cadCAD/simulations/scrapbox/config7c.py

495 lines
14 KiB
Python

from decimal import Decimal
import numpy as np
from SimCAD import Configuration, configs
from SimCAD.configuration import exo_update_per_ts, bound_norm_random, \
ep_time_step
seed = {
'z': np.random.RandomState(1)
# 'a': np.random.RandomState(2),
# 'b': np.random.RandomState(3),
# 'c': np.random.RandomState(3)
}
#Signals
# Pr_signal
#if s['P_Ext_Markets'] != 0:
#Pr_signal = s['Z']/s['P_Ext_Markets']
#else Pr_signal = 0
# if Pr_signal < s['Z']/s['Buy_Log']:
beta = Decimal('0.25') #agent response gain
beta_LT = Decimal('0.1') #LT agent response gain
alpha = Decimal('0.091') #21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
max_withdraw_factor = Decimal('0.9')
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
# Stochastic process factors
correction_factor = Decimal('0.01')
volatility = Decimal('5.0')
# Buy_Log_signal =
# Z_signal =
# Price_signal =
# TDR_draw_signal =
# P_Ext_Markets_signal =
# Behaviors per Mechanism
# BEHAVIOR 1: EMH Trader
EMH_portion = Decimal('0.250')
EMH_Ext_Hold = Decimal('42000.0')
def b1m1(step, sL, s):
# y = 'P_Ext_Markets'
# Psignal_ext = s['P_Ext_Markets'] / s['Z']
# Psignal_int = s['Buy_Log'] / s['Z']
# if Psignal_ext < Psignal_int:
# return beta*(Psignal_int - Psignal_ext) * s['Z'] # Deposited amount in TDR
# else:
# return 0 # Decimal(0.000001)
# return (y,x)
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return 0
else:
return 0
def b1m2(step, sL, s):
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return 0
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
return beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
else:
return 0
# BEHAVIOR 3: Herding
# BEHAVIOR 4: HODLers
HODL_belief = Decimal('10.0')
HODL_portion = Decimal('0.250')
HODL_Ext_Hold = Decimal('4200.0')
def b4m2(step, sL, s):
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
return 0
else:
return 0
# BEHAVIOR 2: Withdraw TDR and burn Zeus
# Selling Agent- Arbitrage on TDR ext v TDR int signals
# def b2m1(step, sL, s):
# Psignal_ext = s['P_Ext_Markets'] / s['Z']
# Psignal_int = s['Buy_Log'] / s['Z']
# if Psignal_ext > Psignal_int:
# # withdrawn amount in TDR, subject to TDR limit
# return - np.minimum(beta*(Psignal_ext - Psignal_int) * s['Z'],s['Buy_Log']*max_withdraw_factor)
# else:
# return 0 #- Decimal(0.000001)
# return 0
# BEHAVIOR 1: Deposit TDR and mint Zeus
# Buying Agent- Arbitrage on Price and Z signals
# def b1m2(step, sL, s):
# # Psignal_ext = s['P_Ext_Markets'] / s['Z']
# # Psignal_int = s['Buy_Log'] / s['Z']
# # if Psignal_ext > Psignal_int:
# # # withdrawn amount in TDR, subject to TDR limit
# # return - np.minimum(beta*(Psignal_ext - Psignal_int) * s['Z'],s['Buy_Log']*max_withdraw_factor)
# # else:
# # return 0 #- Decimal(0.000001)
# #
# # LT more valuable than ST = deposit TDR and mint Z
# Psignal_LT = s['Price'] / s['Z']
# if Psignal_LT > 1:
# return beta_LT*(Psignal_LT - 1) * s['Z']
# else:
# return 0
# Behavior will go here- b2m2, putting in mech 3: b1m3 for debugging
# def b2m2(step, sL, s):
# # Psignal_LT = s['Price'] / s['Z']
# # if Psignal_LT > 1:
# test = np.arange(1,10)
# return test
# Selling Agent- Arbitrage on Price and Z signals
# def b1m3(step, sL, s):
# Psignal_LT = s['Price'] / s['Z']
# if Psignal_LT < 1:
# return - np.minimum(beta_LT*(Psignal_LT - 1) * s['Z'], s['Z']*max_withdraw_factor)
# else:
# return 0
# def b2m3(step, sL, s):
# return 0
def dummy_behavior(step, sL, s):
return 0
def s1_dummy(step, sL, s, _input):
y = 'Z'
x = s['Z']
return (y, x)
def s2_dummy(step, sL, s, _input):
y = 'Price'
x = s['Price']
