29 lines
939 B
Python
29 lines
939 B
Python
import pandas as pd
|
|
from tabulate import tabulate
|
|
|
|
from simulations.distributed.spark.session import spark_context as sc
|
|
from simulations.distributed import messaging
|
|
|
|
from cadCAD.engine import ExecutionMode, ExecutionContext, Executor
|
|
from cadCAD.utils import arrange_cols
|
|
from cadCAD import configs
|
|
|
|
exec_mode = ExecutionMode()
|
|
|
|
print("Simulation Execution: Distributed Execution")
|
|
dist_proc_ctx = ExecutionContext(context=exec_mode.dist_proc)
|
|
run = Executor(exec_context=dist_proc_ctx, configs=configs, spark_context=sc)
|
|
# pprint(dist_proc_ctx)
|
|
|
|
# print(configs)
|
|
i = 0
|
|
for raw_result, tensor_field in run.execute():
|
|
result = arrange_cols(pd.DataFrame(raw_result), False)
|
|
print()
|
|
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
|
|
print("Output:")
|
|
print(tabulate(result.head(1), headers='keys', tablefmt='psql'))
|
|
print(tabulate(result.tail(1), headers='keys', tablefmt='psql'))
|
|
print()
|
|
i += 1
|