230 lines
5.0 KiB
Python
230 lines
5.0 KiB
Python
from decimal import Decimal
|
|
import numpy as np
|
|
from datetime import timedelta
|
|
import pprint
|
|
|
|
from SimCAD import configs
|
|
from SimCAD.configuration import Configuration
|
|
from SimCAD.configuration.utils import proc_trigger, bound_norm_random, \
|
|
ep_time_step
|
|
from SimCAD.configuration.utils.parameterSweep import ParamSweep
|
|
|
|
|
|
pp = pprint.PrettyPrinter(indent=4)
|
|
|
|
# ToDo: handle single param sweep
|
|
beta = [Decimal(1), Decimal(2)]
|
|
|
|
seed = {
|
|
'z': np.random.RandomState(1),
|
|
'a': np.random.RandomState(2),
|
|
'b': np.random.RandomState(3),
|
|
'c': np.random.RandomState(3)
|
|
}
|
|
|
|
|
|
# Behaviors per Mechanism
|
|
# @curried
|
|
def b1m1(step, sL, s):
|
|
return {'param1': 1}
|
|
# @curried
|
|
def b2m1(step, sL, s):
|
|
return {'param2': 4}
|
|
|
|
# @curried
|
|
def b1m2(_beta, step, sL, s):
|
|
return {'param1': 'a', 'param2': _beta}
|
|
# @curried
|
|
def b2m2(step, sL, s):
|
|
return {'param1': 'b', 'param2': 0}
|
|
# @curried
|
|
def b1m3(step, sL, s):
|
|
return {'param1': np.array([10, 100])}
|
|
# @curried
|
|
def b2m3(step, sL, s):
|
|
return {'param1': np.array([20, 200])}
|
|
|
|
|
|
# Internal States per Mechanism
|
|
# @curried
|
|
def s1m1(step, sL, s, _input):
|
|
y = 's1'
|
|
x = 0
|
|
return (y, x)
|
|
|
|
# @curried
|
|
def s2m1(sweep_param, step, sL, s, _input):
|
|
y = 's2'
|
|
x = sweep_param
|
|
return (y, x)
|
|
#
|
|
# def s2m1(step, sL, s, _input):
|
|
# y = 's2'
|
|
# x = 0
|
|
# return (y, x)
|
|
|
|
# @curried
|
|
def s1m2(step, sL, s, _input):
|
|
y = 's1'
|
|
x = _input['param2']
|
|
return (y, x)
|
|
# @curried
|
|
def s2m2(step, sL, s, _input):
|
|
y = 's2'
|
|
x = _input['param2']
|
|
return (y, x)
|
|
# @curried
|
|
def s1m3(step, sL, s, _input):
|
|
y = 's1'
|
|
x = 0
|
|
return (y, x)
|
|
# @curried
|
|
def s2m3(step, sL, s, _input):
|
|
y = 's2'
|
|
x = 0
|
|
return (y, x)
|
|
|
|
|
|
# Exogenous States
|
|
proc_one_coef_A = 0.7
|
|
proc_one_coef_B = 1.3
|
|
|
|
# @curried
|
|
def es3p1(param, step, sL, s, _input):
|
|
y = 's3'
|
|
x = s['s3'] + param
|
|
return (y, x)
|
|
# @curried
|
|
def es4p2(param, step, sL, s, _input):
|
|
y = 's4'
|
|
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B) + param
|
|
return (y, x)
|
|
|
|
ts_format = '%Y-%m-%d %H:%M:%S'
|
|
t_delta = timedelta(days=0, minutes=0, seconds=1)
|
|
# @curried
|
|
def es5p2(step, sL, s, _input):
|
|
y = 'timestamp'
|
|
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
|
|
return (y, x)
|
|
|
|
|
|
# Environment States
|
|
# @curried
|
|
# def env_a(param, x):
|
|
# return x + param
|
|
def env_a(x):
|
|
return x
|
|
def env_b(x):
|
|
return 10
|
|
|
|
|
|
# Genesis States
|
|
genesis_states = {
|
|
's1': Decimal(0.0),
|
|
's2': Decimal(0.0),
|
|
's3': Decimal(1.0),
|
|
's4': Decimal(1.0),
|
|
'timestamp': '2018-10-01 15:16:24'
|
|
}
|
|
|
|
|
|
# remove `exo_update_per_ts` to update every ts
|
|
raw_exogenous_states = {
|
|
"s3": es3p1, #es3p1, #sweep(beta, es3p1),
|
|
"s4": es4p2,
|
|
"timestamp": es5p2
|
|
}
|
|
|
|
|
|
# ToDo: make env proc trigger field agnostic
|
|
# ToDo: input json into function renaming __name__
|
|
triggered_env_b = proc_trigger('2018-10-01 15:16:25', env_b)
|
|
|
|
|
|
env_processes = {
|
|
"s3": env_a, #sweep(beta, env_a),
|
|
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)
|
|
}
|
|
# parameterized_env_processes = parameterize_states(env_processes)
|
|
#
|
|
# pp.pprint(parameterized_env_processes)
|
|
# exit()
|
|
|
|
# ToDo: The number of values entered in sweep should be the # of config objs created,
|
|
# not dependent on the # of times the sweep is applied
|
|
# sweep exo_state func and point to exo-state in every other funtion
|
|
# param sweep on genesis states
|
|
|
|
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
|
|
# mechanisms = {}
|
|
|
|
mechanisms = {
|
|
"m1": {
|
|
"behaviors": {
|
|
"b1": b1m1,
|
|
"b2": b2m1
|
|
},
|
|
"states": {
|
|
"s1": s1m1,
|
|
"s2": s2m1
|
|
}
|
|
},
|
|
"m2": {
|
|
"behaviors": {
|
|
"b1": b1m2,
|
|
"b2": b2m2,
|
|
},
|
|
"states": {
|
|
"s1": s1m2,
|
|
"s2": s2m2
|
|
}
|
|
},
|
|
"m3": {
|
|
"behaviors": {
|
|
"b1": b1m3,
|
|
"b2": b2m3,
|
|
},
|
|
"states": {
|
|
"s1": s1m3,
|
|
"s2": s2m3
|
|
}
|
|
}
|
|
}
|
|
|
|
# ToDo: inspect ****
|
|
# ToDo: code block regenerator abstracted from user: input config module with params as convention, output it not as convention,
|
|
|
|
# ToDo: make ParamSweep a part of sim_config
|
|
sim_config = {
|
|
"N": 2,
|
|
"T": range(5)
|
|
# beta
|
|
}
|
|
|
|
# beta = [1,2]
|
|
# Test
|
|
# def(beta, a, b, c):
|
|
# return a + b + beta + beta
|
|
|
|
# ToDo: and/or, or not working
|
|
# ToDo: Abstract ParamSweep away from user
|
|
param_sweep = ParamSweep(
|
|
sweep_list=beta,
|
|
mechs=mechanisms,
|
|
raw_exogenous_states=raw_exogenous_states
|
|
)
|
|
|
|
# ToDo: Make loop standard by returning single elems from ParamSweep if sweep not specified
|
|
for mechanisms, exogenous_states in zip(param_sweep.mechanisms(), param_sweep.exogenous_states()):
|
|
configs.append(
|
|
Configuration(
|
|
sim_config=sim_config,
|
|
state_dict=genesis_states,
|
|
seed=seed,
|
|
exogenous_states=exogenous_states,
|
|
env_processes=env_processes,
|
|
mechanisms=mechanisms
|
|
)
|
|
)
|