
function readUintArray(string memory json, string memory key) internal pure returns (uint256[] memory) {
return abi.decode(vm.parseJson(json, key), (uint256[]));
}
function readInt(string memory json, string memory key) internal pure returns (int256) {
return abi.decode(vm.parseJson(json, key), (int256));
}
function readIntArray(string memory json, string memory key) internal pure returns (int256[] memory) {
return abi.decode(vm.parseJson(json, key), (int256[]));
}
function readBytes32(string memory json, string memory key) internal pure returns (bytes32) {
return abi.decode(vm.parseJson(json, key), (bytes32));
}
function readBytes32Array(string memory json, string memory key) internal pure returns (bytes32[] memory) {
return abi.decode(vm.parseJson(json, key), (bytes32[]));
}
function readString(string memory json, string memory key) internal pure returns (string memory) {
return abi.decode(vm.parseJson(json, key), (string));
}
function readStringArray(string memory json, string memory key) internal pure returns (string[] memory) {
return abi.decode(vm.parseJson(json, key), (string[]));
}
function readAddress(string memory json, string memory key) internal pure returns (address) {
return abi.decode(vm.parseJson(json, key), (address));
}
function readAddressArray(string memory json, string memory key) internal pure returns (address[] memory) {
return abi.decode(vm.parseJson(json, key), (address[]));
}
function readBool(string memory json, string memory key) internal pure returns (bool) {
return abi.decode(vm.parseJson(json, key), (bool));
}
function readBoolArray(string memory json, string memory key) internal pure returns (bool[] memory) {
return abi.decode(vm.parseJson(json, key), (bool[]));
}
function readBytes(string memory json, string memory key) internal pure returns (bytes memory) {
return abi.decode(vm.parseJson(json, key), (bytes));
}
function readBytesArray(string memory json, string memory key) internal pure returns (bytes[] memory) {
return abi.decode(vm.parseJson(json, key), (bytes[]));
}
function serialize(string memory jsonKey, string memory key, bool value) internal returns (string memory) {
return vm.serializeBool(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bool[] memory value)
internal
returns (string memory)
{
return vm.serializeBool(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, uint256 value) internal returns (string memory) {
return vm.serializeUint(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, uint256[] memory value)
internal
returns (string memory)
{
return vm.serializeUint(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, int256 value) internal returns (string memory) {
return vm.serializeInt(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, int256[] memory value)
internal
returns (string memory)
{
return vm.serializeInt(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, address value) internal returns (string memory) {
return vm.serializeAddress(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, address[] memory value)
internal
returns (string memory)
{
return vm.serializeAddress(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes32 value) internal returns (string memory) {
return vm.serializeBytes32(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes32[] memory value)
internal
returns (string memory)
{
return vm.serializeBytes32(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes memory value) internal returns (string memory) {
return vm.serializeBytes(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, bytes[] memory value)
internal
returns (string memory)
{
return vm.serializeBytes(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, string memory value)
internal
returns (string memory)
{
return vm.serializeString(jsonKey, key, value);
}
function serialize(string memory jsonKey, string memory key, string[] memory value)
internal
returns (string memory)
{
return vm.serializeString(jsonKey, key, value);
}
function write(string memory jsonKey, string memory path) internal {
vm.writeJson(jsonKey, path);
}
function write(string memory jsonKey, string memory path, string memory valueKey) internal {
vm.writeJson(jsonKey, path, valueKey);
}
}

View File

@ -1,43 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
library stdMath {
int256 private constant INT256_MIN = -57896044618658097711785492504343953926634992332820282019728792003956564819968;
function abs(int256 a) internal pure returns (uint256) {
// Required or it will fail when `a = type(int256).min`
if (a == INT256_MIN) {
return 57896044618658097711785492504343953926634992332820282019728792003956564819968;
}
return uint256(a > 0 ? a : -a);
}
function delta(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a - b : b - a;
}
function delta(int256 a, int256 b) internal pure returns (uint256) {
// a and b are of the same sign
// this works thanks to two's complement, the left-most bit is the sign bit
if ((a ^ b) > -1) {
return delta(abs(a), abs(b));
}
// a and b are of opposite signs
return abs(a) + abs(b);
}
function percentDelta(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 absDelta = delta(a, b);
return absDelta * 1e18 / b;
}
function percentDelta(int256 a, int256 b) internal pure returns (uint256) {
uint256 absDelta = delta(a, b);
uint256 absB = abs(b);
return absDelta * 1e18 / absB;
}
}

View File

@ -1,327 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import "./Vm.sol";
struct StdStorage {
mapping(address => mapping(bytes4 => mapping(bytes32 => uint256))) slots;
mapping(address => mapping(bytes4 => mapping(bytes32 => bool))) finds;
bytes32[] _keys;
bytes4 _sig;
uint256 _depth;
address _target;
bytes32 _set;
}
library stdStorageSafe {
event SlotFound(address who, bytes4 fsig, bytes32 keysHash, uint256 slot);
event WARNING_UninitedSlot(address who, uint256 slot);
Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
function sigs(string memory sigStr) internal pure returns (bytes4) {
return bytes4(keccak256(bytes(sigStr)));
}
/// @notice find an arbitrary storage slot given a function sig, input data, address of the contract and a value to check against
// slot complexity:
// if flat, will be bytes32(uint256(uint));
// if map, will be keccak256(abi.encode(key, uint(slot)));
// if deep map, will be keccak256(abi.encode(key1, keccak256(abi.encode(key0, uint(slot)))));
// if map struct, will be bytes32(uint256(keccak256(abi.encode(key1, keccak256(abi.encode(key0, uint(slot)))))) + structFieldDepth);
function find(StdStorage storage self) internal returns (uint256) {
address who = self._target;
bytes4 fsig = self._sig;
uint256 field_depth = self._depth;
bytes32[] memory ins = self._keys;
// calldata to test against
if (self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))]) {
return self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))];
}
bytes memory cald = abi.encodePacked(fsig, flatten(ins));
vm.record();
bytes32 fdat;
{
(, bytes memory rdat) = who.staticcall(cald);
fdat = bytesToBytes32(rdat, 32 * field_depth);
}
(bytes32[] memory reads,) = vm.accesses(address(who));
if (reads.length == 1) {
bytes32 curr = vm.load(who, reads[0]);
if (curr == bytes32(0)) {
emit WARNING_UninitedSlot(who, uint256(reads[0]));
}
if (fdat != curr) {
require(
false,
"stdStorage find(StdStorage): Packed slot. This would cause dangerous overwriting and currently isn't supported."
);
}
emit SlotFound(who, fsig, keccak256(abi.encodePacked(ins, field_depth)), uint256(reads[0]));
self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))] = uint256(reads[0]);
self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))] = true;
} else if (reads.length > 1) {
for (uint256 i = 0; i < reads.length; i++) {
bytes32 prev = vm.load(who, reads[i]);
if (prev == bytes32(0)) {
emit WARNING_UninitedSlot(who, uint256(reads[i]));
}
// store
vm.store(who, reads[i], bytes32(hex"1337"));
bool success;
bytes memory rdat;
{
(success, rdat) = who.staticcall(cald);
fdat = bytesToBytes32(rdat, 32 * field_depth);
}
if (success && fdat == bytes32(hex"1337")) {
// we found which of the slots is the actual one
emit SlotFound(who, fsig, keccak256(abi.encodePacked(ins, field_depth)), uint256(reads[i]));
self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))] = uint256(reads[i]);
self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))] = true;
vm.store(who, reads[i], prev);
break;
}
vm.store(who, reads[i], prev);
}
} else {
require(false, "stdStorage find(StdStorage): No storage use detected for target.");
}
require(
self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))],
"stdStorage find(StdStorage): Slot(s) not found."
);
delete self._target;
delete self._sig;
delete self._keys;
delete self._depth;
return self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))];
}
function target(StdStorage storage self, address _target) internal returns (StdStorage storage) {
self._target = _target;
return self;
}
function sig(StdStorage storage self, bytes4 _sig) internal returns (StdStorage storage) {
self._sig = _sig;
return self;
}
function sig(StdStorage storage self, string memory _sig) internal returns (StdStorage storage) {
self._sig = sigs(_sig);
return self;
}
function with_key(StdStorage storage self, address who) internal returns (StdStorage storage) {
self._keys.push(bytes32(uint256(uint160(who))));
return self;
}
function with_key(StdStorage storage self, uint256 amt) internal returns (StdStorage storage) {
self._keys.push(bytes32(amt));
return self;
}
function with_key(StdStorage storage self, bytes32 key) internal returns (StdStorage storage) {
self._keys.push(key);
return self;
}
function depth(StdStorage storage self, uint256 _depth) internal returns (StdStorage storage) {
self._depth = _depth;
return self;
}
function read(StdStorage storage self) private returns (bytes memory) {
address t = self._target;
uint256 s = find(self);
return abi.encode(vm.load(t, bytes32(s)));
}
function read_bytes32(StdStorage storage self) internal returns (bytes32) {
return abi.decode(read(self), (bytes32));
}
function read_bool(StdStorage storage self) internal returns (bool) {
int256 v = read_int(self);
if (v == 0) return false;
if (v == 1) return true;
revert("stdStorage read_bool(StdStorage): Cannot decode. Make sure you are reading a bool.");
}
function read_address(StdStorage storage self) internal returns (address) {
return abi.decode(read(self), (address));
}
function read_uint(StdStorage storage self) internal returns (uint256) {
return abi.decode(read(self), (uint256));
}
function read_int(StdStorage storage self) internal returns (int256) {
return abi.decode(read(self), (int256));
}
function bytesToBytes32(bytes memory b, uint256 offset) private pure returns (bytes32) {
bytes32 out;
uint256 max = b.length > 32 ? 32 : b.length;
for (uint256 i = 0; i < max; i++) {
out |= bytes32(b[offset + i] & 0xFF) >> (i * 8);
}
return out;
}
function flatten(bytes32[] memory b) private pure returns (bytes memory) {
bytes memory result = new bytes(b.length * 32);
for (uint256 i = 0; i < b.length; i++) {
bytes32 k = b[i];
/// @solidity memory-safe-assembly
assembly {
mstore(add(result, add(32, mul(32, i))), k)
}
}
return result;
}
}
library stdStorage {
Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code")))));
function sigs(string memory sigStr) internal pure returns (bytes4) {
return stdStorageSafe.sigs(sigStr);
}
function find(StdStorage storage self) internal returns (uint256) {
return stdStorageSafe.find(self);
}
function target(StdStorage storage self, address _target) internal returns (StdStorage storage) {
return stdStorageSafe.target(self, _target);
}
function sig(StdStorage storage self, bytes4 _sig) internal returns (StdStorage storage) {
return stdStorageSafe.sig(self, _sig);
}
function sig(StdStorage storage self, string memory _sig) internal returns (StdStorage storage) {
return stdStorageSafe.sig(self, _sig);
}
function with_key(StdStorage storage self, address who) internal returns (StdStorage storage) {
return stdStorageSafe.with_key(self, who);
}
function with_key(StdStorage storage self, uint256 amt) internal returns (StdStorage storage) {
return stdStorageSafe.with_key(self, amt);
}
function with_key(StdStorage storage self, bytes32 key) internal returns (StdStorage storage) {
return stdStorageSafe.with_key(self, key);
}
function depth(StdStorage storage self, uint256 _depth) internal returns (StdStorage storage) {
return stdStorageSafe.depth(self, _depth);
}
function checked_write(StdStorage storage self, address who) internal {
checked_write(self, bytes32(uint256(uint160(who))));
}
function checked_write(StdStorage storage self, uint256 amt) internal {
checked_write(self, bytes32(amt));
}
function checked_write(StdStorage storage self, bool write) internal {
bytes32 t;
/// @solidity memory-safe-assembly
assembly {
t := write
}
checked_write(self, t);
}
function checked_write(StdStorage storage self, bytes32 set) internal {
address who = self._target;
bytes4 fsig = self._sig;
uint256 field_depth = self._depth;
bytes32[] memory ins = self._keys;
bytes memory cald = abi.encodePacked(fsig, flatten(ins));
if (!self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))]) {
find(self);
}
bytes32 slot = bytes32(self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))]);
bytes32 fdat;
{
(, bytes memory rdat) = who.staticcall(cald);
fdat = bytesToBytes32(rdat, 32 * field_depth);
}
bytes32 curr = vm.load(who, slot);
if (fdat != curr) {
require(
false,
"stdStorage find(StdStorage): Packed slot. This would cause dangerous overwriting and currently isn't supported."
);
}
vm.store(who, slot, set);
delete self._target;
delete self._sig;
delete self._keys;
delete self._depth;
}
function read_bytes32(StdStorage storage self) internal returns (bytes32) {
return stdStorageSafe.read_bytes32(self);
}
function read_bool(StdStorage storage self) internal returns (bool) {
return stdStorageSafe.read_bool(self);
}
function read_address(StdStorage storage self) internal returns (address) {
return stdStorageSafe.read_address(self);
}
function read_uint(StdStorage storage self) internal returns (uint256) {
return stdStorageSafe.read_uint(self);
}
function read_int(StdStorage storage self) internal returns (int256) {
return stdStorageSafe.read_int(self);
}
// Private function so needs to be copied over
function bytesToBytes32(bytes memory b, uint256 offset) private pure returns (bytes32) {
bytes32 out;
uint256 max = b.length > 32 ? 32 : b.length;
for (uint256 i = 0; i < max; i++) {
out |= bytes32(b[offset + i] & 0xFF) >> (i * 8);
}
return out;
}
// Private function so needs to be copied over
function flatten(bytes32[] memory b) private pure returns (bytes memory) {
bytes memory result = new bytes(b.length * 32);
for (uint256 i = 0; i < b.length; i++) {
bytes32 k = b[i];
/// @solidity memory-safe-assembly
assembly {
mstore(add(result, add(32, mul(32, i))), k)
}
}
return result;
}
}

