2357 lines
701 KiB
Plaintext
2357 lines
701 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## SimCAD Application Notebook\n",
|
|
"## Experiment Type 2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Name of Config File or System Description\n",
|
|
"#### 100 MonteCarlo Runs \n",
|
|
"#### Behaviors: EMHers, Herders, HODLers, EIUers, and Human EIUers"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Simulation Run 1\n",
|
|
"single_proc: [<SimCAD.Configuration object at 0x10aaec278>]\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"from tabulate import tabulate\n",
|
|
"\n",
|
|
"from SimCAD.engine import ExecutionMode, ExecutionContext, Executor\n",
|
|
"from sandbox.barlin import config6atemp #, config2\n",
|
|
"from SimCAD import configs\n",
|
|
"\n",
|
|
"\n",
|
|
"# from SimCAD.engine import ExecutionMode, ExecutionContext, Executor\n",
|
|
"# from sandbox.validation import config1, config2\n",
|
|
"# from SimCAD import configs\n",
|
|
"\n",
|
|
"# ToDo: pass ExecutionContext with execution method as ExecutionContext input\n",
|
|
"\n",
|
|
"exec_mode = ExecutionMode()\n",
|
|
"\n",
|
|
"print(\"Simulation Run 1\")\n",
|
|
"# print()\n",
|
|
"single_config = [configs[0]]\n",
|
|
"single_proc_ctx = ExecutionContext(exec_mode.single_proc)\n",
|
|
"run1 = Executor(single_proc_ctx, single_config)\n",
|
|
"run1_raw_result = run1.main()\n",
|
|
"df = pd.DataFrame(run1_raw_result)\n",
|
|
"# print(tabulate(result, headers='keys', tablefmt='psql'))\n",
|
|
"# print()\n",
|
|
"\n",
|
|
"# print(\"Simulation Run 2: Pairwise Execution\")\n",
|
|
"# print()\n",
|
|
"# multi_proc_ctx = ExecutionContext(exec_mode.multi_proc)\n",
|
|
"# run2 = Executor(multi_proc_ctx, configs)\n",
|
|
"# run2_raw_results = run2.main()\n",
|
|
"# for raw_result in run2_raw_results:\n",
|
|
"# result = pd.DataFrame(raw_result)\n",
|
|
"# print(tabulate(result, headers='keys', tablefmt='psql'))\n",
|
|
"# print()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#df = pd.DataFrame(run1_raw_result)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Buy_Log</th>\n",
|
|
" <th>P_Ext_Markets</th>\n",
|
|
" <th>Price</th>\n",
|
|
" <th>Price_Signal</th>\n",
|
|
" <th>Price_Signal_2</th>\n",
|
|
" <th>Sell_Log</th>\n",
|
|
" <th>Trans</th>\n",
|
|
" <th>Z</th>\n",
|
|
" <th>mech_step</th>\n",
|
|
" <th>run</th>\n",
|
|
" <th>time_step</th>\n",
|
|
" <th>timestamp</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>25000</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>21000000</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>2018-10-01 15:16:24</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25067.68105681930173034288600</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>21000000</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2018-10-01 15:16:25</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25067.68105681930173034288600</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>5249999.999999999999999999999</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>21000000</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2018-10-01 15:16:25</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25067.68105681930173034288600</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>100.00</td>\n",
|
|
" <td>100.00000</td>\n",
|
|
" <td>5249999.999999999999999999999</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>21000000</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2018-10-01 15:16:25</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25042.19120625054858919611433</td>\n",
|
|
" <td>100</td>\n",
|
|
" <td>100.00</td>\n",
|
