299 lines
9.6 KiB
Python
299 lines
9.6 KiB
Python
from decimal import Decimal
|
|
import numpy as np
|
|
from datetime import timedelta
|
|
|
|
from SimCAD import Configuration, configs
|
|
from SimCAD.configuration.utils import exo_update_per_ts, proc_trigger, bound_norm_random, \
|
|
ep_time_step
|
|
|
|
seed = {
|
|
'z': np.random.RandomState(1)
|
|
}
|
|
|
|
# Signals
|
|
# Pr_signal
|
|
beta = Decimal('0.25') # agent response gain
|
|
beta_LT = Decimal('0.1') # LT agent response gain
|
|
# alpha = .67, 2 block moving average
|
|
alpha = Decimal('0.67')
|
|
# 21 day EMA forgetfullness between 0 and 1, closer to 1 discounts older obs quicker, should be 2/(N+1)
|
|
# 21 * 3 mech steps, 2/64 = 0.03125
|
|
alpha_2 = Decimal('0.03125')
|
|
max_withdraw_factor = Decimal('0.9')
|
|
external_draw = Decimal('0.01') # between 0 and 1 to draw Buy_Log to external
|
|
|
|
|
|
#alpha * s['Zeus_ST'] + (1 - alpha)*s['Zeus_LT']
|
|
|
|
# Stochastic process factors
|
|
correction_factor = Decimal('0.01')
|
|
volatility = Decimal('5.0')
|
|
|
|
# Buy_Log_signal =
|
|
# Z_signal =
|
|
# Price_signal =
|
|
# TDR_draw_signal =
|
|
# P_Ext_Markets_signal =
|
|
|
|
# Behaviors per Mechanism
|
|
|
|
# BEHAVIOR 1: EMH Trader
|
|
EMH_portion = Decimal('0.20')
|
|
EMH_Ext_Hold = Decimal('42000.0')
|
|
|
|
|
|
def b1m1(step, sL, s):
|
|
# print('b1m1')
|
|
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
|
|
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
|
|
buy = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
|
|
return {'buy_order1': buy}
|
|
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
|
|
return {'buy_order1': 0}
|
|
else:
|
|
return {'buy_order1': 0}
|
|
|
|
|
|
def b1m2(step, sL, s):
|
|
# print('b1m2')
|
|
theta = (s['Z']*EMH_portion*s['Price'])/(s['Z']*EMH_portion*s['Price'] + EMH_Ext_Hold * s['P_Ext_Markets'])
|
|
if s['Price'] < (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
|
|
return {'sell_order1': 0}
|
|
elif s['Price'] > (theta*EMH_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*EMH_portion*(1-theta)):
|
|
sell = beta * theta*EMH_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EMH_portion*(1-theta))
|
|
return {'sell_order1': sell}
|
|
else:
|
|
return {'sell_order1': 0}
|
|
|
|
# BEHAVIOR 3: Herding
|
|
Herd_portion = Decimal('0.20')
|
|
Herd_Ext_Hold = Decimal('42000.0')
|
|
Herd_UB = Decimal('0.10') # UPPER BOUND
|
|
Herd_LB = Decimal('0.10') # LOWER BOUND
|
|
def b3m2(step, sL, s):
|
|
theta = (s['Z']*Herd_portion*s['Price'])/(s['Z']*Herd_portion*s['Price'] + Herd_Ext_Hold * s['P_Ext_Markets'])
|
|
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
|
|
if (s['Price'] - s['Price_Signal']) < - Herd_LB:
|
|
|
|
sell = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
|
|
return {'herd_sell': sell, 'herd_buy': 0}
|
|
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
|
|
elif (s['Price'] - s['Price_Signal']) > Herd_UB:
|
|
buy = beta * theta*Herd_Ext_Hold * s['P_Ext_Markets']/(s['Price']*Herd_portion*(1-theta))
|
|
return {'herd_sell': 0, 'herd_buy': buy}
|
|
else:
|
|
return {'herd_sell': 0, 'herd_buy': 0}
|
|
|
|
# BEHAVIOR 4: HODLers
|
|
HODL_belief = Decimal('10.0')
|
|
HODL_portion = Decimal('0.20')
|
|