return (y, x)
def s3_dummy(step, sL, s, _input):
y = 'Buy_Log'
x = s['Buy_Log']
return (y, x)
def s4_dummy(step, sL, s, _input):
y = 'Sell_Log'
x = s['Sell_Log']
return (y, x)
def s5_dummy(step, sL, s, _input):
y = 'Trans'
x = s['Trans']
return (y, x)
def s6_dummy(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets']
return (y, x)
# Internal States per Mechanism
# Deposit TDR/Mint Zeus
# def s1m1(step, sL, s, _input):
# s['Z'] = s['Z'] + _input
# STATES
# ZEUS Fixed Supply
def s1m1(step, sL, s, _input):
y = 'Z'
x = s['Z'] #+ _input # / Psignal_int
return (y, x)
def s2m1(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s3m1(step, sL, s, _input):
y = 'Buy_Log'
x = _input # / Psignal_int
return (y, x)
def s4m2(step, sL, s, _input):
y = 'Sell_Log'
x = _input # / Psignal_int
print('s4m2 ',type(_input))
return (y, x)
def s3m3(step, sL, s, _input):
y = 'Buy_Log'
x = s['Buy_Log'] + _input # / Psignal_int
return (y, x)
# Price Update
def s2m3(step, sL, s, _input):
print('s2m3 ')
print(type(s['Sell_Log']))
print(type(s['Z']))
y = 'Price'
x = s['Price'] + s['Buy_Log']/s['Z'] - s['Sell_Log']/s['Z']
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
return (y, x)
def s6m1(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] - _input
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
def s2m2(step, sL, s, _input):
y = 'Price'
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
return (y, x)
# def s1m1(step, sL, s, _input):
# Psignal_int = s['Buy_Log'] / s['Z']
# y = 'Z'
# x = s['Z'] + _input / Psignal_int
# return (y, x)
# def s2m1(step, sL, s, _input):
# y = 'Price'
# x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
# def s3m1(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] + _input # Input already in TDR * s['Z']
# return (y, x)
# # Withdraw TDR/Burn Zeus
# def s1m2(step, sL, s, _input):
# Psignal_int = s['Buy_Log'] / s['Z']
# y = 'Z'
# x = s['Z'] #+ _input / Psignal_int
# return (y, x)
# def s2m2(step, sL, s, _input):
# y = 'Price'
# x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
# def s3m2(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] + _input #* s['Z']
# # y = 'Buy_Log'
# # x = s['Buy_Log'] + _input
# return (y, x)
# def s1m3(step, sL, s, _input):
# Psignal_int = s['Buy_Log'] / s['Z']
# y = 'Z'
# x = s['Z'] #+ _input / Psignal_int
# return (y, x)
# def s2m3(step, sL, s, _input):
# y = 'Price'
# x= alpha * s['Z'] + (1 - alpha)*s['Price']
# return (y, x)
# def s3m3(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log'] #+ _input #* s['Z']
# # y = 'Buy_Log'
# # x = s['Buy_Log'] + _input
# return (y, x)
# def s3m4(step, sL, s, _input):
# y = 'Buy_Log'
# x = s['Buy_Log']*(1-external_draw) + s['Sell_Log']*external_draw # _input #* s['Z']
# # y = 'Buy_Log'
# # x = s['Buy_Log'] + _input
# return (y, x)
# def s1m3(step, sL, s, _input):
# s['Z'] = s['Z'] + _input
# def s2m3(step, sL, s, _input):
# s['Price'] = s['Price'] + _input
# Exogenous States
proc_one_coef_A = -125
proc_one_coef_B = 125
# def es3p1(step, sL, s, _input):
# s['s3'] = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
# def es4p2(step, sL, s, _input):
# s['P_Ext_Markets'] = s['P_Ext_Markets'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
# def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
# s['timestamp'] = ep_time_step(s, s['timestamp'], seconds=1)
def es3p1(step, sL, s, _input):
y = 's3'
x = s['s3'] + 1
return (y, x)