|
" <td>100.00000</td>\n",
|
|
" <td>5249999.999999999999999999999</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>21000000</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>2018-10-01 15:16:26</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Buy_Log P_Ext_Markets Price Price_Signal \\\n",
|
|
"0 0 25000 100 100 \n",
|
|
"1 [0.0, 0.0, 0.0, 0.0] 25067.68105681930173034288600 100 100 \n",
|
|
"2 [0.0, 0.0, 0.0, 0.0] 25067.68105681930173034288600 100 100 \n",
|
|
"3 [0.0, 0.0, 0.0, 0.0] 25067.68105681930173034288600 100 100.00 \n",
|
|
"4 [0.0, 0.0, 0.0, 0.0] 25042.19120625054858919611433 100 100.00 \n",
|
|
"\n",
|
|
" Price_Signal_2 Sell_Log Trans Z mech_step \\\n",
|
|
"0 100 0 0 21000000 0 \n",
|
|
"1 100 0 0 21000000 1 \n",
|
|
"2 100 5249999.999999999999999999999 0 21000000 2 \n",
|
|
"3 100.00000 5249999.999999999999999999999 0 21000000 3 \n",
|
|
"4 100.00000 5249999.999999999999999999999 0 21000000 1 \n",
|
|
"\n",
|
|
" run time_step timestamp \n",
|
|
"0 1 0 2018-10-01 15:16:24 \n",
|
|
"1 1 1 2018-10-01 15:16:25 \n",
|
|
"2 1 1 2018-10-01 15:16:25 \n",
|
|
"3 1 1 2018-10-01 15:16:25 \n",
|
|
"4 1 2 2018-10-01 15:16:26 "
|
|
]
|
|
},
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df.head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Standard Library Imports\n",
|
|
"#import pandas as pd\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib as mpl\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import seaborn as sns\n",
|
|
"#from tabulate import tabulate\n",
|
|
"\n",
|
|
"sns.set_style('whitegrid')\n",
|
|
"\n",
|
|
"%matplotlib inline"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"x = np.zeros(4)\n",
|
|
"x[0] = 7\n",
|
|
"x[1] = 8\n",
|
|
"x[2] = 11\n",
|
|
"x[3] = 9"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([ 7., 8., 11., 9.])"
|
|
]
|
|
},
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"x"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#Convert data type of output to float. MPL works OK with strings, seaborn does not\n",
|
|
"names = df.keys()[1:-3] # [:-3] only affects state variables\n",
|
|
"for n in names:\n",
|
|
" df[n]=df[n].apply(float)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Buy_Log</th>\n",
|
|
" <th>P_Ext_Markets</th>\n",
|
|
" <th>Price</th>\n",
|
|
" <th>Price_Signal</th>\n",
|
|
" <th>Price_Signal_2</th>\n",
|
|
" <th>Sell_Log</th>\n",
|
|
" <th>Trans</th>\n",
|
|
" <th>Z</th>\n",
|
|
" <th>mech_step</th>\n",
|
|
" <th>run</th>\n",
|
|
" <th>time_step</th>\n",
|
|
" <th>timestamp</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>25000.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>0</td>\n",
|
|
" <td>2018-10-01 15:16:24</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25067.681057</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2018-10-01 15:16:25</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25067.681057</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2018-10-01 15:16:25</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25067.681057</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2018-10-01 15:16:25</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25042.191206</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>2018-10-01 15:16:26</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>5</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25042.191206</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>2018-10-01 15:16:26</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>6</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25042.191206</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>2</td>\n",