HODL_Ext_Hold = Decimal('4200.0')
|
|
|
|
|
|
def b4m2(step, sL, s):
|
|
# print('b4m2')
|
|
theta = (s['Z']*HODL_portion*s['Price'])/(s['Z']*HODL_portion*s['Price'] + HODL_Ext_Hold * s['P_Ext_Markets'])
|
|
if s['Price'] < 1/HODL_belief*(theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
|
|
sell = beta * theta*HODL_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HODL_portion*(1-theta))
|
|
return {'sell_order2': sell}
|
|
elif s['Price'] > (theta*HODL_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*HODL_portion*(1-theta)):
|
|
return {'sell_order2': 0}
|
|
else:
|
|
return {'sell_order2': 0}
|
|
|
|
# BEHAVIOR 7: Endogenous Information Updating (EIU)
|
|
# Short Term Price Signal, Lower Threshold = BOT-like
|
|
EIU_portion = Decimal('0.20')
|
|
EIU_Ext_Hold = Decimal('42000.0')
|
|
EIU_UB = Decimal('0.50') # UPPER BOUND
|
|
EIU_LB = Decimal('0.50') # LOWER BOUND
|
|
def b7m2(step, sL, s):
|
|
theta = (s['Z']*EIU_portion*s['Price'])/(s['Z']*EIU_portion*s['Price'] + EIU_Ext_Hold * s['P_Ext_Markets'])
|
|
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
|
|
if (s['Price'] - s['Price_Signal']) < - EIU_LB:
|
|
|
|
sell = beta * theta*EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*EIU_portion*(1-theta))
|
|
return {'EIU_sell': sell, 'EIU_buy': 0}
|
|
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
|
|
elif (s['Price'] - s['Price_Signal']) > EIU_UB:
|
|
buy = beta * theta* EIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* EIU_portion*(1-theta))
|
|
return {'EIU_sell': 0, 'EIU_buy': buy}
|
|
else:
|
|
return {'EIU_sell': 0, 'EIU_buy': 0}
|
|
|
|
# BEHAVIOR 7b: Endogenous Information Updating (EIU)
|
|
# Longer Term Price Signal, Higher Threshold = Human-Like
|
|
HEIU_portion = Decimal('0.20')
|
|
HEIU_Ext_Hold = Decimal('42000.0')
|
|
HEIU_UB = Decimal('2.0') # UPPER BOUND
|
|
HEIU_LB = Decimal('2.0') # LOWER BOUND
|
|
def b7hm2(step, sL, s):
|
|
theta = (s['Z']*HEIU_portion*s['Price'])/(s['Z']*HEIU_portion*s['Price'] + HEIU_Ext_Hold * s['P_Ext_Markets'])
|
|
# if s['Price'] - s['Price_Signal'] < (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)) - Herd_LB:
|
|
if (s['Price'] - s['Price_Signal_2']) < - HEIU_LB:
|
|
|
|
sell = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']*HEIU_portion*(1-theta))
|
|
return {'HEIU_sell': sell, 'HEIU_buy': 0}
|
|
# elif s['Price'] > Herd_UB - (theta*Herd_Ext_Hold * s['P_Ext_Markets'])/(s['Z']*Herd_portion*(1-theta)):
|
|
elif (s['Price'] - s['Price_Signal_2']) > HEIU_UB:
|
|
buy = beta * theta* HEIU_Ext_Hold * s['P_Ext_Markets']/(s['Price']* HEIU_portion*(1-theta))
|
|
return {'HEIU_sell': 0, 'HEIU_buy': buy}
|
|
else:
|
|
return {'HEIU_sell': 0, 'HEIU_buy': 0}
|
|
|
|
# STATES
|
|
# ZEUS Fixed Supply
|
|
def s1m1(step, sL, s, _input):
|
|
y = 'Z'
|
|
x = s['Z'] #+ _input # / Psignal_int
|
|
return (y, x)
|
|
|
|
|
|
# def s2m1(step, sL, s, _input):
|
|
# y = 'Price'
|
|
# x = (s['P_Ext_Markets'] - _input['buy_order1']) / s['Z'] * 10000
|
|
# #x= alpha * s['Z'] + (1 - alpha)*s['Price']
|
|
# return (y, x)
|
|
|
|
|
|
def s3m1(step, sL, s, _input):
|
|
y = 'Buy_Log'
|
|
x = _input['buy_order1'] + _input['herd_buy'] + _input['EIU_buy'] + _input['HEIU_buy'] # / Psignal_int
|
|
return (y, x)
|
