WIP: transitioning to params version
This commit is contained in:
parent
f7b6004975
commit
0e5bb95ae2
Binary file not shown.
Binary file not shown.
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
|
|
@ -0,0 +1,150 @@
|
|||
import networkx as nx
|
||||
from scipy.stats import expon, gamma
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
#helper functions
|
||||
def get_nodes_by_type(g, node_type_selection):
|
||||
return [node for node in g.nodes if g.nodes[node]['type']== node_type_selection ]
|
||||
|
||||
def get_edges_by_type(g, edge_type_selection):
|
||||
return [edge for edge in g.edges if g.edges[edge]['type']== edge_type_selection ]
|
||||
|
||||
def total_funds_given_total_supply(total_supply):
|
||||
|
||||
#can put any bonding curve invariant here for initializatio!
|
||||
total_funds = total_supply
|
||||
|
||||
return total_funds
|
||||
|
||||
#maximum share of funds a proposal can take
|
||||
default_beta = .2 #later we should set this to be param so we can sweep it
|
||||
# tuning param for the trigger function
|
||||
default_rho = .001
|
||||
|
||||
def trigger_threshold(requested, funds, supply, beta = default_beta, rho = default_rho):
|
||||
|
||||
share = requested/funds
|
||||
if share < beta:
|
||||
return rho*supply/(beta-share)**2
|
||||
else:
|
||||
return np.inf
|
||||
|
||||
def initialize_network(n,m, funds_func=total_funds_given_total_supply, trigger_func =trigger_threshold ):
|
||||
network = nx.DiGraph()
|
||||
for i in range(n):
|
||||
network.add_node(i)
|
||||
network.nodes[i]['type']="participant"
|
||||
|
||||
h_rv = expon.rvs(loc=0.0, scale=1000)
|
||||
network.nodes[i]['holdings'] = h_rv
|
||||
|
||||
s_rv = np.random.rand()
|
||||
network.nodes[i]['sentiment'] = s_rv
|
||||
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
initial_supply = np.sum([ network.nodes[i]['holdings'] for i in participants])
|
||||
|
||||
initial_funds = funds_func(initial_supply)
|
||||
|
||||
#generate initial proposals
|
||||
for ind in range(m):
|
||||
j = n+ind
|
||||
network.add_node(j)
|
||||
network.nodes[j]['type']="proposal"
|
||||
network.nodes[j]['conviction']=0
|
||||
network.nodes[j]['status']='candidate'
|
||||
network.nodes[j]['age']=0
|
||||
|
||||
r_rv = gamma.rvs(3,loc=0.001, scale=10000)
|
||||
network.node[j]['funds_requested'] = r_rv
|
||||
|
||||
network.nodes[j]['trigger']= trigger_threshold(r_rv, initial_funds, initial_supply)
|
||||
|
||||
for i in range(n):
|
||||
network.add_edge(i, j)
|
||||
|
||||
rv = np.random.rand()
|
||||
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
network.edges[(i,j)]['tokens'] = 0
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
total_requested = np.sum([ network.nodes[i]['funds_requested'] for i in proposals])
|
||||
|
||||
return network, initial_funds, initial_supply, total_requested
|
||||
|
||||
def trigger_sweep(field, trigger_func,xmax=.2,default_alpha=.5):
|
||||
|
||||
if field == 'token_supply':
|
||||
alpha = default_alpha
|
||||
share_of_funds = np.arange(.001,xmax,.001)
|
||||
total_supply = np.arange(0,10**9, 10**6)
|
||||
demo_data_XY = np.outer(share_of_funds,total_supply)
|
||||
|
||||
demo_data_Z0=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z1=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z2=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z3=np.empty(demo_data_XY.shape)
|
||||
for sof_ind in range(len(share_of_funds)):
|
||||
sof = share_of_funds[sof_ind]
|
||||
for ts_ind in range(len(total_supply)):
|
||||
ts = total_supply[ts_ind]
|
||||
tc = ts /(1-alpha)
|
||||
trigger = trigger_func(sof, 1, ts)
|
||||
demo_data_Z0[sof_ind,ts_ind] = np.log10(trigger)
|
||||
demo_data_Z1[sof_ind,ts_ind] = trigger
|
||||
demo_data_Z2[sof_ind,ts_ind] = trigger/tc #share of maximum possible conviction
|
||||
demo_data_Z3[sof_ind,ts_ind] = np.log10(trigger/tc)
|
||||
return {'log10_trigger':demo_data_Z0,
|
||||
'trigger':demo_data_Z1,
|
||||
'share_of_max_conv': demo_data_Z2,
|
||||
'log10_share_of_max_conv':demo_data_Z3,
|
||||
'total_supply':total_supply,
|
||||
'share_of_funds':share_of_funds}
|
||||
elif field == 'alpha':
|
||||
alpha = np.arange(.5,1,.01)
|
||||
share_of_funds = np.arange(.001,xmax,.001)
|
||||
total_supply = 10**9
|
||||
demo_data_XY = np.outer(share_of_funds,alpha)
|
||||
|
||||
demo_data_Z4=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z5=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z6=np.empty(demo_data_XY.shape)
|
||||
demo_data_Z7=np.empty(demo_data_XY.shape)
|
||||
for sof_ind in range(len(share_of_funds)):
|
||||
sof = share_of_funds[sof_ind]
|
||||