|
|
" <td>2018-10-01 15:16:26</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>7</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25020.184050</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>2018-10-01 15:16:27</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>8</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25020.184050</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>2018-10-01 15:16:27</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>9</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>25020.184050</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>3</td>\n",
|
|
" <td>2018-10-01 15:16:27</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Buy_Log P_Ext_Markets Price Price_Signal Price_Signal_2 \\\n",
|
|
"0 0 25000.000000 100.0 100.0 100.0 \n",
|
|
"1 [0.0, 0.0, 0.0, 0.0] 25067.681057 100.0 100.0 100.0 \n",
|
|
"2 [0.0, 0.0, 0.0, 0.0] 25067.681057 100.0 100.0 100.0 \n",
|
|
"3 [0.0, 0.0, 0.0, 0.0] 25067.681057 100.0 100.0 100.0 \n",
|
|
"4 [0.0, 0.0, 0.0, 0.0] 25042.191206 100.0 100.0 100.0 \n",
|
|
"5 [0.0, 0.0, 0.0, 0.0] 25042.191206 100.0 100.0 100.0 \n",
|
|
"6 [0.0, 0.0, 0.0, 0.0] 25042.191206 100.0 100.0 100.0 \n",
|
|
"7 [0.0, 0.0, 0.0, 0.0] 25020.184050 100.0 100.0 100.0 \n",
|
|
"8 [0.0, 0.0, 0.0, 0.0] 25020.184050 100.0 100.0 100.0 \n",
|
|
"9 [0.0, 0.0, 0.0, 0.0] 25020.184050 100.0 100.0 100.0 \n",
|
|
"\n",
|
|
" Sell_Log Trans Z mech_step run time_step \\\n",
|
|
"0 0.0 0.0 21000000.0 0.0 1 0 \n",
|
|
"1 0.0 0.0 21000000.0 1.0 1 1 \n",
|
|
"2 5250000.0 0.0 21000000.0 2.0 1 1 \n",
|
|
"3 5250000.0 0.0 21000000.0 3.0 1 1 \n",
|
|
"4 5250000.0 0.0 21000000.0 1.0 1 2 \n",
|
|
"5 5250000.0 0.0 21000000.0 2.0 1 2 \n",
|
|
"6 5250000.0 0.0 21000000.0 3.0 1 2 \n",
|
|
"7 5250000.0 0.0 21000000.0 1.0 1 3 \n",
|
|
"8 0.0 0.0 21000000.0 2.0 1 3 \n",
|
|
"9 0.0 0.0 21000000.0 3.0 1 3 \n",
|
|
"\n",
|
|
" timestamp \n",
|
|
"0 2018-10-01 15:16:24 \n",
|
|
"1 2018-10-01 15:16:25 \n",
|
|
"2 2018-10-01 15:16:25 \n",
|
|
"3 2018-10-01 15:16:25 \n",
|
|
"4 2018-10-01 15:16:26 \n",
|
|
"5 2018-10-01 15:16:26 \n",
|
|
"6 2018-10-01 15:16:26 \n",
|
|
"7 2018-10-01 15:16:27 \n",
|
|
"8 2018-10-01 15:16:27 \n",
|
|
"9 2018-10-01 15:16:27 "
|
|
]
|
|
},
|
|
"execution_count": 7,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"#Check\n",
|
|
"df.head(10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Buy_Log</th>\n",
|
|
" <th>P_Ext_Markets</th>\n",
|
|
" <th>Price</th>\n",
|
|
" <th>Price_Signal</th>\n",
|
|
" <th>Price_Signal_2</th>\n",
|
|
" <th>Sell_Log</th>\n",
|
|
" <th>Trans</th>\n",
|
|
" <th>Z</th>\n",
|
|
" <th>mech_step</th>\n",
|
|
" <th>run</th>\n",
|
|
" <th>time_step</th>\n",
|
|
" <th>timestamp</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>2995</th>\n",
|
|
" <td>[5250000.0, 146.5, 0.0, 0.0]</td>\n",
|
|
" <td>26228.247568</td>\n",
|
|
" <td>146.50</td>\n",
|
|
" <td>146.471437</td>\n",
|
|
" <td>144.122718</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>999</td>\n",
|
|
" <td>2018-10-01 15:33:03</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2996</th>\n",
|
|
" <td>[5250000.0, 146.5, 0.0, 0.0]</td>\n",
|
|
" <td>26228.247568</td>\n",
|
|
" <td>146.50</td>\n",
|
|
" <td>146.471437</td>\n",
|
|
" <td>144.122718</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>999</td>\n",
|
|
" <td>2018-10-01 15:33:03</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2997</th>\n",
|
|
" <td>[5250000.0, 146.5, 0.0, 0.0]</td>\n",
|
|
" <td>26228.247568</td>\n",
|
|
" <td>146.75</td>\n",
|
|
" <td>146.490574</td>\n",
|
|
" <td>144.197008</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>999</td>\n",
