cadCAD/simulations/validation/config1.py

250 lines
5.4 KiB
Python

from decimal import Decimal
import numpy as np
from datetime import timedelta
from fn.func import curried
import pprint
from SimCAD import configs
from SimCAD.utils import flatMap
from SimCAD.configuration import Configuration
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
ep_time_step, sweep_states, sweep_mechs
from SimCAD.engine.utils import sweep
pp = pprint.PrettyPrinter(indent=4)
beta =[Decimal(1), Decimal(2)]
seed = {
'z': np.random.RandomState(1),
'a': np.random.RandomState(2),
'b': np.random.RandomState(3),
'c': np.random.RandomState(3)
}
# Behaviors per Mechanism
# Different return types per mechanism ?? *** No ***
def b1m1(step, sL, s):
return {'param1': 1}
def b2m1(step, sL, s):
return {'param2': 4}
@curried
def b1m2(param, step, sL, s):
return {'param1': 'a', 'param2': param}
def b2m2(step, sL, s):
return {'param1': 'b', 'param2': 4}
def b1m3(step, sL, s):
return {'param1': ['c'], 'param2': np.array([10, 100])}
def b2m3(step, sL, s):
return {'param1': ['d'], 'param2': np.array([20, 200])}
# deff not more than 2
# Internal States per Mechanism
def s1m1(step, sL, s, _input):
y = 's1'
x = _input['param1'] #+ [Coef1 x 5]
return (y, x)
# decorator
# param = Decimal(11.0)
# def s2m1(step, sL, s, _input):
# y = 's2'
# x = _input['param2'] + param
# return (y, x)
@curried
def s2m1(param, step, sL, s, _input):
y = 's2'
x = _input['param2'] + param
return (y, x)
def s1m2(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m2(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
def s1m3(step, sL, s, _input):
y = 's1'
x = _input['param1']
return (y, x)
def s2m3(step, sL, s, _input):
y = 's2'
x = _input['param2']
return (y, x)
# Exogenous States
proc_one_coef_A = 0.7
proc_one_coef_B = 1.3
# def es3p1(step, sL, s, _input):
# y = 's3'
# x = s['s3'] * bound_norm_random(seed['a'], proc_one_coef_A, proc_one_coef_B)
# return (y, x)
# es3p1 = sweep(
# params = [Decimal(11.0), Decimal(22.0)],
# sweep_f = lambda param: lambda step, sL, s, _input: (
# 's3',
# s['s3'] + param
# )
# )
@curried
def es3p1(param, step, sL, s, _input):
y = 's3'
x = s['s3'] + param
return (y, x)
def es4p2(step, sL, s, _input):
y = 's4'
x = s['s4'] * bound_norm_random(seed['b'], proc_one_coef_A, proc_one_coef_B)
return (y, x)
ts_format = '%Y-%m-%d %H:%M:%S'
t_delta = timedelta(days=0, minutes=0, seconds=1)
def es5p2(step, sL, s, _input):
y = 'timestamp'
x = ep_time_step(s, dt_str=s['timestamp'], fromat_str=ts_format, _timedelta=t_delta)
return (y, x)
# Environment States
@curried
def env_a(param, x):
return x + param
def env_b(x):
return 10
# def what_ever(x):
# return x + 1
# Genesis States
genesis_states = {
's1': Decimal(0.0),
's2': Decimal(0.0),
's3': Decimal(1.0),
's4': Decimal(1.0),
'timestamp': '2018-10-01 15:16:24'
}
# remove `exo_update_per_ts` to update every ts
raw_exogenous_states = {
"s3": sweep(beta, es3p1),
"s4": es4p2,
"timestamp": es5p2
}
exogenous_states = exo_update_per_ts(raw_exogenous_states)
# ToDo: make env proc trigger field agnostic
# ToDo: input json into function renaming __name__
env_processes = {
"s3": sweep(beta, env_a, 'env_a'),
"s4": proc_trigger('2018-10-01 15:16:25', env_b)
}
# lambdas
# genesis Sites should always be there
# [1, 2]
# behavior_ops = [ foldr(_ + _), lambda x: x + 0 ]
# [1, 2] = {'b1': ['a'], 'b2', [1]} =
# behavior_ops = [ behavior_to_dict, print_fwd, sum_dict_values ]
# behavior_ops = [foldr(dict_elemwise_sum())]
# behavior_ops = [foldr(lambda a, b: a + b)]
# need at least 1 behaviour and 1 state function for the 1st mech with behaviors
# mechanisms = {}
mechanisms = {
"m1": {
"behaviors": {
"b1": b1m1, # lambda step, sL, s: s['s1'] + 1,
"b2": b2m1
},
"states": { # exclude only. TypeError: reduce() of empty sequence with no initial value
"s1": s1m1,
"s2": sweep(beta, s2m1)
}
},
"m2": {
"behaviors": {
"b1": sweep(beta, b1m2),
"b2": b2m2
},
"states": {
"s1": s1m2,
"s2": s2m2
}
},
"m3": {
"behaviors": {
"b1": b1m3,
"b2": b2m3
},
"states": {
"s1": s1m3,
"s2": s2m3
}
}
}
sim_config = {
"N": 2,
"T": range(5)
}
# configs.append(
# Configuration(
# sim_config=sim_config,
# state_dict=genesis_states,
# seed=seed,
# env_processes=env_processes,
# exogenous_states=exogenous_states,
# mechanisms=mechanisms
# )
# )
c = Configuration(
sim_config=sim_config,
state_dict=genesis_states,
seed=seed,
env_processes=env_processes,
exogenous_states=exogenous_states,
mechanisms=mechanisms
)
l = flatMap(
sweep_states('environmental', env_processes),
flatMap(
sweep_states('exogenous', raw_exogenous_states),
flatMap(
sweep_mechs('states'),
sweep_mechs('behaviors', c)
)
)
)
print()
print(len(l))
print()
for g in l:
print()
print('Configuration')
print()
pp.pprint(g.env_processes)
print()
pp.pprint(g.exogenous_states)
print()
pp.pprint(g.mechanisms)
print()