for a_ind in range(len(alpha)):
|
||||
ts = total_supply
|
||||
a = alpha[a_ind]
|
||||
tc = ts /(1-a)
|
||||
trigger = trigger_func(sof, 1, ts)
|
||||
demo_data_Z4[sof_ind,a_ind] = np.log10(trigger)
|
||||
demo_data_Z5[sof_ind,a_ind] = trigger
|
||||
demo_data_Z6[sof_ind,a_ind] = trigger/tc #share of maximum possible conviction
|
||||
demo_data_Z7[sof_ind,a_ind] = np.log10(trigger/tc)
|
||||
|
||||
return {'log10_trigger':demo_data_Z4,
|
||||
'trigger':demo_data_Z5,
|
||||
'share_of_max_conv': demo_data_Z6,
|
||||
'log10_share_of_max_conv':demo_data_Z7,
|
||||
'alpha':alpha,
|
||||
'share_of_funds':share_of_funds}
|
||||
|
||||
else:
|
||||
return "invalid field"
|
||||
|
||||
def trigger_plotter(share_of_funds,Z, color_label,y, ylabel,cmap='jet'):
|
||||
dims = (10, 5)
|
||||
fig, ax = plt.subplots(figsize=dims)
|
||||
|
||||
cf = plt.contourf(share_of_funds, y, Z.T, 100, cmap=cmap)
|
||||
cbar=plt.colorbar(cf)
|
||||
plt.axis([share_of_funds[0], share_of_funds[-1], y[0], y[-1]])
|
||||
#ax.set_xscale('log')
|
||||
plt.ylabel(ylabel)
|
||||
plt.xlabel('Share of Funds Requested')
|
||||
plt.title('Trigger Function Map')
|
||||
|
||||
cbar.ax.set_ylabel(color_label)
|
||||
|
|
@ -0,0 +1,434 @@
|
|||
import numpy as np
|
||||
from conviction_helpers import get_nodes_by_type, trigger_threshold
|
||||
#import networkx as nx
|
||||
from scipy.stats import expon, gamma
|
||||
|
||||
|
||||
#functions for partial state update block 1
|
||||
|
||||
#Driving processes: arrival of participants, proposals and funds
|
||||
##-----------------------------------------
|
||||
def gen_new_participant(network, new_participant_holdings):
|
||||
|
||||
i = len([node for node in network.nodes])
|
||||
|
||||
network.add_node(i)
|
||||
network.nodes[i]['type']="participant"
|
||||
|
||||
s_rv = np.random.rand()
|
||||
network.nodes[i]['sentiment'] = s_rv
|
||||
network.nodes[i]['holdings']=new_participant_holdings
|
||||
|
||||
for j in get_nodes_by_type(network, 'proposal'):
|
||||
network.add_edge(i, j)
|
||||
|
||||
rv = np.random.rand()
|
||||
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
network.edges[(i,j)]['tokens'] = a_rv*network.nodes[i]['holdings']
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
|
||||
return network
|
||||
|
||||
|
||||
scale_factor = 1000
|
||||
|
||||
def gen_new_proposal(network, funds, supply, total_funds, trigger_func):
|
||||
j = len([node for node in network.nodes])
|
||||
network.add_node(j)
|
||||
network.nodes[j]['type']="proposal"
|
||||
|
||||
network.nodes[j]['conviction']=0
|
||||
network.nodes[j]['status']='candidate'
|
||||
network.nodes[j]['age']=0
|
||||
|
||||
rescale = scale_factor*funds/total_funds
|
||||
r_rv = gamma.rvs(3,loc=0.001, scale=rescale)
|
||||
network.node[j]['funds_requested'] = r_rv
|
||||
|
||||
network.nodes[j]['trigger']= trigger_func(r_rv, funds, supply)
|
||||
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposing_participant = np.random.choice(participants)
|
||||
|
||||
for i in participants:
|
||||
network.add_edge(i, j)
|
||||
if i==proposing_participant:
|
||||
network.edges[(i, j)]['affinity']=1
|
||||
else:
|
||||
rv = np.random.rand()
|
||||
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i,j)]['tokens'] = 0
|
||||
return network
|
||||
|
||||
|
||||
|
||||
def driving_process(params, step, sL, s):
|
||||
|
||||
#placeholder plumbing for random processes
|
||||
arrival_rate = 10/s['sentiment']
|
||||
rv1 = np.random.rand()
|
||||
new_participant = bool(rv1<1/arrival_rate)
|
||||
if new_participant:
|
||||
h_rv = expon.rvs(loc=0.0, scale=1000)
|
||||
new_participant_holdings = h_rv
|
||||
else:
|
||||
new_participant_holdings = 0
|
||||
|
||||
network = s['network']
|
||||
affinities = [network.edges[e]['affinity'] for e in network.edges ]
|
||||
median_affinity = np.median(affinities)
|
||||
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
fund_requests = [network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate' ]
|
||||
|
||||
funds = s['funds']
|
||||
total_funds_requested = np.sum(fund_requests)
|
||||
|
||||
proposal_rate = 10/median_affinity * total_funds_requested/funds
|
||||
rv2 = np.random.rand()
|
||||
new_proposal = bool(rv2<1/proposal_rate)
|
||||
|
||||
sentiment = s['sentiment']
|
||||
funds = s['funds']
|
||||
scale_factor = 1+4000*sentiment**2
|
||||
|
||||
#this shouldn't happen but expon is throwing domain errors
|
||||
if scale_factor > 1:
|
||||
funds_arrival = expon.rvs(loc = 0, scale = scale_factor )
|
||||
else:
|
||||
funds_arrival = 0
|
||||
|
||||
return({'new_participant':new_participant,
|
||||
