infinite-agents-public/src_infinite/ui_hybrid_3.html

1169 lines
43 KiB
HTML

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Neural Synapse Cognitive Dashboard</title>
<style>
:root {
--synapse-fire: #ff6b9d;
--neural-blue: #4ecdc4;
--cognition-green: #45b7d1;
--neuron-purple: #8b5cf6;
--axon-gold: #ffd93d;
--dendrite-silver: #e5e7eb;
--synapse-gap: #1f2937;
--neural-network: #0f172a;
}
* {
margin: 0;
padding: 0;
box-sizing: border-box;
}
body {
font-family: 'SF Pro Display', -apple-system, BlinkMacSystemFont, sans-serif;
background: var(--neural-network);
color: var(--dendrite-silver);
overflow-x: hidden;
position: relative;
}
/* Neural Network Background */
body::before {
content: '';
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
background:
radial-gradient(circle at 20% 30%, rgba(255, 107, 157, 0.1) 0%, transparent 50%),
radial-gradient(circle at 80% 60%, rgba(78, 205, 196, 0.1) 0%, transparent 50%),
radial-gradient(circle at 40% 80%, rgba(139, 92, 246, 0.1) 0%, transparent 50%);
pointer-events: none;
z-index: 0;
}
/* Animated Neural Pathways */
.neural-pathway {
position: fixed;
width: 2px;
background: linear-gradient(45deg, var(--synapse-fire), var(--neural-blue));
opacity: 0.3;
z-index: 1;
animation: synapticFire 3s ease-in-out infinite;
}
.pathway-1 {
top: 10%;
left: 0;
height: 40%;
transform: rotate(25deg);
animation-delay: 0s;
}
.pathway-2 {
top: 30%;
right: 0;
height: 60%;
transform: rotate(-30deg);
animation-delay: 1s;
}
.pathway-3 {
bottom: 20%;
left: 20%;
height: 35%;
transform: rotate(60deg);
animation-delay: 2s;
}
@keyframes synapticFire {
0%, 100% {
opacity: 0.3;
box-shadow: 0 0 5px var(--synapse-fire);
}
50% {
opacity: 0.8;
box-shadow: 0 0 20px var(--synapse-fire), 0 0 40px var(--neural-blue);
}
}
main {
position: relative;
z-index: 2;
min-height: 100vh;
padding: 2rem;
}
h1 {
text-align: center;
font-size: 2.5rem;
font-weight: 300;
margin-bottom: 3rem;
background: linear-gradient(135deg, var(--synapse-fire), var(--neural-blue), var(--cognition-green));
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
position: relative;
}
h1::after {
content: '';
position: absolute;
bottom: -10px;
left: 50%;
transform: translateX(-50%);
width: 100px;
height: 2px;
background: linear-gradient(90deg, var(--synapse-fire), var(--neural-blue));
animation: pulseGlow 2s ease-in-out infinite;
}
@keyframes pulseGlow {
0%, 100% { opacity: 0.5; transform: translateX(-50%) scaleX(1); }
50% { opacity: 1; transform: translateX(-50%) scaleX(1.2); }
}
.hybrid-component {
max-width: 1400px;
margin: 0 auto;
display: grid;
grid-template-columns: 1fr 1fr;
grid-template-rows: auto auto auto;
gap: 2rem;
position: relative;
}
/* Neural Dashboard Panel Base */
.neural-panel {
background: rgba(15, 23, 42, 0.8);
border: 1px solid rgba(255, 107, 157, 0.3);
border-radius: 20px;
padding: 2rem;
backdrop-filter: blur(10px);
position: relative;
overflow: hidden;
transition: all 0.3s ease;
}
.neural-panel::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, var(--synapse-fire), var(--neural-blue), var(--cognition-green));
animation: neuralPulse 2s ease-in-out infinite;
}
@keyframes neuralPulse {
0%, 100% { opacity: 0.5; }
50% { opacity: 1; }
}
.neural-panel:hover {
border-color: var(--synapse-fire);
box-shadow: 0 0 30px rgba(255, 107, 157, 0.3);
transform: translateY(-5px);
