updated!
This commit is contained in:
parent
8e75fe072d
commit
0a72c514e8
Binary file not shown.
Binary file not shown.
File diff suppressed because one or more lines are too long
|
|
@ -2,6 +2,8 @@ import networkx as nx
|
|||
from scipy.stats import expon, gamma
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.colors as colors
|
||||
import matplotlib.cm as cmx
|
||||
|
||||
#helper functions
|
||||
def get_nodes_by_type(g, node_type_selection):
|
||||
|
|
@ -13,7 +15,7 @@ def get_edges_by_type(g, edge_type_selection):
|
|||
def total_funds_given_total_supply(total_supply):
|
||||
|
||||
#can put any bonding curve invariant here for initializatio!
|
||||
total_funds = total_supply
|
||||
total_funds = total_supply**2/1000
|
||||
|
||||
return total_funds
|
||||
|
||||
|
|
@ -67,14 +69,74 @@ def initialize_network(n,m, funds_func=total_funds_given_total_supply, trigger_f
|
|||
rv = np.random.rand()
|
||||
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
network.edges[(i,j)]['tokens'] = 0
|
||||
network.edges[(i, j)]['tokens'] = 0
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i, j)]['type'] = 'support'
|
||||
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
total_requested = np.sum([ network.nodes[i]['funds_requested'] for i in proposals])
|
||||
|
||||
network = initial_conflict_network(network, rate = .25)
|
||||
network = initial_social_network(network, scale = 1)
|
||||
|
||||
return network, initial_funds, initial_supply, total_requested
|
||||
|
||||
def initial_social_network(network, scale = 1, sigmas=3):
|
||||
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
|
||||
for i in participants:
|
||||
for j in participants:
|
||||
if not(j==i):
|
||||
influence_rv = expon.rvs(loc=0.0, scale=scale)
|
||||
if influence_rv > scale+sigmas*scale**2:
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['influence'] = influence_rv
|
||||
network.edges[(i,j)]['type'] = 'influence'
|
||||
return network
|
||||
|
||||
def initial_conflict_network(network, rate = .25):
|
||||
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
for i in proposals:
|
||||
for j in proposals:
|
||||
if not(j==i):
|
||||
conflict_rv = np.random.rand()
|
||||
if conflict_rv < rate :
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['conflict'] = 1-conflict_rv
|
||||
network.edges[(i,j)]['type'] = 'conflict'
|
||||
return network
|
||||
|
||||
def social_links(network, participant, scale = 1):
|
||||
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
|
||||
i = participant
|
||||
for j in participants:
|
||||
if not(j==i):
|
||||
influence_rv = expon.rvs(loc=0.0, scale=scale)
|
||||
if influence_rv > scale+scale**2:
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['influence'] = influence_rv
|
||||
network.edges[(i,j)]['type'] = 'influence'
|
||||
return network
|
||||
|
||||
def conflict_links(network,proposal ,rate = .25):
|
||||
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
i = proposal
|
||||
for j in proposals:
|
||||
if not(j==i):
|
||||
conflict_rv = np.random.rand()
|
||||
if conflict_rv < rate :
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['conflict'] = 1-conflict_rv
|
||||
network.edges[(i,j)]['type'] = 'conflict'
|
||||
return network
|
||||
|
||||
def trigger_sweep(field, trigger_func,xmax=.2,default_alpha=.5):
|
||||
|
||||
if field == 'token_supply':
|
||||
|
|
@ -147,4 +209,129 @@ def trigger_plotter(share_of_funds,Z, color_label,y, ylabel,cmap='jet'):
|
|||
plt.xlabel('Share of Funds Requested')
|
||||
plt.title('Trigger Function Map')
|
||||
|
||||
cbar.ax.set_ylabel(color_label)
|
||||
cbar.ax.set_ylabel(color_label)
|
||||
|
||||
|
||||
def snap_plot(nets, size_scale = 1/500, ani = False, dims = (20,20), savefigs=False):
|
||||
|
||||
|
||||
last_net = nets[-1]
|
||||
|
||||
last_props=get_nodes_by_type(last_net, 'proposal')
|
||||
M = len(last_props)
|
||||
last_parts=get_nodes_by_type(last_net, 'participant')
|
||||
N = len(last_parts)
|
||||
pos = {}
|
||||
|
||||
for ind in range(N):
|
||||
i = last_parts[ind]
|
||||
pos[i] = np.array([0, 2*ind-N])
|
||||
|
||||
for ind in range(M):
|
||||
j = last_props[ind]
|
||||
pos[j] = np.array([1, 2*N/M *ind-N])
|
||||
|
||||
if ani:
|
||||
figs = []
|
||||
fig, ax = plt.subplots(figsize=dims)
|
||||
|
||||
if savefigs:
|
||||
counter = 0
|
||||
length = 10
|
||||
import string
|
||||
unique_id = ''.join([np.random.choice(list(string.ascii_letters + string.digits)) for _ in range(length)])
|
||||
for net in nets:
|
||||