|
|
" <td>2018-10-01 15:33:03</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2998</th>\n",
|
|
" <td>[0.0, 0.0, 5250000.0, 147.75177093772993]</td>\n",
|
|
" <td>26214.746221</td>\n",
|
|
" <td>146.75</td>\n",
|
|
" <td>146.490574</td>\n",
|
|
" <td>144.197008</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1000</td>\n",
|
|
" <td>2018-10-01 15:33:04</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2999</th>\n",
|
|
" <td>[0.0, 0.0, 5250000.0, 147.75177093772993]</td>\n",
|
|
" <td>26214.746221</td>\n",
|
|
" <td>146.75</td>\n",
|
|
" <td>146.490574</td>\n",
|
|
" <td>144.197008</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1000</td>\n",
|
|
" <td>2018-10-01 15:33:04</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3000</th>\n",
|
|
" <td>[0.0, 0.0, 5250000.0, 147.75177093772993]</td>\n",
|
|
" <td>26214.746221</td>\n",
|
|
" <td>146.75</td>\n",
|
|
" <td>146.664390</td>\n",
|
|
" <td>144.276789</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1000</td>\n",
|
|
" <td>2018-10-01 15:33:04</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Buy_Log P_Ext_Markets Price \\\n",
|
|
"2995 [5250000.0, 146.5, 0.0, 0.0] 26228.247568 146.50 \n",
|
|
"2996 [5250000.0, 146.5, 0.0, 0.0] 26228.247568 146.50 \n",
|
|
"2997 [5250000.0, 146.5, 0.0, 0.0] 26228.247568 146.75 \n",
|
|
"2998 [0.0, 0.0, 5250000.0, 147.75177093772993] 26214.746221 146.75 \n",
|
|
"2999 [0.0, 0.0, 5250000.0, 147.75177093772993] 26214.746221 146.75 \n",
|
|
"3000 [0.0, 0.0, 5250000.0, 147.75177093772993] 26214.746221 146.75 \n",
|
|
"\n",
|
|
" Price_Signal Price_Signal_2 Sell_Log Trans Z mech_step \\\n",
|
|
"2995 146.471437 144.122718 0.0 0.0 21000000.0 1.0 \n",
|
|
"2996 146.471437 144.122718 0.0 0.0 21000000.0 2.0 \n",
|
|
"2997 146.490574 144.197008 0.0 0.0 21000000.0 3.0 \n",
|
|
"2998 146.490574 144.197008 0.0 0.0 21000000.0 1.0 \n",
|
|
"2999 146.490574 144.197008 0.0 0.0 21000000.0 2.0 \n",
|
|
"3000 146.664390 144.276789 0.0 0.0 21000000.0 3.0 \n",
|
|
"\n",
|
|
" run time_step timestamp \n",
|
|
"2995 1 999 2018-10-01 15:33:03 \n",
|
|
"2996 1 999 2018-10-01 15:33:03 \n",
|
|
"2997 1 999 2018-10-01 15:33:03 \n",
|
|
"2998 1 1000 2018-10-01 15:33:04 \n",
|
|
"2999 1 1000 2018-10-01 15:33:04 \n",
|
|
"3000 1 1000 2018-10-01 15:33:04 "
|
|
]
|
|
},
|
|
"execution_count": 8,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df.iloc[2995:3005]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>Buy_Log</th>\n",
|
|
" <th>P_Ext_Markets</th>\n",
|
|
" <th>Price</th>\n",
|
|
" <th>Price_Signal</th>\n",
|
|
" <th>Price_Signal_2</th>\n",
|
|
" <th>Sell_Log</th>\n",
|
|
" <th>Trans</th>\n",
|
|
" <th>Z</th>\n",
|
|
" <th>mech_step</th>\n",
|
|
" <th>run</th>\n",
|
|
" <th>time_step</th>\n",
|
|
" <th>timestamp</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>2991</th>\n",
|
|
" <td>[0.0, 0.0, 5250000.0, 147.50179354266274]</td>\n",
|
|
" <td>26308.436075</td>\n",
|
|
" <td>146.50</td>\n",
|
|
" <td>146.413446</td>\n",
|
|
" <td>144.046031</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>997</td>\n",
|
|
" <td>2018-10-01 15:33:01</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2992</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>26207.081554</td>\n",
|
|
" <td>146.50</td>\n",
|
|
" <td>146.413446</td>\n",
|
|
" <td>144.046031</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>998</td>\n",
|
|
" <td>2018-10-01 15:33:02</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2993</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>26207.081554</td>\n",
|
|
" <td>146.50</td>\n",
|
|
" <td>146.413446</td>\n",