'new_participant_holdings':new_participant_holdings,
|
||||
'new_proposal':new_proposal,
|
||||
'funds_arrival':funds_arrival})
|
||||
|
||||
|
||||
#Mechanisms for updating the state based on driving processes
|
||||
##---
|
||||
def update_network(params, step, sL, s, _input):
|
||||
|
||||
print(params)
|
||||
print(type(params))
|
||||
|
||||
network = s['network']
|
||||
funds = s['funds']
|
||||
supply = s['supply']
|
||||
trigger_func = params['trigger_func']
|
||||
|
||||
new_participant = _input['new_participant'] #T/F
|
||||
new_proposal = _input['new_proposal'] #T/F
|
||||
|
||||
if new_participant:
|
||||
new_participant_holdings = _input['new_participant_holdings']
|
||||
network = gen_new_participant(network, new_participant_holdings)
|
||||
|
||||
if new_proposal:
|
||||
network= gen_new_proposal(network,funds,supply )
|
||||
|
||||
#update age of the existing proposals
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
for j in proposals:
|
||||
network.nodes[j]['age'] = network.nodes[j]['age']+1
|
||||
if network.nodes[j]['status'] == 'candidate':
|
||||
requested = network.nodes[j]['funds_requested']
|
||||
network.nodes[j]['trigger'] = trigger_func(requested, funds, supply)
|
||||
else:
|
||||
network.nodes[j]['trigger'] = np.nan
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
def increment_funds(params, step, sL, s, _input):
|
||||
|
||||
funds = s['funds']
|
||||
funds_arrival = _input['funds_arrival']
|
||||
|
||||
#increment funds
|
||||
funds = funds + funds_arrival
|
||||
|
||||
key = 'funds'
|
||||
value = funds
|
||||
|
||||
return (key, value)
|
||||
|
||||
def increment_supply(params, step, sL, s, _input):
|
||||
|
||||
supply = s['supply']
|
||||
supply_arrival = _input['new_participant_holdings']
|
||||
|
||||
#increment funds
|
||||
supply = supply + supply_arrival
|
||||
|
||||
key = 'supply'
|
||||
value = supply
|
||||
|
||||
return (key, value)
|
||||
|
||||
#functions for partial state update block 2
|
||||
|
||||
#Driving processes: completion of previously funded proposals
|
||||
##-----------------------------------------
|
||||
|
||||
def check_progress(params, step, sL, s):
|
||||
|
||||
network = s['network']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
completed = []
|
||||
for j in proposals:
|
||||
if network.nodes[j]['status'] == 'active':
|
||||
grant_size = network.nodes[j]['funds_requested']
|
||||
base_completion_rate=params['base_completion_rate']
|
||||
likelihood = 1.0/(base_completion_rate+np.log(grant_size))
|
||||
if np.random.rand() < likelihood:
|
||||
completed.append(j)
|
||||
|
||||
return({'completed':completed})
|
||||
|
||||
|
||||
#Mechanisms for updating the state based on check progress
|
||||
##---
|
||||
def complete_proposal(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
|
||||
completed = _input['completed']
|
||||
for j in completed:
|
||||
network.nodes[j]['status']='completed'
|
||||
for i in participants:
|
||||
force = network.edges[(i,j)]['affinity']
|
||||
sentiment = network.node[i]['sentiment']
|
||||
network.node[i]['sentiment'] = get_sentimental(sentiment, force, decay=0)
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_sentiment_on_completion(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
completed = _input['completed']
|
||||
|
||||
grants_outstanding = np.sum([network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='active'])
|
||||
|
||||
grants_completed = np.sum([network.nodes[j]['funds_requested'] for j in completed])
|
||||
|
||||
sentiment = s['sentiment']
|
||||
|
||||
force = grants_completed/grants_outstanding
|
||||
mu = params['sentiment_decay']
|
||||
if (force >=0) and (force <=1):
|
||||
sentiment = get_sentimental(sentiment, force, mu)
|
||||
else:
|
||||
sentiment = get_sentimental(sentiment, 0, mu)
|
||||
|
||||
|
||||
key = 'sentiment'
|
||||
value = sentiment
|
||||
|
||||
return (key, value)
|
||||
|
||||
def get_sentimental(sentiment, force, decay=0):
|
||||
mu = decay
|
||||
sentiment = sentiment*(1-mu) + force
|
||||
|
||||
if sentiment > 1:
|
||||
sentiment = 1
|
||||
|
||||
return sentiment
|
||||
|
||||
#functions for partial state update block 3
|
||||
|
||||
#Decision processes: trigger function policy
|
||||
##-----------------------------------------
|
||||
|
||||
def trigger_function(params, step, sL, s):
|
||||
|
||||
network = s['network']
|
||||
funds = s['funds']
|
||||
supply = s['supply']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
tmin = params['tmin']
|
||||
|
||||
accepted = []
|
||||
triggers = {}
|
||||
for j in proposals:
|
||||
if network.nodes[j]['status'] == 'candidate':
