This commit is contained in:
Michael Zargham 2019-05-31 17:02:04 -07:00
parent 8e75fe072d
commit 0a72c514e8
5 changed files with 454 additions and 2991 deletions

File diff suppressed because one or more lines are too long

View File

@ -2,6 +2,8 @@ import networkx as nx
from scipy.stats import expon, gamma
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
import matplotlib.cm as cmx
#helper functions
def get_nodes_by_type(g, node_type_selection):
@ -13,7 +15,7 @@ def get_edges_by_type(g, edge_type_selection):
def total_funds_given_total_supply(total_supply):
#can put any bonding curve invariant here for initializatio!
total_funds = total_supply
total_funds = total_supply**2/1000
return total_funds
@ -67,14 +69,74 @@ def initialize_network(n,m, funds_func=total_funds_given_total_supply, trigger_f
rv = np.random.rand()
a_rv = 1-4*(1-rv)*rv #polarized distribution
network.edges[(i, j)]['affinity'] = a_rv
network.edges[(i,j)]['tokens'] = 0
network.edges[(i, j)]['tokens'] = 0
network.edges[(i, j)]['conviction'] = 0
network.edges[(i, j)]['type'] = 'support'
proposals = get_nodes_by_type(network, 'proposal')
total_requested = np.sum([ network.nodes[i]['funds_requested'] for i in proposals])
network = initial_conflict_network(network, rate = .25)
network = initial_social_network(network, scale = 1)
return network, initial_funds, initial_supply, total_requested
def initial_social_network(network, scale = 1, sigmas=3):
participants = get_nodes_by_type(network, 'participant')
for i in participants:
for j in participants:
if not(j==i):
influence_rv = expon.rvs(loc=0.0, scale=scale)
if influence_rv > scale+sigmas*scale**2:
network.add_edge(i,j)
network.edges[(i,j)]['influence'] = influence_rv
network.edges[(i,j)]['type'] = 'influence'
return network
def initial_conflict_network(network, rate = .25):
proposals = get_nodes_by_type(network, 'proposal')
for i in proposals:
for j in proposals:
if not(j==i):
conflict_rv = np.random.rand()
if conflict_rv < rate :
network.add_edge(i,j)
network.edges[(i,j)]['conflict'] = 1-conflict_rv
network.edges[(i,j)]['type'] = 'conflict'
return network
def social_links(network, participant, scale = 1):
participants = get_nodes_by_type(network, 'participant')
i = participant
for j in participants:
if not(j==i):
influence_rv = expon.rvs(loc=0.0, scale=scale)
if influence_rv > scale+scale**2:
network.add_edge(i,j)
network.edges[(i,j)]['influence'] = influence_rv
network.edges[(i,j)]['type'] = 'influence'
return network
def conflict_links(network,proposal ,rate = .25):
proposals = get_nodes_by_type(network, 'proposal')
i = proposal
for j in proposals:
if not(j==i):
conflict_rv = np.random.rand()
if conflict_rv < rate :
network.add_edge(i,j)
network.edges[(i,j)]['conflict'] = 1-conflict_rv
network.edges[(i,j)]['type'] = 'conflict'
return network
def trigger_sweep(field, trigger_func,xmax=.2,default_alpha=.5):
if field == 'token_supply':
@ -148,3 +210,128 @@ def trigger_plotter(share_of_funds,Z, color_label,y, ylabel,cmap='jet'):
plt.title('Trigger Function Map')
cbar.ax.set_ylabel(color_label)
def snap_plot(nets, size_scale = 1/500, ani = False, dims = (20,20), savefigs=False):
last_net = nets[-1]
last_props=get_nodes_by_type(last_net, 'proposal')
M = len(last_props)
last_parts=get_nodes_by_type(last_net, 'participant')
N = len(last_parts)
pos = {}
for ind in range(N):
i = last_parts[ind]
pos[i] = np.array([0, 2*ind-N])
for ind in range(M):
j = last_props[ind]
pos[j] = np.array([1, 2*N/M *ind-N])
if ani:
figs = []
fig, ax = plt.subplots(figsize=dims)
if savefigs:
counter = 0
length = 10
import string
unique_id = ''.join([np.random.choice(list(string.ascii_letters + string.digits)) for _ in range(length)])
for net in nets:
edges = get_edges_by_type(net, 'support')
max_tok = np.max([net.edges[e]['tokens'] for e in edges])
E = len(edges)
net_props = get_nodes_by_type(net, 'proposal')
net_parts = get_nodes_by_type(net, 'participant')
net_node_label ={}
num_nodes = len([node for node in net.nodes])
node_color = np.empty((num_nodes,4))
node_size = np.empty(num_nodes)
edge_color = np.empty((E,4))
cm = plt.get_cmap('Reds')
cNorm = colors.Normalize(vmin=0, vmax=max_tok)
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
for j in net_props:
node_size[j] = net.nodes[j]['funds_requested']*size_scale
if net.nodes[j]['status']=="candidate":
node_color[j] = colors.to_rgba('blue')
trigger = net.nodes[j]['trigger']
conviction = net.nodes[j]['conviction']
percent_of_trigger = " "+str(int(100*conviction/trigger))+'%'
net_node_label[j] = str(percent_of_trigger)
elif net.nodes[j]['status']=="active":
node_color[j] = colors.to_rgba('orange')
net_node_label[j] = ''
elif net.nodes[j]['status']=="completed":
node_color[j] = colors.to_rgba('green')
net_node_label[j] = ''
for i in net_parts:
node_size[i] = net.nodes[i]['holdings']*size_scale
node_color[i] = colors.to_rgba('red')
net_node_label[i] = ''
included_edges = []
for ind in range(E):
e = edges[ind]
tokens = net.edges[e]['tokens']
if tokens >0:
included_edges.append(e)
edge_color[ind] = scalarMap.to_rgba(tokens)
iE = len(included_edges)
included_edge_color = np.empty((iE,4))
for ind in range(iE):
e = included_edges[ind]
tokens = net.edges[e]['tokens']
included_edge_color[ind] = scalarMap.to_rgba(tokens)
nx.draw(net,
pos=pos,
node_size = node_size,
node_color = node_color,
edge_color = included_edge_color,
edgelist=included_edges,
labels = net_node_label)
plt.title('Tokens Staked by Partipants to Proposals')
if ani:
nx.draw(net,
pos=pos,
node_size = node_size,
node_color = node_color,
edge_color = included_edge_color,
edgelist=included_edges,
labels = net_node_label, ax=ax)
figs.append(fig)
else:
nx.draw(net,
pos=pos,
node_size = node_size,
node_color = node_color,
edge_color = included_edge_color,
edgelist=included_edges,
labels = net_node_label)
plt.title('Tokens Staked by Partipants to Proposals')
if savefigs:
plt.savefig(unique_id+'_fig'+str(counter)+'.png')
counter = counter+1
plt.show()
if ani:
False
#anim = animation.ArtistAnimation(fig, , interval=50, blit=True, repeat_delay=1000)
#plt.show()

