// This is a rewrite of https://github.com/guerrillacontra/html5-es6-physics-rope import { Vector } from './common/Vector.ts'; import type { Point } from './common/types.ts'; import { DOMRectTransform } from './common/DOMRectTransform.ts'; import { FolkBaseConnection } from './folk-base-connection.ts'; import { css, PropertyValues } from '@lit/reactive-element'; import { AnimationFrameController, AnimationFrameControllerHost } from './common/animation-frame-controller.ts'; import { property } from '@lit/reactive-element/decorators.js'; const lerp = (first: number, second: number, percentage: number) => first + (second - first) * percentage; // Each rope part is one of these uses a high precision variant of Störmer–Verlet integration to keep the simulation consistent otherwise it would "explode"! interface RopePoint { pos: Point; distanceToNextPoint: number; isFixed: boolean; oldPos: Point; velocity: Point; mass: number; damping: number; prev: RopePoint | null; next: RopePoint | null; } declare global { interface HTMLElementTagNameMap { 'folk-rope': FolkRope; } } export class FolkRope extends FolkBaseConnection implements AnimationFrameControllerHost { static override tagName = 'folk-rope'; static styles = [ FolkBaseConnection.styles, css` svg { height: 100%; pointer-events: none; width: 100%; } path { fill: none; pointer-events: auto; stroke: var(--folk-rope-color, black); stroke-width: var(--folk-rope-width, 3); stroke-linecap: var(--folk-rope-linecap, round); } `, ]; #rAF = new AnimationFrameController(this); #svg = document.createElementNS('http://www.w3.org/2000/svg', 'svg'); #path = document.createElementNS('http://www.w3.org/2000/svg', 'path'); #path2 = document.createElementNS('http://www.w3.org/2000/svg', 'path'); #points: RopePoint[] = []; get points() { return this.#points; } @property({ type: Object }) gravity = { x: 0, y: 3000 }; override firstUpdated(changedProperties: PropertyValues): void { super.firstUpdated(changedProperties); this.#svg.append(this.#path, this.#path2); this.renderRoot.appendChild(this.#svg); } tick() { for (const point of this.#points) { this.#integratePoint(point, this.gravity); } // 3 constraint iterations is enough for fixed timestep for (let iteration = 0; iteration < 3; iteration++) { for (const point of this.#points) { this.#constrainPoint(point); } } } override update(changedProperties: PropertyValues) { super.update(changedProperties); const { sourceRect, targetRect } = this; if (sourceRect === null || targetRect === null) { this.#rAF.stop(); this.#points = []; this.#path.removeAttribute('d'); this.#path2.removeAttribute('d'); return; } let source: Point; let target: Point; if (sourceRect instanceof DOMRectTransform) { source = sourceRect.toParentSpace({ x: sourceRect.width / 2, y: sourceRect.height }); } else { source = { x: sourceRect.x + sourceRect.width / 2, y: sourceRect.y + sourceRect.height, }; } if (targetRect instanceof DOMRectTransform) { target = targetRect.toParentSpace({ x: targetRect.width / 2, y: targetRect.height }); } else { target = { x: targetRect.x + targetRect.width / 2, y: targetRect.y + targetRect.height, }; } if (this.#points.length === 0) { this.#points = this.#generatePoints(source, target); this.#rAF.start(); } const startingPoint = this.#points.at(0); const endingPoint = this.#points.at(-1); if (startingPoint === undefined || endingPoint === undefined) return; startingPoint.pos = source; endingPoint.pos = target; } render() { if (this.#points.length < 2) return; let pathData = `M ${this.#points[0].pos.x} ${this.#points[0].pos.y}`; let path2Data = ''; let isBroken = false; for (let i = 1; i < this.#points.length; i++) { const point = this.#points[i]; if (point.prev === null) { isBroken = true; path2Data = `M ${point.pos.x} ${point.pos.y}`; } else if (isBroken) { path2Data += ` L ${point.pos.x} ${point.pos.y}`; } else { pathData += ` L ${point.pos.x} ${point.pos.y}`; } } this.#path.setAttribute('d', pathData); if (path2Data) { this.#path2.setAttribute('d', path2Data); } else { this.#path2.removeAttribute('d'); } } #generatePoints(start: Point, end: Point) { const delta = Vector.sub(end, start); const len = Vector.mag(delta); const resolution = 5; const points: RopePoint[] = []; const pointsLen = Math.floor(len / resolution); for (let i = 0; i < pointsLen; i++) { const percentage = i / (pointsLen - 1); const pos = { x: lerp(start.x, end.x, percentage), y: lerp(start.y, end.y, percentage), }; points.push({ pos, oldPos: { ...pos }, distanceToNextPoint: resolution, mass: 1, damping: 0.99, velocity: Vector.zero(), isFixed: i === 0 || i === pointsLen - 1, prev: null, next: null, }); } // Link nodes into a doubly linked list for (let i = 0; i < pointsLen; i++) { const prev = i != 0 ? points[i - 1] : null; const curr = points[i]; const next = i != pointsLen - 1 ? points[i + 1] : null; curr.prev = prev; curr.next = next; } return points; } #integratePoint(point: RopePoint, gravity: Point) { if (!point.isFixed) { point.velocity = Vector.sub(point.pos, point.oldPos); point.oldPos = { ...point.pos }; const accel = Vector.add(gravity, { x: 0, y: point.mass }); const tsSq = this.#rAF.fixedTimestep ** 2; point.pos.x += point.velocity.x * point.damping + accel.x * tsSq; point.pos.y += point.velocity.y * point.damping + accel.y * tsSq; } else { point.velocity = Vector.zero(); point.oldPos = { ...point.pos }; } } // Apply constraints related to other nodes next to it (keeps each node within distance) #constrainPoint(point: RopePoint) { if (point.next) applyConstraint(point, point.next); if (point.prev) applyConstraint(point, point.prev); } cut(index = Math.floor(this.#points.length / 2)) { if (index < 0 || index >= this.#points.length - 1) return; this.#points[index].next = null; this.#points[index + 1].prev = null; } mend(index = Math.floor(this.#points.length / 2)) { if (index < 0 || index >= this.#points.length - 1) return; this.#points[index].next = this.#points[index + 1]; this.#points[index + 1].prev = this.#points[index]; } } function applyConstraint(p1: RopePoint, p2: RopePoint) { const delta = Vector.sub(p2.pos, p1.pos); const len = Vector.mag(delta); // Prevent division by zero if (len < 0.0001) return; const diff = len - p1.distanceToNextPoint; const normal = Vector.normalized(delta); const adjustment = Vector.scale(normal, diff * 0.75); if (!p1.isFixed) { p1.pos = Vector.add(p1.pos, adjustment); } if (!p2.isFixed) { p2.pos = Vector.sub(p2.pos, adjustment); } }