augmented bonding curve version

This commit is contained in:
Michael Zargham 2019-06-01 16:43:44 -07:00
parent 3f3996ce78
commit ff4fd7f953
9 changed files with 3666 additions and 16 deletions

File diff suppressed because one or more lines are too long

Binary file not shown.

Binary file not shown.

58
bonding_curve_eq.py Normal file
View File

@ -0,0 +1,58 @@
default_kappa= 2
default_exit_tax = .02
#value function for a given state (R,S)
def invariant(R,S,kappa=default_kappa):
return (S**kappa)/R
#given a value function (parameterized by kappa)
#and an invariant coeficient V0
#return Supply S as a function of reserve R
def reserve(S, V0, kappa=default_kappa):
return (S**kappa)/V0
#given a value function (parameterized by kappa)
#and an invariant coeficient V0
#return Supply S as a function of reserve R
def supply(R, V0, kappa=default_kappa):
return (V0*R)**(1/kappa)
#given a value function (parameterized by kappa)
#and an invariant coeficient V0
#return a spot price P as a function of reserve R
def spot_price(R, V0, kappa=default_kappa):
return kappa*R**((kappa-1)/kappa)/V0**(1/kappa)
#for a given state (R,S)
#given a value function (parameterized by kappa)
#and an invariant coeficient V0
#deposit deltaR to Mint deltaS
#with realized price deltaR/deltaS
def mint(deltaR, R,S, V0, kappa=default_kappa):
deltaS = (V0*(R+deltaR))**(1/kappa)-S
realized_price = deltaR/deltaS
return deltaS, realized_price
#for a given state (R,S)
#given a value function (parameterized by kappa)
#and an invariant coeficient V0
#burn deltaS to Withdraw deltaR
#with realized price deltaR/deltaS
def withdraw(deltaS, R,S, V0, kappa=default_kappa):
deltaR = R-((S-deltaS)**kappa)/V0
realized_price = deltaR/deltaS
return deltaR, realized_price
def withdraw_with_tax(deltaS, R,S, V0, exit_tax = default_exit_tax, kappa=default_kappa):
deltaR = R-((S-deltaS)**kappa)/V0
quantity_taxed = exit_tax*deltaR
quantity_recieved = (1-exit_tax)*deltaR
realized_price = quantity_recieved/deltaS
return quantity_recieved, quantity_taxed, realized_price

File diff suppressed because one or more lines are too long

1580
conviction_cadCAD3.ipynb Normal file

File diff suppressed because one or more lines are too long

View File

@ -1,6 +1,7 @@
import networkx as nx
from scipy.stats import expon, gamma
import numpy as np
from bonding_curve_eq import reserve, invariant,spot_price
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.cm as cmx
@ -12,13 +13,30 @@ def get_nodes_by_type(g, node_type_selection):
def get_edges_by_type(g, edge_type_selection):
return [edge for edge in g.edges if g.edges[edge]['type']== edge_type_selection ]
def total_funds_given_total_supply(total_supply):
default_theta = .25
default_initial_price = .1
default_kappa = 2
def total_funds_given_total_supply(total_supply, theta = default_theta, initial_price = default_initial_price):
#can put any bonding curve invariant here for initializatio!
total_funds = total_supply**2/1000
S = total_supply
total_funds = theta*reserve(S, S*initial_price)
return total_funds
def initialize_bonding_curve(initial_supply, initial_price = default_initial_price, kappa =default_kappa, theta = default_theta):
S = initial_supply
R = reserve(S, S*initial_price)*(1-theta)
V0 = invariant(R,S,kappa)
initial_reserve = R
hatch_price = spot_price(R, V0, kappa)
return initial_reserve, V0, hatch_price
#maximum share of funds a proposal can take
default_beta = .2 #later we should set this to be param so we can sweep it
# tuning param for the trigger function

