{ "cells": [ { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "from typing import List\n", "import networkx as nx\n", "import numpy as np\n", "import pandas as pd\n", "import datetime\n", "from hatch import contributions_to_token_batches, TokenBatch, Commons\n", "\n", "from cadCAD.configuration import Configuration\n", "\n", "\n", "def initialize_network_of_hatchers(participants: List[TokenBatch]):\n", " \"\"\"\n", " The role of this function is simply to fill up the directed graph.\n", " Helper functions setting up the tokens etc should be defined elsewhere\n", " and only provide values to this dumb function to put in the graph.\n", " \"\"\"\n", " network = nx.DiGraph()\n", " for i, p in enumerate(participants):\n", " network.add_node(i)\n", " network.nodes[i]['type'] = \"participant\"\n", " network.nodes[i]['holdings_vesting'] = p\n", " network.nodes[i]['holdings_nonvesting'] = TokenBatch(0, 5, 5) # just random numbers that don't mean anything if this is not a hatch token\n", " network.nodes[i]['sentiment'] = np.random.rand()\n", " \n", " return network\n" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "def sellout_asap(params, step, sL, s):\n", " network = s[\"network\"]\n", " how_much_to_sell = []\n", " today = datetime.datetime.today()\n", " for i in network.nodes:\n", " node = network.nodes[i]\n", " token_batch = node[\"holdings_vesting\"]\n", " token_batch.current_date = token_batch.creation_date + datetime.timedelta(days=s[\"timestep\"])\n", " how_much_to_sell.append(node[\"holdings_vesting\"].spendable())\n", " return {\"update_network_spending\": how_much_to_sell, \"commons\": None}\n", "\n", "def update_network(params, step, sL, s, _input):\n", " network = s[\"network\"]\n", " participants_expenditure = _input[\"update_network_spending\"]\n", " for i in network.nodes:\n", " node = network.nodes[i]\n", " token_batch = node[\"holdings_vesting\"]\n", " token_batch.current_date = token_batch.creation_date + datetime.timedelta(days=s[\"timestep\"])\n", " token_batch.spend(participants_expenditure[i])\n", " return \"network\", network\n", "\n", "def update_commons(params, step, sL, s, _input):\n", " commons = s[\"commons\"]\n", " participants_expenditure = _input[\"update_network_spending\"]\n", " for expenditure in participants_expenditure:\n", " if expenditure > 0:\n", " commons.burn(expenditure)\n", " s[\"funding_pool\"] = commons._funding_pool\n", " s[\"collateral_pool\"] = commons._collateral_pool\n", " s[\"token_supply\"] = commons._token_supply\n", " return \"commons\", commons" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "contributions = [5e5, 5e5, 2.5e5]\n", "token_batches, initial_token_supply = contributions_to_token_batches(contributions, 0.1, 60)\n", "\n", "n = initialize_network_of_hatchers(token_batches)\n", "commons = Commons(sum(contributions), initial_token_supply)\n", "initial_conditions = {\n", " \"network\": n,\n", " \"commons\": commons,\n", " \"funding_pool\": commons._funding_pool,\n", " \"collateral_pool\": commons._collateral_pool,\n", " \"token_supply\": commons._token_supply\n", "}\n", "\n", "partial_state_update_blocks = [\n", " {\n", " \"policies\": {\n", " \"sellout_asap\": sellout_asap\n", " },\n", " \"variables\": {\n", " \"network\": update_network,\n", " \"commons\": update_commons,\n", " }\n", " },\n", "\n", "]" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "tags": [ "outputPrepend", "outputPrepend" ] }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": "\n __________ ____ \n ________ __ _____/ ____/ | / __ \\\n / ___/ __` / __ / / / /| | / / / /\n / /__/ /_/ / /_/ / /___/ ___ |/ /_/ / \n \\___/\\__,_/\\__,_/\\____/_/ |_/_____/ \n by BlockScience\n \nExecution Mode: single_proc: []\nConfigurations: []\n" } ], "source": [ "simulation_parameters = {\n", " 'T': range(150),\n", " 'N': 1,\n", " 'M': {}\n", "}\n", "\n", "# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # \n", "# The configurations above are then packaged into a `Configuration` object\n", "config = Configuration(initial_state=initial_conditions, #dict containing variable names and initial values\n", " partial_state_update_blocks=partial_state_update_blocks, #dict containing state update functions\n", " sim_config=simulation_parameters #dict containing simulation parameters\n", " )\n", "\n", "\n", "from cadCAD.engine import ExecutionMode, ExecutionContext, Executor\n", "exec_mode = ExecutionMode()\n", "exec_context = ExecutionContext(exec_mode.single_proc)\n", "executor = Executor(exec_context, [config]) # Pass the configuration object inside an array\n", "raw_result, tensor = executor.execute() # The `execute()` method returns a tuple; its first elements contains the raw results" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "df = pd.DataFrame(raw_result)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": "" }, "metadata": {}, "execution_count": 27 }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de3xdZZn3/8+Vc5Pm1LRNDyltkVKg5dgIVUEDCBRRy/wEhWGgCg/8kJMOjgI/nhFEnUfFHyoziFY5tDMIQnWGiiAWaFSwBVo5lBbahpZDQk+kx7RNc7qeP9aduht20mZnJ3u1/b5fr/3aa11r3eu+9mqTK+teh23ujoiISG9lZToBERHZP6mAiIhISlRAREQkJSogIiKSEhUQERFJSU6mExgoQ4cO9XHjxqXUdvv27RQVFaU3oTSLe45xzw+UYzrEPT+If45xy2/x4sXvu/uwpAvd/aB4TZkyxVM1f/78lNsOlLjnGPf83JVjOsQ9P/f45xi3/IBF3s3vVQ1hiYhISlRAREQkJSogIiKSkoPmJLqIDKzW1lbq6+tpbm7OdCp7KC0t5fXXX890Gt3KVH4FBQVUVVWRm5u7z21UQESkX9TX11NcXMy4ceMws0yns9u2bdsoLi7OdBrdykR+7k5jYyP19fWMHz9+n9vtdQjLzO41s/Vm9lpCbIiZzTOzleG9PMTNzO40szoze9XMTkhoMyOsv9LMZiTEp5jZktDmTgv/01LpQ0Tio7m5mYqKilgVD0nOzKioqOj10eK+nAO5H5jWJXYj8LS7TwCeDvMAZwMTwusK4O6Q3BDgFuAk4ETgls6CENa5PKHdtFT6EJH4UfHYf6Tyb7XXISx3/7OZjesSng7UhOlZQC1wQ4jPDtcOLzSzMjMbGdad5+4bQ6LzgGlmVguUuPvCEJ8NnAs80ds+3H1N7z76vnnxrY38dmULf2tZ3h+bT5u33u5bjseOKeP0IyvTmJGIHOhSPQdSmfALey3Q+ZtnNPBuwnr1IdZTvD5JPJU+PlBAzOwKoqMUKisrqa2t3bdPl+Dx1S387s0WeLOu120HlqecowP52fDvpxWSl90/fzE2NTWltP8HknLsu8T8SktL2bZtW2YTSqK9vT2WeXXKZH7Nzc29+//V3R2GiS9gHPBawvzmLss3hffHgJMT4k8D1cC/AP87If6vIVYNPJUQPwV4LJU+9vYZdCd69/68Yr2PveExf2LJmvQl1MWBvg8HStxzTMxv2bJlmUukB1u3bk0av+WWW/z22293d/cZM2b4I4880uN27rvvPm9oaEhbXvfdd59fffXV3eaXLvPnz/dzzjkn6bJk/2b0w53o68LQFOF9fYg3AGMS1qsKsZ7iVUniqfQhKfrIoRWUF+by+JJ+GQUUOSDdf//9vPfee71q09bW1k/ZZEaqQ1hzgRnA98L7ownxa8zsIaIT5lvcfY2ZPQn8W8KJ8zOBm9x9o5ltNbOpwPPAJcC/p9JHip9DgJzsLM6aNILfvfIeza3tFORmZzolOcB863dLWfbe1rRu86hRJdzymUl7XW/27Nn88Ic/xMw45phjuOGGG7juuut4//33GTZsGPfddx+HHHJIt+1vu+02fve737Fz504++tGP8vOf/5zf/OY3LFq0iIsuuohBgwaxYMECli1bxvXXX09TUxNDhw7l/vvvZ+TIkdTU1HDcccfx7LPPcuGFF3L44Yfzne98h5aWFioqKnjggQeorNz7+ccvfvGLFBQUsGjRIrZu3codd9zBpz/9aZqbm/nyl7/MokWLyMnJ4Y477uDUU0/tNp5O+3IZ74PAAmCimdWb2WVEv9TPMLOVwCfDPMDjwCqgDvgFcBWARyfPvw28GF63hRhhnV+GNm8SnUCnt31I35xzzEi2t7TzpxUbMp2KSNosXbqU73znOzzzzDO88sor/OQnP+HrX/86M2bM4NVXX+Wiiy7