prettier
This commit is contained in:
parent
b2e1e16499
commit
1ae63d29b5
|
|
@ -0,0 +1,3 @@
|
||||||
|
{
|
||||||
|
"singleQuote": true
|
||||||
|
}
|
||||||
|
|
@ -1,155 +0,0 @@
|
||||||
// Adopted from: https://github.com/pshihn/bezier-points/blob/master/src/index.ts
|
|
||||||
|
|
||||||
export type Point = [number, number];
|
|
||||||
|
|
||||||
// distance between 2 points
|
|
||||||
function distance(p1: Point, p2: Point): number {
|
|
||||||
return Math.sqrt(distanceSq(p1, p2));
|
|
||||||
}
|
|
||||||
|
|
||||||
// distance between 2 points squared
|
|
||||||
function distanceSq(p1: Point, p2: Point): number {
|
|
||||||
return Math.pow(p1[0] - p2[0], 2) + Math.pow(p1[1] - p2[1], 2);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Distance squared from a point p to the line segment vw
|
|
||||||
function distanceToSegmentSq(p: Point, v: Point, w: Point): number {
|
|
||||||
const l2 = distanceSq(v, w);
|
|
||||||
if (l2 === 0) {
|
|
||||||
return distanceSq(p, v);
|
|
||||||
}
|
|
||||||
let t = ((p[0] - v[0]) * (w[0] - v[0]) + (p[1] - v[1]) * (w[1] - v[1])) / l2;
|
|
||||||
t = Math.max(0, Math.min(1, t));
|
|
||||||
return distanceSq(p, lerp(v, w, t));
|
|
||||||
}
|
|
||||||
|
|
||||||
function lerp(a: Point, b: Point, t: number): Point {
|
|
||||||
return [a[0] + (b[0] - a[0]) * t, a[1] + (b[1] - a[1]) * t];
|
|
||||||
}
|
|
||||||
|
|
||||||
// Adapted from https://seant23.wordpress.com/2010/11/12/offset-bezier-curves/
|
|
||||||
function flatness(points: readonly Point[], offset: number): number {
|
|
||||||
const p1 = points[offset + 0];
|
|
||||||
const p2 = points[offset + 1];
|
|
||||||
const p3 = points[offset + 2];
|
|
||||||
const p4 = points[offset + 3];
|
|
||||||
|
|
||||||
let ux = 3 * p2[0] - 2 * p1[0] - p4[0];
|
|
||||||
ux *= ux;
|
|
||||||
let uy = 3 * p2[1] - 2 * p1[1] - p4[1];
|
|
||||||
uy *= uy;
|
|
||||||
let vx = 3 * p3[0] - 2 * p4[0] - p1[0];
|
|
||||||
vx *= vx;
|
|
||||||
let vy = 3 * p3[1] - 2 * p4[1] - p1[1];
|
|
||||||
vy *= vy;
|
|
||||||
|
|
||||||
if (ux < vx) {
|
|
||||||
ux = vx;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (uy < vy) {
|
|
||||||
uy = vy;
|
|
||||||
}
|
|
||||||
|
|
||||||
return ux + uy;
|
|
||||||
}
|
|
||||||
|
|
||||||
function getPointsOnBezierCurveWithSplitting(
|
|
||||||
points: readonly Point[],
|
|
||||||
offset: number,
|
|
||||||
tolerance: number,
|
|
||||||
newPoints?: Point[]
|
|
||||||
): Point[] {
|
|
||||||
const outPoints = newPoints || [];
|
|
||||||
if (flatness(points, offset) < tolerance) {
|
|
||||||
const p0 = points[offset + 0];
|
|
||||||
if (outPoints.length) {
|
|
||||||
const d = distance(outPoints[outPoints.length - 1], p0);
|
|
||||||
if (d > 1) {
|
|
||||||
outPoints.push(p0);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
outPoints.push(p0);
|
|
||||||
}
|
|
||||||
outPoints.push(points[offset + 3]);
|
|
||||||
} else {
|
|
