cadCAD/simulations/validation/config1.py

379 lines
9.1 KiB
Python

from decimal import Decimal
import numpy as np
from datetime import timedelta
from fn.func import curried
import pprint
from SimCAD import configs
from SimCAD.utils import flatMap, rename
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step, parameterize_mechanism, sweep #parameterize_states
from copy import deepcopy
pp = pprint.PrettyPrinter(indent=4)
# ToDo: handle single param sweep
beta = [Decimal(1), Decimal(2)]
# -------------
var_a = [1,2,3]
var_b = [1,2,3]
# Internal States per Mechanism
def s1m1(assumed, step, sL, s, _input):
y = 's1'
x = _input['param1'] + 1 + assumed
# example = [_input['param1'], 1, assumed].reduceLeft(_ + _)
return (y, x)
def s2m1(assumed, step, sL, s, _input):
y = 's2'
x = _input['param2'] + assumed
return (y, x)
def s1m3(assumed, step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
# -------------
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
# @curried
def b1m2(param, step, sL, s):
return {'param1': 'a', 'param2': param}
#
# def b1m2(step, sL, s):
# return {'param1': 'a', 'param2': 2}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
# param = Decimal(11.0)
# def s2m1(step, sL, s, _input):
# y = 's2'
# x = _input['param2'] + param
# return (y, x)
# @curried
def s2m1(param, step, sL, s, _input):
y = 's2'
x = _input['param2'] + param
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
#
# def es3p1(step, sL, s, _input):
# y = 's3'
# x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
# return (y, x)
# @curried
def es3p1(param, step, sL, s, _input):
y = 's3'
x = s['s3'] + param
return (y, x)
def es4p2(param, step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B) + param
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
# @curried
# def env_a(param, x):
# return x + param
def env_a(x):
return x
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# print(sweep(beta, es3p1))
# print()
# remove `exo_update_per_ts` to update every ts
raw_exogenous_states = {
"s3": sweep(beta, es3p1), #es3p1, #sweep(beta, es3p1),
"s4": sweep(beta, es4p2),
"timestamp": es5p2
}
exogenous_states = exo_update_per_ts(raw_exogenous_states)
# pp.pprint(raw_exogenous_states)
# print()
def parameterize_states(states_dict):
sweep_lists = []
new_states_dict = deepcopy(states_dict)
for sk, vfs in new_states_dict.items():
print({sk: vfs})
print()
id_sweep_lists = []
if isinstance(vfs, list):
for vf in vfs:
id_sweep_lists.append({sk: vf})
if len(id_sweep_lists) != 0:
sweep_lists.append(id_sweep_lists)
zipped_sweep_lists = []
it = iter(sweep_lists)
the_len = len(next(it))
same_len_ind = all(len(l) == the_len for l in it)
count_ind = len(sweep_lists) >= 2
if same_len_ind == True and count_ind == True:
zipped_sweep_lists = list(map(lambda x: list(x), list(zip(*sweep_lists))))
elif same_len_ind == False or count_ind == False:
zipped_sweep_lists = sweep_lists
else:
raise ValueError('lists have different lengths!')
pp.pprint(sweep_lists)
print()
pp.pprint(zipped_sweep_lists)
print()
# return zipped_sweep_lists
# pp.pprint(parameterize_states(raw_exogenous_states))
# print()
# exogenous_states['s3'] = rename('parameterized', es3p1)
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
triggered_env_b = proc_trigger('2018-10-01 15:16:25', env_b)
env_processes = {
"s3": env_a, #sweep(beta, env_a, 'env_a'),
"s4": triggered_env_b #rename('parameterized', triggered_env_b) #sweep(beta, triggered_env_b)
}
# ToDo: The number of values enteren in sweep should be the # of config objs created,
# not dependent on the # of times the sweep is applied
# sweep exo_state func and point to exo-state in every other funtion
# param sweep on genesis states
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1,
"b2": b2m1
},
"states": {
"s1": s1m1,
"s2": sweep(beta, s2m1) #rename('parameterized', s2m1) #s2m1(1) #sweep(beta, s2m1)
}
},
"m2": {
"behaviors": {
"b1": sweep(beta, b1m2), #rename('parameterized', b1m2), #b1m2(1) #sweep(beta, b1m2),
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
# list(map(lambda x: list(map(lambda y: list(y.keys()).pop(), x)), zipped_sweep_lists))
pp.pprint(parameterize_mechanism(mechanisms))
print()
# pp.pprint(mechanisms)
sim_config = {
"N": 2,
"T": range(5)
}
# for mech_configs in parameterize_mechanism(mechanisms):
# configs.append(
# Configuration(
# sim_config=sim_config,
# state_dict=genesis_states,
# seed=seed,
# exogenous_states=exogenous_states,
# env_processes=env_processes,
# mechanisms=mech_configs
# )
# )
# # print(rename('new', b2m2).__name__)
#
# def parameterize_mechanism(mechanisms, param):
# new_mechanisms = deepcopy(mechanisms)
# for mech, update_types in new_mechanisms.items():
# for update_type, fkv in update_types.items():
# for sk, vf in fkv.items():
# if vf.__name__ == 'parameterized':
# # print(vf.__name__)
# new_mechanisms[mech][update_type][sk] = vf(param)
#
# del mechanisms
# return new_mechanisms
#
# def parameterize_states(states_dict, param):
# new_states_dict = deepcopy(states_dict)
# for sk, vf in new_states_dict.items():
# if vf.__name__ == 'parameterized':
# print(vf.__name__)
# new_states_dict[sk] = vf(param)
#
# del states_dict
# return new_states_dict
#
# # parameterize_mechanism(mechanisms, beta)
# @curried
# def s2m1(param, a, b, c, d):
# y = a
# x = b, + c + d + param
# return (y, x)
# print(s2m1(1)(1))
# pp.pprint(mechanisms)
# pp.pprint(parameterize_mechanism(mechanisms, 1))
# print(sweep(beta, s2m1))
# pp.pprint(parameterize_states(raw_exogenous_states, 1))
# pp.pprint(parameterize_states(env_processes, 1))
# configs.append(
# Configuration(
# sim_config=sim_config,
# state_dict=genesis_states,
# seed=seed,
# exogenous_states=exogenous_states,
# env_processes=env_processes,
# mechanisms=parameterize_mechanism(mechanisms, 1)
# )
# )
# def sweep_config(config, params):
# new_config = deepcopy(config)
# configs = []
# for param in params:
# new_config.mechanisms = parameterize_mechanism(config.mechanisms, param)
# # new_config.raw_exogenous_states = parameterize_states(config.exogenous_states, param)
# # new_config.env_processes = parameterize_states(config.env_processes, param)
# configs.append(new_config)
# del config
# return configs
# print(sweep_config(c, beta))
#
# for config in sweep_config(c, beta):
# configs.append(config)
# for config in param_sweep(c, raw_exogenous_states):
# configs.append(config)
# # configs = configs +
# #
# print()
# print(len(configs))
# print()
# for g in configs:
# print()
# print('Configuration')
# print()
# pp.pprint(g.env_processes)
# print()
# pp.pprint(g.exogenous_states)
# print()
# pp.pprint(g.mechanisms)
# print()