253 lines
6.4 KiB
Python
253 lines
6.4 KiB
Python
from decimal import Decimal
|
|
import numpy as np
|
|
from datetime import timedelta
|
|
import pprint
|
|
|
|
from SimCAD import configs
|
|
from SimCAD.configuration import Configuration
|
|
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
|
ep_time_step, parameterize_mechanism, parameterize_states, sweep
|
|
from SimCAD.utils import rename
|
|
|
|
from fn.func import curried
|
|
|
|
pp = pprint.PrettyPrinter(indent=4)
|
|
|
|
# ToDo: handle single param sweep
|
|
beta = [Decimal(1), Decimal(2)]
|
|
|
|
seed = {
|
|
'z': np.random.RandomState(1),
|
|
'a': np.random.RandomState(2),
|
|
'b': np.random.RandomState(3),
|
|
'c': np.random.RandomState(3)
|
|
}
|
|
|
|
|
|
# Behaviors per Mechanism
|
|
# @curried
|
|
def b1m1(step, sL, s):
|
|
return {'param1': 1}
|
|
# @curried
|
|
def b2m1(step, sL, s):
|
|
return {'param2': 4}
|
|
|
|
# @curried
|
|
def b1m2(param, step, sL, s):
|
|
return {'param1': 'a', 'param2': param}
|
|
# @curried
|
|
def b2m2(step, sL, s):
|
|
return {'param1': 'b', 'param2': 0}
|
|
# @curried
|
|
def b1m3(step, sL, s):
|
|
return {'param1': np.array([10, 100])}
|
|
# @curried
|
|
def b2m3(step, sL, s):
|
|
return {'param1': np.array([20, 200])}
|
|
|
|
|
|
# Internal States per Mechanism
|
|
# @curried
|
|
def s1m1(step, sL, s, _input):
|
|
y = 's1'
|
|
x = 0
|
|
return (y, x)
|
|
|
|
# @curried
|
|
def s2m1(param, step, sL, s, _input):
|
|
y = 's2'
|
|
x = param
|
|
return (y, x)
|
|
# @curried
|
|
def s1m2(step, sL, s, _input):
|
|
y = 's1'
|
|
x = _input['param2']
|
|
return (y, x)
|
|
# @curried
|
|
def s2m2(step, sL, s, _input):
|
|
y = 's2'
|
|
x = _input['param2']
|
|
return (y, x)
|
|
# @curried
|
|
def s1m3(step, sL, s, _input):
|
|
y = 's1'
|
|
x = 0
|
|
return (y, x)
|
|
# @curried
|
|
def s2m3(step, sL, s, _input):
|
|
y = 's2'
|
|
x = 0
|
|
return (y, x)
|
|
|
|
|
|
# Exogenous States
|
|
proc_one_coef_A = 0.7
|
|
proc_one_coef_B = 1.3
|
|
|
|
# @curried
|
|
def es3p1(param, step, sL, s, _input):
|
|
y = 's3'
|
|
x = s['s3'] + param
|
|
return (y, x)
|
|
# @curried
|
|
def es4p2(param, step, sL, s, _input):
|
|
y = 's4'
|
|
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B) + param
|
|
return (y, x)
|
|
|
|
ts_format = '%Y-%m-%d %H:%M:%S'
|
|
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
|
# @curried
|
|
def es5p2(step, sL, s, _input):
|
|
y = 'timestamp'
|
|
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
|
return (y, x)
|
|
|
|
|
|
# Environment States
|
|
# @curried
|
|
# def env_a(param, x):
|
|
# return x + param
|
|
def env_a(x):
|
|
return x
|
|
def env_b(x):
|
|
return 10
|
|
|
|
|
|
# Genesis States
|
|
genesis_states = {
|
|
's1': Decimal(0.0),
|
|
's2': Decimal(0.0),
|
|
's3': Decimal(1.0),
|
|
's4': Decimal(1.0),
|
|
'timestamp': '2018-10-01 15:16:24'
|
|
}
|
|
|
|
|
|
# remove `exo_update_per_ts` to update every ts
|
|
raw_exogenous_states = {
|
|
"s3": sweep(beta, es3p1), #es3p1, #sweep(beta, es3p1),
|
|
"s4": sweep(beta, es4p2),
|
|
"timestamp": es5p2
|
|
}
|
|
exogenous_states_list = list(map(exo_update_per_ts, parameterize_states(raw_exogenous_states)))
|
|
|
|
|
|
# ToDo: make env proc trigger field agnostic
|
|
# ToDo: input json into function renaming __name__
|
|
triggered_env_b = proc_trigger('2018-10-01 15:16:25', env_b)
|
|
|
|
|
|
env_processes = {
|
|
"s3": env_a, #sweep(beta, env_a),
|
|
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)
|
|
}
|
|
# parameterized_env_processes = parameterize_states(env_processes)
|
|
#
|
|
# pp.pprint(parameterized_env_processes)
|
|
# exit()
|
|
|
|
# ToDo: The number of values enteren in sweep should be the # of config objs created,
|
|
# not dependent on the # of times the sweep is applied
|
|
# sweep exo_state func and point to exo-state in every other funtion
|
|
# param sweep on genesis states
|
|
|
|
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
|
# mechanisms = {}
|
|
|
|
#middleware(beta, [(m1, states, s2, s2m1), (m2, behaviors, b1, b1m2)], mechanisms)
|
|
|
|
mechanisms_test = {
|
|
"m1": {
|
|
"behaviors": {
|
|
"b1": b1m1,#(0),
|
|
"b2": b2m1#(0)
|
|
},
|
|
"states": {
|
|
"s1": s1m1,#(0),
|
|
"s2": "sweep"
|
|
}
|
|
},
|
|
"m2": {
|
|
"behaviors": {
|
|
"b1": "sweep",
|
|
"b2": b2m2,#(0)
|
|
},
|
|
"states": {
|
|
"s1": s1m2,#(0),
|
|
"s2": s2m2#(0)
|
|
}
|
|
},
|
|
"m3": {
|
|
"behaviors": {
|
|
"b1": b1m3,#(0),
|
|
"b2": b2m3,#(0)
|
|
},
|
|
"states": {
|
|
"s1": s1m3,#(0),
|
|
"s2": s2m3#(0)
|
|
}
|
|
}
|
|
}
|
|
|
|
from copy import deepcopy
|
|
from funcy import curry
|
|
from inspect import getfullargspec
|
|
|
|
|
|
def sweep_identifier(sweep_list, sweep_id_list, mechanisms):
|
|
new_mechanisms = deepcopy(mechanisms)
|
|
for x in sweep_id_list:
|
|
current_f = new_mechanisms[x[0]][x[1]][x[2]]
|
|
if current_f is 'sweep':
|
|
new_mechanisms[x[0]][x[1]][x[2]] = sweep(sweep_list, x[3])
|
|
|
|
# for mech, update_types in new_mechanisms.items():
|
|
# for update_type, fkv in update_types.items():
|
|
# for sk, current_f in fkv.items():
|
|
# if current_f != 'sweep' and isinstance(current_f, list) is False:
|
|
# # new_mechanisms[mech][update_type][sk] = rename("unsweeped", current_f(0))
|
|
# curried_f = curry(current_f)
|
|
#
|
|
# def uncurried_beh_func(a, b, c):
|
|
# return curried_f(0)(a)(b)(c)
|
|
#
|
|
# def uncurried_state_func(a, b, c, d):
|
|
# return curried_f(0)(a)(b)(c)(d)
|
|
#
|
|
# if update_type == 'behaviors':
|
|
# new_mechanisms[mech][update_type][sk] = uncurried_beh_func
|
|
# elif update_type == 'states':
|
|
# new_mechanisms[mech][update_type][sk] = uncurried_state_func
|
|
|
|
del mechanisms
|
|
return new_mechanisms
|
|
|
|
|
|
sweep_id_list = [('m1', 'states', 's2', s2m1), ('m2', 'behaviors', 'b1', b1m2)]
|
|
# pp.pprint(sweep_identifier(beta, sweep_id_list, mechanisms_test))
|
|
# exit()
|
|
|
|
mechanisms = sweep_identifier(beta, sweep_id_list, mechanisms_test)
|
|
|
|
parameterized_mechanism = parameterize_mechanism(mechanisms)
|
|
pp.pprint(parameterized_mechanism)
|
|
# exit()
|
|
|
|
sim_config = {
|
|
"N": 2,
|
|
"T": range(5)
|
|
}
|
|
|
|
for mechanisms, exogenous_states in zip(parameterized_mechanism, exogenous_states_list):
|
|
configs.append(
|
|
Configuration(
|
|
sim_config=sim_config,
|
|
state_dict=genesis_states,
|
|
seed=seed,
|
|
exogenous_states=exogenous_states, #parameterize_states(raw_exogenous_states)[1],
|
|
env_processes=env_processes,
|
|
mechanisms=mechanisms #parameterize_mechanism(mechanisms)[1]
|
|
)
|
|
)
|