jeffsi-meet/deploy/meeting-intelligence/transcriber/Dockerfile

59 lines
2.3 KiB
Docker

# Meeting Intelligence Transcription Service
# Uses whisper.cpp for fast CPU-based transcription
# Uses resemblyzer for speaker diarization
FROM python:3.11-slim AS builder
# Install build dependencies
RUN apt-get update && apt-get install -y --no-install-recommends build-essential cmake git ffmpeg wget && rm -rf /var/lib/apt/lists/*
# Build whisper.cpp
WORKDIR /build
RUN git clone https://github.com/ggerganov/whisper.cpp.git && cd whisper.cpp && cmake -B build -DWHISPER_BUILD_EXAMPLES=ON -DBUILD_SHARED_LIBS=ON && cmake --build build --config Release -j$(nproc) && cp build/bin/whisper-cli /usr/local/bin/whisper && cp build/bin/whisper-server /usr/local/bin/whisper-server 2>/dev/null || true && mkdir -p /usr/local/lib/whisper && find build -name '*.so*' -exec cp {} /usr/local/lib/whisper/ \; && ls -la /usr/local/lib/whisper/
# Download whisper models
WORKDIR /models
RUN cd /build/whisper.cpp && bash models/download-ggml-model.sh small && mv models/ggml-small.bin /models/
# Production image
FROM python:3.11-slim
# Install runtime dependencies and build tools (for compiling Python packages)
RUN apt-get update && apt-get install -y --no-install-recommends ffmpeg libsndfile1 curl build-essential && rm -rf /var/lib/apt/lists/*
# Copy whisper binary, libraries, and models
COPY --from=builder /usr/local/bin/whisper /usr/local/bin/whisper
COPY --from=builder /usr/local/lib/whisper/ /usr/local/lib/
COPY --from=builder /models /models
# Update shared library cache
RUN ldconfig && /usr/local/bin/whisper --help || echo "Whisper help check failed"
# Set up Python environment
WORKDIR /app
# Install Python dependencies
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Remove build tools to reduce image size
RUN apt-get purge -y build-essential && apt-get autoremove -y
# Copy application code
COPY app/ ./app/
# Create directories
RUN mkdir -p /recordings /audio /logs
# Environment variables
ENV PYTHONUNBUFFERED=1
ENV WHISPER_MODEL=/models/ggml-small.bin
ENV WHISPER_THREADS=8
# Health check
HEALTHCHECK --interval=30s --timeout=10s --start-period=60s --retries=3 CMD curl -f http://localhost:8001/health || exit 1
# Run the service
EXPOSE 8001
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8001", "--workers", "1"]