}
.panel-title {
font-size: 1.3rem;
font-weight: 600;
color: var(--synapse-fire);
margin-bottom: 1.5rem;
display: flex;
align-items: center;
gap: 10px;
}
.neural-icon {
width: 24px;
height: 24px;
border-radius: 50%;
background: radial-gradient(circle, var(--synapse-fire), var(--neural-blue));
animation: neuronFire 1.5s ease-in-out infinite;
}
@keyframes neuronFire {
0%, 100% { transform: scale(1); opacity: 0.8; }
50% { transform: scale(1.2); opacity: 1; }
}
/* Thought Analytics Panel */
.thought-analytics {
grid-column: 1 / 2;
grid-row: 1 / 2;
}
.thought-pattern {
display: flex;
align-items: center;
margin-bottom: 1rem;
padding: 0.8rem;
background: rgba(255, 107, 157, 0.1);
border-radius: 10px;
border-left: 3px solid var(--synapse-fire);
}
.pattern-intensity {
width: 12px;
height: 12px;
border-radius: 50%;
margin-right: 1rem;
animation: synapticPulse 1s ease-in-out infinite;
}
.pattern-intensity.high { background: var(--synapse-fire); }
.pattern-intensity.medium { background: var(--cognition-green); }
.pattern-intensity.low { background: var(--neural-blue); }
@keyframes synapticPulse {
0%, 100% { transform: scale(1); opacity: 0.7; }
50% { transform: scale(1.3); opacity: 1; }
}
.pattern-details {
flex: 1;
}
.pattern-name {
font-weight: 600;
color: var(--dendrite-silver);
margin-bottom: 0.3rem;
}
.pattern-frequency {
font-size: 0.9rem;
color: var(--neural-blue);
}
/* Memory Visualization Panel */
.memory-visualization {
grid-column: 2 / 3;
grid-row: 1 / 2;
}
.memory-network {
position: relative;
height: 200px;
background: rgba(139, 92, 246, 0.1);
border-radius: 10px;
overflow: hidden;
}
.memory-node {
position: absolute;
width: 20px;
height: 20px;
border-radius: 50%;
background: radial-gradient(circle, var(--neuron-purple), var(--cognition-green));
animation: memoryPulse 2s ease-in-out infinite;
}
.memory-node:nth-child(1) { top: 20%; left: 15%; animation-delay: 0s; }
.memory-node:nth-child(2) { top: 40%; left: 60%; animation-delay: 0.5s; }
.memory-node:nth-child(3) { top: 70%; left: 30%; animation-delay: 1s; }
.memory-node:nth-child(4) { top: 30%; left: 80%; animation-delay: 1.5s; }
@keyframes memoryPulse {
0%, 100% {
transform: scale(1);
box-shadow: 0 0 10px var(--neuron-purple);
}
50% {
transform: scale(1.5);
box-shadow: 0 0 20px var(--neuron-purple), 0 0 30px var(--cognition-green);
}
}
.memory-connection {
position: absolute;
height: 2px;
background: linear-gradient(90deg, var(--neuron-purple), var(--cognition-green));
opacity: 0.6;
animation: connectionFlow 3s ease-in-out infinite;
}
.connection-1 {
top: 30%;
left: 20%;
width: 35%;
transform: rotate(15deg);
}
.connection-2 {
top: 50%;
left: 40%;
width: 25%;
transform: rotate(-20deg);
animation-delay: 1s;
}
@keyframes connectionFlow {
0%, 100% { opacity: 0.6; }
50% { opacity: 1; box-shadow: 0 0 10px var(--neuron-purple); }
}
/* Learning Progress Panel */
.learning-progress {
grid-column: 1 / 2;
grid-row: 2 / 3;
}
.synapse-strength {
margin-bottom: 1.5rem;
}
.synapse-label {
display: flex;
justify-content: space-between;
margin-bottom: 0.5rem;
color: var(--dendrite-silver);
font-size: 0.9rem;
}
.synapse-bar {
height: 8px;
background: rgba(255, 107, 157, 0.2);
border-radius: 4px;
overflow: hidden;
position: relative;
}
.synapse-progress {
height: 100%;
background: linear-gradient(90deg, var(--synapse-fire), var(--axon-gold));
