cadCAD/SimCAD/engine/__init__.py

81 lines
3.2 KiB
Python

from pathos.multiprocessing import ProcessingPool as Pool
from tabulate import tabulate
from SimCAD.utils import flatten
from SimCAD.configuration import Processor
from SimCAD.configuration.utils import TensorFieldReport
from SimCAD.engine.simulation import Executor as SimExecutor
class ExecutionMode:
single_proc = 'single_proc'
multi_proc = 'multi_proc'
class ExecutionContext:
def __init__(self, context=ExecutionMode.multi_proc):
self.name = context
self.method = None
def single_proc_exec(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns):
l = [simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns]
simulation, states_list, config, env_processes, T, N = list(map(lambda x: x.pop(), l))
result = simulation(states_list, config, env_processes, T, N)
return flatten(result)
def parallelize_simulations(fs, states_list, configs, env_processes, Ts, Ns):
l = list(zip(fs, states_list, configs, env_processes, Ts, Ns))
with Pool(len(configs)) as p:
results = p.map(lambda t: t[0](t[1], t[2], t[3], t[4], t[5]), l)
return results
if context == 'single_proc':
self.method = single_proc_exec
elif context == 'multi_proc':
self.method = parallelize_simulations
class Executor:
def __init__(self, exec_context, configs):
self.SimExecutor = SimExecutor
self.exec_method = exec_context.method
self.exec_context = exec_context.name
self.configs = configs
self.main = self.execute
def execute(self):
config_proc = Processor()
create_tensor_field = TensorFieldReport(config_proc).create_tensor_field
print(self.exec_context+": "+str(self.configs))
states_lists, Ts, Ns, eps, configs_structs, env_processes_list, mechanisms, simulation_execs = \
[], [], [], [], [], [], [], []
config_idx = 0
for x in self.configs:
states_lists.append([x.genesis_states])
Ts.append(x.sim_config['T'])
Ns.append(x.sim_config['N'])
eps.append(list(x.exogenous_states.values()))
configs_structs.append(config_proc.generate_config(x.genesis_states, x.mechanisms, eps[config_idx]))
env_processes_list.append(x.env_processes)
mechanisms.append(x.mechanisms)
simulation_execs.append(SimExecutor(x.behavior_ops).simulation)
config_idx += 1
# Dimensions: N x r x mechs
if self.exec_context == ExecutionMode.multi_proc:
if len(self.configs) > 1:
simulations = self.exec_method(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)
results = []
for result, mechanism, ep in list(zip(simulations, mechanisms, eps)):
print(tabulate(create_tensor_field(mechanism, ep), headers='keys', tablefmt='psql'))
results.append(flatten(result))
return results
else:
return self.exec_method(simulation_execs, states_lists, configs_structs, env_processes_list, Ts, Ns)