folk-canvas/lib/Matrix.ts

287 lines
7.3 KiB
TypeScript

import type { Point } from './types';
export const toDOMPrecision = (value: number) => Math.round(value * 1e4) / 1e4;
const PI2 = Math.PI * 2;
const TAU = Math.PI / 2;
export interface MatrixInit {
a: number;
b: number;
c: number;
d: number;
e: number;
f: number;
}
export interface IMatrix extends MatrixInit {
equals(m: MatrixInit): boolean;
identity(): Matrix;
multiply(m: MatrixInit): Matrix;
rotate(r: number, cx?: number, cy?: number): Matrix;
translate(x: number, y: number): Matrix;
scale(x: number, y: number): Matrix;
invert(): Matrix;
applyToPoint(point: Point): Point;
applyToPoints(points: Point[]): Point[];
rotation(): number;
point(): Point;
decompose(): { x: number; y: number; scaleX: number; scaleY: number; rotation: number };
clone(): Matrix;
toCssString(): string;
toDOMMatrix(): DOMMatrix;
}
export class Matrix implements IMatrix {
constructor(a: number, b: number, c: number, d: number, e: number, f: number) {
this.a = a;
this.b = b;
this.c = c;
this.d = d;
this.e = e;
this.f = f;
}
a = 1.0;
b = 0.0;
c = 0.0;
d = 1.0;
e = 0.0;
f = 0.0;
equals(m: MatrixInit) {
return this.a === m.a && this.b === m.b && this.c === m.c && this.d === m.d && this.e === m.e && this.f === m.f;
}
identity() {
this.a = 1.0;
this.b = 0.0;
this.c = 0.0;
this.d = 1.0;
this.e = 0.0;
this.f = 0.0;
return this;
}
multiply(m: MatrixInit) {
const { a, b, c, d, e, f } = this;
this.a = a * m.a + c * m.b;
this.c = a * m.c + c * m.d;
this.e = a * m.e + c * m.f + e;
this.b = b * m.a + d * m.b;
this.d = b * m.c + d * m.d;
this.f = b * m.e + d * m.f + f;
return this;
}
rotate(r: number, cx?: number, cy?: number) {
if (r === 0) return this;
if (cx === undefined) return this.multiply(Matrix.Rotate(r));
return this.translate(cx, cy!).multiply(Matrix.Rotate(r)).translate(-cx, -cy!);
}
translate(x: number, y: number): Matrix {
return this.multiply(Matrix.Translate(x, y!));
}
scale(x: number, y: number) {
return this.multiply(Matrix.Scale(x, y));
}
invert() {
const { a, b, c, d, e, f } = this;
const denominator = a * d - b * c;
this.a = d / denominator;
this.b = b / -denominator;
this.c = c / -denominator;
this.d = a / denominator;
this.e = (d * e - c * f) / -denominator;
this.f = (b * e - a * f) / denominator;
return this;
}
applyToPoint(point: Point) {
return Matrix.applyToPoint(this, point);
}
applyToPoints(points: Point[]) {
return Matrix.applyToPoints(this, points);
}
rotation() {
return Matrix.Rotation(this);
}
point() {
return Matrix.ToPoint(this);
}
decompose() {
return Matrix.Decompose(this);
}
clone() {
return new Matrix(this.a, this.b, this.c, this.d, this.e, this.f);
}
toDOMMatrix(): DOMMatrix {
return new DOMMatrix([this.a, this.b, this.c, this.d, this.e, this.f]);
}
toCssString() {
return Matrix.ToCssString(this);
}
static Rotate(r: number, cx?: number, cy?: number) {
if (r === 0) return Matrix.Identity();
const cosAngle = Math.cos(r);
const sinAngle = Math.sin(r);
const rotationMatrix = new Matrix(cosAngle, sinAngle, -sinAngle, cosAngle, 0.0, 0.0);
if (cx === undefined) return rotationMatrix;
return Matrix.Compose(Matrix.Translate(cx, cy!), rotationMatrix, Matrix.Translate(-cx, -cy!));
}
static Scale: {
(x: number, y: number): MatrixInit;
(x: number, y: number, cx: number, cy: number): MatrixInit;
} = (x: number, y: number, cx?: number, cy?: number) => {