|
|
" <td>144.046031</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>998</td>\n",
|
|
" <td>2018-10-01 15:33:02</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2994</th>\n",
|
|
" <td>[0.0, 0.0, 0.0, 0.0]</td>\n",
|
|
" <td>26207.081554</td>\n",
|
|
" <td>146.50</td>\n",
|
|
" <td>146.471437</td>\n",
|
|
" <td>144.122718</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>998</td>\n",
|
|
" <td>2018-10-01 15:33:02</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2995</th>\n",
|
|
" <td>[5250000.0, 146.5, 0.0, 0.0]</td>\n",
|
|
" <td>26228.247568</td>\n",
|
|
" <td>146.50</td>\n",
|
|
" <td>146.471437</td>\n",
|
|
" <td>144.122718</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>999</td>\n",
|
|
" <td>2018-10-01 15:33:03</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2996</th>\n",
|
|
" <td>[5250000.0, 146.5, 0.0, 0.0]</td>\n",
|
|
" <td>26228.247568</td>\n",
|
|
" <td>146.50</td>\n",
|
|
" <td>146.471437</td>\n",
|
|
" <td>144.122718</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>999</td>\n",
|
|
" <td>2018-10-01 15:33:03</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2997</th>\n",
|
|
" <td>[5250000.0, 146.5, 0.0, 0.0]</td>\n",
|
|
" <td>26228.247568</td>\n",
|
|
" <td>146.75</td>\n",
|
|
" <td>146.490574</td>\n",
|
|
" <td>144.197008</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>999</td>\n",
|
|
" <td>2018-10-01 15:33:03</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2998</th>\n",
|
|
" <td>[0.0, 0.0, 5250000.0, 147.75177093772993]</td>\n",
|
|
" <td>26214.746221</td>\n",
|
|
" <td>146.75</td>\n",
|
|
" <td>146.490574</td>\n",
|
|
" <td>144.197008</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1000</td>\n",
|
|
" <td>2018-10-01 15:33:04</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2999</th>\n",
|
|
" <td>[0.0, 0.0, 5250000.0, 147.75177093772993]</td>\n",
|
|
" <td>26214.746221</td>\n",
|
|
" <td>146.75</td>\n",
|
|
" <td>146.490574</td>\n",
|
|
" <td>144.197008</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1000</td>\n",
|
|
" <td>2018-10-01 15:33:04</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3000</th>\n",
|
|
" <td>[0.0, 0.0, 5250000.0, 147.75177093772993]</td>\n",
|
|
" <td>26214.746221</td>\n",
|
|
" <td>146.75</td>\n",
|
|
" <td>146.664390</td>\n",
|
|
" <td>144.276789</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" <td>1000</td>\n",
|
|
" <td>2018-10-01 15:33:04</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" Buy_Log P_Ext_Markets Price \\\n",
|
|
"2991 [0.0, 0.0, 5250000.0, 147.50179354266274] 26308.436075 146.50 \n",
|
|
"2992 [0.0, 0.0, 0.0, 0.0] 26207.081554 146.50 \n",
|
|
"2993 [0.0, 0.0, 0.0, 0.0] 26207.081554 146.50 \n",
|
|
"2994 [0.0, 0.0, 0.0, 0.0] 26207.081554 146.50 \n",
|
|
"2995 [5250000.0, 146.5, 0.0, 0.0] 26228.247568 146.50 \n",
|
|
"2996 [5250000.0, 146.5, 0.0, 0.0] 26228.247568 146.50 \n",
|
|
"2997 [5250000.0, 146.5, 0.0, 0.0] 26228.247568 146.75 \n",
|
|
"2998 [0.0, 0.0, 5250000.0, 147.75177093772993] 26214.746221 146.75 \n",
|
|
"2999 [0.0, 0.0, 5250000.0, 147.75177093772993] 26214.746221 146.75 \n",
|
|
"3000 [0.0, 0.0, 5250000.0, 147.75177093772993] 26214.746221 146.75 \n",
|
|
"\n",
|
|
" Price_Signal Price_Signal_2 Sell_Log Trans Z mech_step \\\n",
|
|
"2991 146.413446 144.046031 5250000.0 0.0 21000000.0 3.0 \n",
|
|
"2992 146.413446 144.046031 5250000.0 0.0 21000000.0 1.0 \n",
|
|
"2993 146.413446 144.046031 0.0 0.0 21000000.0 2.0 \n",
|
|
"2994 146.471437 144.122718 0.0 0.0 21000000.0 3.0 \n",
|
|
"2995 146.471437 144.122718 0.0 0.0 21000000.0 1.0 \n",
|
|
"2996 146.471437 144.122718 0.0 0.0 21000000.0 2.0 \n",