iuuuu63Eb11xzDS+++CKvvfYaO3fu5LHHHuO8886jurqaBx54gJdffpmcnByuvfZa5syZw+LFi7n00ku5+eabd2+jpaWFRYsW8bWvfY2TTz6ZhQsX8tJLL3HBBRfwgx/8YJ8/z1tvvcULL7zA73//e6688kqam5u56667MDOWLFnCgw8+yIwZM3qMp9O+XIV1YTeLTk+yrgNXd7Ode4F7k8QXAZOTxBt724ekLnEY66xJIzKdjhxg9uVIoT8888wznH/++QwdOhSAIUOG8MILLzB37lwALr74Yr7xjW/0uI358+fzgx/8gB07drBx40YmTZrEZz7zmT3WWb58Oa+99hpnnHEGEJ0IHzly5O7lX/jCF3ZP19fX84UvfIE1a9bQ0tLSqxv3Pv/5z5OVlcWECRM49NBDeeONN3j22We59tprATjiiCMYO3YsK1as6DaeTroTXYBoGKtm4nD++ub7mU5FJDaam5u56qqrWLRoEWPGjOHWW29N+le8uzNp0iQWLFiQdDuJ3+9x7bXXcv311/PZz36W2tpabr311n3Op+u9Gpm+z0YPU5TdRpUV0NjU0nl1m8h+77TTTuORRx6hsbERgI0bN3LSSSfx0EMPAfDAAw9wyimndNu+s1gMHTqUpqYm5syZs3tZcXHx7sttJ06cyIYNG3YXkNbWVpYuXZp0m1u2bGH06OhuhVmzZvXq8zzyyCN0dHTw5ptvsmrVKiZOnMgpp5zCAw88AMCKFSt45513eoynk45AZLchRfm0dThbd7ZRWrjvD1QTiatJkyZx880384lPfILs7GyOP/54br/9dq699lpuv/323SfRu1NWVsbll1/O5MmTGTFiBB/+8Id3L/viF7/IlVdeufsk+pw5c7juuuvYsmULbW1tfPWrX2XSpA8O3d16662cf/75lJeXc9ppp7F69ep9/jyHHHIIJ554Ilu3buVnP/sZBQUFXHXVVXz5y1/m6KOPJicnh/vvv5/8/Pxu42nV3fW9B9pL94Hs3f+8VO9jb3jM69Zv63tCXRws+7C/xT3H/fk+kLjoLr99uTelrwbqPhA5AA0pygNg4/aWDGciIvsDDWHJbhVF0eFtY9OuDGcicvC6/fbbd18l1un888/n/vvvz0xCPVABkd0qBkdHIO836QhE0sPdM36l0P7m61//OrfddtuA9+spXDyjISzZrbxQQ1iSPgUFBTQ2Nuqqvv2Ahy+UKigo6FU7HYHIbnk5WZQU5GgIS9KiqqqK+vp6NmyI19MNmpube/2LciBlKr/Or7TtDRUQ2cPQwfk06ghE0iA3N7dXd1kPlNraWo4//vhMp9GtuOeXSENYsochRXk06hyIiOwDFRDZQ8XgPJ0DEZF9ogIiexhSlE/jdp0DEZG9UwGRPQwNRyAdHbpyRkR6pgIiexhSlEeHw+adrZlORURiTgVE9vD3x5loGEtEeqYCInsYOjh6nInuRheRvelTATGzr5jZa2a21My+GmJDzGyema0M7+UhbmZ2p5nVmdmrZnZCwnZmhPVXmtmMhPgUM1sS2txp4ZkI3fUhfdd5BKJLeUVkb1IuIGY2GbgcOBE4Fvi0mR0G3Ag87e4TgKfDPMDZwITwugK4O2xnCHALcFLY1i0JBeHu0Ednu2kh3l0f0kedz8PSEJaI7E1fjkCOBJ539x3u3gb8Cfh/gOlA59dszQLODdPTgdnhEfMLgTIzGwmcBcxz943uvgmYB0wLy0rcfWF4Jv3sLttK1of0UefzsDSEJSJ705cC8hpwiplVmFkh8ClgDFDp7mvCOmuByjA9Gng3oX19iPUUr08Sp4c+pI9ys7MoK8zVzYQislcpPwvL3V83s+8DfwS2Ay8D7V3WcTPr1xsKeurDzK4gGi6jsrKS2tralPpoampKue1ASWeOBdbG66vrqa19Py3bg4NvH/aXuOcY9/wg/jnGPb9EfXqYorvfA9wDYGb/RnSUsM7MRrr7mjAMtT6s3kB0hNKpKsQagJou8doQr0qyPj300TW/mcBMgOrqaq+pqUm22l7V1taSatuBks4cD3ljAWZQU/ORtGwPDr592F/inmPc84P45xj3/BL19Sqs4eH9EKLzH78C5gKdV1LNAB4N03OBS8LVWFOBLWEY6kngTDMrDyfPzwSeDMu2mtnUcPXVJV22lawPSYMhRXl6Iq+I7FVfH+f+GzOrAFqBq919s5l9D3jYzC4D3gY+H9Z9nOg8SR2wA/gSgLtvNLNvAy+G9W5z941h+irgfmAQ8ER4AXTXh6RBxeA8Fq7WVVgi0rO+DmGdkiTWCJyeJO7A1d1s517g3iTxRcDkfe1D0qOypIDNO1rZ1dZOfk52ptMRkZjSnejyASNKom9DW79VRyEi0j0VEPmA4SXR40zWbm3OcCYiEmcqIPIBI0qjI5B1KiAi0gMVEPmAyuKogKzdogIiIt1TAZEPKCvMJS8ni/XbdA5ERLqnAiIfYGaMKCnQEYiI9EgFRJKqLMnXORAR6ZEKiCRVWVKgAiIiPVIBkaQqSwpYu7WZ6P5PEZEPUgGRpEaUFNDc2sHW5rZMpyIiMaUCIkl13kyoYSwR6Y4KiCTV+TgTFRAR6Y4KiCTVeTe6LuUVke6ogEhSlZ0PVNTNhCLSDRUQSaogN5vSQbk6AhGRbqmASLcqS/L1RF4R6ZYKiHSrsqSA9SogItINFRDpVufNhCIiyfSpgJjZP5vZUjN7zcweNLMCMxtvZs+bWZ2Z/drM8sK6+WG+Liwfl7Cdm0J8uZmdlRCfFmJ1ZnZjQjxpH5Jeo0oL2LBtFy1tHZlORURiKOUCYmajgeuAanefDGQDFwDfB37k7ocBm4DLQpPLgE0h/qOwHmZ2VGg3CZgG/NTMss0sG7gLOBs4CrgwrEsPfUgaVZUX0uG6lFdEkuvrEFYOMMjMcoBCYA1wGjAnLJ8FnBump4d5wvLTzcxC/CF33+Xuq4E64MTwqnP3Ve7eAjwETA9tuutD0qiqfBAA9Zt2ZDgTEYmjnFQbunuDmf0QeAfYCfwRWAxsdvfOByjVA6PD9Gjg3dC2zcy2ABUhvjBh04lt3u0SPym06a6PPZjZFcAVAJWVldTW1qb0WZuamlJuO1D6I8f1O6Khq6cXvkRLfW6ftnWw7sN0i3uOcc8P4p9j3PNLlHIBMbNyoqOH8cBm4BGiIajYcPeZwEyA6upqr6mpSWk7tbW1pNp2oPRHji1tHdz4lycoqhxLTc3hfdrWwboP0y3uOcY9P4h/jnHPL1FfhrA+Cax29w3u3gr8FvgYUBaGtACqgIYw3QCMAQjLS4HGxHiXNt3FG3voQ9IoLyeLESUFGsISkaT6UkDeAaaaWWE4L3E6sAyYD5wX1pkBPBqm54Z5wvJnPPqyibnABeEqrfHABOAF4EVgQrjiKo/oRPvc0Ka7PiTNRpcPon7TzkynISIxlHIBcffniU5k/w1YErY1E7gBuN7M6ojOV9wTmtwDVIT49cCNYTtLgYeJis8fgKvdvT2c47gGeBJ4HXg4rEsPfUiaVZUX0qACIiJJpHwOBMDdbwFu6RJeRXQFVdd1m4Hzu9nOd4HvJok/DjyeJJ60D0m/qvJBPPryTlrbO8jN1n2nIvJ3+o0gPaoqH6R7QUQkKRUQ6VFVeSEA7+pEuoh0oQIiPeq8mVDnQUSkKxUQ6dHI0kGYoSuxROQDVECkR3+/F0QFRET2pAIiezW6bJBuJhSRD1ABkb2q0s2EIpKECojs1ZghhazZslPfCyIie1ABkb0aV1FEh+tSXhHZkwqI7NX4YUUArN6wPcOZiEicqIDIXh06NBSQ91VAROTvVEBkr8oK8ygvzGV1owqIiPydCojsk3FDizSEJSJ7UAGRfTJ+aJGGsERkDyogsk8OHVrE2q3N7Ghp2/vKInJQUAGRfTJ+6GAA3npfl/KKSEQFRPbJuKHRY901jCUinVIuIGY20cxeTnhtNbOvmtkQM5tnZivDe3lY38zsTjOrM7NXzeyEhG3NCOuvNLMZCfEpZrYktLkzfPc63fUh/WdcReelvE0ZzkRE4qIv34m+3N2Pc/fjgCnADuC/ib7r/Gl3nwA8HeYBzgYmhNcVwN0QFQOir8U9iehram9JKAh3A5cntJsW4t31If2kKD+HESUFrNYQlogE6RrCOh14093fBqYDs0J8FnBumJ4OzPbIQqDMzEYCZwHz3H2ju28C5gHTwrISd1/o7g7M7rKtZH1IP4quxNIRiIhEctK0nQuAB8N0pbuvCdNrgcowPRp4N6FNfYj1FK9PEu+pjz2Y2RVERztUVlZSW1vbqw/VqampKeW2A2Ugcsxv2cWSdW0p9aN9mB5xzzHu+UH8c4x7fon6XEDMLA/4LHBT12Xu7mbmfe2jJz314e4zgZkA1dXVXlNTk1IftbW1pNp2oAxEjnXZq6j9/etMrv4IQwfn96qt9mF6xD3HuOcH8c8x7vklSscQ1tnA39x9XZhfF4afCO/rQ7wBGJPQrirEeopXJYn31If0o4kjigFYsW5bhjMRkThIRwG5kL8PXwHMBTqvpJoBPJoQvyRcjTUV2BKGoZ4EzjSz8nDy/EzgybBsq5lNDVdfXdJlW8n6kH60u4CsVQERkT4OYZlZEXAG8P8mhL8HPGxmlwFvA58P8ceBTwF1RFdsfQnA3Tea2beBF8N6t7n7xjB9FXA/MAh4Irx66kP60bDB+ZQX5rJcRyAiQh8LiLtvByq6xBqJrsrquq4DV3eznXuBe5PEFwGTk8ST9iH9y8w4vLKY5ToCERF0J7r00hEjilmxrono7wEROZipgEivHD6imKZdbTRs3pnpVEQkw1RApFcmVupKLBGJqIBIrxwersRavlZ3pIsc7FRApFdKCnIZVVrA8rVbM52KiGSYCoj02uEjilm+TkcgIgc7FRDptYkjinlzfROt7R2ZTkVEMkgFRHrtqJEltLR3ULdeRyEiBzMVEOm1o0eXArCkfkuGMxGRTFIBkV4bV1HE4PwcljSogIgczFRApNeysozJo0tUQEQOciogkpKjR5eybM1WnUgXOYipgEhKJo8upaWtg5W6nFfkoKUCIik5pqoMgCUNmzOciYhkigqIpGTskEKKdSJd5KCmAiIpycoyJo0uYUmDHmkicrBSAZGUHVNVxutrttLSphPpIgcjFRBJ2bFVZbS0dbBsjY5CRA5GfSogZlZmZnPM7A0ze93MPmJmQ8xsnpmtDO/lYV0zszvNrM7MXjWzExK2MyOsv9LMZiTEp5jZktDmTjOzEE/ahwys6nHRbl/01sa9rCkiB6K+HoH8BPiDux8BHAu8DtwIPO3uE4CnwzzA2cCE8LoCuBuiYgDcApwEnAjcklAQ7gYuT2g3LcS760MGUGVJAWOGDGLx25synYqIZEDKBcTMSoGPA/cAuHuLu28GpgOzwmqzgHPD9HRgtkcWAmVmNhI4C5jn7hvdfRMwD5gWlpW4+0KPvoB7dpdtJetDBlj12CEsenuTviNd5CCU04e244ENwH1mdiywGPgKUOnua8I6a4HKMD0aeDehfX2I9RSvTxKnhz72YGZXEB3tUFlZSW1tbe8+YdDU1JRy24GSqRyLd7WyYVsLjzwxn+GF3f89on2YHnHPMe75QfxzjHt+ifpSQHKAE4Br3f15M/sJXYaS3N3NrF//NO2pD3efCcwEqK6u9pqampT6qK2tJdW2AyVTOY5Yu5XZy/5CduXh1Eyp6nY97cP0iHuOcc8P4p9j3PNL1JdzIPVAvbs/H+bnEBWUdWH4ifC+PixvAMYktK8KsZ7iVUni9NCHDLDDhxdTXJDDIp0HETnopFxA3H0t8K6ZTQyh04FlwFyg80qqGcCjYXoucEm4GmsqsCUMQz0JnGlm5eHk+ZnAk2HZVjObGq6+uqTLtpL1IQMsK8uYMrZcV2KJHIT6MoQFcC3wgJnlAauALxEVpYfN7DLgbeDzYd3HgU8BdcCOsC7uvtHMvg28GNa7zd07fxtdBdwPDAKeCC+A73XTh2RA9dhyapdvYNP2FsqL8jKdjogMkD4VEHd/GahOsuj0JOs6cHU327kXuDdJfBEwOUm8MVkfkhlTD60AYOGqRs4+emSGsxGRgaI70aXPjh1TRlFeNs+9+X6mUxGRAaQCIn2Wm53F1EMreK6uMdOpiMgAUgGRtPjoYUNZ/f52GjbvzHQqIjJAVEAkLU4+bCgAz9VpGEvkYKECImlxeOVghg7OVwEROYiogEhamBkfOyw6D6LnYokcHFRAJG0+dthQ3m/axetrtmU6FREZACogkjY1E4cB8Mwb6zKciYgMBBUQSZvhxQUcO6aMp17Xo8lEDgYqIJJWnzxiOK/Ub2bDtl2ZTkVE+pkKiKTVaUcOxx3mv6GjEJEDnQqIpNVRI0sYVVrAU6/rPIjIgU4FRNLKzDjtyOH8ZeX7NLe2ZzodEelHKiCSdp88spKdre38ZaVuKhQ5kKmASNp97LChlBXm8vtX38t0KiLSj1RAJO1ys7OYNmkE85at0zCWyAFMBUT6xaePGcX2lnZql+tqLJEDVZ8KiJm9ZWZLzOxlM1sUYkPMbJ6ZrQzv5SFuZnanmdWZ2atmdkLCdmaE9Vea2YyE+JSw/brQ1nrqQ+Jj6qFDqCjK47FX12Q6FRHpJ+k4AjnV3Y9z986vtr0ReNrdJwBPh3mAs4EJ4XUFcDdExQC4BTgJOBG4JaEg3A1cntBu2l76kJjIyc5i2uQRPP36ena0tGU6HRHpB/0xhDUdmBWmZwHnJsRne2QhUGZmI4GzgHnuvtHdNwHzgGlhWYm7Lwzfpz67y7aS9SEx8tljR7GztZ0nl67NdCoi0g9y+tjegT+amQM/d/eZQKW7d45brAUqw/Ro4N2EtvUh1lO8PkmcHvrYg5ldQXS0Q2VlJbW1tb39fAA0NTWl3HagxDFHd2d4oTFz3hKuPqo9dvl1Fcd92FXcc4x7fhD/HOOeX6K+FpCT3b3BzIYD88zsjcSF7u6huPSbnvoIBW0mQHV1tdfU1KTUR21tLam2HShxzfHijpX8//NWsDOrkE/HML9Ecd2HieKeY9zzg/jnGPf8EvVpCMvdG8L7euC/ic5hrAvDT4T3zstwGoAxCc2rQqyneFWSOD30ITHzuSlVmMGzDToPInKgSbmAmFmRmRV3TgNnAq8Bc4HOK6lmAI+G6bnAJeFqrKnAljAM9SRwppmVh5PnZwJPhmVbzWxquPrqki7bStaHxMyoskGcfNhQnm1oo6ND31QociDpyxFIJfCsmb0CvAD83t3/AHwPOMPMVgKfDPMAjwOrgDrgF8BVAO6+Efg28GJ43RZihHV+Gdq8CTwR4t31ITH0+eoxNDY7f9H3pYscUFI+B+Luq4Bjk8QbgdOTxB24uptt3QvcmyS+CJi8r31IPJ01aQQlecbsv77FJw4flul0RCRNdCe69Lu8nCxqxuTwzPL1vNO4I9PpiEiaqIDIgDh1TA7ZZsxe8FamUxGRNFEBkQFRXpDFWZNH8OtF7+rOdJEDhAqIDJgvfXQc25rbePjFd/e+sojEngqIDJjqcUOoHlvOL/6ymtb2jkynIyJ9pAIiA+qqUz9Ew+adPPqyvmxKZH+nAiID6tSJwzliRDF319bpxkKR/ZwKiAwoM+OqUw/jzQ3befw1fVeIyP5MBUQG3DlHj2TC8MHcMW8FbToXIrLfUgGRAZedZXztzIms2rCd377UsPcGIhJLKiCSEWdNquTYqlJ+8tRKdrW1ZzodEUmBCohkhJnx9bOOoGHzTmb99a1MpyMiKVABkYw5ecJQTjtiOP/+dB0btu3KdDoi0ksqIJJR//ucI2lua+eHTy7PdCoi0ksqIJJRhw4bzJc+Np6HF7/LK+9uznQ6ItILKiCScdeedhjDBudz02+X6BEnIvsRFRDJuOKCXG6bPplla7byy7+sznQ6IrKP+lxAzCzbzF4ys8fC/Hgze97M6szs12aWF+L5Yb4uLB+XsI2bQny5mZ2VEJ8WYnVmdmNCPGkfsv+aNnkEZ02q5MdPrWD1+9sznY6I7IN0HIF8BXg9Yf77wI/c/TBgE3BZiF8GbArxH4X1MLOjgAuAScA04KehKGUDdwFnA0cBF4Z1e+pD9mO3TZ9Mfk4W1z/8su5QF9kP9KmAmFkVcA7wyzBvwGnAnLDKLODcMD09zBOWnx7Wnw485O673H01UAecGF517r7K3VuAh4Dpe+lD9mOVJQV85x+O5qV3NnPX/DcznY6I7EVfj0B+DHwD6PxzsQLY7O6dXzlXD4wO06OBdwHC8i1h/d3xLm26i/fUh+znPnvsKKYfN4o7n1nJ397ZlOl0RKQHOak2NLNPA+vdfbGZ1aQvpfQxsyuAKwAqKyupra1NaTtNTU0ptx0occ+xN/mdWeE8lw+X37uAb310EIPzrH+TC+K+DyH+OcY9P4h/jnHPL1HKBQT4GPBZM/sUUACUAD8ByswsJxwhVAGdT8trAMYA9WaWA5QCjQnxToltksUbe+hjD+4+E5gJUF1d7TU1NSl90NraWlJtO1DinmNv8xtz5GbOu3sBcxqKuHfGh8nK6v8iEvd9CPHPMe75QfxzjHt+iVIewnL3m9y9yt3HEZ0Ef8bdLwLmA+eF1WYAj4bpuWGesPwZd/cQvyBcpTUemAC8ALwITAhXXOWFPuaGNt31IQeIY6rK+NfPHEXt8g38+KkVmU5HRJLoj/tAbgCuN7M6ovMV94T4PUBFiF8P3Ajg7kuBh4FlwB+Aq929PRxdXAM8SXSV18Nh3Z76kAPIP510COdPqeLOZ+p49GU99l0kbvoyhLWbu9cCtWF6FdEVVF3XaQbO76b9d4HvJok/DjyeJJ60DzmwmBnf/YejebtxB1+f8ypV5YVMGVue6bREJNCd6BJreTlZ/OziKYwsLeCyWS9St35bplMSkUAFRGJvSFEe/3npSeRmZ3HxPS/w3uadmU5JRFABkf3EIRWFzPrSiTTtauPCXyxk7ZbmTKckctBTAZH9xlGjSph96Yk0NrVwwcwFKiIiGaYCIvuV4w8pZ9alJ/J+Uwufu/uvOicikkEqILLfmTK2nIeumMqutg4+d/cCFr+9MdMpiRyUVEBkvzR5dCm//fJHGVKUxz/+4nn+uHRtplMSOeiogMh+65CKQuZc+RGOGFnClf+1mHueXU30oAIRGQgqILJfqw00hXcAABBDSURBVBicz4OXn8TpR1by7ceWcc2vXmJbc2um0xI5KKiAyH6vMC+HmRdP4cazj+APS9cy/T+e4421WzOdlsgBTwVEDghmxpWf+BAP/K+T2LarjXPveo4HX3hHQ1oi/UgFRA4oUw+t4PfXncwJh5Rz02+XcPE9L/Duxh2ZTkvkgKQCIgec4cUF/NdlJ/Htcyfz0jubmPbjP/OfC96io0NHIyLppAIiB6SsLOPiqWN58p8/zgljy/nXR5dy/s8X8Mq7mzOdmsgBQwVEDmhV5YXMvvREfnDeMbzduJ3pdz3H9Q+/rMegiKSBCogc8MyMz1ePYf6/1PDlmg/x2CtrOPWHtdzxx+Vs2aFLfkVSpQIiB43iglxumHYET13/CU47Yjh3PlPHyd9/hjv+uJzNO1oynZ7Ifict30gosj85pKKQuy46gWvWbOXOp1dy5zN13PvcW3x8lDHx+J2MLB2U6RRF9gspH4GYWYGZvWBmr5jZUjP7VoiPN7PnzazOzH5tZnkhnh/m68LycQnbuinEl5vZWQnxaSFWZ2Y3JsST9iHSG0eOLOHuf5rCH756Cp+YOIwnVrdy8vfnc82v/sbitzfpHhKRvejLENYu4DR3PxY4DphmZlOB7wM/cvfDgE3AZWH9y4BNIf6jsB5mdhRwATAJmAb81MyyzSwbuAs4GzgKuDCsSw99iPTaESNKuOsfT+AHHx/EpR8bx59WbOBzd/+Vz/zHs8xe8JbOk4h0I+UC4pGmMJsbXg6cBswJ8VnAuWF6epgnLD/dzCzEH3L3Xe6+GqgDTgyvOndf5e4twEPA9NCmuz5EUjasMIubzzmKhTedzrenT6K9A7756FI+/G9Pcc2v/sb85etpbe/IdJoisWF9OUwPRwmLgcOIjhZuBxaGIwPMbAzwhLtPNrPXgGnuXh+WvQmcBNwa2vxXiN8DPBG6mObu/yvEL+6y/gf6SJLfFcAVAJWVlVMeeuihlD5nU1MTgwcPTqntQIl7jnHPD5Ln+PbWdv5c38bCNW1sb4WiXJhSmcOHK7M5siKbnCzLeI5xEvf8IP45xi2/U089dbG7Vydb1qeT6O7eDhxnZmXAfwNH9GV76ebuM4GZANXV1V5TU5PSdmpra0m17UCJe45xzw+6z3EGsKutnT+veJ/Hl6xh3rJ1/Ll+FyUFOZxy+DBOnTicTxw+jGHF+RnLMS7inh/EP8e455coLVdhuftmM5sPfAQoM7Mcd28DqoCGsFoDMAaoN7McoBRoTIh3SmyTLN7YQx8i/SI/J5szjqrkjKMqaW5t588rNjBv2TpqV2zg96+uAWDy6BJqDh/OJyYO49iqMvJydJW8HNhSLiBmNgxoDcVjEHAG0cnt+cB5ROcsZgCPhiZzw/yCsPwZd3czmwv8yszuAEYBE4AXAAMmmNl4ogJxAfCPoU13fYj0u4LcbM6cNIIzJ42go8NZtmYrf1qxgdrl67n7T2/yH/PryM/J4rgxZZw4fggfHjeEE8aWMzhfV83LgaUv/6NHArPCeZAs4GF3f8zMlgEPmdl3gJeAe8L69wD/aWZ1wEaigoC7LzWzh4FlQBtwdRgaw8yuAZ4EsoF73X1p2NYN3fQhMqCysozJo0uZPLqUq089jC07WlmwqpEX39rIi29t5Ke1b9LeUUd2lnHkyGKOqSrj6NGlHD26lMMri3WUIvu1lAuIu78KHJ8kvoroCqqu8Wbg/G629V3gu0nijwOP72sfIplWWpjLtMkjmDZ5BABNu9p46Z1NvLB6I4vf3sTvXnmPXz3/DgB52VkcMbKYyaNLmVhZzITKwUysLKZicP+fSxFJBx1Ti/Sjwfk5nDJhGKdMGAaAu/POxh28Wr+F1xq2sKRhC4+98h6/am7b3aaiKI/Dhg/m8Mpixg0tYlxFIWMrCqkqL8zUxxBJSgVEZACZGWMrihhbUcRnjh0FREVl/bZdrFi3jRXrmli5bhsr1m3jf15uYFtCYTGD8nzj8BULGDukiEMqCqkqH8SIkgJGlQ1ieEk++TnZmfpochBSARHJMDOjsqSAypKC3UcqEBWWTTtaeatxO+807uDtxh08v2wVu9qdp99Yz/tNuz6wraGD8xlZWsCI0gJGlRYwrDifoYPzqRicT8XgPIYW5TO0OI/CPP3oS9/pf5FITJkZQ4ryGFKUxwmHlANQm9NATc1HAdi+q401W3ayZktz9NrczNqtO3lvczPvNO5g4arGPY5gEg3KzaZicB4Vg/MZWpRHeVEeJQW5lA7KpWRQTvRekEtpYe4e8UG52UQPgxBRARHZbxXl53DY8GIOG17c7TrNre1s3N5CY1ML72/fFb037aKxKUxvb2HNlmbeWLuNLTtbadqVvOB0ys02SgpyKS7IoTAvh6L87D3eN23YxcKdb1CUl01hfs4e74PyonUKcrPIz8kmPycreuVG0zlZpuK0n1EBETmAFeRmM6psEKPK9u0R9W3tHWxrbmPLzla2NreyZWf02rqz7e/Tza1sa25jZ0sb23e1s3lHCw2b29mxq40tO9r4S8NqWlJ4ZliWRTds5ueGwtJZZLoUnJzsLHKzjZysLHKyjdzO9854dha5WdF7suV1Da1sebmB3OyoaOVkG1lmZGdF753T2VnsWzzLyDYjKwuyO+NhWdf4gVYgVUBEZLec7CzKw5BWKjofw9HS1sHOlna2t7Sxo6WNHS3tbN/Vzo6WNlraOtjV1sGutvbovTVhuq2DXa0J023tYXk0va25jdb2Dto6nLb2DlrbnbaO6L21vYO2hPkeLXk5pc+XDmbRXdJmRpaBYVHMosLU0d5Ozvwnd6+XlWXRu3WuZ6F9iIVt7Z5PiBOmv3L6hN0XbaSTCoiIpF1eThZ5OVmUFuZmpH93p73DaeuICktreyg4Hc5zf13ACdUn0tbRWXCidTvc6ehw2t3p6CC8Jyxzpz2FeEfIpb3D8Sg5Ohwcx509pt2dd955l9FVY+gID7r1hPU7nN3rebIYUX/Rdjv7g9JB/fPvoAIiIgccs2hoKic7GsZLNLwwi8OGx+dpt13V1q6npuaova8YA3qOgoiIpEQFREREUqICIiIiKVEBERGRlKiAiIhISlRAREQkJSogIiKSEhUQERFJibnv5Zb/A4SZbQDeTrH5UOD9NKbTH+KeY9zzA+WYDnHPD+KfY9zyG+vuw5ItOGgKSF+Y2SJ3r850Hj2Je45xzw+UYzrEPT+If45xzy+RhrBERCQlKiAiIpISFZB9MzPTCeyDuOcY9/xAOaZD3POD+OcY9/x20zkQERFJiY5AREQkJSogIiKSEhWQvTCzaWa23MzqzOzGGOQzxszmm9kyM1tqZl8J8SFmNs/MVob38hjkmm1mL5nZY2F+vJk9H/blr80ste9NTU9uZWY2x8zeMLPXzewjcduHZvbP4d/4NTN70MwKMr0PzexeM1tvZq8lxJLuN4vcGXJ91cxOyFB+t4d/51fN7L/NrCxh2U0hv+VmdlZ/59ddjgnLvmZmbmZDw/yA78PeUAHpgZllA3cBZwNHAReaWaa/KqwN+Jq7HwVMBa4OOd0IPO3uE4Cnw3ymfQV4PWH++8CP3P0wYBNwWUayivwE+IO7HwEcS5RnbPahmY0GrgOq3X0ykA1cQOb34f3AtC6x7vbb2cCE8LoCuDtD+c0DJrv7McAK4CaA8HNzATAptPlp+JnPRI6Y2RjgTOCdhHAm9uE+UwHp2YlAnbuvcvcW4CFgeiYTcvc17v63ML2N6Bff6JDXrLDaLODczGQYMbMq4Bzgl2HegNOAOWGVjOVoZqXAx4F7ANy9xd03E7N9SPSV04PMLAcoBNaQ4X3o7n8GNnYJd7ffpgOzPbIQKDOzkQOdn7v/0d3bwuxCoCohv4fcfZe7rwbqiH7m+1U3+xDgR8A3gMQrmwZ8H/aGCkjPRgPvJszXh1gsmNk44HjgeaDS3deERWuBygyl1enHRD8MHWG+Atic8IOcyX05HtgA3BeG2H5pZkXEaB+6ewPwQ6K/RtcAW4DFxGcfJupuv8Xx5+dS4IkwHZv8zGw60ODur3RZFJsck1EB2U+Z2WDgN8BX3X1r4jKPrs3O2PXZZvZpYL27L85UDnuRA5wA3O3uxwPb6TJcFYN9WE701+d4YBRQRJJhj7jJ9H7riZndTDQE/ECmc0lkZoXA/wd8M9O59JYKSM8agDEJ81UhllFmlktUPB5w99+G8LrOQ9vwvj5T+QEfAz5rZm8RDfudRnTOoSwMx0Bm92U9UO/uz4f5OUQFJU778JPAanff4O6twG+J9mtc9mGi7vZbbH5+zOyLwKeBi/zvN7/FJb8PEf2h8Er4makC/mZmI4hPjkmpgPTsRWBCuPIlj+iE29xMJhTOJdwDvO7udyQsmgvMCNMzgEcHOrdO7n6Tu1e5+ziiffaMu18EzAfOC6tlLEd3Xwu8a2YTQ+h0YBkx2odEQ1dTzaww/Jt35hiLfdhFd/ttLnBJuJJoKrAlYahrwJjZNKLh1M+6+46ERXOBC8ws38zGE52ofmGg83P3Je4+3N3HhZ+ZeuCE8P80FvuwW+6uVw8v4FNEV268Cdwcg3xOJhoieBV4Obw+RXSO4WlgJfAUMCTTuYZ8a4DHwvShRD+gdcAjQH4G8zoOWBT24/8A5XHbh8C3gDeA14D/BPIzvQ+BB4nOybQS/aK7rLv9BhjRVYxvAkuIrijLRH51ROcROn9efpaw/s0hv+XA2Znah12WvwUMzdQ+7M1LjzIREZGUaAhLRERSogIiIiIpUQEREZGUqICIiEhKVEBERCQlKiAivRCe4ntVmB5lZnP21qYPfR1nZp/qr+2L9JUKiEjvlAFXAbj7e+5+3l7W74vjiO7xEYkl3Qci0gtm1vlE5uVEN84d6e6Tw6MyziV6ZtUEogch5gEXA7uAT7n7RjP7ENGNYcOAHcDl7v6GmZ0P3AK0Ez048ZNEN8ANInp0xf8BHgP+HZgM5AK3uvujoe9/AEqJHrT3X+7+rX7eFSLk7H0VEUlwI9F3SxwXnob8WMKyyURPRy4g+uV/g7sfb2Y/Ai4hekLxTOBKd19pZicBPyV6Vtg3gbPcvcHMyty9xcy+SXTn8TUAZvZvRI+FuTR8KdILZvZU6PvE0P8O4EUz+727L+rPHSGiAiKSPvM9+o6WbWa2BfhdiC8BjglPUP4o8Ej0eCsgejwJwHPA/Wb2MNGDE5M5k+ghlf8S5guAQ8L0PHdvBDCz3xI98kYFRPqVCohI+uxKmO5ImO8g+lnLIvo+j+O6NnT3K8MRyTnAYjObkmT7BnzO3ZfvEYzadR2L1ti09DudRBfpnW1AcSoNPfreltXhfEfn910fG6Y/5O7Pu/s3ib7sakySvp4Erg1P58XMjk9YdoZF300+iOhczHOp5CjSGyogIr0QhomeM7PXgNtT2MRFwGVm9gqwlL9/RfLtZrYkbPevwCtEj24/ysxeNrMvAN8mOnn+qpktDfOdXiD6jphXgd/o/IcMBF2FJbKfC1dh7T7ZLjJQdAQiIiIp0RGIiIikREcgIiKSEhUQERFJiQqIiIikRAVERERSogIiIiIp+b+S4UTecs/CUAAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAERCAYAAABrWly6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3deXxV1b338c/vnMxzSCAEEggKMogIBkUL1qC1ovbRVqzKU22dytNrtfd6q1Vvb63tba9t9V5bp9pJeVmL0aK1iljHIFVRAQnIIIOMQcYwJcSEDOv545zEGDIRkux9Tr7v1+u8ztl7r73P1y35ZWedtdcx5xwiIhL5Al4HEBGR7qGCLiISJVTQRUSihAq6iEiUUEEXEYkSKugiIlHC04JuZo+a2S4zW9GJtveZWWn4sdbM9vdGRhGRSGFejkM3sy8ClcDjzrmxR7HfTcAE59y1PRZORCTCeHqF7pxbAOxtvs7Mjjezf5jZEjP7p5mNamXXGcCTvRJSRCRCxHgdoBW/B77jnFtnZpOAh4GzGzea2VBgGPCGR/lERHzJVwXdzFKALwB/NbPG1fEtml0BzHHO1fdmNhERv/NVQSfUBbTfOTe+nTZXAN/tpTwiIhHDV8MWnXMHgY1m9nUACzm5cXu4Pz0TWOhRRBER3/J62OKThIrzSDMrM7PrgG8A15nZMmAlcHGzXa4Aip2miBQROYKnwxZFRKT7+KrLRUREus6zD0Wzs7NdQUFBl/Y9dOgQycnJ3RuomynjsfN7PvB/Rr/nA/9n9Fu+JUuW7HHO9W91o3POk0dhYaHrqpKSki7v21uU8dj5PZ9z/s/o93zO+T+j3/IBi10bdVVdLiIiUUIFXUQkSqigi4hECb/dKSoiHqitraWsrIzq6upef+/09HRWr17d6+/bWV7lS0hIIC8vj9jY2E7vo4IuIpSVlZGamkpBQQHN5lHqFRUVFaSmpvbqex4NL/I55ygvL6esrIxhw4Z1ej91uYgI1dXVZGVl9Xoxl9aZGVlZWUf9F5MKuogAqJj7TFf+f0Rcl8uaHRU8u+4wHxxe43WUdm3afGwZC7KTueSUvG5MJCLRLuIK+vpdlbzwcS1sWO91lPY5upyxcXqdsYPTOSHHv32LIuIvEVfQLxyXS/LeZIqKiryO0q758+d3OePeQ4c54+7XefStjfxi+rjuDSbiQ/v372f27NnccMMNbbaZP38+9957L3Pnzu3FZN2nqKiIe++9l4kTJ/bYe6gP3Yf6JcdxySl5PLt0G+WVNV7HEelx+/fv5+GHH/Y6RsSLuCv0vuLayQU8+f4WZr+3hZvOGeF1HOlDfvLCSlZ9crBbjzlmUBo//j8ntrn99ttv5+OPP2b8+PGce+65ALz00kuYGf/5n//J5Zdf/rn2ixYtYubMmcyZM4eBAwdy0003sWLFCmpra7nrrru4+OKLmTVrFs8//zxVVVV8/PHHfO1rX+NXv/pVq+9fX1/Pddddx+LFizEzrr32Wm6++WaKior4yU9+wllnncWePXuYOHEimzZtYtasWfztb3/jwIEDbNu2jSuvvJIf//jHbNq0iWnTplFYWMgHH3zAiSeeyOOPP05SUlLTez366KMsX76cX//61wD84Q9/YNWqVdx3333Hepp1he5XI3JS+eIJ/Xn83c00NGjOeoluv/jFLzj++OMpLS3l9NNPp7S0lGXLlvHaa69x6623sn379qa277zzDt/5znf4+9//zvHHH8/Pf/5zzj77bN5//31KSkq49dZbOXToEAClpaU89dRTfPjhhzz11FNs3bq11fcvLS1l27ZtrFixgg8//JBrrrmmw8zvv/8+zzzzDMuXL+evf/0rixcvBmDNmjXccMMNrF69mrS0tCP+8rjssst44YUXqK2tBeCxxx7j2muv7dJ5a0lX6D529sj+LFi7m71Vh8lOafld2SI9o70r6d7w1ltvMWPGDILBIDk5OZx11lksWrSItLQ0Vq9ezcyZM3nllVcYNGgQAK+88grPP/889957LxAaU79lyxYAzjnnHNLT0wEYM2YMmzdvJj8//4j3PO6449iwYQM33XQTF154IV/+8pc7zHnuueeSlZUFwCWXXMJbb73FV7/6VfLz85k8eTIAV155Jffffz+33HJL034pKSmcffbZzJ07l9GjR1NbW8tJJ510DGfsM7pC97GB6QkA7DjQ+7dji/hRbm4uCQkJLF26tGmdc45nnnmG0tJSSktL2bJlC6NHjwYgPv6zC6FgMEhdXV2rx83MzGTZsmUUFRXxyCOPcP311wMQExNDQ0MDwBE3+bQcJ9643Nb65q6//npmzZrFY4891qm/BjpLBd3HBqYnAiroEv1SU1OpqKgA4Mwzz+Spp56ivr6e3bt3s2DBAk477TQAMjIyePHFF7njjjuYP38+AOeddx4PPPAALjzet3mx76w9e/bQ0NDA9OnT+dnPfsYHH3wAQEFBAaWlpQDMmTPnc/u8+uqr7N27l08//ZTnnnuu6ap8y5YtLFwY+h772bNnM2XKlCPeb9KkSWzdupXZs2czY8aMo87bFhV0H8sNX6FvP6iCLtEtKyuLyZMnM3bsWBYuXMi4ceM4+eSTOfvss/nVr37FwIEDm9rm5OQwd+5cvvvd7/Lee+/xox/9iNraWsaNG8eJJ57Ij370o6N+/23btlFUVMT48eO58sorufvuuwG45ZZb+NOf/sSECRPYs2fP5/Y57bTTmD59OuPGjWP69OlNwxFHjhzJQw89xOjRo9m3bx//8i//0up7XnbZZUyePJnMzMyjztsW9aH7WHZKPMGAsVNX6NIHzJ49+3PL99xzz+eWi4qKmu7tGDJkCCtXrmza9rvf/e6I41199dVcffXVTcvtjV8/+eSTm67Kmxs1ahQLFy5smpzrZz/7WdO2vLw8nnvuuSP2iYmJ4YknnjhifeNfFI3eeustbr755jYzdYWu0H0sGDAGpMazXQVdJGrs37+fE044gcTERM4555xuPbau0H1uYHoCOw5+6nUMkagxadIkamo+f8Pen//856MaadLy6r9RQUEBK1asaHffjIwM1q5d2+n3Ohoq6D6Xm57Amh0VXseQPsA51ydmXHzvvfe8jtApjR/yHo0Ou1zM7FEz22Vmrf7aMbNvmNlyM/vQzN4xs5OPOoW0KSctge0Hqrv0P1eksxISEigvL9e/M59o/IKLhISEo9qvM1fos4AHgcfb2L4ROMs5t8/Mzgd+D0w6qhTSptz0BKoO11NRU0daQue/ikrkaOTl5VFWVsbu3bt7/b2rq6uPunD1Jq/yNX4F3dHosKA75xaYWUE7299ptvguoEm8u1HjWPSdB6pV0KXHxMbGHtVXnXWn+fPnM2HCBE/euzP8nq8568yfWOGCPtc5N7aDdrcAo5xz17exfSYwEyAnJ6ewuLj4aPMCUFlZSUpKSpf27S3dlXHN3nrufr+aWybGMza7ez/y8Pt59Hs+8H9Gv+cD/2f0W76pU6cucc61Pgevc67DB1AArOigzVRgNZDVmWMWFha6riopKenyvr2luzJuKT/kht421z31/pZuOV5zfj+Pfs/nnP8z+j2fc/7P6Ld8wGLXRl3tlks+MxsH/BE43zlX3h3HlJABaaG5KHboblER6cAx31hkZkOAZ4GrnHM9M7iyD4uPCZKdEqebi0SkQx1eoZvZk0ARkG1mZcCPgVgA59wjwJ1AFvBweAxrnWurf0e6JCctgR0HdHORiLSvM6Nc2p0KzIU+AG31Q1DpHrnpCWzbryt0EWmf5nKJAAPTdYUuIh1TQY8AuemJ7Kuqpbq23usoIuJjKugRYHBG6Oaisn26SheRtqmgR4C8zFBB37qvyuMkIuJnKugRIL9fEqArdBFpnwp6BOifEk9cTICyvbpCF5G2qaBHgEDAyMtI1BW6iLRLBT1C5PVLUh+6iLRLBT1C5GUmslVdLiLSDhX0CJGfmcS+qloqa+q8jiIiPqWCHiHy+zWORddVuoi0TgU9QuRlhoYubt2rD0ZFpHUq6BEiP1NX6CLSPhX0CNEvOY7E2KCu0EWkTSroEcLMyO+XqCt0EWmTCnoEyc9MYqtuLhKRNqigR5C8zETK9lY1fim3iMjnqKBHkPx+SVTU1LG/qtbrKCLiQyroEaQgKxmATeWHPE4iIn6kgh5BCrJV0EWkbSroEWRIvyQCBht3q6CLyJFU0CNIXEyAvMwkNpZr6KKIHEkFPcIMy05m455Kr2OIiA91WNDN7FEz22VmK9rYPsrMFppZjZnd0v0Rpblh2cls2qOhiyJypM5coc8CprWzfS/wPeDe7ggk7RuWnUxlTR27K2u8jiIiPtNhQXfOLSBUtNvavss5twjQ4Ohe0DTSZY/60UXk86wzf7qbWQEw1zk3tp02dwGVzrk2r9TNbCYwEyAnJ6ewuLj4KOOGVFZWkpKS0qV9e0tPZdxd1cCtCz7lmrFxnJUXe0zH8vt59Hs+8H9Gv+cD/2f0W76pU6cucc5NbHWjc67DB1AArOigzV3ALZ05nnOOwsJC11UlJSVd3re39FTGuvoGN+I/5rm7560+5mP5/Tz6PZ9z/s/o93zO+T+j3/IBi10bdVWjXCJMMGAMyUrSSBcROYIKegQqyEpWH7qIHCGmowZm9iRQBGSbWRnwYyAWwDn3iJkNBBYDaUCDmf0bMMY5d7DHUvdxx/VPZsG63TQ0OAIB8zqOiPhEhwXdOTejg+07gLxuSyQdGpadzOG6Brbt/5T8fklexxERn1CXSwQaMSD0ifu6XRUeJxERP1FBj0AjclIBWLdTH4yKyGdU0CNQemIsOWnxrFVBF5FmVNAj1IgBqepyEZHPUUGPUCNyUli3s5KGBk3SJSIhKugR6oScVD6trWfb/k+9jiIiPqGCHqFOyAmNdFm7U90uIhKigh6hhg8Ij3TZpQ9GRSREBT1CfTbSRVfoIhKigh7BTshJ1Vh0EWmigh7BRgxIZf0ujXQRkRAV9Ah2Qk4Kn9bWs3WfZl4UERX0iDY6Nw2AVZ9oYksRUUGPaCMHphIMGKu2q6CLiAp6REuIDXJ8/2RW6gpdRFBBj3gnDkpXl4uIACroEW9Mbho7DlZTXlnjdRQR8ZgKeoQ7cVD4g1H1o4v0eSroEa5xpIv60UVEBT3CZSbHMSg9Qf3oIqKCHg3GDEpn5ScHvI4hIh5TQY8CYwalsWHPIaoO13kdRUQ81GFBN7NHzWyXma1oY7uZ2f1mtt7MlpvZKd0fU9ozdlAazumOUZG+rjNX6LOAae1sPx8YEX7MBH577LHkaIzPzwBgWZm6XUT6sg4LunNuAbC3nSYXA4+7kHeBDDPL7a6A0rEBaQnkpidQunW/11FExEPmXMdTr5pZATDXOTe2lW1zgV84594KL78O3OacW9xK25mEruLJyckpLC4u7lLoyspKUlJSurRvb+ntjA8urWbzwQbuOSup0/v4/Tz6PR/4P6Pf84H/M/ot39SpU5c45ya2utE51+EDKABWtLFtLjCl2fLrwMSOjllYWOi6qqSkpMv79pbezvjb+evd0Nvmuj0V1Z3ex+/n0e/5nPN/Rr/nc87/Gf2WD1js2qir3THKZRuQ32w5L7xOelFjP/py9aOL9FndUdCfB74ZHu1yOnDAObe9G44rR+GkwekEDJaqH12kz4rpqIGZPQkUAdlmVgb8GIgFcM49AswDLgDWA1XANT0VVtqWHB/DCTmpLFNBF+mzOizozrkZHWx3wHe7LZF02cl5Gby8agfOOczM6zgi0st0p2gUGT8kg/1VtWwq13eMivRFKuhRpHBoJgCLNrV324CIRCsV9CgyvH8KGUmxLFZBF+mTVNCjSCBgTBzaj0Wb9nkdRUQ8oIIeZU4blsnGPYfYVVHtdRQR6WUq6FHm1IJ+ACzWVbpIn6OCHmXGDk4nMTbI+xvVjy7S16igR5nYYIAJQzI00kWkD1JBj0KnFvRj9faDVFTXeh1FRHqRCnoUmjSsHw1O49FF+hoV9Ch0ytBM4mMCvL2+3OsoItKLVNCjUEJskFML+vH2+j1eRxGRXqSCHqUmD8/mox0VGo8u0oeooEepKcOzAVj4sbpdRPoKFfQoNWZQGhlJsby1Tt0uIn2FCnqUCgaMM47L4u31exq/61VEopwKehSbPDybTw5Us2HPIa+jiEgvUEGPYl8c0R+AN9fs9jiJiPQGFfQoNiQrieP7J/PGR7u8jiIivUAFPcqdMzqH9zaWU1lT53UUEelhKuhRburIAdTWO412EekDVNCj3MSCTFITYihRt4tI1FNBj3KxwQBfHNGfkjW7NHxRJMp1qqCb2TQzW2Nm683s9la2DzWz181suZnNN7O87o8qXTV11AB2VdSwYttBr6OISA/qsKCbWRB4CDgfGAPMMLMxLZrdCzzunBsH/BS4u7uDStedPWoAAYOXV+7wOoqI9KDOXKGfBqx3zm1wzh0GioGLW7QZA7wRfl3SynbxUL/kOCYNy+KlFdu9jiIiPcg66lc1s0uBac6568PLVwGTnHM3NmszG3jPOfcbM7sEeAbIds6VtzjWTGAmQE5OTmFxcXGXQldWVpKSktKlfXuL3zK+trmWJ1Yf5udTEhmcEvo97reMLfk9H/g/o9/zgf8z+i3f1KlTlzjnJra60TnX7gO4FPhjs+WrgAdbtBkEPAssBX4DlAEZ7R23sLDQdVVJSUmX9+0tfsu448Cnbuhtc939r61tWue3jC35PZ9z/s/o93zO+T+j3/IBi10bdbUzXS7bgPxmy3nhdc1/KXzinLvEOTcB+GF43f7O/saRnpeTlkDh0ExeWqF+dJFo1ZmCvggYYWbDzCwOuAJ4vnkDM8s2s8Zj3QE82r0xpTucP3Ygq7YfZHO5JusSiUYdFnTnXB1wI/AysBp42jm30sx+amYXhZsVAWvMbC2QA/y8h/LKMZg2diAAc5frw1GRaBTTmUbOuXnAvBbr7mz2eg4wp3ujSXfLy0zi1IJMnlu6jRuKjvc6joh0M90p2sdcPH4w63ZVsmq7bjISiTYq6H3MhSflEhMw/l76iddRRKSbqaD3MZnJcRSN7M/fS7fRoLldRKKKCnofdPH4wew8WMNHexu8jiIi3UgFvQ86d0wOqQkxLCir9TqKiHQjFfQ+KCE2yNcmDGbxznoOVKmoi0QLFfQ+6vJT86lrgOdKt3XcWEQiggp6H3XioHQK0gI8+f4WffGFSJRQQe/DvpgXw0c7KlhedsDrKCLSDVTQ+7DTc2NIigvy53c3ex1FRLqBCnoflhRrXHLKYJ5f9gnllTVexxGRY6SC3sd964wCDtc1ULxoq9dRROQYqaD3cSNyUpk8PIu/vLuZunrdaCQSyVTQhW+dUcAnB6p5ZdVOr6OIyDFQQRfOGZ3D0KwkfvfmxxrCKBLBVNCFYMD49pnHsazsAAs3lHe8g4j4kgq6AHBpYR7ZKXE88uYGr6OISBepoAsQmt/lmsnDWLB2Nys/0Y1GIpFIBV2aXDlpKKnxMTz4xnqvo4hIF6igS5P0pFiumTKMl1bs0FW6SARSQZfPuW7KMFITYvjNa+u8jiIiR0kFXT4nPTGW66YM45VVO1mxTVfpIpFEBV2OcO2UYWQkxfKrl9d4HUVEjkKnCrqZTTOzNWa23sxub2X7EDMrMbOlZrbczC7o/qjSW9ISYrlx6nAWrN3NP9ft9jqOiHRShwXdzILAQ8D5wBhghpmNadHsP4GnnXMTgCuAh7s7qPSuq84YSl5mIv897yMaGnT3qEgk6MwV+mnAeufcBufcYaAYuLhFGwekhV+nA590X0TxQnxMkFvPG8nq7Qd5dqm+pk4kElhHc3eY2aXANOfc9eHlq4BJzrkbm7XJBV4BMoFk4EvOuSWtHGsmMBMgJyensLi4uEuhKysrSUlJ6dK+vSUaMjY4x8/eraa82vGLMxNJjLFeTBcd59Brfs8H/s/ot3xTp05d4pyb2OpG51y7D+BS4I/Nlq8CHmzR5t+B74dfnwGsAgLtHbewsNB1VUlJSZf37S3RkrF0yz5XcPtc97O5K3s+UAvRcg695Pd8zvk/o9/yAYtdG3W1M10u24D8Zst54XXNXQc8Hf4FsRBIALI7cWzxuZPzM7h8Yj6Pvb2JdTsrvI4jIu3oTEFfBIwws2FmFkfoQ8/nW7TZApwDYGajCRV0DY+IEreeN5Lk+Bh++NwKfUAq4mMdFnTnXB1wI/AysJrQaJaVZvZTM7so3Oz7wLfNbBnwJHB1+E8DiQJZKfH88ILRvL9xr76qTsTHYjrTyDk3D5jXYt2dzV6vAiZ3bzTxk69PzOO50m3cPW8154weQE5agteRRKQF3SkqnWJm/PfXTuJwfQN3PPuhvtlIxIdU0KXTCrKTuW3aKN74aJe6XkR8SAVdjsrVXyhg8vAs/mvuKjaXH/I6jog0o4IuRyUQMO659GSCAeN7xaUcrmvwOpKIhKmgy1EblJHIL6ePY9nW/dzz8kdexxGRMBV06ZILTsrlqtOH8od/buS1VTu9jiMiqKDLMfjhhaMZOziNm58q1V2kIj6ggi5dlhAb5PdXTSQ+Nsj1jy9m36HDXkcS6dNU0OWYDMpI5HdXFbJ9fzU3/OUDauv1IamIV1TQ5ZgVDs3k7ktOYuGGcn76wiqv44j0WZ269V+kI9ML81i7q4LfvbmB4/snc/XkYV5HEulzVNCl2/zgvFFs2H2Iu15YRWpCLNML87yOJNKnqMtFuk0wYDwwYwKTh2dx65xlzPtwu9eRRPoUFXTpVgmxQf7wzYmcMiST7z25lDc+0hh1kd6igi7dLikuhkevOZVRual854kPeGf9Hq8jifQJKujSI9ISYnn82kkUZCVx9axFvLJyh9eRRKKeCrr0mH7JcRTPPIPRuWl854klPL1YU+6K9CQVdOlR/ZLjmH39JCYPz+YHc5bzyJsfex1JJGqpoEuPS46P4U/fOpWvjMvlFy99xE9fWEWd7igV6XYahy69Ii4mwG+umEB2SjyPvr2RdbsqeGDGBDKS4ryOJhI1dIUuvSYYMO666ER+Of0k3tuwl4sefJuPdhz0OpZI1FBBl153+alDKP5/p1NdW88lD7/D3OWfeB1JJCp0qqCb2TQzW2Nm683s9la232dmpeHHWjPb3/1RJZqcMiSTuTdNYXRuGjfOXsoP5iyjsqbO61giEa3Dgm5mQeAh4HxgDDDDzMY0b+Ocu9k5N945Nx54AHi2J8JKdBmQlkDxzNO5cepw5iwp48L7/8kHW/Z5HUskYnXmCv00YL1zboNz7jBQDFzcTvsZwJPdEU6iX2wwwC3njaR45hnU1Tu+/shC/vfVtdTU1XsdTSTimHOu/QZmlwLTnHPXh5evAiY5525spe1Q4F0gzzl3xE+kmc0EZgLk5OQUFhcXdyl0ZWUlKSkpXdq3tyjj0auqdfx5dQ0LP6lnYLJx+XENTBjsn3yt8ds5bMnv+cD/Gf2Wb+rUqUuccxNb3eica/cBXAr8sdnyVcCDbbS9DXigo2M65ygsLHRdVVJS0uV9e4sydl3JRzvdlF++7obeNtfd8nSp21tZ43WkNvn1HDbyez7n/J/Rb/mAxa6NutqZLpdtQH6z5bzwutZcgbpb5BgVjRzAK/92FhcOi+VvS7cx9X/m86e3NnK4TjcjibSnMwV9ETDCzIaZWRyhov18y0ZmNgrIBBZ2b0TpixLjgnx9ZBwvfu9Mxg5K57/mruLc+97kxeXbG/8aFJEWOizozrk64EbgZWA18LRzbqWZ/dTMLmrW9Aqg2OmnTbrRyIGp/Pm605h1zakkxAT57uwP+NrD7zB/zS4VdpEWOnXrv3NuHjCvxbo7Wyzf1X2xRD5jZhSNHMCZI/rzzJIyfvP6Oq5+bBHj8tK56ewRfGn0AMzM65gintOdohIxggHjslPzKbmliF9OP4n9VbV8+/HFXHD/W8xZUqahjtLnqaBLxImLCXD5qUN44/tn8T9fP5n6hgZu+esyJv/iDe57dS27Kqq9jijiCc22KBErJhhgemEel5wymLfXl/PY2xv5zevreHj+er40OofLT83nzBH9CQbUHSN9gwq6RDwzY8qIbKaMyGbjnkM88e5m/rZ0Gy+t2MGg9AQuLczjovGDGD4g1euoIj1KBV2iyrDsZH70lTHcNm0Ur63eyVOLtvJAyXruf2M9I3NSuXBcLheOy+X4/v6580+ku6igS1SKiwlwwUm5XHBSLrsOVvPSih28uHw79722lv99dS2jBqbylXG5nD0qh9G5qRolI1FBBV2i3oC0BL71hQK+9YUCdhyoZt6H23nxw+3c+8pa7n1lLTlp8Zx1Qn/OOmEAU0Zkk54Y63VkkS5RQZc+ZWB6AtdOGca1U4ax82A1b67dzZtrdvPSih08vbiMYMA4ZUgGZxyXxWnDsjhlaAZJcfoxkcigf6nSZ+WkJXDZxHwum5hPXX0DS7fuZ/6aXSxYu4cHS9bT8MZ6YgLGiYPTmTSsH6cW9GPCkAyyU+K9ji7SKhV0EUJDIE8tCBXtW8+Diupalmzex6JNe3l/415mvb2J3y/YAMDgjEROGpzOuPx03J56Jnxaq24a8QUVdJFWpCbEUjRyAEUjBwBQXVvPsq37WV52gOXbDvBh2X7+sXIHAPcsfoXBGYmckJPCCTmpTY/hA1JIjAt6+Z8hfYwKukgnJMQGmXRcFpOOy2pad6CqlifmLcCyh7JmRwVrdlTw9vpyDteHpvk1gyH9khgxIJXjByQztF8yQ7OSGNIviUEZibrhSbqdCrpIF6UnxXJidpCiouFN6+rqG9hUXsW6nRWs2VnBup2VrNlZwYK1u5sKPUBs0MjPTGJIVhJD+yWR3y+JgekJ5KYnkJueyIDUeGKCmplDjo4Kukg3igkGGD4gheEDUjj/pNym9fUNju0HPmVLeRWb91axubyKLXsPsbm8iiWb9lFRU/e54wQMBqQmNBX5nLQE+qfGk5UcR3ZKPFkpoef+qfEkxKpbR0JU0EV6QTBg5GUmkZeZxBdabHPOcbC6ju0HPmX7gWq276/+7PWBT1mzs4J/rttDZYui3yg5Lkh2ajzZKfH0S44jPTG26bGrrJb9S7eRnhhLWrP16YmxxMXoL4Boo4Iu4jEzayqyowamtUojoQIAAAq8SURBVNmuuraePZU17Kk8THllTdPrPZU1lIeft+6tYsWntRz4tJaqw6HphJ9YXdrq8RJjg6QnxpIcHyQ5PoakuCAp8TEkxcWQHB8MP8eQHBckKfwcWo4hKT5IQkyQhNgA8bFB4mMCxMcESIgNEhMw3XnrERV0kQiREBtsusrvjMN1Dfzj9Tc58ZRTORAu8gfDzweqwsvVtRw6XE9VTR2HaurZfqCaqsP1HKqpCz0OH/0c8wGD+MZiHxMkPjZAQvi5sejHxwSIDYYe5btr+Ef5cmKCRkwgQFxMgJiAERMMEBcMPYfahrbHBo3YYICY8HPjcjBgBM0IBoxA89fh52CAptefrWv22oxAgCPWRRIVdJEoFRcTIC3ejmkisoYGR3VdPYdq6qk6XEdlTR1Vh+uprKmjpraBmrr6pufqxuW6BqprQ881tQ1Uh9s0Ph+qqaO8soHa+tCj4lA96yt3UVvvqK1voK7eUdfQQG29f75iMPjKvM8KvoUKvhkEAoZBeNkIWGh0U6BZm5bLATOuODWf6888rttzqqCLSJsCASMpLiY8/UHP3CE7f/58ioqKjljvnKOuwVFX7zhc30BdfQN1DY7DdQ3h9Q3h9Z/9AmhocNQ7R32Do8E56hto9vqz589td6H96hpa7B9+vWHjJvKHDKG+gab9nQu9ds7R4MARfnaOhobPlkNtjnzuqbuNVdBFxJfMLNydAol4N5Jn/vxPKCoa5dn7Hw19zC0iEiVU0EVEooQKuohIlOhUQTezaWa2xszWm9ntbbS5zMxWmdlKM5vdvTFFRKQjHX4oamZB4CHgXKAMWGRmzzvnVjVrMwK4A5jsnNtnZgN6KrCIiLSuM1fopwHrnXMbnHOHgWLg4hZtvg085JzbB+Cc29W9MUVEpCPmXPuD983sUmCac+768PJVwCTn3I3N2jwHrAUmA0HgLufcP1o51kxgJkBOTk5hcXFxl0JXVlaSkuLvb21XxmPn93zg/4x+zwf+z+i3fFOnTl3inJvY6kYXHhzf1gO4FPhjs+WrgAdbtJkL/A2IBYYBW4GM9o5bWFjouqqkpKTL+/YWZTx2fs/nnP8z+j2fc/7P6Ld8wGLXRl3tzI1F24D8Zst54XXNlQHvOedqgY1mthYYASxq66BLlizZY2abO/H+rckG9nRx396ijMfO7/nA/xn9ng/8n9Fv+Ya2taEzBX0RMMLMhhEq5FcA/7dFm+eAGcBjZpYNnABsaO+gzrn+nXjvVpnZYtfWnxw+oYzHzu/5wP8Z/Z4P/J/R7/ma6/BDUedcHXAj8DKwGnjaObfSzH5qZheFm70MlJvZKqAEuNU5V95ToUVE5EidmsvFOTcPmNdi3Z3NXjvg38MPERHxQKTeKfp7rwN0gjIeO7/nA/9n9Hs+8H9Gv+dr0uGwRRERiQyReoUuIiItqKCLiESJiCvonZkorJfz5JtZSbOJyf41vL6fmb1qZuvCz5k+yBo0s6VmNje8PMzM3gufy6fMLM7jfBlmNsfMPjKz1WZ2hp/Oo5ndHP5/vMLMnjSzBK/PoZk9ama7zGxFs3WtnjMLuT+cdbmZneJhxnvC/5+Xm9nfzCyj2bY7whnXmNl5XuRrtu37ZubCw7E9O4edFVEFvdlEYecDY4AZZjbG21TUAd93zo0BTge+G850O/C6c24E8Hp42Wv/SmjoaaNfAvc554YD+4DrPEn1md8A/3DOjQJOJpTVF+fRzAYD3wMmOufGEpri4gq8P4ezgGkt1rV1zs4ndMPfCEJTcPzWw4yvAmOdc+MITRtyB0D4Z+cK4MTwPg+Hf+57Ox9mlg98GdjSbLVX57Bz2rqF1I8P4Azg5WbLdwB3eJ2rRca/E5qZcg2QG16XC6zxOFceoR/uswlN1WCE7n6Lae3cepAvHdhI+IP6Zut9cR6BwYSmtOhHaLjvXOA8P5xDoABY0dE5A34HzGitXW9nbLHta8Bfwq8/9zNN6B6XM7zIB8whdGGxCcj2+hx25hFRV+h89kPVqCy8zhfMrACYALwH5Djntoc37QByPIrV6NfAD4CG8HIWsN+FbhwD78/lMGA3obuNl5rZH80sGZ+cR+fcNuBeQldr24EDwBL8dQ4btXXO/Przcy3wUvi1LzKa2cXANufcshabfJGvLZFW0H3LzFKAZ4B/c84dbL7NhX6VezY+1My+Auxyzi3xKkMnxACnAL91zk0ADtGie8XL8xjuh76Y0C+eQUAyrfyZ7jde/9vriJn9kFC35V+8ztLIzJKA/wDu7Kit30RaQe/MRGG9zsxiCRXzvzjnng2v3mlmueHtuYCXc8RPBi4ys02E5rM/m1B/dYaZNd4t7PW5LAPKnHPvhZfnECrwfjmPXwI2Oud2u9AkdM8SOq9+OoeN2jpnvvr5MbOrga8A3wj/4gF/ZDye0C/uZeGfmTzgAzMb6JN8bYq0gt40UVh4NMEVwPNeBjIzA/4ErHbO/W+zTc8D3wq//hahvnVPOOfucM7lOecKCJ2zN5xz3yA0786l4WZeZ9wBbDWzkeFV5wCr8M953AKcbmZJ4f/njfl8cw6baeucPQ98MzxS43TgQLOumV5lZtMIdQFe5JyrarbpeeAKM4u30ISAI4D3ezObc+5D59wA51xB+GemDDgl/G/UN+ewVV534nfhw4sLCH0q/jHwQx/kmULoT9rlQGn4cQGhPurXgXXAa0A/r7OG8xYBc8OvjyP0w7Ie+CsQ73G28cDi8Ll8Dsj003kEfgJ8BKwA/gzEe30OgScJ9enXEio817V1zgh9EP5Q+GfnQ0IjdrzKuJ5QX3Tjz8wjzdr/MJxxDXC+F/labN/EZx+KenIOO/vQrf8iIlEi0rpcRESkDSroIiJRQgVdRCRKqKCLiEQJFXQRkSihgi4RLTxD4w3h14PMbE4Pvtd4M7ugp44vcqxU0CXSZQA3ADjnPnHOXdpB+2MxntA9BiK+pHHoEtHMrJjQHCtrCN1IM9o5NzZ8W/lXCc25MoLQxFpxwFVADXCBc26vmR1P6EaR/kAV8G3n3Edm9nXgx0A9oYm4vkToZphEQrd6301oxsUHgLFALHCXc+7v4ff+GqEZJAcDTzjnftLDp0KEmI6biPja7YTm1R4fnu1ybrNtYwnNfplAqBjf5pybYGb3Ad8kNAPl74HvOOfWmdkk4GFCc93cCZznnNtmZhnOucNmdiehOwNvBDCz/yY0jcK14S9oeN/MXgu/92nh968CFpnZi865xT15IkRU0CWalTjnKoAKMzsAvBBe/yEwLjxD5heAv4amZwFCt/MDvA3MMrOnCU3E1ZovE5r07JbwcgIwJPz6VedcOYCZPUtoiggVdOlRKugSzWqavW5ottxA6N9+gNB85uNb7uic+074iv1CYImZFbZyfAOmO+fWfG5laL+WfZnq25Qepw9FJdJVAKld2dGF5q3fGO4vb/y+yJPDr493zr3nnLuT0Bdv5LfyXi8DN4VnX8TMJjTbdq6FvtszkVBf/ttdyShyNFTQJaKFuzXeDn/B7z1dOMQ3gOvMbBmwktAHrAD3mNmH4eO+AywjNFXuGDMrNbPLgf8i9GHocjNbGV5u9D6hOfKXA8+o/1x6g0a5iHSz8CiXpg9PRXqLrtBFRKKErtBFRKKErtBFRKKECrqISJRQQRcRiRIq6CIiUUIFXUQkSvx/I4kVwfDW5M4AAAAASUVORK5CYII=\n" }, "metadata": { "needs_background": "light" } }, { "output_type": "display_data", "data": { "text/plain": "
", "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEGCAYAAACQO2mwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nO3de3xU9Zn48c+TO5eQQICICQoq2CIilwhYrY1YFXS3uK11cdtKxS3a4la37e9X7a7V1rrb7vrTX916+dFKhZaKVqwipXURGV1sucv9ouGecJOE3Mllkuf3x/kODmEmmYQkc2Ce9+s1rznnOd/vmScHMk/OOd9zjqgqxhhjTCRJ8U7AGGOMf1mRMMYYE5UVCWOMMVFZkTDGGBOVFQljjDFRpcQ7gc7Wv39/HTJkSIf61tTU0KtXr85NqJP5PUe/5wf+z9Hv+YHl2Bn8lt+6deuOqeqA0xao6jn1GjdunHbU8uXLO9y3u/g9R7/np+r/HP2en6rl2Bn8lh+wViN8p9rhJmOMMVFZkTDGGBOVFQljjDFRnXMnriNpbGykuLiYurq6VttlZWWxffv2bsqqY/yeY1v5ZWRkkJ+fT2pqajdmZYzpqIQoEsXFxWRmZjJkyBBEJGq7qqoqMjMzuzGz9vN7jq3lp6qUlpZSXFzM0KFDuzkzY0xHJMThprq6OnJyclotEKbriQg5OTlt7tEZY/wjIYoEYAXCJ+zfwZizS0IcbjLGJCZVpbFJCTY309SsNDdDk6o3rd6rPfGTy128udmLNblrCpqaOdkfvGlVaFZ3TRqha9Ngx4FGSlbto9kLntLm5LSCElrGyfWqnhoLrfeLY/MZ2r9zL9CzImGM6RRNzUptQ5DahiZONDRRH2ymPujeG8Omg01uPsJ0WNvGJqWxqZlgs3t3X/ahL/3GoNLY7OJNzTQ2e+/BJi/eEGym+c9L4r1ZWrd1S6etSgTGXdjXisTZ6umnn+a5555j7NixzJ8/v8Pr2bdvH9OmTWPLli2sXbuWefPm8fTTT3dipp3jxRdfZO3atfziF7+IdyqmFc3NSnVDkIraRirrGqk40UjliSCVJ7z5qrogtQ1BahqaqK33CkBtQxOHPj7Bv3/wHjUNQU40NFHTEKSusbnDeSQJZKQmk56SRHpKMmkpSaQkC2nJ3ntKUhKp7j0jVUhNTiIlSUhNSSI1SUhJ/mR5SrK3/GDxAS4eOsSLJyeRLEJSkpAskJzkTSeJfBJPwptP8mISmo4hHv6eJN5h1VPeEURwLy+28q9/5erPfAbEW4/Qon0SCG6ZawOcnA5f1pWHca1IdJNnn32Wt99+m/z8/E5bZ0FBAQUFBZ22PnN2U1Wq64OUVjdwrLqeY9UNlNbUn5wvrW6g/ETDyUJQcaKRqrpG73BHK3qkJtMrPZkeacn0SkuhZ1oyGSmQ37+nN5+eTE8XD833SE0+5Us/PTXpk+mUJDcfWp5ESnLnnx4NBI5QWDi809fbWfpmJDGwT0a802hTwhWJH725lW0HKyMua2pqIjk5ud3rHHF+Hx7528uiLr/33nvZvXs3U6ZMYf/+/Tz88MN873vfA2DkyJEsXrwYgClTpnDNNdfwl7/8hby8PN544w169OjBunXrmDFjBgCFhYUn1xsIBHjiiSdYvHgxjz76KPv372f37t3s37+fBx54gG9/+9sAPPbYY/z2t79lwIABDB48mHHjxp38/JYKCwu54oorePfddwkGg8yZM4fx48dTVlbGjBkz2L17Nz179mT27NmMGjXqtPhTTz3FVVdd1e5taFrXEGzmSGUdhyrqOFRxgkMVdRyuqONg+QkOV9ZxrKqeYzUNNAQj/zWf1SOVnF5p9O2VxoDe6VwyoDd9eqSS1SOVPhnuvUcKfU6ZT6V3egrJSaf/lRoIBCgstD9QEkHCFYl4eP755/nzn//M8uXLWz388tFHH/HSSy/xy1/+kttvv52FCxfy1a9+lbvuuotf/OIXXHvttdx///1R++/YsYPly5dTVVXFpZdeyje/+U02bNjAwoUL2bhxI42NjYwdO5Zx48a1mm9tbS0bNmzgvffeY8aMGWzZsoVHHnmEMWPG8Prrr/POO+9w5513smHDhtPi99xzD5s2berwtkpUqsrx2kb2ldbwl4NBNr79EfvKathXWsv+slo+rqo/rU9mRgqDsjLI7ZPBsIGZ9O+dRv/e6eT0TiOndzo5vdIYkJlO355ppKUkzEBG08kSrki09hd/vC9UGzp0KKNHjwZg3Lhx7N27l/LycsrLy7n22msBmDZtGsuWLYvY/5ZbbiE9PZ309HQGDhzIkSNHeP/995k6dSoZGRlkZGTwt3/7t23mcccddwBw7bXXUllZSXl5OStWrGDhwoUATJo0idLSUiorK0+Ll5WVUVkZeU/NeOcAio+f4MMjVXx4tIoPD1dR9HE1+0prqaoLhrX8kEFZGVyY05PrLh1AXnZPBmVlcF5WBudnZ3BeVg96pyfcr6+JA/tf1s1SUlJobv7kkED4hWXp6eknp5OTkzlx4kS71t2yfzAYbKV1dC1Pgtm1DR1TH2xix6EqNpdUsKWkgq0HKyk6Ws2JxqaTbc7PyuCS3EzGXdCXC3J6cWG/nhzdvZUv3vQ5MlLbf+jTmM5mRaKbDRky5OQ5iPXr17Nnz55W22dnZ5Odnc2KFSu45ppreOWVV9r1eVdffTX33HMPDz30EMFgkMWLFzNz5sxW+7z88stcd911rFixgqysLLKysvjsZz/L/PnzefjhhwkEAvTv358+ffqcFs/JyaFPnz7tyvFcoKrsLa1lzZ4y1u8/zuaSCnYeriLozgr37ZnKyLws/mHCBQzP7c2w3EyGDexNZsbp97AKHN1uBcL4hhWJbvalL32JefPmcdlllzFhwgSGD2979MWvf/1rZsyYgYiccuI6FldeeSVf+MIXGDVqFLm5uVx++eVkZWW12icjI4MxY8bQ2NjInDlzAHj00UeZMWMGo0aNomfPnsydOzdi/Pnnn29XfmerpmZlx+FKVu8pY83eMlbvOc6xau+8QXbPVC7Py2LmtRdxeV4WI/OyyO/bw/bIzFlJVNsY/3aWKSgo0LVr154S2759O5/+9Kfb7BvvcxKx6EiO1dXV9O7dm9raWq699lpmz57N2LFjI7YtLCzkiSee6PDQ2ljyi/Xfo6t4I3MK292vrKaB9z78mMDOo7z30THKahoAyMvuwfih/bhySD/GD+3LxQN6n1FB6Gh+3clyPHN+y09E1qnqab/4be5JiEgG8B6Q7tq/qqqPiMh8oABoBFYD96hqo3i/HT8HbgZqga+r6nq3runAv7pV/0RV57r4OOBFoAewBLhfVVVE+gEvA0OAvcDtqnq8Q1sggc2cOZNt27ZRV1fH9OnToxYIcypVZevBSt7efoTAzo/ZWFyOKuT0SqNw+AA+O7w/44fmkJfdI96pGtNlYjncVA9MUtVqEUkFVojIn4D5wFddm98B/wg8B0wBhrnXBBeb4L7wH8ErLAqsE5FF7kv/OeAbwCq8IjEZ+BPwILBMVX8qIg+6+e+f+Y+dWH73u9+dFps1axbvv//+KbH777+fQCDQTVn5U6gwLNl8iD9uPsS+0lpEYPTgbB64fjiFlw7g8rwskiJcO2DMuajNIuEekF3tZlPdS1X15E1RRGQ1ELqUeCowz/VbKSLZIjIIKASWqmqZ67MUmCwiAaCPqq508XnArXhFYqrrBzAXCNDBIqGqdkw4zDPPPBOXz/Xr4c2jlXUsXF/Cq+sOsOvjGpKThM9cnMM3P3cxN4zIJad3etsrMeYcFNOJaxFJBtYBlwDPqOqqsGWpwNeA0FVeecCBsO7FLtZavDhCHCBXVQ+56cNAbpT8ZgIzAXJzc0/7a7h3794UFxeTlZXVaqFoamqiqqoq6nI/8HuOreWnqlRUVFBTUxPXPZbq6moCgQDNqmw42sS7xUE2H2uiWWFYdhJfvyyNcbkpZKadgNrdbF67Oy75+ZnleOb8nl9ITEVCVZuA0SKSDfxBREaqauj2hc8C76nq/3RVki4HFZGIf4aq6mxgNngnrlueDAo9vrSkpKTVz6irqyMjw9/3UvF7jm3ll5GRwRVXXBHXx5cuWbqcouQLmPvXvRwoqye3Tzr3fm4It43L56IBveOWV4jfTmhGYjmeOb/nF9KuIbCqWi4iy/HOGWwRkUeAAcA9Yc1KgMFh8/kuVsInh45C8YCL50doD3BERAap6iF3yOpoe/INSU1NjelxmYFAgDFjxnTkI7qN33P0c36HK+r4f+/t4qWVtdQ1befKIX15aMqnuXFEbpfcYM6Yc0Eso5sGAI2uQPQAbgB+JiL/CNwEXK+q4XcVWwTcJyIL8E5cV7gv+beAfxORvq7djcBDqlomIpUiMhHvxPWdwH+FrWs68FP3/saZ/sAm8RyqOMFzgV0sWHOA5mZl/Hkp/OBLExmZ1/r1IsaY2PYkBgFz3XmJJOAVVV0sIkFgH/BXd5z/NVX9Md7opJuBIrwhsHcBuGLwGLDGrffHoZPYwLf4ZAjsn9wLvOLwiojc7T7r9jP4WU2CKatp4Odvf8hLqw/QrMqXC/L5VuEl7Nq02gqEMTGKZXTTJuC04weqGrGvG9U0K8qyOcCcCPG1wMgI8VLg+rZyNCZcQ7CZeX/dy8+XfURtQxO3u+IwuF9PAHbFNz1jzip2Ww5zTlm2/Qg/+eN29hyr4drhA3j4lk8zLNffV9Eb42dWJMw5obS6nkff3MabGw9y8YBe/PquK7nu0oHxTsuYs54VCXNWU1X+uPkQj7yxlcq6Rr5zw3Du/dzF9pAdYzqJFQlz1qqobeShP2xiyebDjMrPYv5tE/jUeYl3m3JjupIVCXNW2lJSwTfnr+NQeR3/e/KlzPzsRXatgzFdwIqEOauoKi+tPsCjb26lf680Xrn3KsZe0LftjsaYDrEiYc4adY1N/OAPm3ltfQmfHdafn08bQ79eafFOy5hzmhUJc1aoONHIzHlrWbWnjAc+P4x/mjSMZLtdtzFdzoqE8b3DFXVMn7Oa3ceq+fm00Uwdndd2J2NMp7AiYXztwyNVfH3Oairrgrx413iuvqR/vFMyJqFYkTC+tbm4gq++sIq0lCRevmcil51v91syprtZkTC+tKWkgq/8aiV9eqTy0jcmnrzvkjGme9nAcuM7Ow9X8dUXVpGZYQXCmHizImF8pfh4LXfOWUV6ShILZlqBMCberEgY3zhe08CdL6zmREMT82ZMsAJhjA/YOQnjCw3BZu797TqKy08w/x8ncOl5dntvY/zA9iRM3KkqD7++hVV7yvjP20Zx5ZB+8U7JGOO0WSREJENEVovIRhHZKiI/cvH7RKRIRFRE+oe1FxF52i3bJCJjw5ZNF5GP3Gt6WHyciGx2fZ4W9zxUEeknIktd+6Vhz8c255DfrtrPy2sPcN91l9iFcsb4TCx7EvXAJFW9AhgNTBaRicD7wOfxnj0dbgowzL1mAs+B94UPPAJMAMYDj4R96T8HfCOs32QXfxBYpqrDgGVu3pxDNh4o57E3t3HdpQP4zg3D452OMaaFNouEeqrdbKp7qap+oKp7I3SZCsxz/VYC2SIyCLgJWKqqZap6HFiKV3AGAX1UdaV7PvY84Nawdc1103PD4uYcUFHbyLfmr2dAZjpP3j6aJLsXkzG+E9M5CRFJFpENwFG8L/pVrTTPAw6EzRe7WGvx4ghxgFxVPeSmDwO5seRr/E9V+ZfXN3Okso5nvjKWvnY3V2N8KabRTaraBIwWkWzgDyIyUlW3dG1qp+WgIqKRlonITLxDW+Tm5hIIBDr0GdXV1R3u2138nmOs+f3lYJDFm+r50rBUyndtILCr63MLOVe2YTxZjmfO7/mFtGsIrKqWi8hyvHMG0YpECTA4bD7fxUqAwhbxgIvnR2gPcEREBqnqIXdY6miUvGYDswEKCgq0sLAwUrM2BQIBOtq3u/g9x1jyO1h+gn9a/h4FF/blP+66qttv+X0ubMN4sxzPnN/zC4lldNMAtweBiPQAbgB2tNJlEXCnG+U0Eahwh4zeAm4Ukb7uhPWNwFtuWaWITHSjmu4E3ghbV2gU1PSwuDlLqSr/+voWgs3Kk7ePtmdCGONzsZyTGAQsF5FNwBq8cxKLReTbIlKM95f/JhH5lWu/BNgNFAG/BL4FoKplwGNuHWuAH7sYrs2vXJ9dwJ9c/KfADSLyEd5Iqp+eyQ9r4m/xpkO8s+Mo371xOBfk2BXVxvhdm4ebVHUTMCZC/Gng6QhxBWZFWdccYE6E+FpgZIR4KXB9Wzmas0N5bQM/enMrV+RncdfVQ+OdjjEmBnZbDtNtnlz6IWU1DcybMcEOMxlzlrDbcphuseNwJb9duY+vTryQEef3iXc6xpgYWZEwXU5V+fGb2+jTI9WuqjbmLGNFwnS5t7cf5S+7SvnODcPJ7mkXzRlzNrEiYbpUU7PyxFs7uah/L/5h/AXxTscY005WJEyXenPjQXYeqeI7Nw4nJdn+uxlztrHfWtNlGpuaeXLph4wY1IebRw6KdzrGmA6wImG6zMJ1xewvq+V7Nw23O7wac5ayImG6RFOz8vy7u7g8L4vrLh0Y73SMMR1kRcJ0iSWbD7G3tJZvFV6Me9CgMeYsZEXCdDpV5dnALi4a0IubLjsv3ukYY86AFQnT6QIffsz2Q5Xc+7mL7VyEMWc5KxKm0734/l4GZqZz6+i8thsbY3zNioTpVIdrmnn3w4/5yoQLSUux/17GnO3st9h0qmX7G0lNFu6YMLjtxsYY37MiYTpNdX2QFSVBbr58EAMzM+KdjjGmE1iRMJ3m9Q9KOBGE6Z8ZEu9UjDGdxIqE6TS/X3uAwZlJjBmcHe9UjDGdpM0iISIZIrJaRDaKyFYR+ZGLDxWRVSJSJCIvi0iai6e7+SK3fEjYuh5y8Z0iclNYfLKLFYnIg2HxiJ9h/Gfn4So2FldwTV6KXTxnzDkklj2JemCSql4BjAYmi8hE4GfAU6p6CXAcuNu1vxs47uJPuXaIyAhgGnAZMBl4VkSSRSQZeAaYAowA7nBtaeUzjM/8fu0BUpOFq863J+Iacy5ps0iop9rNprqXApOAV118LnCrm57q5nHLrxfvT8upwAJVrVfVPUARMN69ilR1t6o2AAuAqa5PtM8wPtLY1MwfPijh+k/l0ifN9iKMOZfE9Gef+2t/HXAJ3l/9u4ByVQ26JsVA6MqpPOAAgKoGRaQCyHHxlWGrDe9zoEV8gusT7TNa5jcTmAmQm5tLIBCI5cc6TXV1dYf7dhc/5rj+SJDSmgY+lX6c6uo63+XXkh+3YTi/5weWY2fwe34hMRUJVW0CRotINvAH4FNdmlU7qepsYDZAQUGBFhYWdmg9gUCAjvbtLn7M8fe/W09Or1Lu+9IkVvzPe77LryU/bsNwfs8PLMfO4Pf8Qto1uklVy4HlwFVAtoiEikw+UOKmS4DBAG55FlAaHm/RJ1q8tJXPMD5R2xDkne1HmXL5efbkOWPOQbGMbhrg9iAQkR7ADcB2vGJxm2s2HXjDTS9y87jl76iquvg0N/ppKDAMWA2sAYa5kUxpeCe3F7k+0T7D+MQ7O45yorGJWy4/P96pGGO6QCyHmwYBc915iSTgFVVdLCLbgAUi8hPgA+AF1/4F4DciUgSU4X3po6pbReQVYBsQBGa5w1iIyH3AW0AyMEdVt7p1fT/KZxifWLzxEAMy0xk/tF+8UzHGdIE2i4SqbgLGRIjvxhuZ1DJeB3w5yroeBx6PEF8CLIn1M4w/VNcHWb7zKHeMv4BkuyW4MeckO4hsOmzZ9iPUB5u5ZdSgeKdijOkiViRMh/331iMMyExn3AV9452KMaaLWJEwHdIQ9J4bcf2nBtrT54w5h1mRMB2yZm8Z1fVBrv90brxTMcZ0ISsSpkPe3n6E9JQkrrmkf7xTMcZ0ISsSpt1UlWXbj/KZi3PokZYc73SMMV3IioRpt10fV7O/rNYONRmTAKxImHZbtv0oANd/emCcMzHGdDUrEqbdVhQd49LcTAZl9Yh3KsaYLmZFwrRLXWMTq/eUcbWdsDYmIViRMO2yfv9x6oPNXH1JTrxTMcZ0AysSpl3eLzpGcpIw4SIrEsYkAisSpl1WFJUyenA2vdPtWdbGJAIrEiZmFSca2VxcbucjjEkgViRMzFbuLqVZ4eqL7VCTMYnCioSJ2V93ldIjNZkxdtdXYxKGFQkTs7X7yhg9OJu0FPtvY0yiiOUZ14NFZLmIbBORrSJyv4tfISJ/FZHNIvKmiPQJ6/OQiBSJyE4RuSksPtnFikTkwbD4UBFZ5eIvu2dd456H/bKLrxKRIZ35w5vY1dQH2X6oioIhthdhTCKJ5U/CIPBdVR0BTARmicgI4FfAg6p6OfAH4H8BuGXTgMuAycCzIpLsnpH9DDAFGAHc4doC/Ax4SlUvAY4Dd7v43cBxF3/KtTNxsOFAOU3NSsEQe5a1MYmkzSKhqodUdb2brgK2A3nAcOA912wp8CU3PRVYoKr1qroHKMJ7TvV4oEhVd6tqA7AAmCoiAkwCXnX95wK3hq1rrpt+FbjetTfdbM3eMkRgzAXZ8U7FGNON2jXY3R3uGQOsArbifYm/DnwZGOya5QErw7oVuxjAgRbxCUAOUK6qwQjt80J9VDUoIhWu/bEWec0EZgLk5uYSCATa82OdVF1d3eG+3SVeOS794AT5vZNYv/L9VtvZNjxzfs8PLMfO4Pf8QmIuEiLSG1gIPKCqlSIyA3haRB4GFgENXZRjm1R1NjAboKCgQAsLCzu0nkAgQEf7dpd45NjUrNy3/L+5dcz5FBZe3mpb24Znzu/5geXYGfyeX0hMRUJEUvEKxHxVfQ1AVXcAN7rlw4FbXPMSPtmrAMh3MaLES4FsEUlxexPh7UPrKhaRFCDLtTfdaMfhSqrrg1xp5yOMSTixjG4S4AVgu6o+GRYf6N6TgH8FnneLFgHT3MikocAwYDWwBhjmRjKl4Z3cXqSqCiwHbnP9pwNvhK1rupu+DXjHtTfdaN2+4wCMu9BGNhmTaGLZk7ga+BqwWUQ2uNgP8L7wZ7n514BfA6jqVhF5BdiGNzJqlqo2AYjIfcBbQDIwR1W3uv7fBxaIyE+AD/CKEu79NyJSBJThFRbTzT7YX87AzHTysu35EcYkmjaLhKquAKKNKPp5lD6PA49HiC8BlkSI78Yb/dQyXod3UtzE0eaSCkblZ2MDy4xJPHbprGlVdX2QXR9Xc3leVrxTMcbEgRUJ06ptBytRhcvz+7Td2BhzzrEiYVq1uaQCgJG2J2FMQrIiYVq1ubic8/pkMDAzI96pGGPiwIqEadXmkgrbizAmgVmRMFFV1wfZfayGUflWJIxJVFYkTFRbSyq8k9a2J2FMwrIiYaKyk9bGGCsSJqptByvJ7ZPOgMz0eKdijIkTKxImqh2Hq/jUeXZ9hDGJzIqEiSjY1EzRx9Vcel5mvFMxxsSRFQkT0b6yWhqCzVyaa0XCmERmRcJEtPNwFYDtSRiT4KxImIh2Hq4iSeCSgb3jnYoxJo6sSJiIPjxSxZCcXmSkJsc7FWNMHFmRMBHtPFzFcDsfYUzCsyJhTlPX2MTe0hqG2/kIYxKeFQlzmqKj1TQrNrLJGNN2kRCRwSKyXES2ichWEbnfxUeLyEoR2SAia0VkvIuLiDwtIkUisklExoata7qIfORe08Pi40Rks+vztLjnZIpIPxFZ6tovFZG+nb8JTEs2sskYExLLnkQQ+K6qjgAmArNEZATwH8CPVHU08EM3DzAFGOZeM4HnwPvCBx4BJuA9z/qRsC/954BvhPWb7OIPAstUdRiwzM2bLvbhkSrSkpMYktMz3qkYY+KszSKhqodUdb2brgK2A3mAAqF7NmQBB930VGCeelYC2SIyCLgJWKqqZap6HFgKTHbL+qjqSlVVYB5wa9i65rrpuWFx04WKjlYztH8vUpLtaKQxiS6lPY1FZAgwBlgFPAC8JSJP4BWbz7hmecCBsG7FLtZavDhCHCBXVQ+56cNAbpS8ZuLttZCbm0sgEGjPj3VSdXV1h/t2l+7IceuBWvJ7J3Xoc2wbnjm/5weWY2fwe34hMRcJEekNLAQeUNVKEfkJ8M+qulBEbgdeAD7fRXmiqioiGmXZbGA2QEFBgRYWFnboMwKBAB3t2126OsdgUzPH/vvPfPHKIRQWfqrd/W0bnjm/5weWY2fwe34hMR1PEJFUvAIxX1Vfc+HpQGj693jnGQBKgMFh3fNdrLV4foQ4wBF3OAr3fjSWfE3HFR8/QbBZGdK/V7xTMcb4QCyjmwRvL2G7qj4Ztugg8Dk3PQn4yE0vAu50o5wmAhXukNFbwI0i0tedsL4ReMstqxSRie6z7gTeCFtXaBTU9LC46SJ7jtUAcJEVCWMMsR1uuhr4GrBZRDa42A/wRiP9XERSgDrcOQFgCXAzUATUAncBqGqZiDwGrHHtfqyqZW76W8CLQA/gT+4F8FPgFRG5G9gH3N6Bn9G0Q6hIDLUiYYwhhiKhqisAibJ4XIT2CsyKsq45wJwI8bXAyAjxUuD6tnI0nWfPsRr6ZKTQr1davFMxxviAjXE0p9hzrIah/Xvhrmc0xiQ4KxLmFKEiYYwxYEXChKlrbOJgxQmG9rdnSBhjPFYkzEn7SmtRhSH97XYcxhiPFQlz0p5j1QBcZHsSxhjHioQ5abcb/mp7EsaYECsS5qQ9H9fQv3c6mRmp8U7FGOMTViTMSQeO13Kh3R7cGBPGioQ5qaT8BPl9e8Q7DWOMj1iRMIB399dD5XVWJIwxp7AiYQA4UlVPsFnJ72uHm4wxn7AiYQAoLqsFIC/b9iSMMZ+wImEA7zkSgB1uMsacwoqEAT4pEufbnoQxJowVCQNA8fFaBmamk5GaHO9UjDE+YkXCAN6ehB1qMsa0ZEXCAKFrJGxkkzHmVLE843qwiCwXkW0islVE7nfxl0Vkg3vtDXu0KSLykIgUichOEbkpLD7ZxYpE5MGw+FARWeXiL4tImounu/kit3xIZ/7wxtPUrBy0C+mMMRHEsicRBL6rqiOAicAsERmhqn+vqqNVdTSwEHgNQERGANOAy4DJwLMikiwiycAzwBRgBHCHawvwM+ApVb0EOA7c7eJ3AztwShsAABEJSURBVMdd/CnXznSyI5V1do2EMSaiNouEqh5S1fVuugrYDuSFlov3nMvbgZdcaCqwQFXrVXUPUASMd68iVd2tqg3AAmCq6z8JeNX1nwvcGrauuW76VeB6sedqdrrQyKY825MwxrSQ0p7G7nDPGGBVWPizwBFV/cjN5wErw5YX80lROdAiPgHIAcpVNRihfV6oj6oGRaTCtT/WIq+ZwEyA3NxcAoFAe36sk6qrqzvct7t0RY7vlzQCcPDDzQQOntlpqkTdhp3J7/mB5dgZ/J5fSMxFQkR64x1WekBVK8MW3cEnexFxoaqzgdkABQUFWlhY2KH1BAIBOtq3u3RFjpuWfQSbP+TvbvrcGQ+BTdRt2Jn8nh9Yjp3B7/mFxFQkRCQVr0DMV9XXwuIpwBeBcWHNS4DBYfP5LkaUeCmQLSIpbm8ivH1oXcXus7Jce9OJio/XMsCukTDGRBDL6CYBXgC2q+qTLRZ/HtihqsVhsUXANDcyaSgwDFgNrAGGuZFMaXgntxepqgLLgdtc/+nAG2Hrmu6mbwPece1NJzpUUWdXWhtjIorlAPTVwNeASWFDXm92y6bR4lCTqm4FXgG2AX8GZqlqk9tLuA94C+/k9yuuLcD3ge+ISBHeOYcXXPwFIMfFvwM8iOl0hyvqOK9PerzTMMb4UJuHm1R1BRBxRJGqfj1K/HHg8QjxJcCSCPHdeKOfWsbrgC+3laM5M0cq67jq4px4p2GM8SG74jrBnWhoorIuSG6fjHinYozxISsSCe5wZR2AFQljTERWJBLcEVckzrMiYYyJwIpEgjtZJLLsxLUx5nRWJBJcqEgMtD0JY0wEViQS3OGKenqmJZOZ3q47tBhjEoQViQR3pKqO3D4Z2H0TjTGRWJFIcEcq6si1C+mMMVFYkUhwhyvrbPirMSYqKxIJTFU5Wllvw1+NMVFZkUhgx2sbaWhqtpFNxpiorEgkMLuQzhjTFisSCeywXUhnjGmDFYkEdjR0IV2m7UkYYyKzIpHADlfUAzDQhsAaY6KwIpHADlfW0a9XGukp9thSY0xkViQS2NHKOgZm2l6EMSa6WJ5xPVhElovINhHZKiL3hy37JxHZ4eL/ERZ/SESKRGSniNwUFp/sYkUi8mBYfKiIrHLxl90zsHHPyX7ZxVeJyJDO+sENHKtpYIAVCWNMK2LZkwgC31XVEcBEYJaIjBCR64CpwBWqehnwBICIjMB79vVlwGTgWRFJFpFk4BlgCjACuMO1BfgZ8JSqXgIcB+528buB4y7+lGtnOklpdT05vdLinYYxxsfaLBKqekhV17vpKmA7kAd8E/ipqta7ZUddl6nAAlWtV9U9QBHe86vHA0WqultVG4AFwFTx7iw3CXjV9Z8L3Bq2rrlu+lXgerE70XWaspoGcnrbnoQxJrp2nZNwh3vGAKuA4cBn3WGgd0XkStcsDzgQ1q3YxaLFc4ByVQ22iJ+yLre8wrU3Z+hEQxO1DU30sz0JY0wrYn6IgIj0BhYCD6hqpYikAP3wDkFdCbwiIhd1TZpt5jYTmAmQm5tLIBDo0Hqqq6s73Le7dFaOx040e+8lewgEis94fSGJtA27it/zA8uxM/g9v5CYioSIpOIViPmq+poLFwOvqaoCq0WkGegPlACDw7rnuxhR4qVAtoikuL2F8PahdRW7opTl2p9CVWcDswEKCgq0sLAwlh/rNIFAgI727S6dlePGA+Xw7vt8ZuwoCkfknnliTiJtw67i9/zAcuwMfs8vJJbRTQK8AGxX1SfDFr0OXOfaDAfSgGPAImCaG5k0FBgGrAbWAMPcSKY0vJPbi1yRWQ7c5tY7HXjDTS9y87jl77j25gyV1TQAkNPbDjcZY6KLZU/iauBrwGYR2eBiPwDmAHNEZAvQAEx3X+BbReQVYBveyKhZqtoEICL3AW8BycAcVd3q1vd9YIGI/AT4AK8o4d5/IyJFQBleYTGd4Fi1d7V1/1524toYE12bRUJVVwDRRhR9NUqfx4HHI8SXAEsixHfjjX5qGa8DvtxWjqb9QnsS/WxPwhjTCrviOkGV1jSQnpJErzS7JYcxJjorEgmqtLqBnF5p2GUnxpjWWJFIUKU19XYhnTGmTVYkElRZTYNdSGeMaZMViQRVWt1gw1+NMW2yIpGgSmvs5n7GmLZZkUhAtQ1B6hqb7ZyEMaZNViQSUGm1u0bC9iSMMW2wIpGASt2FdP3tnIQxpg1WJBJQqbslR47dksMY0wYrEgkotCdhh5uMMW2xIpGAQuckbAisMaYtViQSUFlNPT1Sk+mZFvMzp4wxCcqKRAKyC+mMMbGyIpGAjlbZhXTGmNhYkUgwNfVB1uwtY8wFfeOdijHmLGBFIsEs23GU+mAzN18+KN6pGGPOAlYkEsySTYcYmJlOwYW2J2GMaVubRUJEBovIchHZJiJbReR+F39UREpEZIN73RzW5yERKRKRnSJyU1h8sosViciDYfGhIrLKxV8WkTQXT3fzRW75kM784RNNTX2Q5TuPMmXkeSQl2cOGjDFti2VPIgh8V1VHABOBWSIywi17SlVHu9cSALdsGnAZMBl4VkSSRSQZeAaYAowA7ghbz8/cui4BjgN3u/jdwHEXf8q1Mx30jh1qMsa0U5sD5VX1EHDITVeJyHYgr5UuU4EFqloP7BGRImC8W1akqrsBRGQBMNWtbxLwD67NXOBR4Dm3rkdd/FXgFyIiqqox/4Qx+q9lH/HSX2vptf7dzl51p6qp7XiOx6rrGZCZTsGQfp2clTHmXNWuq6nc4Z4xwCrgauA+EbkTWIu3t3Ecr4CsDOtWzCdF5UCL+AQgByhX1WCE9nmhPqoaFJEK1/5Yi7xmAjMBcnNzCQQC7fmxACg72EhuejPJcqLdfbtT7zPIMSsTCnKT+J/3uq4QVldXd2j7dye/5+j3/MBy7Ax+zy8k5iIhIr2BhcADqlopIs8BjwHq3v8PMKNLsmyDqs4GZgMUFBRoYWFhu9dRCAQCATrStzv5PUe/5wf+z9Hv+YHl2Bn8nl9ITKObRCQVr0DMV9XXAFT1iKo2qWoz8Es+OaRUAgwO657vYtHipUC2iKS0iJ+yLrc8y7U3xhjTDWIZ3STAC8B2VX0yLB5+9vPvgC1uehEwzY1MGgoMA1YDa4BhbiRTGt7J7UXu/MJy4DbXfzrwRti6prvp24B3uuJ8hDHGmMhiOdx0NfA1YLOIbHCxH+CNThqNd7hpL3APgKpuFZFXgG14I6NmqWoTgIjcB7wFJANzVHWrW9/3gQUi8hPgA7yihHv/jTv5XYZXWIwxxnSTWEY3rQAiDapf0kqfx4HHI8SXROrnRjyNjxCvA77cVo7GGGO6hl1xbYwxJiorEsYYY6KyImGMMSYqKxLGGGOiknNtRKmIfAzs62D3/rS4mtuH/J6j3/MD/+fo9/zAcuwMfsvvQlUd0DJ4zhWJMyEia1W1IN55tMbvOfo9P/B/jn7PDyzHzuD3/ELscJMxxpiorEgYY4yJyorEqWbHO4EY+D1Hv+cH/s/R7/mB5dgZ/J4fYOckjDHGtML2JIwxxkRlRcIYY0xUViQcEZksIjtFpEhEHvRBPoNFZLmIbBORrSJyv4v3E5GlIvKRe+/rg1yTReQDEVns5oeKyCq3LV92t4aPV27ZIvKqiOwQke0icpXftqGI/LP7N94iIi+JSEa8t6GIzBGRoyKyJSwWcbuJ52mX6yYRGRun/P7T/TtvEpE/iEh22LKHXH47ReSmrs4vWo5hy74rIioi/d18t2/DWFmRwPuSA54BpgAj8G6DPiK+WRHEeyTsCGAiMMvl9CCwTFWHAcvcfLzdD2wPm/8Z8JSqXgIcB+6OS1aenwN/VtVPAVfg5embbSgiecC3gQJVHYl3G/1pxH8bvghMbhGLtt2m4D03ZhjeY4Sfi1N+S4GRqjoK+BB4CMD93kwDLnN9nnW/8/HIEREZDNwI7A8Lx2MbxsSKhGc8UKSqu1W1AVgATI1nQqp6SFXXu+kqvC+3PJfXXNdsLnBrfDL0iEg+cAvwKzcvwCTgVdckbjmKSBZwLe75JKraoKrl+Gwb4t2yv4d7+mJP4BBx3oaq+h7eM1zCRdtuU4F56lmJ96TJQXShSPmp6n+ratDNrsR7ymUovwWqWq+qe4AiIjyaoDtydJ4C/jfes3hCun0bxsqKhCcPOBA2X+xiviAiQ4AxwCogV1UPuUWHgdw4pRXyf/H+wze7+RygPOyXNZ7bcijwMfBrdzjsVyLSCx9tQ1UtAZ7A+6vyEFABrMM/2zBctO3mx9+fGcCf3LRv8hORqUCJqm5sscg3ObZkRcLnRKQ33vPFH1DVyvBl7lGucRvDLCJ/AxxV1XXxyqENKcBY4DlVHQPU0OLQkg+2YV+8vyKHAucDvYhwiMJv4r3dWiMi/4J3uHZ+vHMJJyI98Z7q+cN459IeViQ8JcDgsPl8F4srEUnFKxDzVfU1Fz4S2g1170fjlR/eo22/ICJ78Q7RTcI7B5DtDp1AfLdlMVCsqqvc/Kt4RcNP2/DzwB5V/VhVG4HX8LarX7ZhuGjbzTe/PyLydeBvgK/oJxeB+SW/i/H+GNjofmfygfUich7+yfE0ViQ8a4BhbkRJGt5JrkXxTMgd238B2K6qT4YtWgRMd9PTgTe6O7cQVX1IVfNVdQjeNntHVb8CLAduc83ilqOqHgYOiMilLnQ93rPXfbMN8Q4zTRSRnu7fPJSjL7ZhC9G22yLgTjdCZyJQEXZYqtuIyGS8Q59fUNXasEWLgGkiki4iQ/FODq/u7vxUdbOqDlTVIe53phgY6/6f+mIbRqSq9vL+4LgZb0TELuBffJDPNXi785uADe51M94x/2XAR8DbQL945+ryLQQWu+mL8H4Ji4DfA+lxzGs0sNZtx9eBvn7bhsCPgB3AFuA3QHq8tyHwEt45kka8L7O7o203QPBGB+4CNuON1IpHfkV4x/VDvy/Ph7X/F5ffTmBKvLZhi+V7gf7x2oaxvuy2HMYYY6Kyw03GGGOisiJhjDEmKisSxhhjorIiYYwxJiorEsYYY6KyImFMBO7usd9y0+eLyKtt9TmDzxotIjd31fqNORNWJIyJLBv4FoCqHlTV29pofyZG410DY4zv2HUSxkQgIqE7Ae/Eu3js06o60t324Va8eywNw7s5XxrwNaAeuFlVy0TkYryLowYAtcA3VHWHiHwZeARowruZ3+fxLgLrgXcbhn8HFgP/BYwEUoFHVfUN99l/B2Th3fztt6r6oy7eFCbBpbTdxJiE9CDeswlGu7vwLg5bNhLvrrwZeF/w31fVMSLyFHAn3p1xZwP3qupHIjIBeBbv3lY/BG5S1RIRyVbVBhH5Id4VtvcBiMi/4d3iZIZ7cM5qEXnbffZ49/m1wBoR+aOqru3KDWESmxUJY9pvuXrP+KgSkQrgTRffDIxyd+79DPB773ZMgHerDYD3gRdF5BW8m/lFciPejRO/5+YzgAvc9FJVLQUQkdfwbt9iRcJ0GSsSxrRffdh0c9h8M97vVBLe8yBGt+yoqve6PYtbgHUiMi7C+gX4kqruPCXo9Wt5fNiOF5suZSeujYmsCsjsSEf1nvuxx51/CD2/+Ao3fbGqrlLVH+I9EGlwhM96C/gnd1dYRGRM2LIbxHvWdA+8cyPvdyRHY2JlRcKYCNwhnffdQ+z/swOr+Apwt4hsBLbyyeNw/1NENrv1/gXYiHdb8BEiskFE/h54DO+E9SYR2ermQ1bjPWNkE7DQzkeYrmajm4w5S7jRTSdPcBvTHWxPwhhjTFS2J2GMMSYq25MwxhgTlRUJY4wxUVmRMMYYE5UVCWOMMVFZkTDGGBPV/wfUtA2bwHHQgwAAAABJRU5ErkJggg==\n" }, "metadata": { "needs_background": "light" } } ], "source": [ "df.plot(\"timestep\", \"collateral_pool\", grid=True)\n", "df.plot(\"timestep\", \"token_supply\", grid=True)\n", "df.plot(\"timestep\", \"funding_pool\", grid=True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.2-final" }, "orig_nbformat": 2, "kernelspec": { "name": "python38264bitcadcadvirtualenv759203ea8fcd4eb59bfff73a3b8619e8", "display_name": "Python 3.8.2 64-bit ('cadcad': virtualenv)" } }, "nbformat": 4, "nbformat_minor": 2 }