View File

@ -1,85 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import "./console2.sol";
abstract contract StdUtils {
uint256 private constant UINT256_MAX =
115792089237316195423570985008687907853269984665640564039457584007913129639935;
function _bound(uint256 x, uint256 min, uint256 max) internal pure virtual returns (uint256 result) {
require(min <= max, "StdUtils bound(uint256,uint256,uint256): Max is less than min.");
// If x is between min and max, return x directly. This is to ensure that dictionary values
// do not get shifted if the min is nonzero. More info: https://github.com/foundry-rs/forge-std/issues/188
if (x >= min && x <= max) return x;
uint256 size = max - min + 1;
// If the value is 0, 1, 2, 3, warp that to min, min+1, min+2, min+3. Similarly for the UINT256_MAX side.
// This helps ensure coverage of the min/max values.
if (x <= 3 && size > x) return min + x;
if (x >= UINT256_MAX - 3 && size > UINT256_MAX - x) return max - (UINT256_MAX - x);
// Otherwise, wrap x into the range [min, max], i.e. the range is inclusive.
if (x > max) {
uint256 diff = x - max;
uint256 rem = diff % size;
if (rem == 0) return max;
result = min + rem - 1;
} else if (x < min) {
uint256 diff = min - x;
uint256 rem = diff % size;
if (rem == 0) return min;
result = max - rem + 1;
}
}
function bound(uint256 x, uint256 min, uint256 max) internal view virtual returns (uint256 result) {
result = _bound(x, min, max);
console2.log("Bound Result", result);
}
/// @dev Compute the address a contract will be deployed at for a given deployer address and nonce
/// @notice adapated from Solmate implementation (https://github.com/Rari-Capital/solmate/blob/main/src/utils/LibRLP.sol)
function computeCreateAddress(address deployer, uint256 nonce) internal pure virtual returns (address) {
// forgefmt: disable-start
// The integer zero is treated as an empty byte string, and as a result it only has a length prefix, 0x80, computed via 0x80 + 0.
// A one byte integer uses its own value as its length prefix, there is no additional "0x80 + length" prefix that comes before it.
if (nonce == 0x00) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd6), bytes1(0x94), deployer, bytes1(0x80))));
if (nonce <= 0x7f) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd6), bytes1(0x94), deployer, uint8(nonce))));
// Nonces greater than 1 byte all follow a consistent encoding scheme, where each value is preceded by a prefix of 0x80 + length.
if (nonce <= 2**8 - 1) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd7), bytes1(0x94), deployer, bytes1(0x81), uint8(nonce))));
if (nonce <= 2**16 - 1) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd8), bytes1(0x94), deployer, bytes1(0x82), uint16(nonce))));
if (nonce <= 2**24 - 1) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd9), bytes1(0x94), deployer, bytes1(0x83), uint24(nonce))));
// forgefmt: disable-end
// More details about RLP encoding can be found here: https://eth.wiki/fundamentals/rlp
// 0xda = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x84 ++ nonce)
// 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex)
// 0x84 = 0x80 + 0x04 (0x04 = the bytes length of the nonce, 4 bytes, in hex)
// We assume nobody can have a nonce large enough to require more than 32 bytes.
return addressFromLast20Bytes(
keccak256(abi.encodePacked(bytes1(0xda), bytes1(0x94), deployer, bytes1(0x84), uint32(nonce)))
);
}
function computeCreate2Address(bytes32 salt, bytes32 initcodeHash, address deployer)
internal
pure
virtual
returns (address)
{
return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xff), deployer, salt, initcodeHash)));
}
function bytesToUint(bytes memory b) internal pure virtual returns (uint256) {
require(b.length <= 32, "StdUtils bytesToUint(bytes): Bytes length exceeds 32.");
return abi.decode(abi.encodePacked(new bytes(32 - b.length), b), (uint256));
}
function addressFromLast20Bytes(bytes32 bytesValue) private pure returns (address) {
return address(uint160(uint256(bytesValue)));
}
}

View File

@ -1,11 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
import {CommonBase} from "./Common.sol";
import "ds-test/test.sol";
// forgefmt: disable-next-line
import {console, console2, StdAssertions, StdCheats, stdError, stdJson, stdMath, StdStorage, stdStorage, StdUtils, Vm} from "./Components.sol";
abstract contract TestBase is CommonBase {}
abstract contract Test is TestBase, DSTest, StdAssertions, StdCheats, StdUtils {}