|
||||
requested = network.nodes[j]['funds_requested']
|
||||
age = network.nodes[j]['age']
|
||||
threshold = trigger_threshold(requested, funds, supply)
|
||||
if age > tmin:
|
||||
conviction = network.nodes[j]['conviction']
|
||||
if conviction >threshold:
|
||||
accepted.append(j)
|
||||
else:
|
||||
threshold = np.nan
|
||||
|
||||
triggers[j] = threshold
|
||||
|
||||
|
||||
|
||||
return({'accepted':accepted, 'triggers':triggers})
|
||||
|
||||
def decrement_funds(params, step, sL, s, _input):
|
||||
|
||||
funds = s['funds']
|
||||
network = s['network']
|
||||
accepted = _input['accepted']
|
||||
|
||||
#decrement funds
|
||||
for j in accepted:
|
||||
funds = funds - network.nodes[j]['funds_requested']
|
||||
|
||||
key = 'funds'
|
||||
value = funds
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_proposals(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
accepted = _input['accepted']
|
||||
triggers = _input['triggers']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposals = get_nodes_by_type(network, 'proposals')
|
||||
sensitivity = params['sensitivity']
|
||||
|
||||
for j in proposals:
|
||||
network.nodes[j]['trigger'] = triggers[j]
|
||||
|
||||
#bookkeeping conviction and participant sentiment
|
||||
for j in accepted:
|
||||
network.nodes[j]['status']='active'
|
||||
network.nodes[j]['conviction']=np.nan
|
||||
#change status to active
|
||||
for i in participants:
|
||||
|
||||
#operating on edge = (i,j)
|
||||
#reset tokens assigned to other candidates
|
||||
network.edges[(i,j)]['tokens']=0
|
||||
network.edges[(i,j)]['conviction'] = np.nan
|
||||
|
||||
#update participants sentiments (positive or negative)
|
||||
affinities = [network.edges[(i,p)]['affinity'] for p in proposals if not(p in accepted)]
|
||||
if len(affinities)>1:
|
||||
max_affinity = np.max(affinities)
|
||||
force = network.edges[(i,j)]['affinity']-sensitivity*max_affinity
|
||||
else:
|
||||
force = 0
|
||||
|
||||
#based on what their affinities to the accepted proposals
|
||||
network.nodes[i]['sentiment'] = get_sentimental(network.nodes[i]['sentiment'], force, False)
|
||||
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_sentiment_on_release(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
accepted = _input['accepted']
|
||||
|
||||
proposals_outstanding = np.sum([network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate'])
|
||||
|
||||
proposals_accepted = np.sum([network.nodes[j]['funds_requested'] for j in accepted])
|
||||
|
||||
sentiment = s['sentiment']
|
||||
force = proposals_accepted/proposals_outstanding
|
||||
if (force >=0) and (force <=1):
|
||||
sentiment = get_sentimental(sentiment, force, False)
|
||||
else:
|
||||
sentiment = get_sentimental(sentiment, 0, False)
|
||||
|
||||
key = 'sentiment'
|
||||
value = sentiment
|
||||
|
||||
return (key, value)
|
||||
|
||||
def participants_decisions(params, step, sL, s):
|
||||
|
||||
network = s['network']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
candidates = [j for j in proposals if network.nodes[j]['status']=='candidate']
|
||||
sensitivity = params['sensitivity']
|
||||
|
||||
gain = .01
|
||||
delta_holdings={}
|
||||
proposals_supported ={}
|
||||
for i in participants:
|
||||
force = network.nodes[i]['sentiment']-sensitivity
|
||||
delta_holdings[i] = network.nodes[i]['holdings']*gain*force
|
||||
|
||||
support = []
|
||||
for j in candidates:
|
||||
affinity = network.edges[(i, j)]['affinity']
|
||||
cutoff = sensitivity*np.max([network.edges[(i,p)]['affinity'] for p in candidates])
|
||||
if cutoff <.5:
|
||||
cutoff = .5
|
||||
|
||||
if affinity > cutoff:
|
||||
support.append(j)
|
||||
|
||||
proposals_supported[i] = support
|
||||
|
||||
return({'delta_holdings':delta_holdings, 'proposals_supported':proposals_supported})
|
||||
|
||||
def update_tokens(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
delta_holdings = _input['delta_holdings']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
proposals_supported = _input['proposals_supported']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
alpha = params['alpha']
|
||||
|
||||
for i in participants:
|
||||
network.nodes[i]['holdings'] = network.nodes[i]['holdings']+delta_holdings[i]
|
||||
supported = proposals_supported[i]
|
||||
total_affinity = np.sum([ network.edges[(i, j)]['affinity'] for j in supported])
|
||||
for j in proposals:
|
||||
if j in supported:
|
||||
normalized_affinity = network.edges[(i, j)]['affinity']/total_affinity
|
||||
network.edges[(i, j)]['tokens'] = normalized_affinity*network.nodes[i]['holdings']
|
||||
else:
|
||||
network.edges[(i, j)]['tokens'] = 0
|
||||
|
||||
prior_conviction = network.edges[(i, j)]['conviction']
|
||||
current_tokens = network.edges[(i, j)]['tokens']
|
||||
network.edges[(i, j)]['conviction'] =current_tokens+alpha*prior_conviction
|
||||
|
||||
for j in proposals:
|
||||
network.nodes[j]['conviction'] = np.sum([ network.edges[(i, j)]['conviction'] for i in participants])
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_supply(params, step, sL, s, _input):
|
||||
|
||||
supply = s['supply']
|
||||
delta_holdings = _input['delta_holdings']
|
||||
delta_supply = np.sum([v for v in delta_holdings.values()])
|
||||
|
||||
supply = supply + delta_supply
|
||||
|
||||
key = 'supply'
|
||||
value = supply
|
||||
|
||||
return (key, value)
|
||||
|
|
@ -0,0 +1,541 @@
|
|||
import numpy as np
|
||||
from conviction_helpers import get_nodes_by_type, initialize_network, total_funds_given_total_supply, trigger_threshold
|
||||
#import networkx as nx
|
||||
from scipy.stats import expon, gamma
|
||||
|
||||
|
||||
#functions for partial state update block 1
|
||||
|
||||
#Driving processes: arrival of participants, proposals and funds
|
||||
##-----------------------------------------
|
||||
def gen_new_participant(network, new_participant_holdings):
|
||||
|
||||
i = len([node for node in network.nodes])
|
||||
|
||||
network.add_node(i)
|
||||
network.nodes[i]['type']="participant"
|
||||
|
||||
s_rv = np.random.rand()
|
||||
network.nodes[i]['sentiment'] = s_rv
|
||||
network.nodes[i]['holdings']=new_participant_holdings
|
||||
|
||||
for j in get_nodes_by_type(network, 'proposal'):
|
||||
network.add_edge(i, j)
|
||||
|
||||
rv = np.random.rand()
|
||||
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
network.edges[(i,j)]['tokens'] = a_rv*network.nodes[i]['holdings']
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
|
||||
return network
|
||||
|
||||
|
||||
scale_factor = 1000
|
||||
|
||||
def gen_new_proposal(network, funds, supply, total_funds, trigger_func):
|
||||
j = len([node for node in network.nodes])
|
||||
network.add_node(j)
|
||||
network.nodes[j]['type']="proposal"
|
||||
|
||||
network.nodes[j]['conviction']=0
|
||||
network.nodes[j]['status']='candidate'
|
||||
network.nodes[j]['age']=0
|
||||
|
||||
rescale = scale_factor*funds/total_funds
|
||||
r_rv = gamma.rvs(3,loc=0.001, scale=rescale)
|
||||
network.node[j]['funds_requested'] = r_rv
|
||||
|
||||
network.nodes[j]['trigger']= trigger_func(r_rv, funds, supply)
|
||||
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposing_participant = np.random.choice(participants)
|
||||
|
||||
for i in participants:
|
||||
network.add_edge(i, j)
|
||||
if i==proposing_participant:
|
||||
network.edges[(i, j)]['affinity']=1
|
||||
else:
|
||||
rv = np.random.rand()
|
||||
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i,j)]['tokens'] = 0
|
||||
return network
|
||||
|
||||
|
||||
|
||||
def driving_process(params, step, sL, s):
|
||||
|
||||
#placeholder plumbing for random processes
|
||||
arrival_rate = 10/s['sentiment']
|
||||
rv1 = np.random.rand()
|
||||
new_participant = bool(rv1<1/arrival_rate)
|
||||
if new_participant:
|
||||
h_rv = expon.rvs(loc=0.0, scale=1000)
|
||||
new_participant_holdings = h_rv
|
||||
else:
|
||||
new_participant_holdings = 0
|
||||
|
||||
network = s['network']
|
||||
affinities = [network.edges[e]['affinity'] for e in network.edges ]
|
||||
median_affinity = np.median(affinities)
|
||||
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
fund_requests = [network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate' ]
|
||||
|
||||
funds = s['funds']
|
||||
total_funds_requested = np.sum(fund_requests)
|
||||
|
||||
proposal_rate = 10/median_affinity * total_funds_requested/funds
|
||||
rv2 = np.random.rand()
|
||||
new_proposal = bool(rv2<1/proposal_rate)
|
||||
|
||||
sentiment = s['sentiment']
|
||||
funds = s['funds']
|
||||
scale_factor = 1+4000*sentiment**2
|
||||
|
||||
#this shouldn't happen but expon is throwing domain errors
|
||||
if scale_factor > 1:
|
||||
funds_arrival = expon.rvs(loc = 0, scale = scale_factor )
|
||||
else:
|
||||
funds_arrival = 0
|
||||
|
||||
return({'new_participant':new_participant,
|
||||
'new_participant_holdings':new_participant_holdings,
|
||||
'new_proposal':new_proposal,
|
||||
'funds_arrival':funds_arrival})
|
||||
|
||||
|
||||
#Mechanisms for updating the state based on driving processes
|
||||
##---
|
||||
def update_network(params, step, sL, s, _input):
|
||||
|
||||
print(params)
|
||||
print(type(params))
|
||||
|
||||
network = s['network']
|
||||