||||||
// subdivide
|
|
||||||
const t = 0.5;
|
|
||||||
const p1 = points[offset + 0];
|
|
||||||
const p2 = points[offset + 1];
|
|
||||||
const p3 = points[offset + 2];
|
|
||||||
const p4 = points[offset + 3];
|
|
||||||
|
|
||||||
const q1 = lerp(p1, p2, t);
|
|
||||||
const q2 = lerp(p2, p3, t);
|
|
||||||
const q3 = lerp(p3, p4, t);
|
|
||||||
|
|
||||||
const r1 = lerp(q1, q2, t);
|
|
||||||
const r2 = lerp(q2, q3, t);
|
|
||||||
|
|
||||||
const red = lerp(r1, r2, t);
|
|
||||||
|
|
||||||
getPointsOnBezierCurveWithSplitting([p1, q1, r1, red], 0, tolerance, outPoints);
|
|
||||||
getPointsOnBezierCurveWithSplitting([red, r2, q3, p4], 0, tolerance, outPoints);
|
|
||||||
}
|
|
||||||
return outPoints;
|
|
||||||
}
|
|
||||||
|
|
||||||
export function simplify(points: readonly Point[], distance: number): Point[] {
|
|
||||||
return simplifyPoints(points, 0, points.length, distance);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Ramer–Douglas–Peucker algorithm
|
|
||||||
// https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
|
|
||||||
export function simplifyPoints(
|
|
||||||
points: readonly Point[],
|
|
||||||
start: number,
|
|
||||||
end: number,
|
|
||||||
epsilon: number,
|
|
||||||
newPoints?: Point[]
|
|
||||||
): Point[] {
|
|
||||||
const outPoints = newPoints || [];
|
|
||||||
|
|
||||||
// find the most distance point from the endpoints
|
|
||||||
const s = points[start];
|
|
||||||
const e = points[end - 1];
|
|
||||||
let maxDistSq = 0;
|
|
||||||
let maxNdx = 1;
|
|
||||||
for (let i = start + 1; i < end - 1; ++i) {
|
|
||||||
const distSq = distanceToSegmentSq(points[i], s, e);
|
|
||||||
if (distSq > maxDistSq) {
|
|
||||||
maxDistSq = distSq;
|
|
||||||
maxNdx = i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// if that point is too far, split
|
|
||||||
if (Math.sqrt(maxDistSq) > epsilon) {
|
|
||||||
simplifyPoints(points, start, maxNdx + 1, epsilon, outPoints);
|
|
||||||
simplifyPoints(points, maxNdx, end, epsilon, outPoints);
|
|
||||||
} else {
|
|
||||||
if (!outPoints.length) {
|
|
||||||
outPoints.push(s);
|
|
||||||
}
|
|
||||||
outPoints.push(e);
|
|
||||||
}
|
|
||||||
|
|
||||||
return outPoints;
|
|
||||||
}
|
|
||||||
|
|
||||||
export function pointsOnBezierCurves(
|
|
||||||
points: readonly Point[],
|
|
||||||
tolerance: number = 0.15,
|
|
||||||
distance?: number
|
|
||||||
): Point[] {
|
|
||||||
const newPoints: Point[] = [];
|
|
||||||
const numSegments = (points.length - 1) / 3;
|
|
||||||
for (let i = 0; i < numSegments; i++) {
|
|
||||||
const offset = i * 3;
|
|
||||||
getPointsOnBezierCurveWithSplitting(points, offset, tolerance, newPoints);
|
|
||||||
}
|
|
||||||
if (distance && distance > 0) {
|
|
||||||
return simplifyPoints(newPoints, 0, newPoints.length, distance);
|
|
||||||
}
|
|
||||||
return newPoints;
|
|
||||||
}
|
|
||||||
Loading…
Reference in New Issue