View File

@ -1,312 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
// Cheatcodes are marked as view/pure/none using the following rules:
// 0. A call's observable behaviour includes its return value, logs, reverts and state writes.
// 1. If you can influence a later call's observable behaviour, you're neither `view` nor `pure` (you are modifying some state be it the EVM, interpreter, filesystem, etc),
// 2. Otherwise if you can be influenced by an earlier call, or if reading some state, you're `view`,
// 3. Otherwise you're `pure`.
interface VmSafe {
struct Log {
bytes32[] topics;
bytes data;
address emitter;
}
struct Rpc {
string name;
string url;
}
// Loads a storage slot from an address (who, slot)
function load(address, bytes32) external view returns (bytes32);
// Signs data, (privateKey, digest) => (v, r, s)
function sign(uint256, bytes32) external pure returns (uint8, bytes32, bytes32);
// Gets the address for a given private key, (privateKey) => (address)
function addr(uint256) external pure returns (address);
// Gets the nonce of an account
function getNonce(address) external view returns (uint64);
// Performs a foreign function call via the terminal, (stringInputs) => (result)
function ffi(string[] calldata) external returns (bytes memory);
// Sets environment variables, (name, value)
function setEnv(string calldata, string calldata) external;
// Reads environment variables, (name) => (value)
function envBool(string calldata) external view returns (bool);
function envUint(string calldata) external view returns (uint256);
function envInt(string calldata) external view returns (int256);
function envAddress(string calldata) external view returns (address);
function envBytes32(string calldata) external view returns (bytes32);
function envString(string calldata) external view returns (string memory);
function envBytes(string calldata) external view returns (bytes memory);
// Reads environment variables as arrays, (name, delim) => (value[])
function envBool(string calldata, string calldata) external view returns (bool[] memory);
function envUint(string calldata, string calldata) external view returns (uint256[] memory);
function envInt(string calldata, string calldata) external view returns (int256[] memory);
function envAddress(string calldata, string calldata) external view returns (address[] memory);
function envBytes32(string calldata, string calldata) external view returns (bytes32[] memory);
function envString(string calldata, string calldata) external view returns (string[] memory);
function envBytes(string calldata, string calldata) external view returns (bytes[] memory);
// Records all storage reads and writes
function record() external;
// Gets all accessed reads and write slot from a recording session, for a given address
function accesses(address) external returns (bytes32[] memory reads, bytes32[] memory writes);
// Gets the _creation_ bytecode from an artifact file. Takes in the relative path to the json file
function getCode(string calldata) external view returns (bytes memory);
// Gets the _deployed_ bytecode from an artifact file. Takes in the relative path to the json file
function getDeployedCode(string calldata) external view returns (bytes memory);
// Labels an address in call traces
function label(address, string calldata) external;
// Using the address that calls the test contract, has the next call (at this call depth only) create a transaction that can later be signed and sent onchain
function broadcast() external;
// Has the next call (at this call depth only) create a transaction with the address provided as the sender that can later be signed and sent onchain
function broadcast(address) external;
// Has the next call (at this call depth only) create a transaction with the private key provided as the sender that can later be signed and sent onchain
function broadcast(uint256) external;
// Using the address that calls the test contract, has all subsequent calls (at this call depth only) create transactions that can later be signed and sent onchain
function startBroadcast() external;
// Has all subsequent calls (at this call depth only) create transactions with the address provided that can later be signed and sent onchain
function startBroadcast(address) external;
// Has all subsequent calls (at this call depth only) create transactions with the private key provided that can later be signed and sent onchain
function startBroadcast(uint256) external;
// Stops collecting onchain transactions
function stopBroadcast() external;
// Reads the entire content of file to string, (path) => (data)
function readFile(string calldata) external view returns (string memory);
// Reads the entire content of file as binary. Path is relative to the project root. (path) => (data)
function readFileBinary(string calldata) external view returns (bytes memory);
// Get the path of the current project root
function projectRoot() external view returns (string memory);
// Reads next line of file to string, (path) => (line)
function readLine(string calldata) external view returns (string memory);
// Writes data to file, creating a file if it does not exist, and entirely replacing its contents if it does.
// (path, data) => ()
function writeFile(string calldata, string calldata) external;
// Writes binary data to a file, creating a file if it does not exist, and entirely replacing its contents if it does.
// Path is relative to the project root. (path, data) => ()
function writeFileBinary(string calldata, bytes calldata) external;
// Writes line to file, creating a file if it does not exist.
// (path, data) => ()
function writeLine(string calldata, string calldata) external;
// Closes file for reading, resetting the offset and allowing to read it from beginning with readLine.
// (path) => ()
function closeFile(string calldata) external;
// Removes file. This cheatcode will revert in the following situations, but is not limited to just these cases:
// - Path points to a directory.
// - The file doesn't exist.
// - The user lacks permissions to remove the file.
// (path) => ()
function removeFile(string calldata) external;
// Convert values to a string, (value) => (stringified value)
function toString(address) external pure returns (string memory);
function toString(bytes calldata) external pure returns (string memory);
function toString(bytes32) external pure returns (string memory);
function toString(bool) external pure returns (string memory);
function toString(uint256) external pure returns (string memory);
function toString(int256) external pure returns (string memory);
// Convert values from a string, (string) => (parsed value)
function parseBytes(string calldata) external pure returns (bytes memory);
function parseAddress(string calldata) external pure returns (address);
function parseUint(string calldata) external pure returns (uint256);
function parseInt(string calldata) external pure returns (int256);
function parseBytes32(string calldata) external pure returns (bytes32);
function parseBool(string calldata) external pure returns (bool);
// Record all the transaction logs
function recordLogs() external;
// Gets all the recorded logs, () => (logs)
function getRecordedLogs() external returns (Log[] memory);
// Derive a private key from a provided mnenomic string (or mnenomic file path) at the derivation path m/44'/60'/0'/0/{index}
function deriveKey(string calldata, uint32) external pure returns (uint256);
// Derive a private key from a provided mnenomic string (or mnenomic file path) at the derivation path {path}{index}
function deriveKey(string calldata, string calldata, uint32) external pure returns (uint256);
// Adds a private key to the local forge wallet and returns the address
function rememberKey(uint256) external returns (address);
//
// parseJson
//
// ----
// In case the returned value is a JSON object, it's encoded as a ABI-encoded tuple. As JSON objects
// don't have the notion of ordered, but tuples do, they JSON object is encoded with it's fields ordered in
// ALPHABETICAL ordser. That means that in order to succesfully decode the tuple, we need to define a tuple that
// encodes the fields in the same order, which is alphabetical. In the case of Solidity structs, they are encoded
// as tuples, with the attributes in the order in which they are defined.
// For example: json = { 'a': 1, 'b': 0xa4tb......3xs}
// a: uint256
// b: address
// To decode that json, we need to define a struct or a tuple as follows:
// struct json = { uint256 a; address b; }
// If we defined a json struct with the opposite order, meaning placing the address b first, it would try to
// decode the tuple in that order, and thus fail.
// ----
// Given a string of JSON, return it as ABI-encoded, (stringified json, key) => (ABI-encoded data)
function parseJson(string calldata, string calldata) external pure returns (bytes memory);
function parseJson(string calldata) external pure returns (bytes memory);
//
// writeJson
//
// ----
// Let's assume we want to write the following JSON to a file:
//
// { "boolean": true, "number": 342, "object": { "title": "finally json serialization" } }
//
// ```
// string memory json1 = "some key";
// vm.serializeBool(json1, "boolean", true);
// vm.serializeBool(json1, "number", uint256(342));
// json2 = "some other key";
// string memory output = vm.serializeString(json2, "title", "finally json serialization");
// string memory finalJson = vm.serialize(json1, "object", output);
// vm.writeJson(finalJson, "./output/example.json");
// ```
// The critical insight is that every invocation of serialization will return the stringified version of the JSON
// up to that point. That means we can construct arbitrary JSON objects and then use the return stringified version
// to serialize them as values to another JSON object.
//
// json1 and json2 are simply keys used by the backend to keep track of the objects. So vm.serializeJson(json1,..)
// will find the object in-memory that is keyed by "some key". // writeJson
// ----
// Serialize a key and value to a JSON object stored in-memory that can be latery written to a file
// It returns the stringified version of the specific JSON file up to that moment.
// (object_key, value_key, value) => (stringified JSON)
function serializeBool(string calldata, string calldata, bool) external returns (string memory);
function serializeUint(string calldata, string calldata, uint256) external returns (string memory);
function serializeInt(string calldata, string calldata, int256) external returns (string memory);
function serializeAddress(string calldata, string calldata, address) external returns (string memory);
function serializeBytes32(string calldata, string calldata, bytes32) external returns (string memory);
function serializeString(string calldata, string calldata, string calldata) external returns (string memory);
function serializeBytes(string calldata, string calldata, bytes calldata) external returns (string memory);
function serializeBool(string calldata, string calldata, bool[] calldata) external returns (string memory);
function serializeUint(string calldata, string calldata, uint256[] calldata) external returns (string memory);
function serializeInt(string calldata, string calldata, int256[] calldata) external returns (string memory);
function serializeAddress(string calldata, string calldata, address[] calldata) external returns (string memory);
function serializeBytes32(string calldata, string calldata, bytes32[] calldata) external returns (string memory);
function serializeString(string calldata, string calldata, string[] calldata) external returns (string memory);
function serializeBytes(string calldata, string calldata, bytes[] calldata) external returns (string memory);
// Write a serialized JSON object to a file. If the file exists, it will be overwritten.
// (stringified_json, path)
function writeJson(string calldata, string calldata) external;
// Write a serialized JSON object to an **existing** JSON file, replacing a value with key = <value_key>
// This is useful to replace a specific value of a JSON file, without having to parse the entire thing
// (stringified_json, path, value_key)
function writeJson(string calldata, string calldata, string calldata) external;
// Returns the RPC url for the given alias
function rpcUrl(string calldata) external view returns (string memory);
// Returns all rpc urls and their aliases `[alias, url][]`
function rpcUrls() external view returns (string[2][] memory);
// Returns all rpc urls and their aliases as structs.
function rpcUrlStructs() external view returns (Rpc[] memory);
// If the condition is false, discard this run's fuzz inputs and generate new ones.
function assume(bool) external pure;
}
interface Vm is VmSafe {
// Sets block.timestamp (newTimestamp)
function warp(uint256) external;
// Sets block.height (newHeight)
function roll(uint256) external;
// Sets block.basefee (newBasefee)
function fee(uint256) external;
// Sets block.difficulty (newDifficulty)
function difficulty(uint256) external;
// Sets block.chainid
function chainId(uint256) external;
// Stores a value to an address' storage slot, (who, slot, value)
function store(address, bytes32, bytes32) external;
// Sets the nonce of an account; must be higher than the current nonce of the account
function setNonce(address, uint64) external;
// Sets the *next* call's msg.sender to be the input address
function prank(address) external;
// Sets all subsequent calls' msg.sender to be the input address until `stopPrank` is called
function startPrank(address) external;
// Sets the *next* call's msg.sender to be the input address, and the tx.origin to be the second input
function prank(address, address) external;
// Sets all subsequent calls' msg.sender to be the input address until `stopPrank` is called, and the tx.origin to be the second input
function startPrank(address, address) external;
// Resets subsequent calls' msg.sender to be `address(this)`
function stopPrank() external;
// Sets an address' balance, (who, newBalance)
function deal(address, uint256) external;
// Sets an address' code, (who, newCode)
function etch(address, bytes calldata) external;
// Expects an error on next call
function expectRevert(bytes calldata) external;
function expectRevert(bytes4) external;
function expectRevert() external;
// Prepare an expected log with (bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData).
// Call this function, then emit an event, then call a function. Internally after the call, we check if
// logs were emitted in the expected order with the expected topics and data (as specified by the booleans)
function expectEmit(bool, bool, bool, bool) external;
function expectEmit(bool, bool, bool, bool, address) external;
// Mocks a call to an address, returning specified data.
// Calldata can either be strict or a partial match, e.g. if you only
// pass a Solidity selector to the expected calldata, then the entire Solidity
// function will be mocked.
function mockCall(address, bytes calldata, bytes calldata) external;
// Mocks a call to an address with a specific msg.value, returning specified data.
// Calldata match takes precedence over msg.value in case of ambiguity.
function mockCall(address, uint256, bytes calldata, bytes calldata) external;
// Clears all mocked calls
function clearMockedCalls() external;
// Expects a call to an address with the specified calldata.
// Calldata can either be a strict or a partial match
function expectCall(address, bytes calldata) external;
// Expects a call to an address with the specified msg.value and calldata
function expectCall(address, uint256, bytes calldata) external;
// Sets block.coinbase (who)
function coinbase(address) external;
// Snapshot the current state of the evm.
// Returns the id of the snapshot that was created.
// To revert a snapshot use `revertTo`
function snapshot() external returns (uint256);
// Revert the state of the evm to a previous snapshot
// Takes the snapshot id to revert to.
// This deletes the snapshot and all snapshots taken after the given snapshot id.
function revertTo(uint256) external returns (bool);
// Creates a new fork with the given endpoint and block and returns the identifier of the fork
function createFork(string calldata, uint256) external returns (uint256);
// Creates a new fork with the given endpoint and the _latest_ block and returns the identifier of the fork
function createFork(string calldata) external returns (uint256);
// Creates a new fork with the given endpoint and at the block the given transaction was mined in, and replays all transaction mined in the block before the transaction
function createFork(string calldata, bytes32) external returns (uint256);
// Creates _and_ also selects a new fork with the given endpoint and block and returns the identifier of the fork
function createSelectFork(string calldata, uint256) external returns (uint256);
// Creates _and_ also selects new fork with the given endpoint and at the block the given transaction was mined in, and replays all transaction mined in the block before the transaction
function createSelectFork(string calldata, bytes32) external returns (uint256);
// Creates _and_ also selects a new fork with the given endpoint and the latest block and returns the identifier of the fork
function createSelectFork(string calldata) external returns (uint256);
// Takes a fork identifier created by `createFork` and sets the corresponding forked state as active.
function selectFork(uint256) external;
/// Returns the currently active fork
/// Reverts if no fork is currently active
function activeFork() external view returns (uint256);
// Updates the currently active fork to given block number
// This is similar to `roll` but for the currently active fork
function rollFork(uint256) external;
// Updates the currently active fork to given transaction
// this will `rollFork` with the number of the block the transaction was mined in and replays all transaction mined before it in the block
function rollFork(bytes32) external;
// Updates the given fork to given block number
function rollFork(uint256 forkId, uint256 blockNumber) external;
// Updates the given fork to block number of the given transaction and replays all transaction mined before it in the block
function rollFork(uint256 forkId, bytes32 transaction) external;
// Marks that the account(s) should use persistent storage across fork swaps in a multifork setup
// Meaning, changes made to the state of this account will be kept when switching forks
function makePersistent(address) external;
function makePersistent(address, address) external;
function makePersistent(address, address, address) external;
function makePersistent(address[] calldata) external;
// Revokes persistent status from the address, previously added via `makePersistent`
function revokePersistent(address) external;
function revokePersistent(address[] calldata) external;
// Returns true if the account is marked as persistent
function isPersistent(address) external view returns (bool);
// In forking mode, explicitly grant the given address cheatcode access
function allowCheatcodes(address) external;
// Fetches the given transaction from the active fork and executes it on the current state
function transact(bytes32 txHash) external;
// Fetches the given transaction from the given fork and executes it on the current state
function transact(uint256 forkId, bytes32 txHash) external;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,104 +0,0 @@
pragma solidity >=0.6.2;
import "./IERC165.sol";
/// @title ERC-1155 Multi Token Standard
/// @dev See https://eips.ethereum.org/EIPS/eip-1155
/// Note: The ERC-165 identifier for this interface is 0xd9b67a26.
interface IERC1155 is IERC165 {
/// @dev
/// - Either `TransferSingle` or `TransferBatch` MUST emit when tokens are transferred, including zero value transfers as well as minting or burning (see "Safe Transfer Rules" section of the standard).
/// - The `_operator` argument MUST be the address of an account/contract that is approved to make the transfer (SHOULD be msg.sender).
/// - The `_from` argument MUST be the address of the holder whose balance is decreased.
/// - The `_to` argument MUST be the address of the recipient whose balance is increased.
/// - The `_id` argument MUST be the token type being transferred.
/// - The `_value` argument MUST be the number of tokens the holder balance is decreased by and match what the recipient balance is increased by.
/// - When minting/creating tokens, the `_from` argument MUST be set to `0x0` (i.e. zero address).
/// - When burning/destroying tokens, the `_to` argument MUST be set to `0x0` (i.e. zero address).
event TransferSingle(
address indexed _operator, address indexed _from, address indexed _to, uint256 _id, uint256 _value
);
/// @dev
/// - Either `TransferSingle` or `TransferBatch` MUST emit when tokens are transferred, including zero value transfers as well as minting or burning (see "Safe Transfer Rules" section of the standard).
/// - The `_operator` argument MUST be the address of an account/contract that is approved to make the transfer (SHOULD be msg.sender).
/// - The `_from` argument MUST be the address of the holder whose balance is decreased.
/// - The `_to` argument MUST be the address of the recipient whose balance is increased.
/// - The `_ids` argument MUST be the list of tokens being transferred.
/// - The `_values` argument MUST be the list of number of tokens (matching the list and order of tokens specified in _ids) the holder balance is decreased by and match what the recipient balance is increased by.
/// - When minting/creating tokens, the `_from` argument MUST be set to `0x0` (i.e. zero address).
/// - When burning/destroying tokens, the `_to` argument MUST be set to `0x0` (i.e. zero address).
event TransferBatch(
address indexed _operator, address indexed _from, address indexed _to, uint256[] _ids, uint256[] _values
);
/// @dev MUST emit when approval for a second party/operator address to manage all tokens for an owner address is enabled or disabled (absence of an event assumes disabled).
event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);
/// @dev MUST emit when the URI is updated for a token ID. URIs are defined in RFC 3986.
/// The URI MUST point to a JSON file that conforms to the "ERC-1155 Metadata URI JSON Schema".
event URI(string _value, uint256 indexed _id);
/// @notice Transfers `_value` amount of an `_id` from the `_from` address to the `_to` address specified (with safety call).
/// @dev Caller must be approved to manage the tokens being transferred out of the `_from` account (see "Approval" section of the standard).
/// - MUST revert if `_to` is the zero address.
/// - MUST revert if balance of holder for token `_id` is lower than the `_value` sent.
/// - MUST revert on any other error.
/// - MUST emit the `TransferSingle` event to reflect the balance change (see "Safe Transfer Rules" section of the standard).
/// - After the above conditions are met, this function MUST check if `_to` is a smart contract (e.g. code size > 0). If so, it MUST call `onERC1155Received` on `_to` and act appropriately (see "Safe Transfer Rules" section of the standard).
/// @param _from Source address
/// @param _to Target address
/// @param _id ID of the token type
/// @param _value Transfer amount
/// @param _data Additional data with no specified format, MUST be sent unaltered in call to `onERC1155Received` on `_to`
function safeTransferFrom(address _from, address _to, uint256 _id, uint256 _value, bytes calldata _data) external;
/// @notice Transfers `_values` amount(s) of `_ids` from the `_from` address to the `_to` address specified (with safety call).
/// @dev Caller must be approved to manage the tokens being transferred out of the `_from` account (see "Approval" section of the standard).
/// - MUST revert if `_to` is the zero address.
/// - MUST revert if length of `_ids` is not the same as length of `_values`.
/// - MUST revert if any of the balance(s) of the holder(s) for token(s) in `_ids` is lower than the respective amount(s) in `_values` sent to the recipient.
/// - MUST revert on any other error.
/// - MUST emit `TransferSingle` or `TransferBatch` event(s) such that all the balance changes are reflected (see "Safe Transfer Rules" section of the standard).
/// - Balance changes and events MUST follow the ordering of the arrays (_ids[0]/_values[0] before _ids[1]/_values[1], etc).
/// - After the above conditions for the transfer(s) in the batch are met, this function MUST check if `_to` is a smart contract (e.g. code size > 0). If so, it MUST call the relevant `ERC1155TokenReceiver` hook(s) on `_to` and act appropriately (see "Safe Transfer Rules" section of the standard).
/// @param _from Source address
/// @param _to Target address
/// @param _ids IDs of each token type (order and length must match _values array)
/// @param _values Transfer amounts per token type (order and length must match _ids array)
/// @param _data Additional data with no specified format, MUST be sent unaltered in call to the `ERC1155TokenReceiver` hook(s) on `_to`
function safeBatchTransferFrom(
address _from,
address _to,
uint256[] calldata _ids,
uint256[] calldata _values,
bytes calldata _data
) external;
/// @notice Get the balance of an account's tokens.
/// @param _owner The address of the token holder
/// @param _id ID of the token
/// @return The _owner's balance of the token type requested
function balanceOf(address _owner, uint256 _id) external view returns (uint256);
/// @notice Get the balance of multiple account/token pairs
/// @param _owners The addresses of the token holders
/// @param _ids ID of the tokens
/// @return The _owner's balance of the token types requested (i.e. balance for each (owner, id) pair)
function balanceOfBatch(address[] calldata _owners, uint256[] calldata _ids)
external
view
returns (uint256[] memory);
/// @notice Enable or disable approval for a third party ("operator") to manage all of the caller's tokens.
/// @dev MUST emit the ApprovalForAll event on success.
/// @param _operator Address to add to the set of authorized operators
/// @param _approved True if the operator is approved, false to revoke approval
function setApprovalForAll(address _operator, bool _approved) external;
/// @notice Queries the approval status of an operator for a given owner.
/// @param _owner The owner of the tokens
/// @param _operator Address of authorized operator
/// @return True if the operator is approved, false if not
function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}

View File

@ -1,11 +0,0 @@
pragma solidity >=0.6.2;
interface IERC165 {
/// @notice Query if a contract implements an interface
/// @param interfaceID The interface identifier, as specified in ERC-165
/// @dev Interface identification is specified in ERC-165. This function
/// uses less than 30,000 gas.
/// @return `true` if the contract implements `interfaceID` and
/// `interfaceID` is not 0xffffffff, `false` otherwise
function supportsInterface(bytes4 interfaceID) external view returns (bool);
}

View File

@ -1,42 +0,0 @@
pragma solidity >=0.6.2;
/// @dev Interface of the ERC20 standard as defined in the EIP.
/// @dev This includes the optional name, symbol, and decimals metadata.
interface IERC20 {
/// @dev Emitted when `value` tokens are moved from one account (`from`) to another (`to`).
event Transfer(address indexed from, address indexed to, uint256 value);
/// @dev Emitted when the allowance of a `spender` for an `owner` is set, where `value`
/// is the new allowance.
event Approval(address indexed owner, address indexed spender, uint256 value);
/// @notice Returns the amount of tokens in existence.
function totalSupply() external view returns (uint256);
/// @notice Returns the amount of tokens owned by `account`.
function balanceOf(address account) external view returns (uint256);
/// @notice Moves `amount` tokens from the caller's account to `to`.
function transfer(address to, uint256 amount) external returns (bool);
/// @notice Returns the remaining number of tokens that `spender` is allowed
/// to spend on behalf of `owner`
function allowance(address owner, address spender) external view returns (uint256);
/// @notice Sets `amount` as the allowance of `spender` over the caller's tokens.
/// @dev Be aware of front-running risks: https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
function approve(address spender, uint256 amount) external returns (bool);
/// @notice Moves `amount` tokens from `from` to `to` using the allowance mechanism.
/// `amount` is then deducted from the caller's allowance.
function transferFrom(address from, address to, uint256 amount) external returns (bool);
/// @notice Returns the name of the token.
function name() external view returns (string memory);
/// @notice Returns the symbol of the token.
function symbol() external view returns (string memory);
/// @notice Returns the decimals places of the token.
function decimals() external view returns (uint8);
}