border-radius: 4px;
position: relative;
animation: synapseGrowth 2s ease-in-out infinite;
}
@keyframes synapseGrowth {
0%, 100% { box-shadow: 0 0 5px var(--synapse-fire); }
50% { box-shadow: 0 0 15px var(--synapse-fire), 0 0 25px var(--axon-gold); }
}
.progress-neural { width: 85%; }
.progress-cognitive { width: 72%; }
.progress-memory { width: 91%; }
/* Cognitive Load Panel */
.cognitive-load {
grid-column: 2 / 3;
grid-row: 2 / 3;
}
.load-monitor {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 1rem;
margin-bottom: 1.5rem;
}
.load-metric {
text-align: center;
padding: 1rem;
background: rgba(78, 205, 196, 0.1);
border-radius: 10px;
border: 1px solid rgba(78, 205, 196, 0.3);
}
.load-value {
font-size: 2rem;
font-weight: bold;
color: var(--neural-blue);
margin-bottom: 0.5rem;
}
.load-label {
font-size: 0.9rem;
color: var(--dendrite-silver);
}
.brainwave-monitor {
height: 80px;
background: rgba(15, 23, 42, 0.6);
border-radius: 10px;
position: relative;
overflow: hidden;
}
.brainwave {
position: absolute;
width: 100%;
height: 2px;
background: var(--neural-blue);
top: 50%;
animation: brainwaveFlow 1.5s ease-in-out infinite;
}
@keyframes brainwaveFlow {
0% { transform: translateX(-100%) scaleY(1); }
25% { transform: translateX(-50%) scaleY(2); }
50% { transform: translateX(0%) scaleY(1); }
75% { transform: translateX(50%) scaleY(3); }
100% { transform: translateX(100%) scaleY(1); }
}
/* Neural Network Insights Panel */
.network-insights {
grid-column: 1 / 3;
grid-row: 3 / 4;
}
.insight-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(250px, 1fr));
gap: 1.5rem;
}
.insight-card {
background: rgba(139, 92, 246, 0.1);
border: 1px solid rgba(139, 92, 246, 0.3);
border-radius: 15px;
padding: 1.5rem;
position: relative;
overflow: hidden;
}
.insight-card::before {
content: '';
position: absolute;
top: -2px;
left: -2px;
right: -2px;
bottom: -2px;
background: linear-gradient(45deg, var(--neuron-purple), var(--cognition-green), var(--synapse-fire));
border-radius: 15px;
z-index: -1;
animation: neuralGlow 3s ease-in-out infinite;
}
@keyframes neuralGlow {
0%, 100% { opacity: 0.3; }
50% { opacity: 0.7; }
}
.insight-title {
font-weight: 600;
color: var(--neuron-purple);
margin-bottom: 1rem;
display: flex;
align-items: center;
gap: 8px;
}
.insight-neurons {
display: flex;
gap: 5px;
margin-bottom: 1rem;
}
.mini-neuron {
width: 8px;
height: 8px;
border-radius: 50%;
background: var(--cognition-green);
animation: miniNeuronFire 1s ease-in-out infinite;
}
.mini-neuron:nth-child(2) { animation-delay: 0.2s; }
.mini-neuron:nth-child(3) { animation-delay: 0.4s; }
.mini-neuron:nth-child(4) { animation-delay: 0.6s; }
@keyframes miniNeuronFire {
0%, 100% { opacity: 0.5; transform: scale(1); }
50% { opacity: 1; transform: scale(1.5); }
}
.insight-data {
font-size: 0.9rem;
color: var(--dendrite-silver);
line-height: 1.6;
}
/* Synaptic Communication Lines */
.synaptic-line {
position: absolute;
background: linear-gradient(90deg, transparent, var(--synapse-fire), transparent);
height: 1px;
z-index: 1;
animation: synapticCommunication 4s ease-in-out infinite;
}
.line-1 {
top: 25%;
left: 0;
width: 100%;
animation-delay: 0s;
}
.line-2 {
top: 60%;
left: 0;
width: 100%;
animation-delay: 2s;
}
@keyframes synapticCommunication {
