|
|
||
|---|---|---|
| .. | ||
| dist | ||
| examples/event_bench | ||
| README.md | ||
| ascii_art.txt | ||
README.md
___ _ __ _ __ __ __
/ _ \ (_)___ / /_ ____ (_)/ / __ __ / /_ ___ ___/ /
/ // // /(_-</ __// __// // _ \/ // // __// -_)/ _ /
/____//_//___/\__//_/ _/_//_.__/\_,_/ \__/ \__/ \_,_/
/ _ \ ____ ___ ___/ /__ __ ____ ___
/ ___// __// _ \/ _ // // // __// -_)
/_/ /_/ \___/\_,_/ \_,_/ \__/ \__/
by Joshua E. Jodesty
Description: Distributed Produce (distroduce) is a cadCAD feature leveraging Apache Spark and Apache Kafka to enable in-stream data processing application development and throughput benchmarking for Kafka clusters.
Properties:
- enables cadCAD's user-defined simulation framework to publish events/messages to Kafka Clusters
- enables scalable message publishing Kafka clusters by distributing simulated event/message creation and publishing on an EMR cluster using Spark and Kafka Producer
Installation / Build From Source:
pip3 install -r requirements.txt
zip -rq distributed_produce/dist/distroduce.zip cadCAD/distroduce/
Usage:
spark-submit --py-files distributed_produce/dist/distroduce.zip distributed_produce/examples/event_bench/main.py