funds = s['funds']
|
||||
supply = s['supply']
|
||||
trigger_func = params['trigger_func']
|
||||
|
||||
new_participant = _input['new_participant'] #T/F
|
||||
new_proposal = _input['new_proposal'] #T/F
|
||||
|
||||
if new_participant:
|
||||
new_participant_holdings = _input['new_participant_holdings']
|
||||
network = gen_new_participant(network, new_participant_holdings)
|
||||
|
||||
if new_proposal:
|
||||
network= gen_new_proposal(network,funds,supply )
|
||||
|
||||
#update age of the existing proposals
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
for j in proposals:
|
||||
network.nodes[j]['age'] = network.nodes[j]['age']+1
|
||||
if network.nodes[j]['status'] == 'candidate':
|
||||
requested = network.nodes[j]['funds_requested']
|
||||
network.nodes[j]['trigger'] = trigger_func(requested, funds, supply)
|
||||
else:
|
||||
network.nodes[j]['trigger'] = np.nan
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
def increment_funds(params, step, sL, s, _input):
|
||||
|
||||
funds = s['funds']
|
||||
funds_arrival = _input['funds_arrival']
|
||||
|
||||
#increment funds
|
||||
funds = funds + funds_arrival
|
||||
|
||||
key = 'funds'
|
||||
value = funds
|
||||
|
||||
return (key, value)
|
||||
|
||||
def increment_supply(params, step, sL, s, _input):
|
||||
|
||||
supply = s['supply']
|
||||
supply_arrival = _input['new_participant_holdings']
|
||||
|
||||
#increment funds
|
||||
supply = supply + supply_arrival
|
||||
|
||||
key = 'supply'
|
||||
value = supply
|
||||
|
||||
return (key, value)
|
||||
|
||||
#functions for partial state update block 2
|
||||
|
||||
#Driving processes: completion of previously funded proposals
|
||||
##-----------------------------------------
|
||||
|
||||
def check_progress(params, step, sL, s):
|
||||
|
||||
network = s['network']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
completed = []
|
||||
for j in proposals:
|
||||
if network.nodes[j]['status'] == 'active':
|
||||
grant_size = network.nodes[j]['funds_requested']
|
||||
base_completion_rate=params['base_completion_rate']
|
||||
likelihood = 1.0/(base_completion_rate+np.log(grant_size))
|
||||
if np.random.rand() < likelihood:
|
||||
completed.append(j)
|
||||
|
||||
return({'completed':completed})
|
||||
|
||||
|
||||
#Mechanisms for updating the state based on check progress
|
||||
##---
|
||||
def complete_proposal(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
|
||||
completed = _input['completed']
|
||||
for j in completed:
|
||||
network.nodes[j]['status']='completed'
|
||||
for i in participants:
|
||||
force = network.edges[(i,j)]['affinity']
|
||||
sentiment = network.node[i]['sentiment']
|
||||
network.node[i]['sentiment'] = get_sentimental(sentiment, force, decay=0)
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_sentiment_on_completion(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
completed = _input['completed']
|
||||
|
||||
grants_outstanding = np.sum([network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='active'])
|
||||
|
||||
grants_completed = np.sum([network.nodes[j]['funds_requested'] for j in completed])
|
||||
|
||||
sentiment = s['sentiment']
|
||||
|
||||
force = grants_completed/grants_outstanding
|
||||
mu = params['sentiment_decay']
|
||||
if (force >=0) and (force <=1):
|
||||
sentiment = get_sentimental(sentiment, force, mu)
|
||||
else:
|
||||
sentiment = get_sentimental(sentiment, 0, mu)
|
||||
|
||||
|
||||
key = 'sentiment'
|
||||
value = sentiment
|
||||
|
||||
return (key, value)
|
||||
|
||||
def get_sentimental(sentiment, force, decay=0):
|
||||
mu = decay
|
||||
sentiment = sentiment*(1-mu) + force
|
||||
|
||||
if sentiment > 1:
|
||||
sentiment = 1
|
||||
|
||||
return sentiment
|
||||
|
||||
#functions for partial state update block 3
|
||||
|
||||
#Decision processes: trigger function policy
|
||||
##-----------------------------------------
|
||||
|
||||
def trigger_function(params, step, sL, s):
|
||||
|
||||
network = s['network']
|
||||
funds = s['funds']
|
||||
supply = s['supply']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
tmin = params['tmin']
|
||||
|
||||
accepted = []
|
||||
triggers = {}
|
||||
for j in proposals:
|
||||
if network.nodes[j]['status'] == 'candidate':
|
||||
requested = network.nodes[j]['funds_requested']
|
||||
age = network.nodes[j]['age']
|
||||
threshold = trigger_threshold(requested, funds, supply)
|
||||
if age > tmin:
|
||||
conviction = network.nodes[j]['conviction']
|
||||
if conviction >threshold:
|
||||
accepted.append(j)
|
||||
else:
|
||||
threshold = np.nan
|
||||
|
||||