const scaleMatrix = new Matrix(x, 0, 0, y, 0, 0);
if (cx === undefined) return scaleMatrix;
return Matrix.Compose(Matrix.Translate(cx, cy!), scaleMatrix, Matrix.Translate(-cx, -cy!));
};
static Multiply(m1: MatrixInit, m2: MatrixInit): MatrixInit {
return {
a: m1.a * m2.a + m1.c * m2.b,
c: m1.a * m2.c + m1.c * m2.d,
e: m1.a * m2.e + m1.c * m2.f + m1.e,
b: m1.b * m2.a + m1.d * m2.b,
d: m1.b * m2.c + m1.d * m2.d,
f: m1.b * m2.e + m1.d * m2.f + m1.f,
};
}
static Inverse(m: MatrixInit): MatrixInit {
const denominator = m.a * m.d - m.b * m.c;
return {
a: m.d / denominator,
b: m.b / -denominator,
c: m.c / -denominator,
d: m.a / denominator,
e: (m.d * m.e - m.c * m.f) / -denominator,
f: (m.b * m.e - m.a * m.f) / denominator,
};
}
static Absolute(m: MatrixInit): MatrixInit {
const denominator = m.a * m.d - m.b * m.c;
return {
a: m.d / denominator,
b: m.b / -denominator,
c: m.c / -denominator,
d: m.a / denominator,
e: (m.d * m.e - m.c * m.f) / denominator,
f: (m.b * m.e - m.a * m.f) / -denominator,
};
}
static Compose(...matrices: MatrixInit[]) {
const matrix = Matrix.Identity();
for (let i = 0, n = matrices.length; i < n; i++) {
matrix.multiply(matrices[i]);
}
return matrix;
}
static Identity() {
return new Matrix(1.0, 0.0, 0.0, 1.0, 0.0, 0.0);
}
static Translate(x: number, y: number) {
return new Matrix(1.0, 0.0, 0.0, 1.0, x, y);
}
static ToPoint(m: MatrixInit): Point {
return { x: m.e, y: m.f };
}
static Rotation(m: MatrixInit): number {
let rotation;
if (m.a !== 0 || m.c !== 0) {
const hypotAc = (m.a * m.a + m.c * m.c) ** 0.5;
rotation = Math.acos(m.a / hypotAc) * (m.c > 0 ? -1 : 1);
} else if (m.b !== 0 || m.d !== 0) {
const hypotBd = (m.b * m.b + m.d * m.d) ** 0.5;
rotation = TAU + Math.acos(m.b / hypotBd) * (m.d > 0 ? -1 : 1);
} else {
rotation = 0;
}
return clampRotation(rotation);
}
static Decompose(m: MatrixInit) {
let scaleX, scaleY, rotation;
if (m.a !== 0 || m.c !== 0) {
const hypotAc = (m.a * m.a + m.c * m.c) ** 0.5;
scaleX = hypotAc;
scaleY = (m.a * m.d - m.b * m.c) / hypotAc;
rotation = Math.acos(m.a / hypotAc) * (m.c > 0 ? -1 : 1);
} else if (m.b !== 0 || m.d !== 0) {
const hypotBd = (m.b * m.b + m.d * m.d) ** 0.5;
scaleX = (m.a * m.d - m.b * m.c) / hypotBd;
scaleY = hypotBd;
rotation = TAU + Math.acos(m.b / hypotBd) * (m.d > 0 ? -1 : 1);
} else {
scaleX = 0;
scaleY = 0;
rotation = 0;
}
return {
x: m.e,
y: m.f,
scaleX,
scaleY,
rotation: clampRotation(rotation),
};
}
static applyToPoint(m: MatrixInit, point: Point) {
return { x: m.a * point.x + m.c * point.y + m.e, y: m.b * point.x + m.d * point.y + m.f };
}
static applyToPoints(m: MatrixInit, points: Point[]): Point[] {
return points.map((point) => ({ x: m.a * point.x + m.c * point.y + m.e, y: m.b * point.x + m.d * point.y + m.f }));
}
static From(m: MatrixInit | DOMMatrix) {
if (m instanceof DOMMatrix) {
return Matrix.FromDOMMatrix(m);
}
return new Matrix(m.a, m.b, m.c, m.d, m.e, m.f);
}
static FromDOMMatrix(domMatrix: DOMMatrix): Matrix {
return new Matrix(domMatrix.a, domMatrix.b, domMatrix.c, domMatrix.d, domMatrix.e, domMatrix.f);
}
static ToCssString(m: MatrixInit) {
return `matrix(${toDOMPrecision(m.a)}, ${toDOMPrecision(m.b)}, ${toDOMPrecision(
m.c
)}, ${toDOMPrecision(m.d)}, ${toDOMPrecision(m.e)}, ${toDOMPrecision(m.f)})`;
}
}
function clampRotation(radians: number) {
return (PI2 + radians) % PI2;
}