cadCAD/simulations/regression_tests/udo_inter_substep_update.py

168 lines
5.3 KiB
Python

from copy import deepcopy
from datetime import timedelta
from cadCAD.utils import SilentDF #, val_switch
from cadCAD.configuration import append_configs
from cadCAD.configuration.utils import time_step, ep_time_step, config_sim
from cadCAD.configuration.utils.userDefinedObject import udoPipe, UDO
import pandas as pd
import pprint as pp
from fn.func import curried
DF = SilentDF(pd.read_csv('/Users/jjodesty/Projects/DiffyQ-SimCAD/simulations/external_data/output.csv'))
class udoExample(object):
def __init__(self, x, dataset=None):
self.x = x
self.mem_id = str(hex(id(self)))
self.ds = dataset # for setting ds initially or querying
self.perception = {}
def anon(self, f):
return f(self)
def updateX(self):
self.x += 1
return self
def perceive(self, s):
self.perception = self.ds[
(self.ds['run'] == s['run']) & (self.ds['substep'] == s['substep']) & (self.ds['timestep'] == s['timestep'])
].drop(columns=['run', 'substep']).to_dict()
return self
def read(self, ds_uri):
self.ds = SilentDF(pd.read_csv(ds_uri))
return self
def write(self, ds_uri):
pd.to_csv(ds_uri)
# ToDo: Generic update function
pass
# can be accessed after an update within the same substep and timestep
state_udo = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoA = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
policy_udoB = UDO(udo=udoExample(0, DF), masked_members=['obj', 'perception'])
def udo_policyA(_g, step, sL, s):
s['udo_policies']['udo_A'].updateX()
return {'udo_A': udoPipe(s['udo_policies']['udo_A'])}
def udo_policyB(_g, step, sL, s):
s['udo_policies']['udo_B'].updateX()
return {'udo_B': udoPipe(s['udo_policies']['udo_B'])}
policies = {"p1": udo_policyA, "p2": udo_policyB}
# ToDo: DataFrame Column order
state_dict = {
'increment': 0,
'state_udo': state_udo, 'state_udo_tracker_a': 0, 'state_udo_tracker_b': 0,
'state_udo_perception_tracker': {"ds1": None, "ds2": None, "ds3": None, "timestep": None},
'udo_policies': {'udo_A': policy_udoA, 'udo_B': policy_udoB},
'udo_policy_tracker_a': (0, 0), 'udo_policy_tracker_b': (0, 0),
'timestamp': '2019-01-01 00:00:00'
}
@curried
def perceive(s, self):
self.perception = self.ds[
(self.ds['run'] == s['run']) & (self.ds['substep'] == s['substep']) & (self.ds['timestep'] == s['timestep'])
].drop(columns=['run', 'substep']).to_dict()
return self
def view_udo_policy(_g, step, sL, s, _input):
return 'udo_policies', _input
def state_udo_update(_g, step, sL, s, _input):
y = 'state_udo'
# s['hydra_state'].updateX().anon(perceive(s))
s['state_udo'].updateX().perceive(s)
x = udoPipe(s['state_udo'])
return y, x
def increment(y, incr_by):
return lambda _g, step, sL, s, _input: (y, s[y] + incr_by)
def track(destination, source):
return lambda _g, step, sL, s, _input: (destination, s[source].x)
def track_udo_policy(destination, source):
def val_switch(v):
if isinstance(v, pd.DataFrame) is True or isinstance(v, SilentDF) is True:
return SilentDF(v)
else:
return v.x
return lambda _g, step, sL, s, _input: (destination, tuple(val_switch(v) for _, v in s[source].items()))
def track_state_udo_perception(destination, source):
def id(past_perception):
if len(past_perception) == 0:
return state_dict['state_udo_perception_tracker']
else:
return past_perception
return lambda _g, step, sL, s, _input: (destination, id(s[source].perception))
def time_model(y, substeps, time_delta, ts_format='%Y-%m-%d %H:%M:%S'):
def apply_incriment_condition(s):
if s['substep'] == 0 or s['substep'] == substeps:
return y, time_step(dt_str=s[y], dt_format=ts_format, _timedelta=time_delta)
else:
return y, s[y]
return lambda _g, step, sL, s, _input: apply_incriment_condition(s)
states = {
'increment': increment('increment', 1),
'state_udo_tracker_a': track('state_udo_tracker_a', 'state_udo'),
'state_udo': state_udo_update,
'state_udo_perception_tracker': track_state_udo_perception('state_udo_perception_tracker', 'state_udo'),
'state_udo_tracker_b': track('state_udo_tracker_b', 'state_udo'),
'udo_policy_tracker_a': track_udo_policy('udo_policy_tracker_a', 'udo_policies'),
'udo_policies': view_udo_policy,
'udo_policy_tracker_b': track_udo_policy('udo_policy_tracker_b', 'udo_policies')
}
substeps=3
update_timestamp = time_model(
'timestamp',
substeps=3,
time_delta=timedelta(days=0, minutes=0, seconds=1),
ts_format='%Y-%m-%d %H:%M:%S'
)
states['timestamp'] = update_timestamp
PSUB = {
'policies': policies,
'states': states
}
# needs M1&2 need behaviors
partial_state_update_blocks = [PSUB] * substeps
# pp.pprint(partial_state_update_blocks)
sim_config = config_sim({
"N": 2,
"T": range(4)
})
# ToDo: Bug without specifying parameters
append_configs(
sim_configs=sim_config,
initial_state=state_dict,
seeds={},
raw_exogenous_states={},
env_processes={},
partial_state_update_blocks=partial_state_update_blocks,
# policy_ops=[lambda a, b: {**a, **b}]
)
print()
print("State Updates:")
pp.pprint(partial_state_update_blocks)
print()