View File

@ -1,5 +1,5 @@
import numpy as np
from conviction_helpers import get_nodes_by_type
from conviction_helpers import get_nodes_by_type,get_edges_by_type, conflict_links, social_links
#import networkx as nx
from scipy.stats import expon, gamma
@ -27,6 +27,9 @@ def gen_new_participant(network, new_participant_holdings):
network.edges[(i, j)]['affinity'] = a_rv
network.edges[(i,j)]['tokens'] = a_rv*network.nodes[i]['holdings']
network.edges[(i, j)]['conviction'] = 0
network.edges[(i,j)]['type'] = 'support'
social_links(network, i)
return network
@ -65,6 +68,10 @@ def gen_new_proposal(network, funds, supply, trigger_func, scale_factor = 1.0/10
network.edges[(i, j)]['conviction'] = 0
network.edges[(i,j)]['tokens'] = 0
network.edges[(i,j)]['type'] = 'support'
network = conflict_links(network,j)
return network
@ -82,7 +89,8 @@ def driving_process(params, step, sL, s):
new_participant_holdings = 0
network = s['network']
affinities = [network.edges[e]['affinity'] for e in network.edges ]
supporters = get_edges_by_type(network, 'support')
affinities = [network.edges[e]['affinity'] for e in supporters ]
median_affinity = np.median(affinities)
proposals = get_nodes_by_type(network, 'proposal')