# def es4p2(step, sL, s, _input):
# y = 'P_Ext_Markets'
# # bound_norm_random defined in utils.py
# #x = s['P_Ext_Markets'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
# expected_change = correction_factor*(s['P_Ext_Markets']-s['Buy_Log'])
# vol = np.random.randint(1,volatility)
# change = expected_change * vol
# # change_float = (np.random.normal(expected_change,volatility*expected_change) #Decimal('1.0')
# #change = Decimal.from_float(change_float)
# x = s['P_Ext_Markets'] + change
# return (y, x)
# A change in belief of actual price, passed onto behaviors to make action
def es4p2(step, sL, s, _input):
y = 'P_Ext_Markets'
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
return (y,x)
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
y = 'timestamp'
x = ep_time_step(s, s['timestamp'], seconds=1)
return (y, x)
#Environment States
# def stochastic(reference, seed, correction = 0.01):
# series = np.zeros(len(reference))
# series[0] = reference[0]
# for i in range(1,len(reference)):
# expected_change = correction*(reference[i]-series[i-1])
# normalized_expected_change = np.abs(expected_change)*(reference[i])/(reference[i-1])
# seed_int = seed.randint(1,10)
# change = np.random.normal(expected_change,seed_int*normalized_expected_change)
# series[i] = series[i-1]+change
# # avoid negative series returns
# if series[i] <= 0:
# series[i] = .01
# #series[i] = series[i-1]+change
# return [series,seed_int]
# ref3 = np.arange(1,1000)*.1
# test = stochastic(ref3,seed['b'])
# def env_a(ref3,seed['b']):
# return stochastic(ref3,seed['b'])
def env_a(x):
return 100
def env_b(x):
return 21000000
# def what_ever(x):
# return x + 1
# Genesis States
state_dict = {
'Z': Decimal(21000000.0),
'Price': Decimal(100.0), # Initialize = Z for EMA
'Buy_Log': Decimal(0.0),
'Sell_Log': Decimal(0.0),
'Trans': Decimal(0.0),
'P_Ext_Markets': Decimal(25000.0),
# 's2': Decimal(0.0),
# 's3': Decimal(0.0),
# 's4': Decimal(0.0),
'timestamp': '2018-10-01 15:16:24'
}
# exogenous_states = {
# # "s3": es3p1,
# "P_Ext_Markets": es4p2,
# "timestamp": es5p2
# }
exogenous_states = exo_update_per_ts(
{
# "s3": es3p1,
"P_Ext_Markets": es4p2,
"timestamp": es5p2
}
)
env_processes = {
# "s3": env_proc('2018-10-01 15:16:25', env_a),
# "P_Ext_Markets": env_proc('2018-10-01 15:16:25', env_b)
}
# test return vs. non-return functions as lambdas
# test fully defined functions
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
# "b2": b2m1
},
"states": {
"Z": s1m1,
"Price": s2_dummy,
"Buy_Log": s3m1,
"Sell_Log":s4_dummy,
"Trans": s5_dummy,
"P_Ext_Markets": s6_dummy
}
},
"m2": {
"behaviors": {
"b1": b1m2,
"b4": b4m2
},
"states": {
"Z": s1_dummy,
"Price": s2_dummy,
"Buy_Log": s3_dummy,
"Sell_Log":s4m2,
"Trans": s5_dummy,
"P_Ext_Markets": s6_dummy
}
},
"m3": {
"behaviors": {
# "b1": b1m2,
# "b4": b4m2
},
"states": {
"Z": s1_dummy,
"Price": s2m3,
"Buy_Log": s3_dummy,
"Sell_Log":s4_dummy,
"Trans": s5_dummy,
"P_Ext_Markets": s6_dummy
}
},
# "m3": {
# "behaviors": {
# "b1": b1m3,
# "b2": b2m3
# },
# "states": {
# "Z": s1m3,
# "Price": s2m3,
# "Buy_Log": s3m3,
# "Sell_Log": s4_dummy,
# "Trans": s5_dummy,
# "P_Ext_Markets": s6_dummy
# }
# },
# "m4": {
# "behaviors": {
# "dummy": dummy_behavior
# },
# "states": {
# "Z": s1_dummy,
# "Price": s2_dummy,
# "Buy_Log": s3m4,
# "Sell_Log": s4_dummy,
# "Trans": s5_dummy,
# "P_Ext_Markets": s6_dummy
# }
# },
# "m3": {
# "behaviors": {
# "b1": b1m3,
# "b2": b2m3
# },
# "states": {
# "Z": s1m3,
# "Price": s2m3,
# }
# }
#treat environmental processes as a mechanism
"ep": {
"behaviors": {
"dummy": dummy_behavior
},
"states": {
"Z": s1_dummy,
"Price": s2_dummy,
"Buy_Log": s3_dummy,
"Sell_Log": s4_dummy,
"Trans": s5_dummy,
"P_Ext_Markets": es4p2
}
}
}
sim_config = {
"N": 1,
"T": range(1000)
}
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms))