driving_process() rewritten, now passes new_participant_tokens. add_participants_proposals_to_network() and new_participants_and_new_funds_commons() handle the results of driving_process()
This commit is contained in:
parent
02581fa95c
commit
8f214ed043
|
|
@ -0,0 +1,225 @@
|
|||
from scipy.stats import expon, gamma
|
||||
import numpy as np
|
||||
import networkx as nx
|
||||
from hatch import TokenBatch
|
||||
from convictionvoting import trigger_threshold
|
||||
from IPython.core.debugger import set_trace
|
||||
|
||||
def get_nodes_by_type(g, node_type_selection):
|
||||
return [node for node in g.nodes if g.nodes[node]['type']== node_type_selection ]
|
||||
|
||||
def get_edges_by_type(g, edge_type_selection):
|
||||
return [edge for edge in g.edges if g.edges[edge]['type']== edge_type_selection ]
|
||||
|
||||
def get_proposals(network):
|
||||
return get_nodes_by_type(network, "proposal")
|
||||
|
||||
def get_participants(network):
|
||||
return get_nodes_by_type(network, "participant")
|
||||
|
||||
def initial_social_network(network: nx.DiGraph, scale = 1, sigmas=3) -> nx.DiGraph:
|
||||
participants = get_participants(network)
|
||||
|
||||
for i in participants:
|
||||
for j in participants:
|
||||
if not(j==i):
|
||||
influence_rv = expon.rvs(loc=0.0, scale=scale)
|
||||
if influence_rv > scale+sigmas*scale**2:
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['influence'] = influence_rv
|
||||
network.edges[(i,j)]['type'] = 'influence'
|
||||
return network
|
||||
|
||||
def initial_conflict_network(network: nx.DiGraph, rate = .25) -> nx.DiGraph:
|
||||
proposals = get_proposals(network)
|
||||
|
||||
for i in proposals:
|
||||
for j in proposals:
|
||||
if not(j==i):
|
||||
conflict_rv = np.random.rand()
|
||||
if conflict_rv < rate :
|
||||
network.add_edge(i,j)
|
||||
network.edges[(i,j)]['conflict'] = 1-conflict_rv
|
||||
network.edges[(i,j)]['type'] = 'conflict'
|
||||
return network
|
||||
|
||||
def add_proposals_and_relationships_to_network(n: nx.DiGraph, proposals: int, funding_pool: float, token_supply: float) -> nx.DiGraph:
|
||||
participant_count = len(n)
|
||||
for i in range(proposals):
|
||||
j = participant_count + i
|
||||
n.add_node(j, type="proposal", conviction=0, status="candidate", age=0)
|
||||
|
||||
r_rv = gamma.rvs(3,loc=0.001, scale=10000)
|
||||
n.nodes[j]['funds_requested'] = r_rv
|
||||
n.nodes[j]['trigger']= trigger_threshold(r_rv, funding_pool, token_supply)
|
||||
|
||||
for i in range(participant_count):
|
||||
n.add_edge(i, j)
|
||||
rv = np.random.rand()
|
||||
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||
n.edges[(i, j)]['affinity'] = a_rv
|
||||
n.edges[(i, j)]['tokens'] = 0
|
||||
n.edges[(i, j)]['conviction'] = 0
|
||||
n.edges[(i, j)]['type'] = 'support'
|
||||
|
||||
n = initial_conflict_network(n, rate = .25)
|
||||
n = initial_social_network(n, scale = 1)
|
||||
return n
|
||||
# =========================================================================================================
|
||||
def gen_new_participant(network, new_participant_tokens):
|
||||
i = len([node for node in network.nodes])
|
||||
|
||||
network.add_node(i)
|
||||
network.nodes[i]['type']="participant"
|
||||
|
||||
s_rv = np.random.rand()
|
||||
network.nodes[i]['sentiment'] = s_rv
|
||||
network.nodes[i]['holdings_vesting']=None
|
||||
network.nodes[i]['holdings_nonvesting']=TokenBatch(new_participant_tokens, 5, 5)