View File

@ -1,189 +0,0 @@
pragma solidity >=0.6.2;
import "./IERC20.sol";
/// @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in
/// https://eips.ethereum.org/EIPS/eip-4626
interface IERC4626 is IERC20 {
event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);
event Withdraw(
address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares
);
/// @notice Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
/// @dev
/// - MUST be an ERC-20 token contract.
/// - MUST NOT revert.
function asset() external view returns (address assetTokenAddress);
/// @notice Returns the total amount of the underlying asset that is managed by Vault.
/// @dev
/// - SHOULD include any compounding that occurs from yield.
/// - MUST be inclusive of any fees that are charged against assets in the Vault.
/// - MUST NOT revert.
function totalAssets() external view returns (uint256 totalManagedAssets);
/// @notice Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
/// scenario where all the conditions are met.
/// @dev
/// - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
/// - MUST NOT show any variations depending on the caller.
/// - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
/// - MUST NOT revert.
///
/// NOTE: This calculation MAY NOT reflect the per-user price-per-share, and instead should reflect the
/// average-users price-per-share, meaning what the average user should expect to see when exchanging to and
/// from.
function convertToShares(uint256 assets) external view returns (uint256 shares);
/// @notice Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
/// scenario where all the conditions are met.
/// @dev
/// - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
/// - MUST NOT show any variations depending on the caller.
/// - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
/// - MUST NOT revert.
///
/// NOTE: This calculation MAY NOT reflect the per-user price-per-share, and instead should reflect the
/// average-users price-per-share, meaning what the average user should expect to see when exchanging to and
/// from.
function convertToAssets(uint256 shares) external view returns (uint256 assets);
/// @notice Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
/// through a deposit call.
/// @dev
/// - MUST return a limited value if receiver is subject to some deposit limit.
/// - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
/// - MUST NOT revert.
function maxDeposit(address receiver) external view returns (uint256 maxAssets);
/// @notice Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
/// current on-chain conditions.
/// @dev
/// - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
/// call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
/// in the same transaction.
/// - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
/// deposit would be accepted, regardless if the user has enough tokens approved, etc.
/// - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
/// - MUST NOT revert.
///
/// NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
/// share price or some other type of condition, meaning the depositor will lose assets by depositing.
function previewDeposit(uint256 assets) external view returns (uint256 shares);
/// @notice Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
/// @dev
/// - MUST emit the Deposit event.
/// - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
/// deposit execution, and are accounted for during deposit.
/// - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
/// approving enough underlying tokens to the Vault contract, etc).
///
/// NOTE: most implementations will require pre-approval of the Vault with the Vaults underlying asset token.
function deposit(uint256 assets, address receiver) external returns (uint256 shares);
/// @notice Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
/// @dev
/// - MUST return a limited value if receiver is subject to some mint limit.
/// - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
/// - MUST NOT revert.
function maxMint(address receiver) external view returns (uint256 maxShares);
/// @notice Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
/// current on-chain conditions.
/// @dev
/// - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
/// in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
/// same transaction.
/// - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
/// would be accepted, regardless if the user has enough tokens approved, etc.
/// - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
/// - MUST NOT revert.
///
/// NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
/// share price or some other type of condition, meaning the depositor will lose assets by minting.
function previewMint(uint256 shares) external view returns (uint256 assets);
/// @notice Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
/// @dev
/// - MUST emit the Deposit event.
/// - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
/// execution, and are accounted for during mint.
/// - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
/// approving enough underlying tokens to the Vault contract, etc).
///
/// NOTE: most implementations will require pre-approval of the Vault with the Vaults underlying asset token.
function mint(uint256 shares, address receiver) external returns (uint256 assets);
/// @notice Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
/// Vault, through a withdraw call.
/// @dev
/// - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
/// - MUST NOT revert.
function maxWithdraw(address owner) external view returns (uint256 maxAssets);
/// @notice Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
/// given current on-chain conditions.
/// @dev
/// - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
/// call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
/// called
/// in the same transaction.
/// - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
/// the withdrawal would be accepted, regardless if the user has enough shares, etc.
/// - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
/// - MUST NOT revert.
///
/// NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
/// share price or some other type of condition, meaning the depositor will lose assets by depositing.
function previewWithdraw(uint256 assets) external view returns (uint256 shares);
/// @notice Burns shares from owner and sends exactly assets of underlying tokens to receiver.
/// @dev
/// - MUST emit the Withdraw event.
/// - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
/// withdraw execution, and are accounted for during withdraw.
/// - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
/// not having enough shares, etc).
///
/// Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
/// Those methods should be performed separately.
function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);
/// @notice Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
/// through a redeem call.
/// @dev
/// - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
/// - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
/// - MUST NOT revert.
function maxRedeem(address owner) external view returns (uint256 maxShares);
/// @notice Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
/// given current on-chain conditions.
/// @dev
/// - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
/// in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
/// same transaction.
/// - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
/// redemption would be accepted, regardless if the user has enough shares, etc.
/// - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
/// - MUST NOT revert.
///
/// NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
/// share price or some other type of condition, meaning the depositor will lose assets by redeeming.
function previewRedeem(uint256 shares) external view returns (uint256 assets);
/// @notice Burns exactly shares from owner and sends assets of underlying tokens to receiver.
/// @dev
/// - MUST emit the Withdraw event.
/// - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
/// redeem execution, and are accounted for during redeem.
/// - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
/// not having enough shares, etc).
///
/// NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
/// Those methods should be performed separately.
function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

View File

@ -1,163 +0,0 @@
pragma solidity >=0.6.2;
import "./IERC165.sol";
/// @title ERC-721 Non-Fungible Token Standard
/// @dev See https://eips.ethereum.org/EIPS/eip-721
/// Note: the ERC-165 identifier for this interface is 0x80ac58cd.
interface IERC721 is IERC165 {
/// @dev This emits when ownership of any NFT changes by any mechanism.
/// This event emits when NFTs are created (`from` == 0) and destroyed
/// (`to` == 0). Exception: during contract creation, any number of NFTs
/// may be created and assigned without emitting Transfer. At the time of
/// any transfer, the approved address for that NFT (if any) is reset to none.
event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);
/// @dev This emits when the approved address for an NFT is changed or
/// reaffirmed. The zero address indicates there is no approved address.
/// When a Transfer event emits, this also indicates that the approved
/// address for that NFT (if any) is reset to none.
event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);
/// @dev This emits when an operator is enabled or disabled for an owner.
/// The operator can manage all NFTs of the owner.
event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);
/// @notice Count all NFTs assigned to an owner
/// @dev NFTs assigned to the zero address are considered invalid, and this
/// function throws for queries about the zero address.
/// @param _owner An address for whom to query the balance
/// @return The number of NFTs owned by `_owner`, possibly zero
function balanceOf(address _owner) external view returns (uint256);
/// @notice Find the owner of an NFT
/// @dev NFTs assigned to zero address are considered invalid, and queries
/// about them do throw.
/// @param _tokenId The identifier for an NFT
/// @return The address of the owner of the NFT
function ownerOf(uint256 _tokenId) external view returns (address);
/// @notice Transfers the ownership of an NFT from one address to another address
/// @dev Throws unless `msg.sender` is the current owner, an authorized
/// operator, or the approved address for this NFT. Throws if `_from` is
/// not the current owner. Throws if `_to` is the zero address. Throws if
/// `_tokenId` is not a valid NFT. When transfer is complete, this function
/// checks if `_to` is a smart contract (code size > 0). If so, it calls
/// `onERC721Received` on `_to` and throws if the return value is not
/// `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`.
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
/// @param data Additional data with no specified format, sent in call to `_to`
function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes calldata data) external payable;
/// @notice Transfers the ownership of an NFT from one address to another address
/// @dev This works identically to the other function with an extra data parameter,
/// except this function just sets data to "".
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;
/// @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE
/// TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE
/// THEY MAY BE PERMANENTLY LOST
/// @dev Throws unless `msg.sender` is the current owner, an authorized
/// operator, or the approved address for this NFT. Throws if `_from` is
/// not the current owner. Throws if `_to` is the zero address. Throws if
/// `_tokenId` is not a valid NFT.
/// @param _from The current owner of the NFT
/// @param _to The new owner
/// @param _tokenId The NFT to transfer
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;
/// @notice Change or reaffirm the approved address for an NFT
/// @dev The zero address indicates there is no approved address.
/// Throws unless `msg.sender` is the current NFT owner, or an authorized
/// operator of the current owner.
/// @param _approved The new approved NFT controller
/// @param _tokenId The NFT to approve
function approve(address _approved, uint256 _tokenId) external payable;
/// @notice Enable or disable approval for a third party ("operator") to manage
/// all of `msg.sender`'s assets
/// @dev Emits the ApprovalForAll event. The contract MUST allow
/// multiple operators per owner.
/// @param _operator Address to add to the set of authorized operators
/// @param _approved True if the operator is approved, false to revoke approval
function setApprovalForAll(address _operator, bool _approved) external;
/// @notice Get the approved address for a single NFT
/// @dev Throws if `_tokenId` is not a valid NFT.
/// @param _tokenId The NFT to find the approved address for
/// @return The approved address for this NFT, or the zero address if there is none
function getApproved(uint256 _tokenId) external view returns (address);
/// @notice Query if an address is an authorized operator for another address
/// @param _owner The address that owns the NFTs
/// @param _operator The address that acts on behalf of the owner
/// @return True if `_operator` is an approved operator for `_owner`, false otherwise
function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}
/// @dev Note: the ERC-165 identifier for this interface is 0x150b7a02.
interface IERC721TokenReceiver {
/// @notice Handle the receipt of an NFT
/// @dev The ERC721 smart contract calls this function on the recipient
/// after a `transfer`. This function MAY throw to revert and reject the
/// transfer. Return of other than the magic value MUST result in the
/// transaction being reverted.
/// Note: the contract address is always the message sender.
/// @param _operator The address which called `safeTransferFrom` function
/// @param _from The address which previously owned the token
/// @param _tokenId The NFT identifier which is being transferred
/// @param _data Additional data with no specified format
/// @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`
/// unless throwing
function onERC721Received(address _operator, address _from, uint256 _tokenId, bytes calldata _data)
external
returns (bytes4);
}
/// @title ERC-721 Non-Fungible Token Standard, optional metadata extension
/// @dev See https://eips.ethereum.org/EIPS/eip-721
/// Note: the ERC-165 identifier for this interface is 0x5b5e139f.
interface IERC721Metadata is IERC721 {
/// @notice A descriptive name for a collection of NFTs in this contract
function name() external view returns (string memory _name);
/// @notice An abbreviated name for NFTs in this contract
function symbol() external view returns (string memory _symbol);
/// @notice A distinct Uniform Resource Identifier (URI) for a given asset.
/// @dev Throws if `_tokenId` is not a valid NFT. URIs are defined in RFC
/// 3986. The URI may point to a JSON file that conforms to the "ERC721
/// Metadata JSON Schema".
function tokenURI(uint256 _tokenId) external view returns (string memory);
}
/// @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
/// @dev See https://eips.ethereum.org/EIPS/eip-721
/// Note: the ERC-165 identifier for this interface is 0x780e9d63.
interface IERC721Enumerable is IERC721 {
/// @notice Count NFTs tracked by this contract
/// @return A count of valid NFTs tracked by this contract, where each one of
/// them has an assigned and queryable owner not equal to the zero address
function totalSupply() external view returns (uint256);
/// @notice Enumerate valid NFTs
/// @dev Throws if `_index` >= `totalSupply()`.
/// @param _index A counter less than `totalSupply()`
/// @return The token identifier for the `_index`th NFT,
/// (sort order not specified)
function tokenByIndex(uint256 _index) external view returns (uint256);
/// @notice Enumerate NFTs assigned to an owner
/// @dev Throws if `_index` >= `balanceOf(_owner)` or if
/// `_owner` is the zero address, representing invalid NFTs.
/// @param _owner An address where we are interested in NFTs owned by them
/// @param _index A counter less than `balanceOf(_owner)`
/// @return The token identifier for the `_index`th NFT assigned to `_owner`,
/// (sort order not specified)
function tokenOfOwnerByIndex(address _owner, uint256 _index) external view returns (uint256);
}

