cadCAD/engine/utils.py

96 lines
2.7 KiB
Python

from datetime import datetime, timedelta
from decimal import Decimal
from fn.func import curried
flatten = lambda l: [item for sublist in l for item in sublist]
def flatmap(f, items):
return list(map(f, items))
def datetime_range(start, end, delta, dt_format='%Y-%m-%d %H:%M:%S'):
reverse_head = end
[start, end] = [datetime.strptime(x, dt_format) for x in [start, end]]
def _datetime_range(start, end, delta):
current = start
while current < end:
yield current
current += delta
reverse_tail = [dt.strftime(dt_format) for dt in _datetime_range(start, end, delta)]
return reverse_tail + [reverse_head]
def last_index(l):
return len(l)-1
def retrieve_state(l, offset):
return l[last_index(l) + offset + 1]
# shouldn't
def bound_norm_random(rng, low, high):
# Add RNG Seed
res = rng.normal((high+low)/2,(high-low)/6)
if (res<low or res>high):
res = bound_norm_random(rng, low, high)
return Decimal(res)
@curried
def proc_trigger(trigger_step, update_f, step):
if step == trigger_step:
return update_f
else:
return lambda x: x
# accept timedelta instead of timedelta params
def time_step(dt_str, dt_format='%Y-%m-%d %H:%M:%S', days=0, minutes=0, seconds=30):
dt = datetime.strptime(dt_str, dt_format)
t = dt + timedelta(days=days, minutes=minutes, seconds=seconds)
return t.strftime(dt_format)
# accept timedelta instead of timedelta params
def ep_time_step(s, dt_str, fromat_str='%Y-%m-%d %H:%M:%S', days=0, minutes=0, seconds=1):
if s['mech_step'] == 0:
return time_step(dt_str, fromat_str, days, minutes, seconds)
else:
return dt_str
def exo_update_per_ts(ep):
@curried
def ep_decorator(f, y, step, sL, s, _input):
if s['mech_step'] + 1 == 1: # inside f body to reduce performance costs
return f(step, sL, s, _input)
else:
return (y, s[y])
return {es: ep_decorator(f, es) for es, f in ep.items()}
# def create_tensor_field(mechanisms, env_poc, keys=['behaviors', 'states']):
# dfs = [ create_matrix_field(mechanisms, k) for k in keys ]
# df = pd.concat(dfs, axis=1)
# for es, i in zip(env_poc, range(len(env_poc))):
# df['es'+str(i)] = es
# df['m'] = df.index + 1
# return df
#################
# def exo_proc_trigger(mech_step, update_f, y):
# if mech_step == 1:
# return update_f
# else:
# return lambda step, sL, s, _input: (y, s[y])
# def apply_exo_proc(s, x, y):
# if s['mech_step'] == 1:
# return x
# else:
# return s[y]
# def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
# y = 'timestamp'
# x = ep_time_step(s, s['timestamp'], seconds=1)
# return (y, x)