|
||||
|
||||
# Connect this new participant to existing proposals.
|
||||
for j in get_nodes_by_type(network, 'proposal'):
|
||||
network.add_edge(i, j)
|
||||
|
||||
rv = np.random.rand()
|
||||
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
network.edges[(i,j)]['tokens'] = a_rv*network.nodes[i]['holdings_nonvesting'].value
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i,j)]['type'] = 'support'
|
||||
|
||||
return network
|
||||
|
||||
def gen_new_proposal(network, funds, supply, trigger_func, scale_factor = 1.0/100):
|
||||
j = len([node for node in network.nodes])
|
||||
network.add_node(j)
|
||||
network.nodes[j]['type']="proposal"
|
||||
|
||||
network.nodes[j]['conviction']=0
|
||||
network.nodes[j]['status']='candidate'
|
||||
network.nodes[j]['age']=0
|
||||
|
||||
rescale = funds*scale_factor
|
||||
r_rv = gamma.rvs(3,loc=0.001, scale=rescale)
|
||||
network.nodes[j]['funds_requested'] = r_rv
|
||||
|
||||
network.nodes[j]['trigger']= trigger_func(r_rv, funds, supply)
|
||||
|
||||
participants = get_nodes_by_type(network, 'participant')
|
||||
proposing_participant = np.random.choice(participants)
|
||||
|
||||
for i in participants:
|
||||
network.add_edge(i, j)
|
||||
if i==proposing_participant:
|
||||
network.edges[(i, j)]['affinity']=1
|
||||
else:
|
||||
rv = np.random.rand()
|
||||
a_rv = 1-4*(1-rv)*rv #polarized distribution
|
||||
network.edges[(i, j)]['affinity'] = a_rv
|
||||
|
||||
network.edges[(i, j)]['conviction'] = 0
|
||||
network.edges[(i,j)]['tokens'] = 0
|
||||
network.edges[(i,j)]['type'] = 'support'
|
||||
|
||||
return network
|
||||
|
||||
def calc_total_funds_requested(network):
|
||||
proposals = get_proposals(network)
|
||||
fund_requests = [network.nodes[j]['funds_requested'] for j in proposals if network.nodes[j]['status']=='candidate' ]
|
||||
total_funds_requested = np.sum(fund_requests)
|
||||
return total_funds_requested
|
||||
|
||||
def calc_median_affinity(network):
|
||||
supporters = get_edges_by_type(network, 'support')
|
||||
affinities = [network.edges[e]['affinity'] for e in supporters ]
|
||||
median_affinity = np.median(affinities)
|
||||
return median_affinity
|
||||
|
||||
def driving_process(params, step, sL, s):
|
||||
network = s['network']
|
||||
commons = s['commons']
|
||||
funds = s['funding_pool']
|
||||
sentiment = s['sentiment']
|
||||
|
||||
def randomly_gen_new_participant(participant_count, sentiment, current_token_supply, commons):
|
||||
arrival_rate = 10/(1+sentiment)
|
||||
rv1 = np.random.rand()
|
||||
new_participant = bool(rv1<1/arrival_rate)
|
||||
|
||||
if new_participant:
|
||||
# Below line is quite different from Zargham's original, which gave
|
||||
# tokens instead. Here we randomly generate each participant's
|
||||
# post-Hatch investment, in DAI/USD. Here the settings for
|
||||
# expon.rvs() should generate investments of ~0-500 DAI.
|
||||
new_participant_investment = expon.rvs(loc=0.0, scale=100)
|
||||
new_participant_tokens = commons.dai_to_tokens(new_participant_investment)
|
||||
return new_participant, new_participant_investment, new_participant_tokens
|
||||
else:
|
||||
return new_participant, 0, 0
|
||||
|
||||
def randomly_gen_new_proposal(total_funds_requested, median_affinity, funding_pool):
|
||||
proposal_rate = 1/median_affinity * (1+total_funds_requested/funding_pool)
|
||||
rv2 = np.random.rand()
|
||||
new_proposal = bool(rv2<1/proposal_rate)
|
||||
return new_proposal
|
||||
|
||||
def randomly_gen_new_funding(funds, sentiment):
|
||||
"""
|
||||
Each step, more funding comes to the Commons through the exit tribute,
|
||||
because after the hatching phase, all incoming money goes to the
|
||||
collateral reserve, not to the funding pool.
|
||||
"""
|
||||
scale_factor = funds*sentiment**2/10000
|
||||
if scale_factor <1:
|
||||
scale_factor = 1
|
||||
|
||||
#this shouldn't happen but expon is throwing domain errors
|
||||
if sentiment>.4:
|
||||
funds_arrival = expon.rvs(loc = 0, scale = scale_factor )
|
||||
else:
|
||||
funds_arrival = 0
|
||||
return funds_arrival
|
||||
|
||||
new_participant, new_participant_investment, new_participant_tokens = randomly_gen_new_participant(len(get_participants(network)), sentiment, s['token_supply'], commons)
|
||||
|
||||
new_proposal = randomly_gen_new_proposal(calc_total_funds_requested(network), calc_median_affinity(network), funds)
|
||||
|
||||
funds_arrival = randomly_gen_new_funding(funds, sentiment)
|
||||
|
||||
return({'new_participant':new_participant,
|
||||
'new_participant_investment':new_participant_investment,
|
||||
'new_participant_tokens': new_participant_tokens,
|
||||
'new_proposal':new_proposal,
|
||||
'funds_arrival':funds_arrival})
|
||||
|
||||
def add_participants_proposals_to_network(params, step, sL, s, _input):
|
||||
network = s['network']
|
||||
funds = s['funding_pool']
|
||||
supply = s['token_supply']
|
||||
|
||||
trigger_func = params[0]["trigger_threshold"][0]
|
||||
|
||||
new_participant = _input['new_participant'] #T/F
|
||||
new_proposal = _input['new_proposal'] #T/F
|
||||
|
||||
if new_participant:
|
||||
network = gen_new_participant(network, _input['new_participant_tokens'])
|
||||
|
||||
if new_proposal:
|
||||
network= gen_new_proposal(network,funds,supply,trigger_func )
|
||||
|
||||
#update age of the existing proposals
|
||||
proposals = get_nodes_by_type(network, 'proposal')
|
||||
|
||||
for j in proposals:
|
||||
network.nodes[j]['age'] = network.nodes[j]['age']+1
|
||||
if network.nodes[j]['status'] == 'candidate':
|
||||
requested = network.nodes[j]['funds_requested']
|
||||
network.nodes[j]['trigger'] = trigger_func(requested, funds, supply)
|
||||
else:
|
||||
network.nodes[j]['trigger'] = np.nan
|
||||
|
||||
key = 'network'
|
||||
value = network
|
||||
|
||||
return (key, value)
|
||||
220
simulation.ipynb
220
simulation.ipynb
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue