Update task task-014

This commit is contained in:
Jeff Emmett 2025-12-04 03:47:40 -08:00
parent 1d212c385d
commit 5ca4b19aec
1 changed files with 295 additions and 0 deletions

View File

@ -4,6 +4,7 @@ title: Implement WebGPU-based local image generation to reduce RunPod costs
status: To Do
assignee: []
created_date: '2025-12-04 11:46'
updated_date: '2025-12-04 11:47'
labels:
- performance
- cost-optimization
@ -54,3 +55,297 @@ Integrate WebGPU-powered browser-based image generation (SD-Turbo) to reduce Run
- [ ] #8 Model download progress indicator shown to user
- [ ] #9 Works offline after initial model download
<!-- AC:END -->
## Implementation Plan
<!-- SECTION:PLAN:BEGIN -->
## Phase 1: Foundation (Quick Wins)
### 1.1 WebGPU Capability Detection
**File:** `src/lib/clientConfig.ts`
```typescript
export async function detectWebGPUCapabilities(): Promise<{
hasWebGPU: boolean
hasF16: boolean
adapterInfo?: GPUAdapterInfo
estimatedVRAM?: number
}> {
if (!navigator.gpu) {
return { hasWebGPU: false, hasF16: false }
}
const adapter = await navigator.gpu.requestAdapter()
if (!adapter) {
return { hasWebGPU: false, hasF16: false }
}
const hasF16 = adapter.features.has('shader-f16')
const adapterInfo = await adapter.requestAdapterInfo()
return {
hasWebGPU: true,
hasF16,
adapterInfo,
estimatedVRAM: adapterInfo.memoryHeaps?.[0]?.size
}
}
```
### 1.2 Install Dependencies
```bash
npm install @anthropic-ai/sdk onnxruntime-web
# Or for transformers.js v3:
npm install @huggingface/transformers
```
### 1.3 Vite Config Updates
**File:** `vite.config.ts`
- Ensure WASM/ONNX assets are properly bundled
- Add WebGPU shader compilation support
- Configure chunk splitting for ML models
---
## Phase 2: Browser Diffusion Integration
### 2.1 Create WebGPU Diffusion Module
**New File:** `src/lib/webgpuDiffusion.ts`
```typescript
import { pipeline } from '@huggingface/transformers'
let generator: any = null
let loadingPromise: Promise<void> | null = null
export async function initSDTurbo(
onProgress?: (progress: number, status: string) => void
): Promise<void> {
if (generator) return
if (loadingPromise) return loadingPromise
loadingPromise = (async () => {
onProgress?.(0, 'Loading SD-Turbo model...')
generator = await pipeline(
'text-to-image',
'Xenova/sdxl-turbo', // or 'stabilityai/sd-turbo'
{
device: 'webgpu',
dtype: 'fp16',
progress_callback: (p) => onProgress?.(p.progress, p.status)
}
)
onProgress?.(100, 'Ready')
})()
return loadingPromise
}
export async function generateLocalImage(
prompt: string,
options?: {
width?: number
height?: number
steps?: number
seed?: number
}
): Promise<string> {
if (!generator) {
throw new Error('SD-Turbo not initialized. Call initSDTurbo() first.')
}
const result = await generator(prompt, {
width: options?.width || 512,
height: options?.height || 512,
num_inference_steps: options?.steps || 1, // SD-Turbo = 1 step
seed: options?.seed
})
// Returns base64 data URL
return result[0].image
}
export function isSDTurboReady(): boolean {
return generator !== null
}
export async function unloadSDTurbo(): Promise<void> {
generator = null
loadingPromise = null
// Force garbage collection of GPU memory
}
```
### 2.2 Create Model Download Manager
**New File:** `src/lib/modelDownloadManager.ts`
Handle progressive model downloads with:
- IndexedDB caching for persistence
- Progress tracking UI
- Resume capability for interrupted downloads
- Storage quota management
---
## Phase 3: UI Integration
### 3.1 Update ImageGenShapeUtil
**File:** `src/shapes/ImageGenShapeUtil.tsx`
Add to shape props:
```typescript
type IImageGen = TLBaseShape<"ImageGen", {
// ... existing props
generationMode: 'auto' | 'local' | 'cloud' // NEW