edges = get_edges_by_type(net, 'support')
|
||||
max_tok = np.max([net.edges[e]['tokens'] for e in edges])
|
||||
|
||||
E = len(edges)
|
||||
|
||||
net_props = get_nodes_by_type(net, 'proposal')
|
||||
net_parts = get_nodes_by_type(net, 'participant')
|
||||
net_node_label ={}
|
||||
|
||||
num_nodes = len([node for node in net.nodes])
|
||||
|
||||
node_color = np.empty((num_nodes,4))
|
||||
node_size = np.empty(num_nodes)
|
||||
|
||||
edge_color = np.empty((E,4))
|
||||
cm = plt.get_cmap('Reds')
|
||||
|
||||
cNorm = colors.Normalize(vmin=0, vmax=max_tok)
|
||||
scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm)
|
||||
|
||||
|
||||
|
||||
for j in net_props:
|
||||
node_size[j] = net.nodes[j]['funds_requested']*size_scale
|
||||
if net.nodes[j]['status']=="candidate":
|
||||
node_color[j] = colors.to_rgba('blue')
|
||||
trigger = net.nodes[j]['trigger']
|
||||
conviction = net.nodes[j]['conviction']
|
||||
percent_of_trigger = " "+str(int(100*conviction/trigger))+'%'
|
||||
net_node_label[j] = str(percent_of_trigger)
|
||||
elif net.nodes[j]['status']=="active":
|
||||
node_color[j] = colors.to_rgba('orange')
|
||||
net_node_label[j] = ''
|
||||
elif net.nodes[j]['status']=="completed":
|
||||
node_color[j] = colors.to_rgba('green')
|
||||
net_node_label[j] = ''
|
||||
|
||||
for i in net_parts:
|
||||
node_size[i] = net.nodes[i]['holdings']*size_scale
|
||||
node_color[i] = colors.to_rgba('red')
|
||||
net_node_label[i] = ''
|
||||
|
||||
included_edges = []
|
||||
for ind in range(E):
|
||||
e = edges[ind]
|
||||
tokens = net.edges[e]['tokens']
|
||||
if tokens >0:
|
||||
included_edges.append(e)
|
||||
edge_color[ind] = scalarMap.to_rgba(tokens)
|
||||
|
||||
iE = len(included_edges)
|
||||
included_edge_color = np.empty((iE,4))
|
||||
for ind in range(iE):
|
||||
e = included_edges[ind]
|
||||
tokens = net.edges[e]['tokens']
|
||||
included_edge_color[ind] = scalarMap.to_rgba(tokens)
|
||||
|
||||
nx.draw(net,
|
||||
pos=pos,
|
||||
node_size = node_size,
|
||||
node_color = node_color,
|
||||
edge_color = included_edge_color,
|
||||
edgelist=included_edges,
|
||||
labels = net_node_label)
|
||||
plt.title('Tokens Staked by Partipants to Proposals')
|
||||
if ani:
|
||||
nx.draw(net,
|
||||
pos=pos,
|
||||
node_size = node_size,
|
||||
node_color = node_color,
|
||||
edge_color = included_edge_color,
|
||||
edgelist=included_edges,
|
||||
labels = net_node_label, ax=ax)
|
||||
figs.append(fig)
|
||||
|
||||
else:
|
||||
nx.draw(net,
|
||||
pos=pos,
|
||||
node_size = node_size,
|
||||
node_color = node_color,
|
||||
edge_color = included_edge_color,
|
||||
edgelist=included_edges,
|
||||
labels = net_node_label)
|
||||
plt.title('Tokens Staked by Partipants to Proposals')
|
||||
if savefigs:
|
||||
plt.savefig(unique_id+'_fig'+str(counter)+'.png')
|
||||
counter = counter+1
|
||||
plt.show()
|
||||
|
||||
if ani:
|
||||
False
|
||||
#anim = animation.ArtistAnimation(fig, , interval=50, blit=True, repeat_delay=1000)
|
||||
#plt.show()
|
||||
|
||||
|
|
@ -1,5 +1,5 @@
|
|||
import numpy as np
|
||||
from conviction_helpers import get_nodes_by_type
|
||||
from conviction_helpers import get_nodes_by_type,get_edges_by_type, conflict_links, social_links
|
||||
#import networkx as nx
|
||||
from scipy.stats import expon, gamma
|
||||
|
||||
|
|
@ -27,6 +27,9 @@ def gen_new_participant(network, new_participant_holdings):
|
|||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
network.edges[(i,j)]['tokens'] = a_rv*network.nodes[i]['holdings']
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i,j)]['type'] = 'support'
|
||||
|
||||
social_links(network, i)
|
||||
|
||||
return network
|
||||
|
||||
|
|
@ -65,6 +68,10 @@ def gen_new_proposal(network, funds, supply, trigger_func, scale_factor = 1.0/10
|
|||
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i,j)]['tokens'] = 0
|
||||
network.edges[(i,j)]['type'] = 'support'
|
||||
|
||||
network = conflict_links(network,j)
|
||||
|
||||
return network
|
||||
|
||||
|
||||
|
|
@ -82,7 +89,8 @@ def driving_process(params, step, sL, s):
|
|||
new_participant_holdings = 0
|
||||
|
||||
network = s['network']
|
||||
affinities = [network.edges[e]['affinity'] for e in network.edges ]
|
||||
supporters = get_edges_by_type(network, 'support')
|
||||
affinities = [network.edges[e]['affinity'] for e in supporters ]
|
||||
median_affinity = np.median(affinities)
|
||||
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
|
|
|||
Loading…
Reference in New Issue