|
|
|
|
|
def s4m2(step, sL, s, _input):
|
|
y = 'Sell_Log'
|
|
x = _input['sell_order1'] + _input['sell_order2'] + _input['herd_sell'] + _input['EIU_sell'] + _input['HEIU_sell'] # / Psignal_int
|
|
return (y, x)
|
|
|
|
|
|
# def s3m3(step, sL, s, _input):
|
|
# y = 'Buy_Log'
|
|
# x = s['Buy_Log'] + _input # / Psignal_int
|
|
# return (y, x)
|
|
|
|
|
|
# Price Update
|
|
def s2m3(step, sL, s, _input):
|
|
|
|
y = 'Price'
|
|
#var1 = Decimal.from_float(s['Buy_Log'])
|
|
x = s['Price'] + s['Buy_Log'] /s['Z']/(Decimal('1.25') ) - s['Sell_Log']/s['Z']/(Decimal('1.25') )
|
|
#+ np.divide(s['Buy_Log'],s['Z']) - np.divide() # / Psignal_int
|
|
return (y, x)
|
|
|
|
def s5m3(step, sL, s, _input):
|
|
y = 'Price_Signal'
|
|
x = alpha * s['Price'] + (1 - alpha)*s['Price_Signal']
|
|
return (y, x)
|
|
|
|
def s6m3(step, sL, s, _input):
|
|
y = 'Price_Signal_2'
|
|
x = alpha_2 * s['Price'] + (1 - alpha_2)*s['Price_Signal_2']
|
|
return (y, x)
|
|
|
|
def s6m1(step, sL, s, _input):
|
|
y = 'P_Ext_Markets'
|
|
x = s['P_Ext_Markets'] - _input
|
|
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
|
|
return (y, x)
|
|
|
|
|
|
def s2m2(step, sL, s, _input):
|
|
y = 'Price'
|
|
x = (s['P_Ext_Markets'] - _input) /s['Z'] *10000
|
|
#x= alpha * s['Z'] + (1 - alpha)*s['Price']
|
|
return (y, x)
|
|
|
|
# Exogenous States
|
|
proc_one_coef_A = -125
|
|
proc_one_coef_B = 125
|
|
|
|
# A change in belief of actual price, passed onto behaviors to make action
|
|
def es4p2(step, sL, s, _input):
|
|
y = 'P_Ext_Markets'
|
|
x = s['P_Ext_Markets'] + bound_norm_random(seed['z'], proc_one_coef_A, proc_one_coef_B)
|
|
|
|
return (y,x)
|
|
|
|
|
|
def es5p2(step, sL, s, _input): # accept timedelta instead of timedelta params
|
|
y = 'timestamp'
|
|
x = ep_time_step(s, s['timestamp'], seconds=1)
|
|
return (y, x)
|
|
|
|
#Environment States
|
|
# NONE
|
|
|
|
# Genesis States
|
|
state_dict = {
|
|
'Z': Decimal(21000000.0),
|
|
'Price': Decimal(100.0), # Initialize = Z for EMA
|
|
'Buy_Log': Decimal(0.0),
|
|
'Sell_Log': Decimal(0.0),
|
|
'Price_Signal': Decimal(100.0),
|
|
'Price_Signal_2': Decimal(100.0),
|
|
'Trans': Decimal(0.0),
|
|
'P_Ext_Markets': Decimal(25000.0),
|
|
'timestamp': '2018-10-01 15:16:24'
|
|
}
|
|
|
|
def env_proc_id(x):
|
|
return x
|
|
|
|
env_processes = {
|
|
# "P_Ext_Markets": env_proc_id
|
|
}
|
|
|
|
exogenous_states = exo_update_per_ts(
|
|
{
|
|
"P_Ext_Markets": es4p2,
|
|
"timestamp": es5p2
|
|
}
|
|
)
|
|
|
|
sim_config = {
|
|
"N": 100,
|
|
"T": range(1000)
|
|
}
|
|
|
|
# test return vs. non-return functions as lambdas
|
|
# test fully defined functions
|
|
mechanisms = {
|
|
"m1": {
|
|
"behaviors": {
|
|
"b1": b1m1,
|
|
"b3": b3m2,
|
|
"b7": b7m2,
|
|
"b7h": b7hm2
|
|
},
|
|
"states": {
|
|
"Z": s1m1,
|
|
"Buy_Log": s3m1
|
|
}
|
|
},
|
|
"m2": {
|
|
"behaviors": {
|
|
"b1": b1m2,
|
|
"b3": b3m2,
|
|
"b4": b4m2,
|
|
"b7": b7m2,
|
|
"b7h": b7hm2
|
|
},
|
|
"states": {
|
|
"Sell_Log": s4m2
|
|
}
|
|
},
|
|
"m3": {
|
|
"behaviors": {
|
|
},
|
|
"states": {
|
|
"Price": s2m3,
|
|
"Price_Signal": s5m3,
|
|
"Price_Signal_2": s6m3,
|
|
}
|
|
}
|
|
}
|
|
|
|
configs.append(Configuration(sim_config, state_dict, seed, exogenous_states, env_processes, mechanisms)) |