triggers[j] = threshold
|
||||
|
||||
|
||||
|
||||
return({'accepted':accepted, 'triggers':triggers})
|
||||
|
||||
def decrement_funds(params, step, sL, s, _input):
|
||||
|
||||
funds = s['funds']
|
||||
network = s['network']
|
||||
accepted = _input['accepted']
|
||||
|
||||
#decrement funds
|
||||
for j in accepted:
|
||||
funds = funds - network.nodes[j]['funds_requested']
|
||||
|
||||
key = 'funds'
|
||||
value = funds
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_proposals(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
accepted = _input['accepted']
|
||||
triggers = _input['triggers']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposals = get_nodes_by_type(network, 'proposals')
|
||||
sensitivity = params['sensitivity']
|
||||
|
||||
for j in proposals:
|
||||
network.nodes[j]['trigger'] = triggers[j]
|
||||
|
||||
#bookkeeping conviction and participant sentiment
|
||||
for j in accepted:
|
||||
network.nodes[j]['status']='active'
|
||||
network.nodes[j]['conviction']=np.nan
|
||||
#change status to active
|
||||
for i in participants:
|
||||
|
||||
#operating on edge = (i,j)
|
||||
#reset tokens assigned to other candidates
|
||||
network.edges[(i,j)]['tokens']=0
|
||||
network.edges[(i,j)]['conviction'] = np.nan
|
||||
|
||||
#update participants sentiments (positive or negative)
|
||||
affinities = [network.edges[(i,p)]['affinity'] for p in proposals if not(p in accepted)]
|
||||
if len(affinities)>1:
|
||||
max_affinity = np.max(affinities)
|
||||
force = network.edges[(i,j)]['affinity']-sensitivity*max_affinity
|
||||
else:
|
||||
force = 0
|
||||
|
||||
#based on what their affinities to the accepted proposals
|
||||
network.nodes[i]['sentiment'] = get_sentimental(network.nodes[i]['sentiment'], force, False)
|
||||
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_sentiment_on_release(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
accepted = _input['accepted']
|
||||
|
||||
proposals_outstanding = np.sum([network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate'])
|
||||
|
||||
proposals_accepted = np.sum([network.nodes[j]['funds_requested'] for j in accepted])
|
||||
|
||||
sentiment = s['sentiment']
|
||||
force = proposals_accepted/proposals_outstanding
|
||||
if (force >=0) and (force <=1):
|
||||
sentiment = get_sentimental(sentiment, force, False)
|
||||
else:
|
||||
sentiment = get_sentimental(sentiment, 0, False)
|
||||
|
||||
key = 'sentiment'
|
||||
value = sentiment
|
||||
|
||||
return (key, value)
|
||||
|
||||
def participants_decisions(params, step, sL, s):
|
||||
|
||||
network = s['network']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
candidates = [j for j in proposals if network.nodes[j]['status']=='candidate']
|
||||
sensitivity = params['sensitivity']
|
||||
|
||||
gain = .01
|
||||
delta_holdings={}
|
||||
proposals_supported ={}
|
||||
for i in participants:
|
||||
force = network.nodes[i]['sentiment']-sensitivity
|
||||
delta_holdings[i] = network.nodes[i]['holdings']*gain*force
|
||||
|
||||
support = []
|
||||
for j in candidates:
|
||||
affinity = network.edges[(i, j)]['affinity']
|
||||
cutoff = sensitivity*np.max([network.edges[(i,p)]['affinity'] for p in candidates])
|
||||
if cutoff <.5:
|
||||
cutoff = .5
|
||||
|
||||
if affinity > cutoff:
|
||||
support.append(j)
|
||||
|
||||
proposals_supported[i] = support
|
||||
|
||||
return({'delta_holdings':delta_holdings, 'proposals_supported':proposals_supported})
|
||||
|
||||
def update_tokens(params, step, sL, s, _input):
|
||||
|
||||
network = s['network']
|
||||
delta_holdings = _input['delta_holdings']
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
proposals_supported = _input['proposals_supported']
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
alpha = params['alpha']
|
||||
|
||||
for i in participants:
|
||||
network.nodes[i]['holdings'] = network.nodes[i]['holdings']+delta_holdings[i]
|
||||
supported = proposals_supported[i]
|
||||
total_affinity = np.sum([ network.edges[(i, j)]['affinity'] for j in supported])
|
||||
for j in proposals:
|
||||
if j in supported:
|
||||
normalized_affinity = network.edges[(i, j)]['affinity']/total_affinity
|
||||
network.edges[(i, j)]['tokens'] = normalized_affinity*network.nodes[i]['holdings']
|
||||
else:
|
||||
network.edges[(i, j)]['tokens'] = 0
|
||||
|
||||
prior_conviction = network.edges[(i, j)]['conviction']
|
||||
current_tokens = network.edges[(i, j)]['tokens']
|
||||
network.edges[(i, j)]['conviction'] =current_tokens+alpha*prior_conviction
|
||||
|
||||
for j in proposals:
|
||||