View File

@ -1,587 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.7.0 <0.9.0;
import "../src/Test.sol";
contract StdAssertionsTest is Test {
string constant CUSTOM_ERROR = "guh!";
bool constant EXPECT_PASS = false;
bool constant EXPECT_FAIL = true;
TestTest t = new TestTest();
/*//////////////////////////////////////////////////////////////////////////
FAIL(STRING)
//////////////////////////////////////////////////////////////////////////*/
function testShouldFail() external {
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
t._fail(CUSTOM_ERROR);
}
/*//////////////////////////////////////////////////////////////////////////
ASSERT_FALSE
//////////////////////////////////////////////////////////////////////////*/
function testAssertFalse_Pass() external {
t._assertFalse(false, EXPECT_PASS);
}
function testAssertFalse_Fail() external {
vm.expectEmit(false, false, false, true);
emit log("Error: Assertion Failed");
t._assertFalse(true, EXPECT_FAIL);
}
function testAssertFalse_Err_Pass() external {
t._assertFalse(false, CUSTOM_ERROR, EXPECT_PASS);
}
function testAssertFalse_Err_Fail() external {
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
t._assertFalse(true, CUSTOM_ERROR, EXPECT_FAIL);
}
/*//////////////////////////////////////////////////////////////////////////
ASSERT_EQ(BOOL)
//////////////////////////////////////////////////////////////////////////*/
function testAssertEq_Bool_Pass(bool a) external {
t._assertEq(a, a, EXPECT_PASS);
}
function testAssertEq_Bool_Fail(bool a, bool b) external {
vm.assume(a != b);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [bool]");
t._assertEq(a, b, EXPECT_FAIL);
}
function testAssertEq_BoolErr_Pass(bool a) external {
t._assertEq(a, a, CUSTOM_ERROR, EXPECT_PASS);
}
function testAssertEq_BoolErr_Fail(bool a, bool b) external {
vm.assume(a != b);
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
t._assertEq(a, b, CUSTOM_ERROR, EXPECT_FAIL);
}
/*//////////////////////////////////////////////////////////////////////////
ASSERT_EQ(BYTES)
//////////////////////////////////////////////////////////////////////////*/
function testAssertEq_Bytes_Pass(bytes calldata a) external {
t._assertEq(a, a, EXPECT_PASS);
}
function testAssertEq_Bytes_Fail(bytes calldata a, bytes calldata b) external {
vm.assume(keccak256(a) != keccak256(b));
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [bytes]");
t._assertEq(a, b, EXPECT_FAIL);
}
function testAssertEq_BytesErr_Pass(bytes calldata a) external {
t._assertEq(a, a, CUSTOM_ERROR, EXPECT_PASS);
}
function testAssertEq_BytesErr_Fail(bytes calldata a, bytes calldata b) external {
vm.assume(keccak256(a) != keccak256(b));
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
t._assertEq(a, b, CUSTOM_ERROR, EXPECT_FAIL);
}
/*//////////////////////////////////////////////////////////////////////////
ASSERT_EQ(ARRAY)
//////////////////////////////////////////////////////////////////////////*/
function testAssertEq_UintArr_Pass(uint256 e0, uint256 e1, uint256 e2) public {
uint256[] memory a = new uint256[](3);
a[0] = e0;
a[1] = e1;
a[2] = e2;
uint256[] memory b = new uint256[](3);
b[0] = e0;
b[1] = e1;
b[2] = e2;
t._assertEq(a, b, EXPECT_PASS);
}
function testAssertEq_IntArr_Pass(int256 e0, int256 e1, int256 e2) public {
int256[] memory a = new int256[](3);
a[0] = e0;
a[1] = e1;
a[2] = e2;
int256[] memory b = new int256[](3);
b[0] = e0;
b[1] = e1;
b[2] = e2;
t._assertEq(a, b, EXPECT_PASS);
}
function testAssertEq_AddressArr_Pass(address e0, address e1, address e2) public {
address[] memory a = new address[](3);
a[0] = e0;
a[1] = e1;
a[2] = e2;
address[] memory b = new address[](3);
b[0] = e0;
b[1] = e1;
b[2] = e2;
t._assertEq(a, b, EXPECT_PASS);
}
function testAssertEq_UintArr_FailEl(uint256 e1) public {
vm.assume(e1 != 0);
uint256[] memory a = new uint256[](3);
uint256[] memory b = new uint256[](3);
b[1] = e1;
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [uint[]]");
t._assertEq(a, b, EXPECT_FAIL);
}
function testAssertEq_IntArr_FailEl(int256 e1) public {
vm.assume(e1 != 0);
int256[] memory a = new int256[](3);
int256[] memory b = new int256[](3);
b[1] = e1;
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [int[]]");
t._assertEq(a, b, EXPECT_FAIL);
}
function testAssertEq_AddressArr_FailEl(address e1) public {
vm.assume(e1 != address(0));
address[] memory a = new address[](3);
address[] memory b = new address[](3);
b[1] = e1;
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [address[]]");
t._assertEq(a, b, EXPECT_FAIL);
}
function testAssertEq_UintArrErr_FailEl(uint256 e1) public {
vm.assume(e1 != 0);
uint256[] memory a = new uint256[](3);
uint256[] memory b = new uint256[](3);
b[1] = e1;
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [uint[]]");
t._assertEq(a, b, CUSTOM_ERROR, EXPECT_FAIL);
}
function testAssertEq_IntArrErr_FailEl(int256 e1) public {
vm.assume(e1 != 0);
int256[] memory a = new int256[](3);
int256[] memory b = new int256[](3);
b[1] = e1;
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [int[]]");
t._assertEq(a, b, CUSTOM_ERROR, EXPECT_FAIL);
}
function testAssertEq_AddressArrErr_FailEl(address e1) public {
vm.assume(e1 != address(0));
address[] memory a = new address[](3);
address[] memory b = new address[](3);
b[1] = e1;
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [address[]]");
t._assertEq(a, b, CUSTOM_ERROR, EXPECT_FAIL);
}
function testAssertEq_UintArr_FailLen(uint256 lenA, uint256 lenB) public {
vm.assume(lenA != lenB);
vm.assume(lenA <= 10000);
vm.assume(lenB <= 10000);
uint256[] memory a = new uint256[](lenA);
uint256[] memory b = new uint256[](lenB);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [uint[]]");
t._assertEq(a, b, EXPECT_FAIL);
}
function testAssertEq_IntArr_FailLen(uint256 lenA, uint256 lenB) public {
vm.assume(lenA != lenB);
vm.assume(lenA <= 10000);
vm.assume(lenB <= 10000);
int256[] memory a = new int256[](lenA);
int256[] memory b = new int256[](lenB);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [int[]]");
t._assertEq(a, b, EXPECT_FAIL);
}
function testAssertEq_AddressArr_FailLen(uint256 lenA, uint256 lenB) public {
vm.assume(lenA != lenB);
vm.assume(lenA <= 10000);
vm.assume(lenB <= 10000);
address[] memory a = new address[](lenA);
address[] memory b = new address[](lenB);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [address[]]");
t._assertEq(a, b, EXPECT_FAIL);
}
function testAssertEq_UintArrErr_FailLen(uint256 lenA, uint256 lenB) public {
vm.assume(lenA != lenB);
vm.assume(lenA <= 10000);
vm.assume(lenB <= 10000);
uint256[] memory a = new uint256[](lenA);
uint256[] memory b = new uint256[](lenB);
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [uint[]]");
t._assertEq(a, b, CUSTOM_ERROR, EXPECT_FAIL);
}
function testAssertEq_IntArrErr_FailLen(uint256 lenA, uint256 lenB) public {
vm.assume(lenA != lenB);
vm.assume(lenA <= 10000);
vm.assume(lenB <= 10000);
int256[] memory a = new int256[](lenA);
int256[] memory b = new int256[](lenB);
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [int[]]");
t._assertEq(a, b, CUSTOM_ERROR, EXPECT_FAIL);
}
function testAssertEq_AddressArrErr_FailLen(uint256 lenA, uint256 lenB) public {
vm.assume(lenA != lenB);
vm.assume(lenA <= 10000);
vm.assume(lenB <= 10000);
address[] memory a = new address[](lenA);
address[] memory b = new address[](lenB);
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
vm.expectEmit(false, false, false, true);
emit log("Error: a == b not satisfied [address[]]");
t._assertEq(a, b, CUSTOM_ERROR, EXPECT_FAIL);
}
/*//////////////////////////////////////////////////////////////////////////
ASSERT_EQ(UINT)
//////////////////////////////////////////////////////////////////////////*/
function testAssertEqUint() public {
assertEqUint(uint8(1), uint128(1));
assertEqUint(uint64(2), uint64(2));
}
function testFailAssertEqUint() public {
assertEqUint(uint64(1), uint96(2));
assertEqUint(uint160(3), uint160(4));
}
/*//////////////////////////////////////////////////////////////////////////
APPROX_EQ_ABS(UINT)
//////////////////////////////////////////////////////////////////////////*/
function testAssertApproxEqAbs_Uint_Pass(uint256 a, uint256 b, uint256 maxDelta) external {
vm.assume(stdMath.delta(a, b) <= maxDelta);
t._assertApproxEqAbs(a, b, maxDelta, EXPECT_PASS);
}
function testAssertApproxEqAbs_Uint_Fail(uint256 a, uint256 b, uint256 maxDelta) external {
vm.assume(stdMath.delta(a, b) > maxDelta);
vm.expectEmit(false, false, false, true);
emit log("Error: a ~= b not satisfied [uint]");
t._assertApproxEqAbs(a, b, maxDelta, EXPECT_FAIL);
}
function testAssertApproxEqAbs_UintErr_Pass(uint256 a, uint256 b, uint256 maxDelta) external {
vm.assume(stdMath.delta(a, b) <= maxDelta);
t._assertApproxEqAbs(a, b, maxDelta, CUSTOM_ERROR, EXPECT_PASS);
}
function testAssertApproxEqAbs_UintErr_Fail(uint256 a, uint256 b, uint256 maxDelta) external {
vm.assume(stdMath.delta(a, b) > maxDelta);
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
t._assertApproxEqAbs(a, b, maxDelta, CUSTOM_ERROR, EXPECT_FAIL);
}
/*//////////////////////////////////////////////////////////////////////////
APPROX_EQ_ABS(INT)
//////////////////////////////////////////////////////////////////////////*/
function testAssertApproxEqAbs_Int_Pass(int256 a, int256 b, uint256 maxDelta) external {
vm.assume(stdMath.delta(a, b) <= maxDelta);
t._assertApproxEqAbs(a, b, maxDelta, EXPECT_PASS);
}
function testAssertApproxEqAbs_Int_Fail(int256 a, int256 b, uint256 maxDelta) external {
vm.assume(stdMath.delta(a, b) > maxDelta);
vm.expectEmit(false, false, false, true);
emit log("Error: a ~= b not satisfied [int]");
t._assertApproxEqAbs(a, b, maxDelta, EXPECT_FAIL);
}
function testAssertApproxEqAbs_IntErr_Pass(int256 a, int256 b, uint256 maxDelta) external {
vm.assume(stdMath.delta(a, b) <= maxDelta);
t._assertApproxEqAbs(a, b, maxDelta, CUSTOM_ERROR, EXPECT_PASS);
}
function testAssertApproxEqAbs_IntErr_Fail(int256 a, int256 b, uint256 maxDelta) external {
vm.assume(stdMath.delta(a, b) > maxDelta);
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
t._assertApproxEqAbs(a, b, maxDelta, CUSTOM_ERROR, EXPECT_FAIL);
}
/*//////////////////////////////////////////////////////////////////////////
APPROX_EQ_REL(UINT)
//////////////////////////////////////////////////////////////////////////*/
function testAssertApproxEqRel_Uint_Pass(uint256 a, uint256 b, uint256 maxPercentDelta) external {
vm.assume(a < type(uint128).max && b < type(uint128).max && b != 0);
vm.assume(stdMath.percentDelta(a, b) <= maxPercentDelta);
t._assertApproxEqRel(a, b, maxPercentDelta, EXPECT_PASS);
}
function testAssertApproxEqRel_Uint_Fail(uint256 a, uint256 b, uint256 maxPercentDelta) external {
vm.assume(a < type(uint128).max && b < type(uint128).max && b != 0);
vm.assume(stdMath.percentDelta(a, b) > maxPercentDelta);
vm.expectEmit(false, false, false, true);
emit log("Error: a ~= b not satisfied [uint]");
t._assertApproxEqRel(a, b, maxPercentDelta, EXPECT_FAIL);
}
function testAssertApproxEqRel_UintErr_Pass(uint256 a, uint256 b, uint256 maxPercentDelta) external {
vm.assume(a < type(uint128).max && b < type(uint128).max && b != 0);
vm.assume(stdMath.percentDelta(a, b) <= maxPercentDelta);
t._assertApproxEqRel(a, b, maxPercentDelta, CUSTOM_ERROR, EXPECT_PASS);
}
function testAssertApproxEqRel_UintErr_Fail(uint256 a, uint256 b, uint256 maxPercentDelta) external {
vm.assume(a < type(uint128).max && b < type(uint128).max && b != 0);
vm.assume(stdMath.percentDelta(a, b) > maxPercentDelta);
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
t._assertApproxEqRel(a, b, maxPercentDelta, CUSTOM_ERROR, EXPECT_FAIL);
}
/*//////////////////////////////////////////////////////////////////////////
APPROX_EQ_REL(INT)
//////////////////////////////////////////////////////////////////////////*/
function testAssertApproxEqRel_Int_Pass(int128 a, int128 b, uint128 maxPercentDelta) external {
vm.assume(b != 0);
vm.assume(stdMath.percentDelta(a, b) <= maxPercentDelta);
t._assertApproxEqRel(a, b, maxPercentDelta, EXPECT_PASS);
}
function testAssertApproxEqRel_Int_Fail(int128 a, int128 b, uint128 maxPercentDelta) external {
vm.assume(b != 0);
vm.assume(stdMath.percentDelta(a, b) > maxPercentDelta);
vm.expectEmit(false, false, false, true);
emit log("Error: a ~= b not satisfied [int]");
t._assertApproxEqRel(a, b, maxPercentDelta, EXPECT_FAIL);
}
function testAssertApproxEqRel_IntErr_Pass(int128 a, int128 b, uint128 maxPercentDelta) external {
vm.assume(b != 0);
vm.assume(stdMath.percentDelta(a, b) <= maxPercentDelta);
t._assertApproxEqRel(a, b, maxPercentDelta, CUSTOM_ERROR, EXPECT_PASS);
}
function testAssertApproxEqRel_IntErr_Fail(int128 a, int128 b, uint128 maxPercentDelta) external {
vm.assume(b != 0);
vm.assume(stdMath.percentDelta(a, b) > maxPercentDelta);
vm.expectEmit(false, false, false, true);
emit log_named_string("Error", CUSTOM_ERROR);
t._assertApproxEqRel(a, b, maxPercentDelta, CUSTOM_ERROR, EXPECT_FAIL);
}
}
contract TestTest is Test {
modifier expectFailure(bool expectFail) {
bool preState = vm.load(HEVM_ADDRESS, bytes32("failed")) != bytes32(0x00);
_;
bool postState = vm.load(HEVM_ADDRESS, bytes32("failed")) != bytes32(0x00);
if (preState == true) {
return;
}
if (expectFail) {
require(postState == true, "expected failure not triggered");
// unwind the expected failure
vm.store(HEVM_ADDRESS, bytes32("failed"), bytes32(uint256(0x00)));
} else {
require(postState == false, "unexpected failure was triggered");
}
}
function _fail(string memory err) external expectFailure(true) {
fail(err);
}
function _assertFalse(bool data, bool expectFail) external expectFailure(expectFail) {
assertFalse(data);
}
function _assertFalse(bool data, string memory err, bool expectFail) external expectFailure(expectFail) {
assertFalse(data, err);
}
function _assertEq(bool a, bool b, bool expectFail) external expectFailure(expectFail) {
assertEq(a, b);
}
function _assertEq(bool a, bool b, string memory err, bool expectFail) external expectFailure(expectFail) {
assertEq(a, b, err);
}
function _assertEq(bytes memory a, bytes memory b, bool expectFail) external expectFailure(expectFail) {
assertEq(a, b);
}
function _assertEq(bytes memory a, bytes memory b, string memory err, bool expectFail)
external
expectFailure(expectFail)
{
assertEq(a, b, err);
}
function _assertEq(uint256[] memory a, uint256[] memory b, bool expectFail) external expectFailure(expectFail) {
assertEq(a, b);
}
function _assertEq(int256[] memory a, int256[] memory b, bool expectFail) external expectFailure(expectFail) {
assertEq(a, b);
}
function _assertEq(address[] memory a, address[] memory b, bool expectFail) external expectFailure(expectFail) {
assertEq(a, b);
}
function _assertEq(uint256[] memory a, uint256[] memory b, string memory err, bool expectFail)
external
expectFailure(expectFail)
{
assertEq(a, b, err);
}
function _assertEq(int256[] memory a, int256[] memory b, string memory err, bool expectFail)
external
expectFailure(expectFail)
{
assertEq(a, b, err);
}
function _assertEq(address[] memory a, address[] memory b, string memory err, bool expectFail)
external
expectFailure(expectFail)
{
assertEq(a, b, err);
}
function _assertApproxEqAbs(uint256 a, uint256 b, uint256 maxDelta, bool expectFail)
external
expectFailure(expectFail)
{
assertApproxEqAbs(a, b, maxDelta);
}
function _assertApproxEqAbs(uint256 a, uint256 b, uint256 maxDelta, string memory err, bool expectFail)
external
expectFailure(expectFail)
{
assertApproxEqAbs(a, b, maxDelta, err);
}
function _assertApproxEqAbs(int256 a, int256 b, uint256 maxDelta, bool expectFail)
external
expectFailure(expectFail)
{
assertApproxEqAbs(a, b, maxDelta);
}
function _assertApproxEqAbs(int256 a, int256 b, uint256 maxDelta, string memory err, bool expectFail)
external
expectFailure(expectFail)
{
assertApproxEqAbs(a, b, maxDelta, err);
}
function _assertApproxEqRel(uint256 a, uint256 b, uint256 maxPercentDelta, bool expectFail)
external
expectFailure(expectFail)
{
assertApproxEqRel(a, b, maxPercentDelta);
}
function _assertApproxEqRel(uint256 a, uint256 b, uint256 maxPercentDelta, string memory err, bool expectFail)
external
expectFailure(expectFail)
{
assertApproxEqRel(a, b, maxPercentDelta, err);
}
function _assertApproxEqRel(int256 a, int256 b, uint256 maxPercentDelta, bool expectFail)
external
expectFailure(expectFail)
{
assertApproxEqRel(a, b, maxPercentDelta);
}
function _assertApproxEqRel(int256 a, int256 b, uint256 maxPercentDelta, string memory err, bool expectFail)
external
expectFailure(expectFail)
{
assertApproxEqRel(a, b, maxPercentDelta, err);
}
}