|
|
"2997 146.490574 144.197008 0.0 0.0 21000000.0 3.0 \n",
|
|
"2998 146.490574 144.197008 0.0 0.0 21000000.0 1.0 \n",
|
|
"2999 146.490574 144.197008 0.0 0.0 21000000.0 2.0 \n",
|
|
"3000 146.664390 144.276789 0.0 0.0 21000000.0 3.0 \n",
|
|
"\n",
|
|
" run time_step timestamp \n",
|
|
"2991 1 997 2018-10-01 15:33:01 \n",
|
|
"2992 1 998 2018-10-01 15:33:02 \n",
|
|
"2993 1 998 2018-10-01 15:33:02 \n",
|
|
"2994 1 998 2018-10-01 15:33:02 \n",
|
|
"2995 1 999 2018-10-01 15:33:03 \n",
|
|
"2996 1 999 2018-10-01 15:33:03 \n",
|
|
"2997 1 999 2018-10-01 15:33:03 \n",
|
|
"2998 1 1000 2018-10-01 15:33:04 \n",
|
|
"2999 1 1000 2018-10-01 15:33:04 \n",
|
|
"3000 1 1000 2018-10-01 15:33:04 "
|
|
]
|
|
},
|
|
"execution_count": 9,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df.tail(10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>P_Ext_Markets</th>\n",
|
|
" <th>Price</th>\n",
|
|
" <th>Price_Signal</th>\n",
|
|
" <th>Price_Signal_2</th>\n",
|
|
" <th>Sell_Log</th>\n",
|
|
" <th>Trans</th>\n",
|
|
" <th>Z</th>\n",
|
|
" <th>mech_step</th>\n",
|
|
" <th>run</th>\n",
|
|
" <th>time_step</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>P_Ext_Markets</th>\n",
|
|
" <td>1.000000</td>\n",
|
|
" <td>0.753868</td>\n",
|
|
" <td>0.754011</td>\n",
|
|
" <td>0.754356</td>\n",
|
|
" <td>0.055141</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.001710</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.761785</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Price</th>\n",
|
|
" <td>0.753868</td>\n",
|
|
" <td>1.000000</td>\n",
|
|
" <td>0.999968</td>\n",
|
|
" <td>0.999711</td>\n",
|
|
" <td>0.063357</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.002839</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.997914</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Price_Signal</th>\n",
|
|
" <td>0.754011</td>\n",
|
|
" <td>0.999968</td>\n",
|
|
" <td>1.000000</td>\n",
|
|
" <td>0.999745</td>\n",
|
|
" <td>0.063313</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.002835</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.997960</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Price_Signal_2</th>\n",
|
|
" <td>0.754356</td>\n",
|
|
" <td>0.999711</td>\n",
|
|
" <td>0.999745</td>\n",
|
|
" <td>1.000000</td>\n",
|
|
" <td>0.064631</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.002722</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.998377</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Sell_Log</th>\n",
|
|
" <td>0.055141</td>\n",
|
|
" <td>0.063357</td>\n",
|
|
" <td>0.063313</td>\n",
|
|
" <td>0.064631</td>\n",
|
|
" <td>1.000000</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.000386</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.063717</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Trans</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>Z</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>mech_step</th>\n",
|
|
" <td>0.001710</td>\n",
|
|
" <td>0.002839</td>\n",
|
|
" <td>0.002835</td>\n",
|
|
" <td>0.002722</td>\n",
|
|
" <td>0.000386</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>1.000000</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.001413</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>run</th>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>time_step</th>\n",
|
|
" <td>0.761785</td>\n",
|
|
" <td>0.997914</td>\n",
|
|
" <td>0.997960</td>\n",
|
|
" <td>0.998377</td>\n",
|
|
" <td>0.063717</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>0.001413</td>\n",
|
|
" <td>NaN</td>\n",
|
|