network.nodes[j]['conviction'] = np.sum([ network.edges[(i, j)]['conviction'] for i in participants])
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
|
||||
def update_supply(params, step, sL, s, _input):
|
||||
|
||||
supply = s['supply']
|
||||
delta_holdings = _input['delta_holdings']
|
||||
delta_supply = np.sum([v for v in delta_holdings.values()])
|
||||
|
||||
supply = supply + delta_supply
|
||||
|
||||
key = 'supply'
|
||||
value = supply
|
||||
|
||||
return (key, value)
|
||||
|
||||
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
|
||||
# The Partial State Update Blocks
|
||||
partial_state_update_blocks = [
|
||||
{
|
||||
'policies': {
|
||||
#new proposals or new participants
|
||||
'random': driving_process
|
||||
},
|
||||
'variables': {
|
||||
'network': update_network,
|
||||
'funds':increment_funds,
|
||||
'supply':increment_supply
|
||||
}
|
||||
},
|
||||
{
|
||||
'policies': {
|
||||
'completion': check_progress #see if any of the funded proposals completes
|
||||
},
|
||||
'variables': { # The following state variables will be updated simultaneously
|
||||
'sentiment': update_sentiment_on_completion, #note completing decays sentiment, completing bumps it
|
||||
'network': complete_proposal #book-keeping
|
||||
}
|
||||
},
|
||||
{
|
||||
'policies': {
|
||||
'release': trigger_function #check each proposal to see if it passes
|
||||
},
|
||||
'variables': { # The following state variables will be updated simultaneously
|
||||
'funds': decrement_funds, #funds expended
|
||||
'sentiment': update_sentiment_on_release, #releasing funds can bump sentiment
|
||||
'network': update_proposals #reset convictions, and participants sentiments
|
||||
#update based on affinities
|
||||
}
|
||||
},
|
||||
{
|
||||
'policies': {
|
||||
'participants_act': participants_decisions, #high sentiment, high affinity =>buy
|
||||
#low sentiment, low affinities => burn
|
||||
#assign tokens to top affinities
|
||||
},
|
||||
'variables': {
|
||||
'supply': update_supply,
|
||||
'network': update_tokens #update everyones holdings
|
||||
#and their conviction for each proposal
|
||||
}
|
||||
}
|
||||
]
|
||||
|
||||
n= 25 #initial participants
|
||||
m= 3 #initial proposals
|
||||
|
||||
initial_sentiment = .5
|
||||
|
||||
network, initial_funds, initial_supply, total_requested = initialize_network(n,m,total_funds_given_total_supply,trigger_threshold)
|
||||
|
||||
initial_conditions = {'network':network,
|
||||
'supply': initial_supply,
|
||||
'funds':initial_funds,
|
||||
'sentiment': initial_sentiment}
|
||||
|
||||
#power of 1 token forever
|
||||
# conviction_capactity = [2]
|
||||
# alpha = [1-1/cc for cc in conviction_capactity]
|
||||
# print(alpha)
|
||||
|
||||
params={
|
||||
'sensitivity': [.75],
|
||||
'tmin': [7], #unit days; minimum periods passed before a proposal can pass
|
||||
'sentiment_decay': [.001], #termed mu in the state update function
|
||||
'alpha': [0.5, 0.9],
|
||||
'base_completion_rate': [10],
|
||||
'trigger_func': [trigger_threshold]
|
||||
}
|
||||
|
||||
|
||||
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
|
||||
# Settings of general simulation parameters, unrelated to the system itself
|
||||
# `T` is a range with the number of discrete units of time the simulation will run for;
|
||||
# `N` is the number of times the simulation will be run (Monte Carlo runs)
|
||||
time_periods_per_run = 250
|
||||
monte_carlo_runs = 1
|
||||
|
||||
simulation_parameters = {
|
||||
'T': range(time_periods_per_run),
|
||||
'N': monte_carlo_runs,
|
||||
'M': params
|
||||
}
|
||||
|
||||
|
||||
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
||||
from cadCAD.configuration import append_configs
|
||||
from cadCAD import configs
|
||||
|
||||
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
|
||||
# The configurations above are then packaged into a `Configuration` object
|
||||
config = append_configs(
|
||||
initial_state=initial_conditions, #dict containing variable names and initial values
|
||||
partial_state_update_blocks=partial_state_update_blocks, #dict containing state update functions
|
||||
sim_configs=simulation_parameters #dict containing simulation parameters
|
||||
)
|
||||
|
||||
exec_mode = ExecutionMode()
|
||||
exec_context = ExecutionContext(context=exec_mode.multi_proc)
|
||||
run = Executor(exec_context=exec_context, configs=configs)
|
||||
executor = Executor(exec_context, configs) # Pass the configuration object inside an array
|
||||
raw_result, tensor = executor.execute() # The `main()` method returns a tuple; its first elements contains the raw results
|
||||
Loading…
Reference in New Issue