0%, 100% { opacity: 0; transform: scaleX(0); }
50% { opacity: 0.8; transform: scaleX(1); }
}
/* Responsive Design */
@media (max-width: 768px) {
.hybrid-component {
grid-template-columns: 1fr;
grid-template-rows: repeat(5, auto);
}
.thought-analytics { grid-column: 1; grid-row: 1; }
.memory-visualization { grid-column: 1; grid-row: 2; }
.learning-progress { grid-column: 1; grid-row: 3; }
.cognitive-load { grid-column: 1; grid-row: 4; }
.network-insights { grid-column: 1; grid-row: 5; }
.insight-grid {
grid-template-columns: 1fr;
}
}
/* Accessibility Enhancements */
.neural-panel:focus-within {
outline: 2px solid var(--synapse-fire);
outline-offset: 2px;
}
@media (prefers-reduced-motion: reduce) {
*, *::before, *::after {
animation-duration: 0.01ms !important;
animation-iteration-count: 1 !important;
transition-duration: 0.01ms !important;
}
}
</style>
</head>
<body>
<!-- Animated Neural Pathways -->
<div class="neural-pathway pathway-1"></div>
<div class="neural-pathway pathway-2"></div>
<div class="neural-pathway pathway-3"></div>
<!-- Synaptic Communication Lines -->
<div class="synaptic-line line-1"></div>
<div class="synaptic-line line-2"></div>
<main>
<h1>Cognitive Dashboard - Neural Synapse Theme</h1>
<div class="hybrid-component">
<!-- Thought Analytics Panel -->
<div class="neural-panel thought-analytics">
<div class="panel-title">
<div class="neural-icon"></div>
Thought Analytics
</div>
<div class="thought-pattern">
<div class="pattern-intensity high"></div>
<div class="pattern-details">
<div class="pattern-name">Creative Processing</div>
<div class="pattern-frequency">142 Hz - High Gamma</div>
</div>
</div>
<div class="thought-pattern">
<div class="pattern-intensity medium"></div>
<div class="pattern-details">
<div class="pattern-name">Analytical Thinking</div>
<div class="pattern-frequency">8-12 Hz - Alpha</div>
</div>
</div>
<div class="thought-pattern">
<div class="pattern-intensity low"></div>
<div class="pattern-details">
<div class="pattern-name">Memory Consolidation</div>
<div class="pattern-frequency">4-8 Hz - Theta</div>
</div>
</div>
<div class="thought-pattern">
<div class="pattern-intensity high"></div>
<div class="pattern-details">
<div class="pattern-name">Focus Attention</div>
<div class="pattern-frequency">13-30 Hz - Beta</div>
</div>
</div>
</div>
<!-- Memory Visualization Panel -->
<div class="neural-panel memory-visualization">
<div class="panel-title">
<div class="neural-icon"></div>
Memory Network
</div>
<div class="memory-network">
<div class="memory-connection connection-1"></div>
<div class="memory-connection connection-2"></div>
<div class="memory-node"></div>
<div class="memory-node"></div>
<div class="memory-node"></div>
<div class="memory-node"></div>
</div>
<div style="margin-top: 1rem; font-size: 0.9rem; color: var(--dendrite-silver);">
<div style="margin-bottom: 0.5rem;">
<strong>Active Pathways:</strong> 847 connections
</div>
<div style="margin-bottom: 0.5rem;">
<strong>Memory Strength:</strong>
<span style="color: var(--neuron-purple);">94.2%</span>
</div>
<div>
<strong>Retrieval Speed:</strong>
<span style="color: var(--cognition-green);">1.3ms</span>
</div>
</div>
</div>
<!-- Learning Progress Panel -->
<div class="neural-panel learning-progress">
<div class="panel-title">
<div class="neural-icon"></div>
Synaptic Strengthening
</div>
<div class="synapse-strength">
<div class="synapse-label">
<span>Neural Plasticity</span>
<span>85%</span>
</div>
<div class="synapse-bar">
<div class="synapse-progress progress-neural"></div>
</div>
</div>
<div class="synapse-strength">
<div class="synapse-label">
<span>Cognitive Flexibility</span>
<span>72%</span>
</div>
<div class="synapse-bar">
<div class="synapse-progress progress-cognitive"></div>
</div>
</div>
<div class="synapse-strength">
<div class="synapse-label">
<span>Memory Formation</span>
<span>91%</span>
</div>
<div class="synapse-bar">
<div class="synapse-progress progress-memory"></div>
</div>
</div>
<div style="margin-top: 1.5rem; padding-top: 1rem; border-top: 1px solid rgba(255, 107, 157, 0.3);">
<div style="font-size: 0.9rem; color: var(--dendrite-silver);">
<strong>Learning Rate:</strong>
<span style="color: var(--axon-gold);">+12.4% this week</span>
</div>
</div>
</div>
<!-- Cognitive Load Panel -->
<div class="neural-panel cognitive-load">
<div class="panel-title">
<div class="neural-icon"></div>
Brain Activity Monitor
</div>
<div class="load-monitor">
<div class="load-metric">
<div class="load-value">74%</div>
<div class="load-label">Cognitive Load</div>
</div>
<div class="load-metric">
<div class="load-value">92%</div>
<div class="load-label">Processing Power</div>
</div>
</div>
<div style="margin-bottom: 1rem;">
<div style="font-size: 0.9rem; color: var(--dendrite-silver); margin-bottom: 0.5rem;">
Live Brainwave Activity
</div>
<div class="brainwave-monitor">
<div class="brainwave"></div>
</div>
</div>
<div style="font-size: 0.85rem; color: var(--neural-blue);">
Current State: <strong>Deep Focus</strong>
Optimal for complex problem solving
</div>
</div>
<!-- Neural Network Insights Panel -->
<div class="neural-panel network-insights">
<div class="panel-title">
<div class="neural-icon"></div>
Neural Network Insights
</div>
<div class="insight-grid">
<div class="insight-card">
<div class="insight-title">
Connection Density
<div class="insight-neurons">
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
</div>
</div>
<div class="insight-data">
Your neural network shows 23% higher connectivity than baseline.
This indicates enhanced cognitive integration and faster information processing.
</div>
</div>
<div class="insight-card">
<div class="insight-title">
Synaptic Efficiency
<div class="insight-neurons">
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
</div>
</div>
<div class="insight-data">
Signal transmission speed improved by 18% over the past month.
Optimized pathways are reducing cognitive latency significantly.
</div>
</div>
<div class="insight-card">
<div class="insight-title">
Neuroplasticity Index
<div class="insight-neurons">
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
</div>
</div>
<div class="insight-data">
High adaptability detected in frontal cortex regions.
Brain is actively forming new neural pathways for learning.
</div>
</div>
<div class="insight-card">
<div class="insight-title">
Cognitive Reserve
<div class="insight-neurons">
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
<div class="mini-neuron"></div>
</div>
</div>
<div class="insight-data">
Strong backup pathways identified. Your brain maintains excellent
resilience and can reroute processing during high cognitive demands.
