|
|
||
|---|---|---|
| SimCAD | ||
| simulations | ||
| .gitignore | ||
| README.md | ||
| Simulation.md | ||
| requirements.txt | ||
| setup.py | ||
README.md
SimCad
Warning: Do not publish this package / software to any software repository except one permited by BlockScience.
1. Install Dependencies:
pip install -r requirements.txt
pip install .
2. Configure Simulation:
Example:
/simulations/validation/*
3. Import SimCAD & Run Simulation:
Example:
/simulations/sim_test.py
import pandas as pd
from tabulate import tabulate
# The following imports NEED to be in the exact same order
from SimCAD.engine import ExecutionMode, ExecutionContext, Executor
from simulations.validation import config_1, config_2
from SimCAD import configs
# ToDo: pass ExecutionContext with execution method as ExecutionContext input
exec_mode = ExecutionMode()
print("Simulation Execution 1")
print()
first_config = [configs[0]] # from config1
single_proc_ctx = ExecutionContext(context=exec_mode.single_proc)
run1 = Executor(exec_context=single_proc_ctx, configs=first_config)
run1_raw_result, tensor_field = run1.main()
result = pd.DataFrame(run1_raw_result)
# result.to_csv('~/Projects/DiffyQ-SimCAD/results/config4.csv', sep=',')
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
print("Simulation Execution 2: Pairwise Execution")
print()
multi_proc_ctx = ExecutionContext(context=exec_mode.multi_proc)
run2 = Executor(exec_context=multi_proc_ctx, configs=configs)
for raw_result, tensor_field in run2.main():
result = pd.DataFrame(raw_result)
print()
print("Tensor Field:")
print(tabulate(tensor_field, headers='keys', tablefmt='psql'))
print("Output:")
print(tabulate(result, headers='keys', tablefmt='psql'))
print()
The above can be run in Jupyter.
jupyter notebook