cadCAD/engine/configProcessor.py

80 lines
2.8 KiB
Python

import pandas as pd
from functools import reduce
def no_state_identity(step, sL, s, _input):
return None
def state_identity(k):
return lambda step, sL, s, _input: (k, s[k])
def b_identity(step, sL, s):
return 0
def behavior_identity(k):
return b_identity
def key_filter(mechanisms, keyname):
return [ v[keyname] for k, v in mechanisms.items() ]
def fillna_with_id_func(identity, df, col):
return df[[col]].fillna(value=identity(col))
def apply_identity_funcs(identity, df, cols):
return list(map(lambda col: fillna_with_id_func(identity, df, col), cols))
def create_matrix_field(mechanisms, key):
if key == 'states':
identity = state_identity
else:
identity = behavior_identity
df = pd.DataFrame(key_filter(mechanisms, key))
col_list = apply_identity_funcs(identity, df, list(df.columns))
if len(col_list) != 0:
return reduce((lambda x, y: pd.concat([x, y], axis=1)), col_list)
else:
return pd.DataFrame({'empty' : []})
# Maybe Refactor to only use dictionary BUT I used dfs to fill NAs. Perhaps fill
def generate_config(state_dict, mechanisms, exo_proc):
def no_update_handler(bdf, sdf):
if (bdf.empty == False) and (sdf.empty == True):
bdf_values = bdf.values.tolist()
sdf_values = [ [no_state_identity] * len(bdf_values) for m in range(len(mechanisms)) ]
return sdf_values, bdf_values
elif (bdf.empty == True) and (sdf.empty == False):
sdf_values = sdf.values.tolist()
bdf_values = [ [b_identity] * len(sdf_values) for m in range(len(mechanisms)) ]
return sdf_values, bdf_values
else:
sdf_values = sdf.values.tolist()
bdf_values = bdf.values.tolist()
return sdf_values, bdf_values
def only_ep_handler(state_dict):
sdf_functions = [
lambda step, sL, s, _input: (k, v) for k, v in zip(state_dict.keys(), state_dict.values())
]
sdf_values = [ sdf_functions ]
bdf_values = [ [b_identity] * len(sdf_values) ]
return sdf_values, bdf_values
zipped_list = []
if len(mechanisms) != 0:
bdf = create_matrix_field(mechanisms, 'behaviors')
sdf = create_matrix_field(mechanisms, 'states')
sdf_values, bdf_values = no_update_handler(bdf, sdf)
zipped_list = list(zip(sdf_values, bdf_values))
else:
sdf_values, bdf_values = only_ep_handler(state_dict)
zipped_list = list(zip(sdf_values, bdf_values))
return list(map(lambda x: (x[0] + exo_proc, x[1]), zipped_list))
def create_tensor_field(mechanisms, exo_proc, keys=['behaviors', 'states']):
dfs = [ create_matrix_field(mechanisms, k) for k in keys ]
df = pd.concat(dfs, axis=1)
for es, i in zip(exo_proc, range(len(exo_proc))):
df['es'+str(i+1)] = es
df['m'] = df.index + 1
return df