</div>
</div>
</div>
</div>
</div>
</main>
<script>
// Neural Synapse Dashboard Controller
class NeuralSynapseController {
constructor() {
this.initializeNeuralActivity();
this.setupSynapticCommunication();
this.startCognitiveMonitoring();
this.enableNeuralInteractions();
}
initializeNeuralActivity() {
// Simulate real-time neural firing patterns
const thoughtPatterns = document.querySelectorAll('.thought-pattern');
const memoryNodes = document.querySelectorAll('.memory-node');
setInterval(() => {
this.updateThoughtIntensity(thoughtPatterns);
this.simulateMemoryActivation(memoryNodes);
}, 2000);
}
updateThoughtIntensity(patterns) {
patterns.forEach((pattern, index) => {
const intensity = pattern.querySelector('.pattern-intensity');
const intensityLevels = ['low', 'medium', 'high'];
const currentLevel = Math.floor(Math.random() * 3);
// Reset classes
intensity.className = 'pattern-intensity';
intensity.classList.add(intensityLevels[currentLevel]);
// Update frequency based on intensity
const frequencyEl = pattern.querySelector('.pattern-frequency');
const frequencies = ['4-8 Hz - Theta', '8-12 Hz - Alpha', '13-30 Hz - Beta', '30-100 Hz - Gamma'];
frequencyEl.textContent = frequencies[currentLevel] || frequencies[Math.floor(Math.random() * frequencies.length)];
});
}
simulateMemoryActivation(nodes) {
nodes.forEach((node, index) => {
// Random activation delay to simulate natural neural firing
setTimeout(() => {
node.style.animation = 'none';
node.offsetHeight; // Trigger reflow
node.style.animation = `memoryPulse 2s ease-in-out infinite`;
node.style.animationDelay = `${Math.random() * 2}s`;
}, index * 200);
});
}
setupSynapticCommunication() {
// Create dynamic synaptic connections between panels
const panels = document.querySelectorAll('.neural-panel');
panels.forEach(panel => {
panel.addEventListener('mouseenter', () => {
this.activateSynapticPathway(panel);
this.broadcastNeuralSignal(panel);
});
panel.addEventListener('mouseleave', () => {
this.deactivateSynapticPathway(panel);
});
});
}
activateSynapticPathway(activePanel) {
// Enhance border glow and create ripple effect
activePanel.style.boxShadow = '0 0 40px rgba(255, 107, 157, 0.6), 0 0 80px rgba(78, 205, 196, 0.3)';
activePanel.style.borderColor = 'var(--synapse-fire)';
// Create neural particle effect
this.createNeuralParticles(activePanel);
}
deactivateSynapticPathway(panel) {
// Reset to default state
panel.style.boxShadow = '';
panel.style.borderColor = '';
}
createNeuralParticles(panel) {
const rect = panel.getBoundingClientRect();
const particleCount = 5;
for (let i = 0; i < particleCount; i++) {
const particle = document.createElement('div');
particle.style.cssText = `
position: fixed;
width: 4px;
height: 4px;
background: var(--synapse-fire);
border-radius: 50%;
pointer-events: none;
z-index: 1000;
box-shadow: 0 0 10px var(--synapse-fire);
`;
particle.style.left = rect.left + Math.random() * rect.width + 'px';
particle.style.top = rect.top + Math.random() * rect.height + 'px';
document.body.appendChild(particle);
// Animate particle
particle.animate([
{ transform: 'scale(1)', opacity: 1 },
{ transform: 'scale(2)', opacity: 0 }
], {
duration: 800,
easing: 'ease-out'
}).onfinish = () => particle.remove();
}
}
broadcastNeuralSignal(sourcePanel) {
// Send activation signal to other panels
const allPanels = document.querySelectorAll('.neural-panel');
allPanels.forEach(panel => {
if (panel !== sourcePanel) {
// Create brief activation response
const icon = panel.querySelector('.neural-icon');
if (icon) {
icon.style.animation = 'none';
icon.offsetHeight; // Trigger reflow
icon.style.animation = 'neuronFire 0.5s ease-in-out';
}
}
});
}
startCognitiveMonitoring() {
// Update cognitive metrics dynamically
this.updateCognitiveMetrics();
setInterval(() => this.updateCognitiveMetrics(), 5000);
// Animate brainwave patterns
this.animateBrainwaves();
}
updateCognitiveMetrics() {
const loadValue = document.querySelector('.load-metric .load-value');
const processingValue = document.querySelectorAll('.load-metric .load-value')[1];
if (loadValue && processingValue) {
// Simulate realistic cognitive load fluctuations
const currentLoad = parseInt(loadValue.textContent);
const newLoad = Math.max(60, Math.min(95, currentLoad + (Math.random() - 0.5) * 10));
const currentProcessing = parseInt(processingValue.textContent);
const newProcessing = Math.max(85, Math.min(100, currentProcessing + (Math.random() - 0.5) * 5));
loadValue.textContent = Math.round(newLoad) + '%';
processingValue.textContent = Math.round(newProcessing) + '%';
}
// Update synaptic strength bars
this.updateSynapticStrength();
}
updateSynapticStrength() {
const progressBars = document.querySelectorAll('.synapse-progress');
progressBars.forEach(bar => {
const currentWidth = parseInt(bar.style.width || bar.className.match(/progress-(\w+)/)[1] === 'neural' ? '85' :
bar.className.includes('cognitive') ? '72' : '91');
const variation = (Math.random() - 0.5) * 6; // ±3% variation
const newWidth = Math.max(60, Math.min(95, currentWidth + variation));
bar.style.width = newWidth + '%';
// Update corresponding label
const label = bar.closest('.synapse-strength').querySelector('.synapse-label span:last-child');
if (label) {
label.textContent = Math.round(newWidth) + '%';
}
});
}
animateBrainwaves() {
const brainwave = document.querySelector('.brainwave');
if (!brainwave) return;
// Create multiple brainwave layers for more realistic effect
for (let i = 1; i <= 3; i++) {
const wave = brainwave.cloneNode();
wave.style.background = `var(--neural-blue)`;
wave.style.opacity = 0.3 + (i * 0.2);
wave.style.animationDelay = `${i * 0.3}s`;
wave.style.height = `${2 + i}px`;
brainwave.parentNode.appendChild(wave);
}
}
enableNeuralInteractions() {
// Add click interactions for deeper engagement
const insightCards = document.querySelectorAll('.insight-card');
insightCards.forEach(card => {
card.addEventListener('click', () => {
this.expandInsightDetails(card);
});
});
// Add keyboard navigation
document.addEventListener('keydown', (e) => {
if (e.key === 'Space' && e.target.classList.contains('insight-card')) {
e.preventDefault();
this.expandInsightDetails(e.target);
}
});
}
expandInsightDetails(card) {
// Toggle expanded state with neural animation
const isExpanded = card.classList.contains('expanded');
if (!isExpanded) {
card.classList.add('expanded');
card.style.transform = 'scale(1.02)';
card.style.zIndex = '10';
// Add detailed insight data
const existingDetails = card.querySelector('.expanded-details');
if (!existingDetails) {
const details = document.createElement('div');
details.className = 'expanded-details';
details.style.cssText = `
margin-top: 1rem;
padding-top: 1rem;
border-top: 1px solid rgba(139, 92, 246, 0.3);
font-size: 0.85rem;
color: var(--cognition-green);
animation: fadeInNeuralDetails 0.3s ease-out;
`;
details.innerHTML = this.getExpandedInsightContent(card);
card.appendChild(details);
}
} else {
card.classList.remove('expanded');
card.style.transform = '';
card.style.zIndex = '';
const details = card.querySelector('.expanded-details');
if (details) details.remove();
}
}
getExpandedInsightContent(card) {