" <td>1.000000</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" P_Ext_Markets Price Price_Signal Price_Signal_2 \\\n",
|
|
"P_Ext_Markets 1.000000 0.753868 0.754011 0.754356 \n",
|
|
"Price 0.753868 1.000000 0.999968 0.999711 \n",
|
|
"Price_Signal 0.754011 0.999968 1.000000 0.999745 \n",
|
|
"Price_Signal_2 0.754356 0.999711 0.999745 1.000000 \n",
|
|
"Sell_Log 0.055141 0.063357 0.063313 0.064631 \n",
|
|
"Trans NaN NaN NaN NaN \n",
|
|
"Z NaN NaN NaN NaN \n",
|
|
"mech_step 0.001710 0.002839 0.002835 0.002722 \n",
|
|
"run NaN NaN NaN NaN \n",
|
|
"time_step 0.761785 0.997914 0.997960 0.998377 \n",
|
|
"\n",
|
|
" Sell_Log Trans Z mech_step run time_step \n",
|
|
"P_Ext_Markets 0.055141 NaN NaN 0.001710 NaN 0.761785 \n",
|
|
"Price 0.063357 NaN NaN 0.002839 NaN 0.997914 \n",
|
|
"Price_Signal 0.063313 NaN NaN 0.002835 NaN 0.997960 \n",
|
|
"Price_Signal_2 0.064631 NaN NaN 0.002722 NaN 0.998377 \n",
|
|
"Sell_Log 1.000000 NaN NaN 0.000386 NaN 0.063717 \n",
|
|
"Trans NaN NaN NaN NaN NaN NaN \n",
|
|
"Z NaN NaN NaN NaN NaN NaN \n",
|
|
"mech_step 0.000386 NaN NaN 1.000000 NaN 0.001413 \n",
|
|
"run NaN NaN NaN NaN NaN NaN \n",
|
|
"time_step 0.063717 NaN NaN 0.001413 NaN 1.000000 "
|
|
]
|
|
},
|
|
"execution_count": 10,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df.corr()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"P_Ext_Markets 2.474083e+04\n",
|
|
"Price 1.000000e+02\n",
|
|
"Price_Signal 1.000000e+02\n",
|
|
"Price_Signal_2 1.000000e+02\n",
|
|
"Sell_Log 0.000000e+00\n",
|
|
"Trans 0.000000e+00\n",
|
|
"Z 2.100000e+07\n",
|
|
"mech_step 0.000000e+00\n",
|
|
"run 1.000000e+00\n",
|
|
"time_step 0.000000e+00\n",
|
|
"dtype: float64"
|
|
]
|
|
},
|
|
"execution_count": 11,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df.min()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 46,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([5.250e+06, 1.465e+02, 0.000e+00, 0.000e+00])"
|
|
]
|
|
},
|
|
"execution_count": 46,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df['Buy_Log'][2995]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 39,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def weighted_avg(x):\n",
|
|
" \n",
|
|
" return x[0]*x[1] + x[2]*x[3]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 40,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"ename": "TypeError",
|
|
"evalue": "'decimal.Decimal' object is not subscriptable",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
|
"\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[1;32m<ipython-input-40-441f3ab95faa>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mtest1\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Buy_Log'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mweighted_avg\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0mtest1\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mtail\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\series.py\u001b[0m in \u001b[0;36mapply\u001b[1;34m(self, func, convert_dtype, args, **kwds)\u001b[0m\n\u001b[0;32m 3190\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3191\u001b[0m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3192\u001b[1;33m \u001b[0mmapped\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmap_infer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mconvert\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mconvert_dtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3193\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3194\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmapped\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mand\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmapped\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mSeries\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32mpandas/_libs/src\\inference.pyx\u001b[0m