View File

@ -1,291 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.7.0 <0.9.0;
import "../src/StdCheats.sol";
import "../src/Test.sol";
import "../src/StdJson.sol";
contract StdCheatsTest is Test {
Bar test;
using stdJson for string;
function setUp() public {
test = new Bar();
}
function testSkip() public {
vm.warp(100);
skip(25);
assertEq(block.timestamp, 125);
}
function testRewind() public {
vm.warp(100);
rewind(25);
assertEq(block.timestamp, 75);
}
function testHoax() public {
hoax(address(1337));
test.bar{value: 100}(address(1337));
}
function testHoaxOrigin() public {
hoax(address(1337), address(1337));
test.origin{value: 100}(address(1337));
}
function testHoaxDifferentAddresses() public {
hoax(address(1337), address(7331));
test.origin{value: 100}(address(1337), address(7331));
}
function testStartHoax() public {
startHoax(address(1337));
test.bar{value: 100}(address(1337));
test.bar{value: 100}(address(1337));
vm.stopPrank();
test.bar(address(this));
}
function testStartHoaxOrigin() public {
startHoax(address(1337), address(1337));
test.origin{value: 100}(address(1337));
test.origin{value: 100}(address(1337));
vm.stopPrank();
test.bar(address(this));
}
function testChangePrank() public {
vm.startPrank(address(1337));
test.bar(address(1337));
changePrank(address(0xdead));
test.bar(address(0xdead));
changePrank(address(1337));
test.bar(address(1337));
vm.stopPrank();
}
function testMakeAddrEquivalence() public {
(address addr,) = makeAddrAndKey("1337");
assertEq(makeAddr("1337"), addr);
}
function testMakeAddrSigning() public {
(address addr, uint256 key) = makeAddrAndKey("1337");
bytes32 hash = keccak256("some_message");
(uint8 v, bytes32 r, bytes32 s) = vm.sign(key, hash);
assertEq(ecrecover(hash, v, r, s), addr);
}
function testDeal() public {
deal(address(this), 1 ether);
assertEq(address(this).balance, 1 ether);
}
function testDealToken() public {
Bar barToken = new Bar();
address bar = address(barToken);
deal(bar, address(this), 10000e18);
assertEq(barToken.balanceOf(address(this)), 10000e18);
}
function testDealTokenAdjustTS() public {
Bar barToken = new Bar();
address bar = address(barToken);
deal(bar, address(this), 10000e18, true);
assertEq(barToken.balanceOf(address(this)), 10000e18);
assertEq(barToken.totalSupply(), 20000e18);
deal(bar, address(this), 0, true);
assertEq(barToken.balanceOf(address(this)), 0);
assertEq(barToken.totalSupply(), 10000e18);
}
function testDeployCode() public {
address deployed = deployCode("StdCheats.t.sol:Bar", bytes(""));
assertEq(string(getCode(deployed)), string(getCode(address(test))));
}
function testDeployCodeNoArgs() public {
address deployed = deployCode("StdCheats.t.sol:Bar");
assertEq(string(getCode(deployed)), string(getCode(address(test))));
}
function testDeployCodeVal() public {
address deployed = deployCode("StdCheats.t.sol:Bar", bytes(""), 1 ether);
assertEq(string(getCode(deployed)), string(getCode(address(test))));
assertEq(deployed.balance, 1 ether);
}
function testDeployCodeValNoArgs() public {
address deployed = deployCode("StdCheats.t.sol:Bar", 1 ether);
assertEq(string(getCode(deployed)), string(getCode(address(test))));
assertEq(deployed.balance, 1 ether);
}
// We need this so we can call "this.deployCode" rather than "deployCode" directly
function deployCodeHelper(string memory what) external {
deployCode(what);
}
function testDeployCodeFail() public {
vm.expectRevert(bytes("StdCheats deployCode(string): Deployment failed."));
this.deployCodeHelper("StdCheats.t.sol:RevertingContract");
}
function getCode(address who) internal view returns (bytes memory o_code) {
/// @solidity memory-safe-assembly
assembly {
// retrieve the size of the code, this needs assembly
let size := extcodesize(who)
// allocate output byte array - this could also be done without assembly
// by using o_code = new bytes(size)
o_code := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
// store length in memory
mstore(o_code, size)
// actually retrieve the code, this needs assembly
extcodecopy(who, add(o_code, 0x20), 0, size)
}
}
function testDeriveRememberKey() public {
string memory mnemonic = "test test test test test test test test test test test junk";
(address deployer, uint256 privateKey) = deriveRememberKey(mnemonic, 0);
assertEq(deployer, 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266);
assertEq(privateKey, 0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80);
}
function testBytesToUint() public {
assertEq(3, bytesToUint_test(hex"03"));
assertEq(2, bytesToUint_test(hex"02"));
assertEq(255, bytesToUint_test(hex"ff"));
assertEq(29625, bytesToUint_test(hex"73b9"));
}
function testParseJsonTxDetail() public {
string memory root = vm.projectRoot();
string memory path = string.concat(root, "/test/fixtures/broadcast.log.json");
string memory json = vm.readFile(path);
bytes memory transactionDetails = json.parseRaw(".transactions[0].tx");
RawTx1559Detail memory rawTxDetail = abi.decode(transactionDetails, (RawTx1559Detail));
Tx1559Detail memory txDetail = rawToConvertedEIP1559Detail(rawTxDetail);
assertEq(txDetail.from, 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266);
assertEq(txDetail.to, 0xe7f1725E7734CE288F8367e1Bb143E90bb3F0512);
assertEq(
txDetail.data,
hex"23e99187000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000013370000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000030000000000000000000000000000000000000000000000000000000000000004"
);
assertEq(txDetail.nonce, 3);
assertEq(txDetail.txType, 2);
assertEq(txDetail.gas, 29625);
assertEq(txDetail.value, 0);
}
function testReadEIP1559Transaction() public view {
string memory root = vm.projectRoot();
string memory path = string.concat(root, "/test/fixtures/broadcast.log.json");
uint256 index = 0;
Tx1559 memory transaction = readTx1559(path, index);
transaction;
}
function testReadEIP1559Transactions() public view {
string memory root = vm.projectRoot();
string memory path = string.concat(root, "/test/fixtures/broadcast.log.json");
Tx1559[] memory transactions = readTx1559s(path);
transactions;
}
function testReadReceipt() public {
string memory root = vm.projectRoot();
string memory path = string.concat(root, "/test/fixtures/broadcast.log.json");
uint256 index = 5;
Receipt memory receipt = readReceipt(path, index);
assertEq(
receipt.logsBloom,
hex"00000000000800000000000000000010000000000000000000000000000180000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100"
);
}
function testReadReceipts() public view {
string memory root = vm.projectRoot();
string memory path = string.concat(root, "/test/fixtures/broadcast.log.json");
Receipt[] memory receipts = readReceipts(path);
receipts;
}
function bytesToUint_test(bytes memory b) private pure returns (uint256) {
uint256 number;
for (uint256 i = 0; i < b.length; i++) {
number = number + uint256(uint8(b[i])) * (2 ** (8 * (b.length - (i + 1))));
}
return number;
}
function testChainRpcInitialization() public {
// RPCs specified in `foundry.toml` should be updated.
assertEq(stdChains["mainnet"].rpcUrl, "https://mainnet.infura.io/v3/7a8769b798b642f6933f2ed52042bd70");
assertEq(stdChains["optimism_goerli"].rpcUrl, "https://goerli.optimism.io/");
assertEq(stdChains["arbitrum_one_goerli"].rpcUrl, "https://goerli-rollup.arbitrum.io/rpc/");
// Other RPCs should remain unchanged.
assertEq(stdChains["anvil"].rpcUrl, "http://127.0.0.1:8545");
assertEq(stdChains["hardhat"].rpcUrl, "http://127.0.0.1:8545");
assertEq(stdChains["sepolia"].rpcUrl, "https://rpc.sepolia.dev");
}
// Ensure we can connect to the default RPC URL for each chain.
function testRpcs() public {
(string[2][] memory rpcs) = vm.rpcUrls();
for (uint256 i = 0; i < rpcs.length; i++) {
( /* string memory name */ , string memory rpcUrl) = (rpcs[i][0], rpcs[i][1]);
vm.createSelectFork(rpcUrl);
}
}
function testAssumeNoPrecompiles(address addr) external {
assumeNoPrecompiles(addr, stdChains["optimism_goerli"].chainId);
assertTrue(
addr < address(1) || (addr > address(9) && addr < address(0x4200000000000000000000000000000000000000))
|| addr > address(0x4200000000000000000000000000000000000800)
);
}
}
contract Bar {
constructor() payable {
/// `DEAL` STDCHEAT
totalSupply = 10000e18;
balanceOf[address(this)] = totalSupply;
}
/// `HOAX` STDCHEATS
function bar(address expectedSender) public payable {
require(msg.sender == expectedSender, "!prank");
}
function origin(address expectedSender) public payable {
require(msg.sender == expectedSender, "!prank");
require(tx.origin == expectedSender, "!prank");
}
function origin(address expectedSender, address expectedOrigin) public payable {
require(msg.sender == expectedSender, "!prank");
require(tx.origin == expectedOrigin, "!prank");
}
/// `DEAL` STDCHEAT
mapping(address => uint256) public balanceOf;
uint256 public totalSupply;
}
contract RevertingContract {
constructor() {
revert();
}
}

View File

@ -1,118 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "../src/StdError.sol";
import "../src/Test.sol";
contract StdErrorsTest is Test {
ErrorsTest test;
function setUp() public {
test = new ErrorsTest();
}
function testExpectAssertion() public {
vm.expectRevert(stdError.assertionError);
test.assertionError();
}
function testExpectArithmetic() public {
vm.expectRevert(stdError.arithmeticError);
test.arithmeticError(10);
}
function testExpectDiv() public {
vm.expectRevert(stdError.divisionError);
test.divError(0);
}
function testExpectMod() public {
vm.expectRevert(stdError.divisionError);
test.modError(0);
}
function testExpectEnum() public {
vm.expectRevert(stdError.enumConversionError);
test.enumConversion(1);
}
function testExpectEncodeStg() public {
vm.expectRevert(stdError.encodeStorageError);
test.encodeStgError();
}
function testExpectPop() public {
vm.expectRevert(stdError.popError);
test.pop();
}
function testExpectOOB() public {
vm.expectRevert(stdError.indexOOBError);
test.indexOOBError(1);
}
function testExpectMem() public {
vm.expectRevert(stdError.memOverflowError);
test.mem();
}
function testExpectIntern() public {
vm.expectRevert(stdError.zeroVarError);
test.intern();
}
}
contract ErrorsTest {
enum T {T1}
uint256[] public someArr;
bytes someBytes;
function assertionError() public pure {
assert(false);
}
function arithmeticError(uint256 a) public pure {
a -= 100;
}
function divError(uint256 a) public pure {
100 / a;
}
function modError(uint256 a) public pure {
100 % a;
}
function enumConversion(uint256 a) public pure {
T(a);
}
function encodeStgError() public {
/// @solidity memory-safe-assembly
assembly {
sstore(someBytes.slot, 1)
}
keccak256(someBytes);
}
function pop() public {
someArr.pop();
}
function indexOOBError(uint256 a) public pure {
uint256[] memory t = new uint256[](0);
t[a];
}
function mem() public pure {
uint256 l = 2 ** 256 / 32;
new uint256[](l);
}
function intern() public returns (uint256) {
function(uint256) internal returns (uint256) x;
x(2);
return 7;
}
}

