# Progressive SDG Network Visualization Specification ## Core Challenge Create **progressively sophisticated SDG network visualizations** that integrate multiple open data APIs to display environmental, scientific, and sustainable development data as interactive force-directed graphs. Each iteration should discover new data sources and enhance visual/interactive capabilities. ## Output Requirements **File Naming**: `sdg_viz_[iteration_number].html` **Content Structure**: Self-contained HTML file with embedded D3.js visualization ```html SDG Network Visualization [Iteration Number] - [Data Source Theme]
``` ## Progressive Enhancement Dimensions ### **Phase 1: Foundation (Iterations 1-5)** **Focus**: Basic network visualization with single API integration **Node Enhancements:** - Size based on data properties (e.g., population, magnitude) - Color coding by category/type (using color scales) - Clear labels with smart positioning - Hover tooltips with basic information **Edge Enhancements:** - Width based on relationship strength - Color coding for relationship types - Straight lines with arrows for directionality - Dashed/solid patterns for different relationship classes **Interactivity:** - Drag nodes to reposition - Zoom and pan controls - Click to highlight connected nodes - Basic filtering by node type **Data Integration:** - Single API source per iteration - Simple JSON data transformation - Basic node-edge relationship mapping - Manual API endpoint definition ### **Phase 2: Intermediate (Iterations 6-12)** **Focus**: Multi-source integration and enhanced interactivity **Node Enhancements:** - Dynamic sizing with min/max constraints - Multi-property color encoding (fill + border) - Icon/symbol overlays for node types - Rich tooltips with formatted data tables - Node clustering and grouping - Custom shapes for different entity types **Edge Enhancements:** - Curved edges for better visibility - Dynamic edge strength from data properties - Animated flow along edges - Edge bundling for cleaner layouts - Multiple edge types with different styles **Interactivity:** - Search functionality to find nodes - Multi-select for comparison - Time-based filtering/animation - Expandable/collapsible node groups - Side panel with detailed statistics - Export data/visualization options **Data Integration:** - Combine 2-3 API sources - Automatic data merging by key fields - API discovery via Swagger/OpenAPI specs - Error handling for API failures - Caching for performance ### **Phase 3: Advanced (Iterations 13-20)** **Focus**: Sophisticated algorithms and real-time capabilities **Node Enhancements:** - Force-based clustering algorithms - Community detection visualization - Centrality measures (betweenness, closeness) - Node importance ranking - Multi-level node hierarchies - Animated node state transitions **Edge Enhancements:** - Weighted force simulation - Edge confidence/uncertainty visualization - Temporal edge evolution - Hierarchical edge bundling - Edge crossing minimization **Interactivity:** - Real-time data updates - Graph layout algorithm selection - Advanced filtering with boolean logic - Shortest path highlighting - Neighborhood exploration - Graph metric dashboards - Collaborative filtering **Data Integration:** - 4+ API sources integrated - Automated API endpoint discovery - Data quality indicators - Cross-API entity resolution - Streaming data integration - Webhook support for updates ### **Phase 4: Expert (Iterations 21+)** **Focus**: Novel techniques and AI-enhanced features **Node Enhancements:** - ML-based node positioning - Anomaly detection highlighting - Predictive node attributes - Semantic node embedding - Dynamic node importance - Multi-dimensional projection **Edge Enhancements:** - Probabilistic edge rendering - Predicted relationship suggestions - Edge importance scoring - Dynamic edge weight learning - Causal relationship inference **Interactivity:** - Natural language queries - AI-powered graph insights - Automatic pattern detection - Interactive graph queries (Cypher-like) - Graph comparison tools - VR/AR integration capabilities **Data Integration:** - Federated query across APIs - Automatic schema alignment - Knowledge graph construction - Semantic web integration (RDF, SPARQL) - Real-time distributed data - Blockchain data sources ## API Discovery Strategy ### **Target Data Domains** Each iteration should discover and integrate APIs from these domains: **Environmental Data:** - Air quality (OpenAQ, EPA APIs) - Water quality (USGS, EPA Water) - Climate data (NOAA, NASA) - Weather (OpenWeatherMap, Weather.gov) - Ocean data (NOAA Ocean, Marine APIs) **Scientific Data:** - Biodiversity (GBIF, iNaturalist) - Forest data (Global Forest Watch) - Soil data (SoilGrids, ISRIC) - Satellite imagery (NASA Earth, Sentinel) - Seismic data (USGS Earthquake) **Sustainable Development:** - UN SDG API (existing baseline) - World Bank Open Data - OECD Statistics - WHO Global Health - FAO Agricultural Data **Discovery Process:** 1. **Web Search for APIs**: Use WebSearch to find: `"[domain] API swagger site:github.com"` 2. **Swagger/OpenAPI Analysis**: Parse API specs to find endpoints 3. **Data Quality Check**: Verify API has relevant network-ready data 4. **Integration Planning**: Map API data to nodes and edges 5. **Documentation**: Record API details in visualization ### **API Selection Criteria** - **Open Access**: Free or freemium tier available - **REST/JSON**: Easy integration with JavaScript - **Documentation**: Well-documented endpoints - **Reliability**: Active maintenance and uptime - **Data Richness**: Complex enough for network visualization - **SDG Relevance**: Connects to sustainability goals ## Network Data Model ### **Node Schema** ```javascript { id: "unique_identifier", name: "Display Name", type: "category", // e.g., "country", "indicator", "species" group: "group_name", // for color coding size: numeric_value, // for visual sizing properties: { // Domain-specific attributes value: number, unit: "string", timestamp: "ISO_date", source_api: "api_name", // ... additional properties }, x: number, // force layout position y: number } ``` ### **Edge Schema** ```javascript { source: "node_id", target: "node_id", type: "relationship_type", strength: numeric_value, // for force simulation weight: numeric_value, // for visual width properties: { correlation: number, confidence: number, source_api: "api_name", // ... additional properties } } ``` ## Web Learning Integration ### **Each Iteration Must:** 1. **Fetch Assigned URL**: Use WebFetch to retrieve documentation/tutorial 2. **Extract Techniques**: Identify 1-3 specific techniques from the source 3. **Apply Learning**: Implement the technique in the visualization 4. **Document Source**: Clearly attribute the web source and what was learned 5. **Demonstrate Improvement**: Show measurable enhancement from previous iteration ### **Web Source Categories** **D3.js Techniques:** - Observable HQ notebooks (d3.js examples) - D3.js official documentation - Mike Bostock's blocks - D3 Graph Gallery - Interactive graph tutorials **Force-Directed Graphs:** - Force simulation parameters - Collision detection - Link distance functions - Clustering algorithms - Layout optimization **Data Integration:** - REST API patterns - CORS handling - Async data loading - Data transformation pipelines - Error handling strategies **Visual Design:** - Color theory for networks - Graph readability principles - Interactive UX patterns - Animation best practices - Accessibility in visualizations ## Quality Standards ### **Functional Requirements** - ✅ Fetches data from at least one open API - ✅ Renders as force-directed graph with D3.js - ✅ Nodes and edges have meaningful properties from data - ✅ Interactive (hover, click, drag minimum) - ✅ Responsive design works on desktop and mobile - ✅ Clear data source attribution - ✅ Error handling for API failures ### **Visual Excellence** - ✅ Professional color scheme with good contrast - ✅ Readable labels and legends - ✅ Smooth animations (60fps) - ✅ Clear visual hierarchy - ✅ Consistent styling throughout - ✅ Loading states for async operations ### **Technical Quality** - ✅ Self-contained HTML file (or minimal external deps) - ✅ Clean, commented JavaScript code - ✅ Efficient force simulation (no lag) - ✅ Proper error handling and fallbacks - ✅ Browser compatibility (modern browsers) - ✅ No console errors ### **Progressive Learning** - ✅ Demonstrates new technique from web source - ✅ Builds upon previous iterations where appropriate - ✅ Documents what was learned and how applied - ✅ Shows measurable improvement - ✅ Explores new API sources ## Iteration Evolution Strategy ### **Starting Point (Iteration 1)** - Use UN SDG API (baseline from existing project) - Basic force-directed graph with D3.js v7 - Simple node/edge styling - Basic hover tooltips - Learn from: D3.js force simulation documentation ### **Early Iterations (2-5)** - Add one new API per iteration - Focus on core graph enhancements - Build interactive controls - Learn: Color scales, tooltips, filtering ### **Middle Iterations (6-12)** - Combine multiple APIs - Advanced interactivity - Custom layouts and algorithms - Learn: Graph algorithms, data merging, UX patterns ### **Advanced Iterations (13-20)** - Real-time data integration - Complex algorithms (community detection, centrality) - Rich dashboards - Learn: Advanced D3, graph theory, streaming data ### **Expert Iterations (21+)** - AI/ML integration - Novel visualization techniques - Cross-platform capabilities - Learn: Cutting-edge graph visualization research ## Success Metrics Each iteration should improve on at least 3 of these metrics: **Data Richness:** - Number of API sources integrated - Total nodes in network - Total edges in network - Data update frequency **Visual Quality:** - Color coding sophistication - Label readability score - Animation smoothness - Layout clarity **Interactivity:** - Number of interactive features - Response time to user actions - Filter/search capabilities - Information density **Technical Innovation:** - New techniques applied - Performance improvements - Code quality metrics - Browser compatibility ## Ultra-Thinking Directive Before each iteration, deeply consider: **API Discovery:** - What domain provides the most value for SDG insights? - Which APIs have network-ready data structures? - How can multiple APIs be meaningfully combined? - What data relationships would be most revealing? **Visualization Strategy:** - What graph layout best reveals the data patterns? - How can node/edge properties enhance understanding? - What interactivity would provide the most insight? - How does this build on previous iterations? **Web Learning Application:** - What specific technique from the web source applies here? - How can this technique improve the visualization? - What adaptations are needed for our use case? - How does this advance the state of the art? **User Value:** - What insights does this visualization reveal? - How intuitive is the interaction model? - What questions can users answer with this tool? - How does this serve SDG analysis and understanding? **Generate visualizations that:** - **Discover New Data**: Find and integrate novel API sources - **Apply Web Knowledge**: Demonstrate clear learning from web research - **Enhance Progressively**: Each iteration measurably better than the last - **Serve SDGs**: Provide genuine value for sustainable development insights - **Inspire Exploration**: Create compelling, informative, interactive experiences