const title = card.querySelector('.insight-title').textContent.trim();
const expandedContent = {
'Connection Density': `
<strong>Detailed Analysis:</strong><br>
• Frontal-parietal network: +28% connectivity<br>
• Default mode network: +19% efficiency<br>
• Cross-hemispheric transfer: 15ms faster
`,
'Synaptic Efficiency': `
<strong>Performance Metrics:</strong><br>
• Action potential speed: 120 m/s avg<br>
• Neurotransmitter recycling: 94% efficiency<br>
• Myelin integrity: Excellent condition
`,
'Neuroplasticity Index': `
<strong>Adaptation Indicators:</strong><br>
• New dendrite formation: +12% this month<br>
• Synaptic pruning: Optimal balance<br>
• BDNF levels: 15% above baseline
`,
'Cognitive Reserve': `
<strong>Resilience Factors:</strong><br>
• Backup pathway coverage: 89%<br>
• Stress resistance: High<br>
• Recovery time: 2.3 seconds avg
`
};
return expandedContent[title] || 'Additional neural data processing...';
}
}
// Initialize the Neural Synapse Dashboard
document.addEventListener('DOMContentLoaded', () => {
new NeuralSynapseController();
// Add CSS animation keyframes dynamically
const style = document.createElement('style');
style.textContent = `
@keyframes fadeInNeuralDetails {
from { opacity: 0; transform: translateY(10px); }
to { opacity: 1; transform: translateY(0); }
}
`;
document.head.appendChild(style);
});
// Advanced neural synchronization for multi-panel interactions
class NeuralSynchronizer {
constructor() {
this.setupGlobalNeuralState();
this.initializeCrossModalConnections();
}
setupGlobalNeuralState() {
// Create shared neural state across all dashboard components
window.neuralState = {
cognitiveLoad: 74,
processingPower: 92,
memoryStrength: 94.2,
attentionLevel: 'high',
learningMode: 'active'
};
// Broadcast state changes
this.broadcastStateUpdates();
}
initializeCrossModalConnections() {
// Connect thought analytics to memory visualization
const thoughtPatterns = document.querySelectorAll('.thought-pattern');
const memoryNodes = document.querySelectorAll('.memory-node');
thoughtPatterns.forEach((pattern, index) => {
pattern.addEventListener('click', () => {
this.activateCorrespondingMemoryNode(index);
});
});
}
activateCorrespondingMemoryNode(patternIndex) {
const memoryNodes = document.querySelectorAll('.memory-node');
const targetNode = memoryNodes[patternIndex % memoryNodes.length];
if (targetNode) {
// Highlight the connected memory node
targetNode.style.animation = 'none';
targetNode.offsetHeight;
targetNode.style.animation = 'memoryPulse 1s ease-in-out 3';
targetNode.style.transform = 'scale(1.5)';
setTimeout(() => {
targetNode.style.transform = '';
}, 1000);
}
}
broadcastStateUpdates() {
setInterval(() => {
// Update global neural state
window.neuralState.cognitiveLoad += (Math.random() - 0.5) * 10;
window.neuralState.cognitiveLoad = Math.max(60, Math.min(95, window.neuralState.cognitiveLoad));
// Trigger visual updates across all components
this.syncVisualComponents();
}, 3000);
}
syncVisualComponents() {
// Sync all components to current neural state
const loadValue = document.querySelector('.load-metric .load-value');
if (loadValue) {
loadValue.textContent = Math.round(window.neuralState.cognitiveLoad) + '%';
}
// Adjust animation speeds based on cognitive load
const highLoad = window.neuralState.cognitiveLoad > 80;
const neuralIcons = document.querySelectorAll('.neural-icon');
neuralIcons.forEach(icon => {
icon.style.animationDuration = highLoad ? '1s' : '1.5s';
});
}
}
// Initialize neural synchronization
setTimeout(() => new NeuralSynchronizer(), 1000);
</script>
</body>
</html>