View File

@ -1,197 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0 <0.9.0;
import "../src/StdMath.sol";
import "../src/Test.sol";
contract StdMathTest is Test {
function testGetAbs() external {
assertEq(stdMath.abs(-50), 50);
assertEq(stdMath.abs(50), 50);
assertEq(stdMath.abs(-1337), 1337);
assertEq(stdMath.abs(0), 0);
assertEq(stdMath.abs(type(int256).min), (type(uint256).max >> 1) + 1);
assertEq(stdMath.abs(type(int256).max), (type(uint256).max >> 1));
}
function testGetAbs_Fuzz(int256 a) external {
uint256 manualAbs = getAbs(a);
uint256 abs = stdMath.abs(a);
assertEq(abs, manualAbs);
}
function testGetDelta_Uint() external {
assertEq(stdMath.delta(uint256(0), uint256(0)), 0);
assertEq(stdMath.delta(uint256(0), uint256(1337)), 1337);
assertEq(stdMath.delta(uint256(0), type(uint64).max), type(uint64).max);
assertEq(stdMath.delta(uint256(0), type(uint128).max), type(uint128).max);
assertEq(stdMath.delta(uint256(0), type(uint256).max), type(uint256).max);
assertEq(stdMath.delta(0, uint256(0)), 0);
assertEq(stdMath.delta(1337, uint256(0)), 1337);
assertEq(stdMath.delta(type(uint64).max, uint256(0)), type(uint64).max);
assertEq(stdMath.delta(type(uint128).max, uint256(0)), type(uint128).max);
assertEq(stdMath.delta(type(uint256).max, uint256(0)), type(uint256).max);
assertEq(stdMath.delta(1337, uint256(1337)), 0);
assertEq(stdMath.delta(type(uint256).max, type(uint256).max), 0);
assertEq(stdMath.delta(5000, uint256(1250)), 3750);
}
function testGetDelta_Uint_Fuzz(uint256 a, uint256 b) external {
uint256 manualDelta;
if (a > b) {
manualDelta = a - b;
} else {
manualDelta = b - a;
}
uint256 delta = stdMath.delta(a, b);
assertEq(delta, manualDelta);
}
function testGetDelta_Int() external {
assertEq(stdMath.delta(int256(0), int256(0)), 0);
assertEq(stdMath.delta(int256(0), int256(1337)), 1337);
assertEq(stdMath.delta(int256(0), type(int64).max), type(uint64).max >> 1);
assertEq(stdMath.delta(int256(0), type(int128).max), type(uint128).max >> 1);
assertEq(stdMath.delta(int256(0), type(int256).max), type(uint256).max >> 1);
assertEq(stdMath.delta(0, int256(0)), 0);
assertEq(stdMath.delta(1337, int256(0)), 1337);
assertEq(stdMath.delta(type(int64).max, int256(0)), type(uint64).max >> 1);
assertEq(stdMath.delta(type(int128).max, int256(0)), type(uint128).max >> 1);
assertEq(stdMath.delta(type(int256).max, int256(0)), type(uint256).max >> 1);
assertEq(stdMath.delta(-0, int256(0)), 0);
assertEq(stdMath.delta(-1337, int256(0)), 1337);
assertEq(stdMath.delta(type(int64).min, int256(0)), (type(uint64).max >> 1) + 1);
assertEq(stdMath.delta(type(int128).min, int256(0)), (type(uint128).max >> 1) + 1);
assertEq(stdMath.delta(type(int256).min, int256(0)), (type(uint256).max >> 1) + 1);
assertEq(stdMath.delta(int256(0), -0), 0);
assertEq(stdMath.delta(int256(0), -1337), 1337);
assertEq(stdMath.delta(int256(0), type(int64).min), (type(uint64).max >> 1) + 1);
assertEq(stdMath.delta(int256(0), type(int128).min), (type(uint128).max >> 1) + 1);
assertEq(stdMath.delta(int256(0), type(int256).min), (type(uint256).max >> 1) + 1);
assertEq(stdMath.delta(1337, int256(1337)), 0);
assertEq(stdMath.delta(type(int256).max, type(int256).max), 0);
assertEq(stdMath.delta(type(int256).min, type(int256).min), 0);
assertEq(stdMath.delta(type(int256).min, type(int256).max), type(uint256).max);
assertEq(stdMath.delta(5000, int256(1250)), 3750);
}
function testGetDelta_Int_Fuzz(int256 a, int256 b) external {
uint256 absA = getAbs(a);
uint256 absB = getAbs(b);
uint256 absDelta = absA > absB ? absA - absB : absB - absA;
uint256 manualDelta;
if ((a >= 0 && b >= 0) || (a < 0 && b < 0)) {
manualDelta = absDelta;
}
// (a < 0 && b >= 0) || (a >= 0 && b < 0)
else {
manualDelta = absA + absB;
}
uint256 delta = stdMath.delta(a, b);
assertEq(delta, manualDelta);
}
function testGetPercentDelta_Uint() external {
assertEq(stdMath.percentDelta(uint256(0), uint256(1337)), 1e18);
assertEq(stdMath.percentDelta(uint256(0), type(uint64).max), 1e18);
assertEq(stdMath.percentDelta(uint256(0), type(uint128).max), 1e18);
assertEq(stdMath.percentDelta(uint256(0), type(uint192).max), 1e18);
assertEq(stdMath.percentDelta(1337, uint256(1337)), 0);
assertEq(stdMath.percentDelta(type(uint192).max, type(uint192).max), 0);
assertEq(stdMath.percentDelta(0, uint256(2500)), 1e18);
assertEq(stdMath.percentDelta(2500, uint256(2500)), 0);
assertEq(stdMath.percentDelta(5000, uint256(2500)), 1e18);
assertEq(stdMath.percentDelta(7500, uint256(2500)), 2e18);
vm.expectRevert(stdError.divisionError);
stdMath.percentDelta(uint256(1), 0);
}
function testGetPercentDelta_Uint_Fuzz(uint192 a, uint192 b) external {
vm.assume(b != 0);
uint256 manualDelta;
if (a > b) {
manualDelta = a - b;
} else {
manualDelta = b - a;
}
uint256 manualPercentDelta = manualDelta * 1e18 / b;
uint256 percentDelta = stdMath.percentDelta(a, b);
assertEq(percentDelta, manualPercentDelta);
}
function testGetPercentDelta_Int() external {
assertEq(stdMath.percentDelta(int256(0), int256(1337)), 1e18);
assertEq(stdMath.percentDelta(int256(0), -1337), 1e18);
assertEq(stdMath.percentDelta(int256(0), type(int64).min), 1e18);
assertEq(stdMath.percentDelta(int256(0), type(int128).min), 1e18);
assertEq(stdMath.percentDelta(int256(0), type(int192).min), 1e18);
assertEq(stdMath.percentDelta(int256(0), type(int64).max), 1e18);
assertEq(stdMath.percentDelta(int256(0), type(int128).max), 1e18);
assertEq(stdMath.percentDelta(int256(0), type(int192).max), 1e18);
assertEq(stdMath.percentDelta(1337, int256(1337)), 0);
assertEq(stdMath.percentDelta(type(int192).max, type(int192).max), 0);
assertEq(stdMath.percentDelta(type(int192).min, type(int192).min), 0);
assertEq(stdMath.percentDelta(type(int192).min, type(int192).max), 2e18); // rounds the 1 wei diff down
assertEq(stdMath.percentDelta(type(int192).max, type(int192).min), 2e18 - 1); // rounds the 1 wei diff down
assertEq(stdMath.percentDelta(0, int256(2500)), 1e18);
assertEq(stdMath.percentDelta(2500, int256(2500)), 0);
assertEq(stdMath.percentDelta(5000, int256(2500)), 1e18);
assertEq(stdMath.percentDelta(7500, int256(2500)), 2e18);
vm.expectRevert(stdError.divisionError);
stdMath.percentDelta(int256(1), 0);
}
function testGetPercentDelta_Int_Fuzz(int192 a, int192 b) external {
vm.assume(b != 0);
uint256 absA = getAbs(a);
uint256 absB = getAbs(b);
uint256 absDelta = absA > absB ? absA - absB : absB - absA;
uint256 manualDelta;
if ((a >= 0 && b >= 0) || (a < 0 && b < 0)) {
manualDelta = absDelta;
}
// (a < 0 && b >= 0) || (a >= 0 && b < 0)
else {
manualDelta = absA + absB;
}
uint256 manualPercentDelta = manualDelta * 1e18 / absB;
uint256 percentDelta = stdMath.percentDelta(a, b);
assertEq(percentDelta, manualPercentDelta);
}
/*//////////////////////////////////////////////////////////////////////////
HELPERS
//////////////////////////////////////////////////////////////////////////*/
function getAbs(int256 a) private pure returns (uint256) {
if (a < 0) {
return a == type(int256).min ? uint256(type(int256).max) + 1 : uint256(-a);
}
return uint256(a);
}
}

View File

@ -1,283 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.7.0 <0.9.0;
import "../src/StdStorage.sol";
import "../src/Test.sol";
contract StdStorageTest is Test {
using stdStorage for StdStorage;
StorageTest internal test;
function setUp() public {
test = new StorageTest();
}
function testStorageHidden() public {
assertEq(uint256(keccak256("my.random.var")), stdstore.target(address(test)).sig("hidden()").find());
}
function testStorageObvious() public {
assertEq(uint256(0), stdstore.target(address(test)).sig("exists()").find());
}
function testStorageCheckedWriteHidden() public {
stdstore.target(address(test)).sig(test.hidden.selector).checked_write(100);
assertEq(uint256(test.hidden()), 100);
}
function testStorageCheckedWriteObvious() public {
stdstore.target(address(test)).sig(test.exists.selector).checked_write(100);
assertEq(test.exists(), 100);
}
function testStorageMapStructA() public {
uint256 slot =
stdstore.target(address(test)).sig(test.map_struct.selector).with_key(address(this)).depth(0).find();
assertEq(uint256(keccak256(abi.encode(address(this), 4))), slot);
}
function testStorageMapStructB() public {
uint256 slot =
stdstore.target(address(test)).sig(test.map_struct.selector).with_key(address(this)).depth(1).find();
assertEq(uint256(keccak256(abi.encode(address(this), 4))) + 1, slot);
}
function testStorageDeepMap() public {
uint256 slot = stdstore.target(address(test)).sig(test.deep_map.selector).with_key(address(this)).with_key(
address(this)
).find();
assertEq(uint256(keccak256(abi.encode(address(this), keccak256(abi.encode(address(this), uint256(5)))))), slot);
}
function testStorageCheckedWriteDeepMap() public {
stdstore.target(address(test)).sig(test.deep_map.selector).with_key(address(this)).with_key(address(this))
.checked_write(100);
assertEq(100, test.deep_map(address(this), address(this)));
}
function testStorageDeepMapStructA() public {
uint256 slot = stdstore.target(address(test)).sig(test.deep_map_struct.selector).with_key(address(this))
.with_key(address(this)).depth(0).find();
assertEq(
bytes32(uint256(keccak256(abi.encode(address(this), keccak256(abi.encode(address(this), uint256(6)))))) + 0),
bytes32(slot)
);
}
function testStorageDeepMapStructB() public {
uint256 slot = stdstore.target(address(test)).sig(test.deep_map_struct.selector).with_key(address(this))
.with_key(address(this)).depth(1).find();
assertEq(
bytes32(uint256(keccak256(abi.encode(address(this), keccak256(abi.encode(address(this), uint256(6)))))) + 1),
bytes32(slot)
);
}
function testStorageCheckedWriteDeepMapStructA() public {
stdstore.target(address(test)).sig(test.deep_map_struct.selector).with_key(address(this)).with_key(
address(this)
).depth(0).checked_write(100);
(uint256 a, uint256 b) = test.deep_map_struct(address(this), address(this));
assertEq(100, a);
assertEq(0, b);
}
function testStorageCheckedWriteDeepMapStructB() public {
stdstore.target(address(test)).sig(test.deep_map_struct.selector).with_key(address(this)).with_key(
address(this)
).depth(1).checked_write(100);
(uint256 a, uint256 b) = test.deep_map_struct(address(this), address(this));
assertEq(0, a);
assertEq(100, b);
}
function testStorageCheckedWriteMapStructA() public {
stdstore.target(address(test)).sig(test.map_struct.selector).with_key(address(this)).depth(0).checked_write(100);
(uint256 a, uint256 b) = test.map_struct(address(this));
assertEq(a, 100);
assertEq(b, 0);
}
function testStorageCheckedWriteMapStructB() public {
stdstore.target(address(test)).sig(test.map_struct.selector).with_key(address(this)).depth(1).checked_write(100);
(uint256 a, uint256 b) = test.map_struct(address(this));
assertEq(a, 0);
assertEq(b, 100);
}
function testStorageStructA() public {
uint256 slot = stdstore.target(address(test)).sig(test.basic.selector).depth(0).find();
assertEq(uint256(7), slot);
}
function testStorageStructB() public {
uint256 slot = stdstore.target(address(test)).sig(test.basic.selector).depth(1).find();
assertEq(uint256(7) + 1, slot);
}
function testStorageCheckedWriteStructA() public {
stdstore.target(address(test)).sig(test.basic.selector).depth(0).checked_write(100);
(uint256 a, uint256 b) = test.basic();
assertEq(a, 100);
assertEq(b, 1337);
}
function testStorageCheckedWriteStructB() public {
stdstore.target(address(test)).sig(test.basic.selector).depth(1).checked_write(100);
(uint256 a, uint256 b) = test.basic();
assertEq(a, 1337);
assertEq(b, 100);
}
function testStorageMapAddrFound() public {
uint256 slot = stdstore.target(address(test)).sig(test.map_addr.selector).with_key(address(this)).find();
assertEq(uint256(keccak256(abi.encode(address(this), uint256(1)))), slot);
}
function testStorageMapUintFound() public {
uint256 slot = stdstore.target(address(test)).sig(test.map_uint.selector).with_key(100).find();
assertEq(uint256(keccak256(abi.encode(100, uint256(2)))), slot);
}
function testStorageCheckedWriteMapUint() public {
stdstore.target(address(test)).sig(test.map_uint.selector).with_key(100).checked_write(100);
assertEq(100, test.map_uint(100));
}
function testStorageCheckedWriteMapAddr() public {
stdstore.target(address(test)).sig(test.map_addr.selector).with_key(address(this)).checked_write(100);
assertEq(100, test.map_addr(address(this)));
}
function testStorageCheckedWriteMapBool() public {
stdstore.target(address(test)).sig(test.map_bool.selector).with_key(address(this)).checked_write(true);
assertTrue(test.map_bool(address(this)));
}
function testFailStorageCheckedWriteMapPacked() public {
// expect PackedSlot error but not external call so cant expectRevert
stdstore.target(address(test)).sig(test.read_struct_lower.selector).with_key(address(uint160(1337)))
.checked_write(100);
}
function testStorageCheckedWriteMapPackedSuccess() public {
uint256 full = test.map_packed(address(1337));
// keep upper 128, set lower 128 to 1337
full = (full & (uint256((1 << 128) - 1) << 128)) | 1337;
stdstore.target(address(test)).sig(test.map_packed.selector).with_key(address(uint160(1337))).checked_write(
full
);
assertEq(1337, test.read_struct_lower(address(1337)));
}
function testFailStorageConst() public {
// vm.expectRevert(abi.encodeWithSignature("NotStorage(bytes4)", bytes4(keccak256("const()"))));
stdstore.target(address(test)).sig("const()").find();
}
function testFailStorageNativePack() public {
stdstore.target(address(test)).sig(test.tA.selector).find();
stdstore.target(address(test)).sig(test.tB.selector).find();
// these both would fail
stdstore.target(address(test)).sig(test.tC.selector).find();
stdstore.target(address(test)).sig(test.tD.selector).find();
}
function testStorageReadBytes32() public {
bytes32 val = stdstore.target(address(test)).sig(test.tE.selector).read_bytes32();
assertEq(val, hex"1337");
}
function testStorageReadBool_False() public {
bool val = stdstore.target(address(test)).sig(test.tB.selector).read_bool();
assertEq(val, false);
}
function testStorageReadBool_True() public {
bool val = stdstore.target(address(test)).sig(test.tH.selector).read_bool();
assertEq(val, true);
}
function testStorageReadBool_Revert() public {
vm.expectRevert("stdStorage read_bool(StdStorage): Cannot decode. Make sure you are reading a bool.");
this.readNonBoolValue();
}
function readNonBoolValue() public {
stdstore.target(address(test)).sig(test.tE.selector).read_bool();
}
function testStorageReadAddress() public {
address val = stdstore.target(address(test)).sig(test.tF.selector).read_address();
assertEq(val, address(1337));
}
function testStorageReadUint() public {
uint256 val = stdstore.target(address(test)).sig(test.exists.selector).read_uint();
assertEq(val, 1);
}
function testStorageReadInt() public {
int256 val = stdstore.target(address(test)).sig(test.tG.selector).read_int();
assertEq(val, type(int256).min);
}
}
contract StorageTest {
uint256 public exists = 1;
mapping(address => uint256) public map_addr;
mapping(uint256 => uint256) public map_uint;
mapping(address => uint256) public map_packed;
mapping(address => UnpackedStruct) public map_struct;
mapping(address => mapping(address => uint256)) public deep_map;
mapping(address => mapping(address => UnpackedStruct)) public deep_map_struct;
UnpackedStruct public basic;
uint248 public tA;
bool public tB;
bool public tC = false;
uint248 public tD = 1;
struct UnpackedStruct {
uint256 a;
uint256 b;
}
mapping(address => bool) public map_bool;
bytes32 public tE = hex"1337";
address public tF = address(1337);
int256 public tG = type(int256).min;
bool public tH = true;
constructor() {
basic = UnpackedStruct({a: 1337, b: 1337});
uint256 two = (1 << 128) | 1;
map_packed[msg.sender] = two;
map_packed[address(uint160(1337))] = 1 << 128;
}
function read_struct_upper(address who) public view returns (uint256) {
return map_packed[who] >> 128;
}
function read_struct_lower(address who) public view returns (uint256) {
return map_packed[who] & ((1 << 128) - 1);
}
function hidden() public view returns (bytes32 t) {
bytes32 slot = keccak256("my.random.var");
/// @solidity memory-safe-assembly
assembly {
t := sload(slot)
}
}
function const() public pure returns (bytes32 t) {
t = bytes32(hex"1337");
}
}