554
conviction_system_logic3.py Normal file
View File

@ -0,0 +1,554 @@
import numpy as np
from conviction_helpers import get_nodes_by_type, get_edges_by_type, social_affinity_booster
from bonding_curve_eq import reserve, spot_price, withdraw_with_tax
#import networkx as nx
from scipy.stats import expon, gamma
#functions for partial state update block 1
#Driving processes: arrival of participants, proposals and funds
##-----------------------------------------
def gen_new_participant(network, new_participant_holdings):
i = len([node for node in network.nodes])
network.add_node(i)
network.nodes[i]['type']="participant"
s_rv = np.random.rand()
network.nodes[i]['sentiment'] = s_rv
network.nodes[i]['holdings']=new_participant_holdings
for j in get_nodes_by_type(network, 'proposal'):
network.add_edge(i, j)
rv = np.random.rand()
a_rv = 1-4*(1-rv)*rv #polarized distribution
network.edges[(i, j)]['affinity'] = a_rv
network.edges[(i,j)]['tokens'] = a_rv*network.nodes[i]['holdings']
network.edges[(i, j)]['conviction'] = 0
network.edges[(i,j)]['type'] = 'support'
return network
def gen_new_proposal(network, funds, supply, trigger_func, scale_factor = 1.0/100):
j = len([node for node in network.nodes])
network.add_node(j)
network.nodes[j]['type']="proposal"
network.nodes[j]['conviction']=0
network.nodes[j]['status']='candidate'
network.nodes[j]['age']=0
rescale = funds*scale_factor
r_rv = gamma.rvs(3,loc=0.001, scale=rescale)
network.node[j]['funds_requested'] = r_rv
network.nodes[j]['trigger']= trigger_func(r_rv, funds, supply)
participants = get_nodes_by_type(network, 'participant')
proposing_participant = np.random.choice(participants)
for i in participants:
network.add_edge(i, j)
if i==proposing_participant:
network.edges[(i, j)]['affinity']=1
else:
rv = np.random.rand()
a_rv = 1-4*(1-rv)*rv #polarized distribution
network.edges[(i, j)]['affinity'] = a_rv
network.edges[(i, j)]['conviction'] = 0
network.edges[(i,j)]['tokens'] = 0
network.edges[(i,j)]['type'] = 'support'
return network
def driving_process(params, step, sL, s):
#placeholder plumbing for random processes
arrival_rate = 10/s['sentiment']
rv1 = np.random.rand()
new_participant = bool(rv1<1/arrival_rate)
supporters = get_edges_by_type(s['network'], 'support')
if new_participant:
h_rv = expon.rvs(loc=0.0, scale=1000)
new_participant_holdings = h_rv
else:
new_participant_holdings = 0
network = s['network']
affinities = [network.edges[e]['affinity'] for e in supporters ]
median_affinity = np.median(affinities)
proposals = get_nodes_by_type(network, 'proposal')
fund_requests = [network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate' ]
funds = s['funds']
total_funds_requested = np.sum(fund_requests)
proposal_rate = 10/median_affinity * total_funds_requested/funds
rv2 = np.random.rand()
new_proposal = bool(rv2<1/proposal_rate)
sentiment = s['sentiment']
funds = s['funds']
scale_factor = funds*sentiment**2/10000
#this shouldn't happen but expon is throwing domain errors
if sentiment>.4:
funds_arrival = expon.rvs(loc = 0, scale = scale_factor )
else:
funds_arrival = 0
return({'new_participant':new_participant,
'new_participant_holdings':new_participant_holdings,
'new_proposal':new_proposal,
'funds_arrival':funds_arrival})
#Mechanisms for updating the state based on driving processes
##---
def update_network(params, step, sL, s, _input):
network = s['network']
funds = s['funds']
supply = s['supply']
trigger_func = params['trigger_func']
#print(trigger_func)
new_participant = _input['new_participant'] #T/F
new_proposal = _input['new_proposal'] #T/F
if new_participant:
new_participant_holdings = _input['new_participant_holdings']
network = gen_new_participant(network, new_participant_holdings)
if new_proposal:
network= gen_new_proposal(network,funds,supply,trigger_func )
#update age of the existing proposals
proposals = get_nodes_by_type(network, 'proposal')
for j in proposals:
network.nodes[j]['age'] = network.nodes[j]['age']+1
if network.nodes[j]['status'] == 'candidate':
requested = network.nodes[j]['funds_requested']
network.nodes[j]['trigger'] = trigger_func(requested, funds, supply)
else:
network.nodes[j]['trigger'] = np.nan
key = 'network'
value = network
return (key, value)
def increment_funds(params, step, sL, s, _input):
funds = s['funds']
funds_arrival = _input['funds_arrival']
#increment funds
funds = funds + funds_arrival
key = 'funds'
value = funds
return (key, value)
def increment_supply(params, step, sL, s, _input):
supply = s['supply']
supply_arrival = _input['new_participant_holdings']
#increment funds
supply = supply + supply_arrival
key = 'supply'
value = supply
return (key, value)
#functions for partial state update block 2
#Driving processes: completion of previously funded proposals
##-----------------------------------------
def check_progress(params, step, sL, s):