localModelStatus: 'not-loaded' | 'loading' | 'ready' | 'error' // NEW
localModelProgress: number // NEW (0-100)
}>
```
Add UI toggle:
```tsx
<div className="generation-mode-toggle">
<button
onClick={() => setMode('local')}
disabled={!hasWebGPU}
title={!hasWebGPU ? 'WebGPU not supported' : 'Fast preview (~1-3s)'}
>
⚡ Quick Preview
</button>
<button
onClick={() => setMode('cloud')}
title="High quality SDXL (~10-30s)"
>
✨ High Quality
</button>
</div>
```
### 3.2 Smart Generation Logic
```typescript
const generateImage = async (prompt: string) => {
const mode = shape.props.generationMode
const capabilities = await detectWebGPUCapabilities()
// Auto mode: local for iterations, cloud for final
if (mode === 'auto' || mode === 'local') {
if (capabilities.hasWebGPU && isSDTurboReady()) {
// Generate locally - instant!
const imageUrl = await generateLocalImage(prompt)
updateShape({ imageUrl, source: 'local' })
return
}
}
// Fall back to RunPod
await generateWithRunPod(prompt)
}
```
---
## Phase 4: AI Orchestrator Integration
### 4.1 Update aiOrchestrator.ts
**File:** `src/lib/aiOrchestrator.ts`
Add browser as compute target:
```typescript
type ComputeTarget = 'browser' | 'netcup' | 'runpod'
interface ImageGenerationOptions {
prompt: string
priority: 'draft' | 'final'
preferLocal?: boolean
}
async function generateImage(options: ImageGenerationOptions) {
const { hasWebGPU } = await detectWebGPUCapabilities()
// Routing logic
if (options.priority === 'draft' && hasWebGPU && isSDTurboReady()) {
return { target: 'browser', cost: 0 }
}
if (options.priority === 'final') {
return { target: 'runpod', cost: 0.02 }
}
// Fallback chain
return { target: 'runpod', cost: 0.02 }
}
```
---
## Phase 5: Advanced Features (Future)
### 5.1 Real-time img2img Refinement
- Start with browser SD-Turbo draft
- User adjusts/annotates
- Send to RunPod SDXL for final with img2img
### 5.2 Browser-based Upscaling
- Add Real-ESRGAN-lite via ONNX Runtime
- 2x/4x upscale locally before cloud render
### 5.3 Background Removal
- U2Net in browser via transformers.js
- Zero-cost background removal
### 5.4 Style Transfer
- Fast neural style transfer via WebGPU shaders
- Real-time preview on canvas
---
## Technical Considerations
### Model Sizes
| Model | Size | Load Time | Generation |
|-------|------|-----------|------------|
| SD-Turbo | ~2GB | 30-60s (first) | 1-3s |
| SD-Turbo (quantized) | ~1GB | 15-30s | 2-4s |
### Memory Management
- Unload model when tab backgrounded
- Clear GPU memory on low-memory warnings
- IndexedDB for model caching (survives refresh)
### Error Handling
- Graceful degradation to WASM if WebGPU fails
- Clear error messages for unsupported browsers
- Automatic fallback to RunPod on local failure
---
## Files to Create/Modify
**New Files:**
- `src/lib/webgpuDiffusion.ts` - SD-Turbo wrapper
- `src/lib/modelDownloadManager.ts` - Model caching
- `src/lib/webgpuCapabilities.ts` - Detection utilities
- `src/components/ModelDownloadProgress.tsx` - UI component
**Modified Files:**
- `src/lib/clientConfig.ts` - Add WebGPU detection
- `src/lib/aiOrchestrator.ts` - Add browser routing
- `src/shapes/ImageGenShapeUtil.tsx` - Add mode toggle
- `vite.config.ts` - ONNX/WASM config
- `package.json` - New dependencies
---
## Testing Checklist
- [ ] WebGPU detection works on Chrome, Edge, Firefox
- [ ] WASM fallback works on Safari/older browsers
- [ ] Model downloads and caches correctly
- [ ] Generation completes in <5s on modern GPU
- [ ] Memory cleaned up properly on unload
- [ ] Offline generation works after model cached
- [ ] RunPod fallback triggers correctly
- [ ] Cost tracking reflects local vs cloud usage
<!-- SECTION:PLAN:END -->