View File

@ -1,107 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.7.0 <0.9.0;
import "../src/Test.sol";
contract StdUtilsTest is Test {
function testBound() public {
assertEq(bound(5, 0, 4), 0);
assertEq(bound(0, 69, 69), 69);
assertEq(bound(0, 68, 69), 68);
assertEq(bound(10, 150, 190), 174);
assertEq(bound(300, 2800, 3200), 3107);
assertEq(bound(9999, 1337, 6666), 4669);
}
function testBound_WithinRange() public {
assertEq(bound(51, 50, 150), 51);
assertEq(bound(51, 50, 150), bound(bound(51, 50, 150), 50, 150));
assertEq(bound(149, 50, 150), 149);
assertEq(bound(149, 50, 150), bound(bound(149, 50, 150), 50, 150));
}
function testBound_EdgeCoverage() public {
assertEq(bound(0, 50, 150), 50);
assertEq(bound(1, 50, 150), 51);
assertEq(bound(2, 50, 150), 52);
assertEq(bound(3, 50, 150), 53);
assertEq(bound(type(uint256).max, 50, 150), 150);
assertEq(bound(type(uint256).max - 1, 50, 150), 149);
assertEq(bound(type(uint256).max - 2, 50, 150), 148);
assertEq(bound(type(uint256).max - 3, 50, 150), 147);
}
function testBound_DistributionIsEven(uint256 min, uint256 size) public {
size = size % 100 + 1;
min = bound(min, UINT256_MAX / 2, UINT256_MAX / 2 + size);
uint256 max = min + size - 1;
uint256 result;
for (uint256 i = 1; i <= size * 4; ++i) {
// x > max
result = bound(max + i, min, max);
assertEq(result, min + (i - 1) % size);
// x < min
result = bound(min - i, min, max);
assertEq(result, max - (i - 1) % size);
}
}
function testBound(uint256 num, uint256 min, uint256 max) public {
if (min > max) (min, max) = (max, min);
uint256 result = bound(num, min, max);
assertGe(result, min);
assertLe(result, max);
assertEq(result, bound(result, min, max));
if (num >= min && num <= max) assertEq(result, num);
}
function testBoundUint256Max() public {
assertEq(bound(0, type(uint256).max - 1, type(uint256).max), type(uint256).max - 1);
assertEq(bound(1, type(uint256).max - 1, type(uint256).max), type(uint256).max);
}
function testCannotBoundMaxLessThanMin() public {
vm.expectRevert(bytes("StdUtils bound(uint256,uint256,uint256): Max is less than min."));
bound(5, 100, 10);
}
function testCannotBoundMaxLessThanMin(uint256 num, uint256 min, uint256 max) public {
vm.assume(min > max);
vm.expectRevert(bytes("StdUtils bound(uint256,uint256,uint256): Max is less than min."));
bound(num, min, max);
}
function testGenerateCreateAddress() external {
address deployer = 0x6C9FC64A53c1b71FB3f9Af64d1ae3A4931A5f4E9;
uint256 nonce = 14;
address createAddress = computeCreateAddress(deployer, nonce);
assertEq(createAddress, 0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45);
}
function testGenerateCreate2Address() external {
bytes32 salt = bytes32(uint256(31415));
bytes32 initcodeHash = keccak256(abi.encode(0x6080));
address deployer = 0x6C9FC64A53c1b71FB3f9Af64d1ae3A4931A5f4E9;
address create2Address = computeCreate2Address(salt, initcodeHash, deployer);
assertEq(create2Address, 0xB147a5d25748fda14b463EB04B111027C290f4d3);
}
function testBytesToUint() external {
bytes memory maxUint = hex"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff";
bytes memory two = hex"02";
bytes memory millionEther = hex"d3c21bcecceda1000000";
assertEq(bytesToUint(maxUint), type(uint256).max);
assertEq(bytesToUint(two), 2);
assertEq(bytesToUint(millionEther), 1_000_000 ether);
}
function testCannotConvertGT32Bytes() external {
bytes memory thirty3Bytes = hex"ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff";
vm.expectRevert("StdUtils bytesToUint(bytes): Bytes length exceeds 32.");
bytesToUint(thirty3Bytes);
}
}

View File

@ -1,10 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
import "../../src/Script.sol";
// The purpose of this contract is to benchmark compilation time to avoid accidentally introducing
// a change that results in very long compilation times with via-ir. See https://github.com/foundry-rs/forge-std/issues/207
contract CompilationScript is Script {}

View File

@ -1,10 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
import "../../src/Script.sol";
// The purpose of this contract is to benchmark compilation time to avoid accidentally introducing
// a change that results in very long compilation times with via-ir. See https://github.com/foundry-rs/forge-std/issues/207
contract CompilationScriptBase is ScriptBase {}

View File

@ -1,10 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
import "../../src/Test.sol";
// The purpose of this contract is to benchmark compilation time to avoid accidentally introducing
// a change that results in very long compilation times with via-ir. See https://github.com/foundry-rs/forge-std/issues/207
contract CompilationTest is Test {}

View File

@ -1,10 +0,0 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.9.0;
pragma experimental ABIEncoderV2;
import "../../src/Test.sol";
// The purpose of this contract is to benchmark compilation time to avoid accidentally introducing
// a change that results in very long compilation times with via-ir. See https://github.com/foundry-rs/forge-std/issues/207
contract CompilationTestBase is TestBase {}

View File

@ -1,187 +0,0 @@
{
"transactions": [
{
"hash": "0xc6006863c267735a11476b7f15b15bc718e117e2da114a2be815dd651e1a509f",
"type": "CALL",
"contractName": "Test",
"contractAddress": "0xe7f1725e7734ce288f8367e1bb143e90bb3f0512",
"function": "multiple_arguments(uint256,address,uint256[]):(uint256)",
"arguments": ["1", "0000000000000000000000000000000000001337", "[3,4]"],
"tx": {
"type": "0x02",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": "0xe7f1725e7734ce288f8367e1bb143e90bb3f0512",
"gas": "0x73b9",
"value": "0x0",
"data": "0x23e99187000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000013370000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000030000000000000000000000000000000000000000000000000000000000000004",
"nonce": "0x3",
"accessList": []
}
},
{
"hash": "0xedf2b38d8d896519a947a1acf720f859bb35c0c5ecb8dd7511995b67b9853298",
"type": "CALL",
"contractName": "Test",
"contractAddress": "0xe7f1725e7734ce288f8367e1bb143e90bb3f0512",
"function": "inc():(uint256)",
"arguments": [],
"tx": {
"type": "0x02",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": "0xe7f1725e7734ce288f8367e1bb143e90bb3f0512",
"gas": "0xdcb2",
"value": "0x0",
"data": "0x371303c0",
"nonce": "0x4",
"accessList": []
}
},
{
"hash": "0xa57e8e3981a6c861442e46c9471bd19cb3e21f9a8a6c63a72e7b5c47c6675a7c",
"type": "CALL",
"contractName": "Test",
"contractAddress": "0x7c6b4bbe207d642d98d5c537142d85209e585087",
"function": "t(uint256):(uint256)",
"arguments": ["1"],
"tx": {
"type": "0x02",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": "0x7c6b4bbe207d642d98d5c537142d85209e585087",
"gas": "0x8599",
"value": "0x0",
"data": "0xafe29f710000000000000000000000000000000000000000000000000000000000000001",
"nonce": "0x5",
"accessList": []
}
}
],
"receipts": [
{
"transactionHash": "0x481dc86e40bba90403c76f8e144aa9ff04c1da2164299d0298573835f0991181",
"transactionIndex": "0x0",
"blockHash": "0xef0730448490304e5403be0fa8f8ce64f118e9adcca60c07a2ae1ab921d748af",
"blockNumber": "0x1",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": null,
"cumulativeGasUsed": "0x13f3a",
"gasUsed": "0x13f3a",
"contractAddress": "0x5fbdb2315678afecb367f032d93f642f64180aa3",
"logs": [],
"status": "0x1",
"logsBloom": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"effectiveGasPrice": "0xee6b2800"
},
{
"transactionHash": "0x6a187183545b8a9e7f1790e847139379bf5622baff2cb43acf3f5c79470af782",
"transactionIndex": "0x0",
"blockHash": "0xf3acb96a90071640c2a8c067ae4e16aad87e634ea8d8bbbb5b352fba86ba0148",
"blockNumber": "0x2",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": null,
"cumulativeGasUsed": "0x45d80",
"gasUsed": "0x45d80",
"contractAddress": "0xe7f1725e7734ce288f8367e1bb143e90bb3f0512",
"logs": [],
"status": "0x1",
"logsBloom": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"effectiveGasPrice": "0xee6b2800"
},
{
"transactionHash": "0x064ad173b4867bdef2fb60060bbdaf01735fbf10414541ea857772974e74ea9d",
"transactionIndex": "0x0",
"blockHash": "0x8373d02109d3ee06a0225f23da4c161c656ccc48fe0fcee931d325508ae73e58",
"blockNumber": "0x3",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": "0x4e59b44847b379578588920ca78fbf26c0b4956c",
"cumulativeGasUsed": "0x45feb",
"gasUsed": "0x45feb",
"contractAddress": null,
"logs": [],
"status": "0x1",
"logsBloom": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"effectiveGasPrice": "0xee6b2800"
},
{
"transactionHash": "0xc6006863c267735a11476b7f15b15bc718e117e2da114a2be815dd651e1a509f",
"transactionIndex": "0x0",
"blockHash": "0x16712fae5c0e18f75045f84363fb6b4d9a9fe25e660c4ce286833a533c97f629",
"blockNumber": "0x4",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": "0xe7f1725e7734ce288f8367e1bb143e90bb3f0512",
"cumulativeGasUsed": "0x5905",
"gasUsed": "0x5905",
"contractAddress": null,
"logs": [],
"status": "0x1",
"logsBloom": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"effectiveGasPrice": "0xee6b2800"
},
{
"transactionHash": "0xedf2b38d8d896519a947a1acf720f859bb35c0c5ecb8dd7511995b67b9853298",
"transactionIndex": "0x0",
"blockHash": "0x156b88c3eb9a1244ba00a1834f3f70de735b39e3e59006dd03af4fe7d5480c11",
"blockNumber": "0x5",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": "0xe7f1725e7734ce288f8367e1bb143e90bb3f0512",
"cumulativeGasUsed": "0xa9c4",
"gasUsed": "0xa9c4",
"contractAddress": null,
"logs": [],
"status": "0x1",
"logsBloom": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"effectiveGasPrice": "0xee6b2800"
},
{
"transactionHash": "0xa57e8e3981a6c861442e46c9471bd19cb3e21f9a8a6c63a72e7b5c47c6675a7c",
"transactionIndex": "0x0",
"blockHash": "0xcf61faca67dbb2c28952b0b8a379e53b1505ae0821e84779679390cb8571cadb",
"blockNumber": "0x6",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": "0x7c6b4bbe207d642d98d5c537142d85209e585087",
"cumulativeGasUsed": "0x66c5",
"gasUsed": "0x66c5",
"contractAddress": null,
"logs": [
{
"address": "0x7c6b4bbe207d642d98d5c537142d85209e585087",
"topics": [
"0x0b2e13ff20ac7b474198655583edf70dedd2c1dc980e329c4fbb2fc0748b796b"
],
"data": "0x000000000000000000000000000000000000000000000000000000000000002000000000000000000000000000000000000000000000000000000000000000046865726500000000000000000000000000000000000000000000000000000000",
"blockHash": "0xcf61faca67dbb2c28952b0b8a379e53b1505ae0821e84779679390cb8571cadb",
"blockNumber": "0x6",
"transactionHash": "0xa57e8e3981a6c861442e46c9471bd19cb3e21f9a8a6c63a72e7b5c47c6675a7c",
"transactionIndex": "0x1",
"logIndex": "0x0",
"transactionLogIndex": "0x0",
"removed": false
}
],
"status": "0x1",
"logsBloom": "0x00000000000800000000000000000010000000000000000000000000000180000000000000000000000000000000000000000000000008000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000100",
"effectiveGasPrice": "0xee6b2800"
},
{
"transactionHash": "0x11fbb10230c168ca1e36a7e5c69a6dbcd04fd9e64ede39d10a83e36ee8065c16",
"transactionIndex": "0x0",
"blockHash": "0xf1e0ed2eda4e923626ec74621006ed50b3fc27580dc7b4cf68a07ca77420e29c",
"blockNumber": "0x7",
"from": "0xf39fd6e51aad88f6f4ce6ab8827279cfffb92266",
"to": "0x0000000000000000000000000000000000001337",
"cumulativeGasUsed": "0x5208",
"gasUsed": "0x5208",
"contractAddress": null,
"logs": [],
"status": "0x1",
"logsBloom": "0x00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000",
"effectiveGasPrice": "0xee6b2800"
}
],
"libraries": [
"src/Broadcast.t.sol:F:0x5fbdb2315678afecb367f032d93f642f64180aa3"
],
"pending": [],
"path": "broadcast/Broadcast.t.sol/31337/run-latest.json",
"returns": {},
"timestamp": 1655140035
}