network = s['network']
proposals = get_nodes_by_type(network, 'proposal')
completed = []
failed = []
for j in proposals:
if network.nodes[j]['status'] == 'active':
grant_size = network.nodes[j]['funds_requested']
base_completion_rate=params['base_completion_rate']
likelihood = 1.0/(base_completion_rate+np.log(grant_size))
base_failure_rate = params['base_failure_rate']
failure_rate = 1.0/(base_failure_rate+np.log(grant_size))
if np.random.rand() < likelihood:
completed.append(j)
elif np.random.rand() < failure_rate:
failed.append(j)
return({'completed':completed, 'failed':failed})
#Mechanisms for updating the state based on check progress
##---
def complete_proposal(params, step, sL, s, _input):
network = s['network']
participants = get_nodes_by_type(network, 'participant')
proposals = get_nodes_by_type(network, 'proposal')
competitors = get_edges_by_type(network, 'conflict')
completed = _input['completed']
for j in completed:
network.nodes[j]['status']='completed'
for c in proposals:
if (j,c) in competitors:
conflict = network.edges[(j,c)]['conflict']
for i in participants:
network.edges[(i,c)]['affinity'] = network.edges[(i,c)]['affinity'] *(1-conflict)
for i in participants:
force = network.edges[(i,j)]['affinity']
sentiment = network.node[i]['sentiment']
network.node[i]['sentiment'] = get_sentimental(sentiment, force, decay=0)
failed = _input['failed']
for j in failed:
network.nodes[j]['status']='failed'
for i in participants:
force = -network.edges[(i,j)]['affinity']
sentiment = network.node[i]['sentiment']
network.node[i]['sentiment'] = get_sentimental(sentiment, force, decay=0)
key = 'network'
value = network
return (key, value)
def update_sentiment_on_completion(params, step, sL, s, _input):
network = s['network']
proposals = get_nodes_by_type(network, 'proposal')
completed = _input['completed']
failed = _input['failed']
grants_outstanding = np.sum([network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='active'])
grants_completed = np.sum([network.nodes[j]['funds_requested'] for j in completed])
grants_failed = np.sum([network.nodes[j]['funds_requested'] for j in failed])
sentiment = s['sentiment']
if grants_outstanding>0:
force = (grants_completed-grants_failed)/grants_outstanding
else:
force=1
mu = params['sentiment_decay']
if (force >=0) and (force <=1):
sentiment = get_sentimental(sentiment, force, mu)
else:
sentiment = get_sentimental(sentiment, 0, mu)
key = 'sentiment'
value = sentiment
return (key, value)
def get_sentimental(sentiment, force, decay=0):
mu = decay
sentiment = sentiment*(1-mu) + force
if sentiment > 1:
sentiment = 1
return sentiment
#functions for partial state update block 3
#Decision processes: trigger function policy
##-----------------------------------------
def trigger_function(params, step, sL, s):
network = s['network']
funds = s['funds']
supply = s['supply']
proposals = get_nodes_by_type(network, 'proposal')
tmin = params['tmin']
trigger_func = params['trigger_func']
accepted = []
triggers = {}
for j in proposals:
if network.nodes[j]['status'] == 'candidate':
requested = network.nodes[j]['funds_requested']
age = network.nodes[j]['age']
threshold = trigger_func(requested, funds, supply)
if age > tmin:
conviction = network.nodes[j]['conviction']
if conviction >threshold:
accepted.append(j)
else:
threshold = np.nan
triggers[j] = threshold
return({'accepted':accepted, 'triggers':triggers})
#functions for partial state update block 3
#state updates
##---
def decrement_funds(params, step, sL, s, _input):
funds = s['funds']
network = s['network']
accepted = _input['accepted']
#decrement funds
for j in accepted:
funds = funds - network.nodes[j]['funds_requested']
key = 'funds'
value = funds
return (key, value)
def update_proposals(params, step, sL, s, _input):
network = s['network']
accepted = _input['accepted']
triggers = _input['triggers']
participants = get_nodes_by_type(network, 'participant')
proposals = get_nodes_by_type(network, 'proposals')
sensitivity = params['sensitivity']
for j in proposals:
network.nodes[j]['trigger'] = triggers[j]
#bookkeeping conviction and participant sentiment
for j in accepted:
network.nodes[j]['status']='active'
network.nodes[j]['conviction']=np.nan
#change status to active
for i in participants:
#operating on edge = (i,j)
#reset tokens assigned to other candidates
network.edges[(i,j)]['tokens']=0
network.edges[(i,j)]['conviction'] = np.nan
#update participants sentiments (positive or negative)
affinities = [network.edges[(i,p)]['affinity'] for p in proposals if not(p in accepted)]
if len(affinities)>1:
max_affinity = np.max(affinities)
force = network.edges[(i,j)]['affinity']-sensitivity*max_affinity
else:
force = 0
#based on what their affinities to the accepted proposals
network.nodes[i]['sentiment'] = get_sentimental(network.nodes[i]['sentiment'], force, False)
key = 'network'
value = network
return (key, value)
def update_sentiment_on_release(params, step, sL, s, _input):
network = s['network']
proposals = get_nodes_by_type(network, 'proposal')
accepted = _input['accepted']
proposals_outstanding = np.sum([network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate'])
proposals_accepted = np.sum([network.nodes[j]['funds_requested'] for j in accepted])
sentiment = s['sentiment']
force = proposals_accepted/proposals_outstanding
if (force >=0) and (force <=1):
sentiment = get_sentimental(sentiment, force, False)
else:
sentiment = get_sentimental(sentiment, 0, False)
key = 'sentiment'
value = sentiment
return (key, value)
#functions for partial state update block 4
#Decision processes: trigger function policy
##---
def participants_decisions(params, step, sL, s):
network = s['network']
participants = get_nodes_by_type(network, 'participant')
proposals = get_nodes_by_type(network, 'proposal')
candidates = [j for j in proposals if network.nodes[j]['status']=='candidate']
sensitivity = params['sensitivity']
gain = .01
delta_holdings={}
proposals_supported ={}
for i in participants:
engagement_rate = .3*network.nodes[i]['sentiment']
if np.random.rand()<engagement_rate:
force = network.nodes[i]['sentiment']-sensitivity
delta_holdings[i] = network.nodes[i]['holdings']*gain*force
support = []
for j in candidates:
affinity = network.edges[(i, j)]['affinity']*.5+.5*social_affinity_booster(network, j, i)
cutoff = sensitivity*np.max([network.edges[(i,p)]['affinity'] for p in candidates])
if cutoff <.5:
cutoff = .5
if affinity > cutoff:
support.append(j)
proposals_supported[i] = support
else:
delta_holdings[i] = 0
proposals_supported[i] = [j for j in candidates if network.edges[(i,j)]['tokens']>0 ]
return({'delta_holdings':delta_holdings, 'proposals_supported':proposals_supported})
#functions for partial state update block 4
#state updates
##---
def update_tokens(params, step, sL, s, _input):
network = s['network']
delta_holdings = _input['delta_holdings']
proposals = get_nodes_by_type(network, 'proposal')
candidates = [j for j in proposals if network.nodes[j]['status']=='candidate']
proposals_supported = _input['proposals_supported']
participants = get_nodes_by_type(network, 'participant')
alpha = params['alpha']
min_support = params['min_supp']
for i in participants:
network.nodes[i]['holdings'] = network.nodes[i]['holdings']+delta_holdings[i]
supported = proposals_supported[i]
total_affinity = np.sum([ network.edges[(i, j)]['affinity'] for j in supported])
for j in candidates:
if j in supported:
normalized_affinity = network.edges[(i, j)]['affinity']/total_affinity
network.edges[(i, j)]['tokens'] = normalized_affinity*network.nodes[i]['holdings']
else:
network.edges[(i, j)]['tokens'] = 0
prior_conviction = network.edges[(i, j)]['conviction']
current_tokens = network.edges[(i, j)]['tokens']
network.edges[(i, j)]['conviction'] =current_tokens+alpha*prior_conviction
for j in candidates:
network.nodes[j]['conviction'] = np.sum([ network.edges[(i, j)]['conviction'] for i in participants])
total_tokens = np.sum([network.edges[(i, j)]['tokens'] for i in participants ])
if total_tokens < min_support:
network.nodes[j]['status'] = 'killed'
key = 'network'
value = network
return (key, value)
#organizing the bonding curve into a nested state would
#make this code more efficient, lots of duplicated logic here
def update_supply(params, step, sL, s, _input):
supply = s['supply']
delta_holdings = _input['delta_holdings']
delta_supply = np.sum([v for v in delta_holdings.values()])
supply = supply + delta_supply
key = 'supply'
value = supply
return (key, value)
def update_reserve(params, step, sL, s, _input):
supply = s['supply']
delta_holdings = _input['delta_holdings']
delta_supply = np.sum([v for v in delta_holdings.values()])
supply = supply + delta_supply
kappa = params['kappa']
V0 = params['invariant']
R = reserve(supply, V0, kappa)
key = 'reserve'
value = R
return (key, value)
def update_price(params, step, sL, s, _input):
supply = s['supply']
delta_holdings = _input['delta_holdings']
delta_supply = np.sum([v for v in delta_holdings.values()])
supply = supply + delta_supply
kappa = params['kappa']
V0 = params['invariant']
R = reserve(supply, V0, kappa)
price = spot_price(R, V0, kappa)
key = 'spot_price'
value = price
return (key, value)
def update_funds(params, step, sL, s, _input):
delta_holdings = _input['delta_holdings']
S = s['supply']
R = s['reserve']
V0=params['invariant']
kappa = params['kappa']
exit_tax = params['tax_rate']
#to avoid overestimating taxes well treat all withdraw before mint
wDS = np.sum([v for v in delta_holdings.values() if v<0])
_,tax, _ = withdraw_with_tax(wDS, R,S, V0, exit_tax, kappa)
funds = s['funds']+ tax
key = 'funds'
value = funds
return (key, value)