in \u001b[0;36mpandas._libs.lib.map_infer\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32m<ipython-input-39-5728821497eb>\u001b[0m in \u001b[0;36mweighted_avg\u001b[1;34m(x)\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mweighted_avg\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 3\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m+\u001b[0m \u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
|
"\u001b[1;31mTypeError\u001b[0m: 'decimal.Decimal' object is not subscriptable"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"test1 = df['Buy_Log'].apply(weighted_avg)\n",
|
|
"test1.tail()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 50,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"array([Decimal('0'), array([0., 0., 0., 0.]), array([0., 0., 0., 0.]),\n",
|
|
" ...,\n",
|
|
" array([0.00000000e+00, 0.00000000e+00, 5.25000000e+06, 1.47751771e+02]),\n",
|
|
" array([0.00000000e+00, 0.00000000e+00, 5.25000000e+06, 1.47751771e+02]),\n",
|
|
" array([0.00000000e+00, 0.00000000e+00, 5.25000000e+06, 1.47751771e+02])],\n",
|
|
" dtype=object)"
|
|
]
|
|
},
|
|
"execution_count": 50,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"test2 = df['Buy_Log'].values\n",
|
|
"test2"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 51,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"ename": "AttributeError",
|
|
"evalue": "'numpy.ndarray' object has no attribute 'reset_index'",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
|
"\u001b[1;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[1;32m<ipython-input-51-1853119f9e61>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mtest3\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mtest2\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mreset_index\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mview\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'index'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'A'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'B'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;34m'C'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
|
"\u001b[1;31mAttributeError\u001b[0m: 'numpy.ndarray' object has no attribute 'reset_index'"
|
|
]
|
|
}
|
|
],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 12,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"aggregate_dimension = 'time_step'\n",
|
|
"\n",
|
|
"mean_df = df.groupby(aggregate_dimension).mean().reset_index()\n",
|
|
"median_df = df.groupby(aggregate_dimension).median().reset_index()\n",
|
|
"std_df = df.groupby(aggregate_dimension).std().reset_index()\n",
|
|
"min_df = df.groupby(aggregate_dimension).min().reset_index()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>time_step</th>\n",
|
|
" <th>P_Ext_Markets</th>\n",
|
|
" <th>Price</th>\n",
|
|
" <th>Price_Signal</th>\n",
|
|
" <th>Price_Signal_2</th>\n",
|
|
" <th>Sell_Log</th>\n",
|
|
" <th>Trans</th>\n",
|
|
" <th>Z</th>\n",
|
|
" <th>mech_step</th>\n",
|
|
" <th>run</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>0</th>\n",
|
|
" <td>0</td>\n",
|
|
" <td>25000.000000</td>\n",
|
|
" <td>100.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1</th>\n",
|
|
" <td>1</td>\n",
|
|
" <td>25067.681057</td>\n",
|
|
" <td>100.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>3500000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>2</th>\n",
|
|
" <td>2</td>\n",
|
|
" <td>25042.191206</td>\n",
|
|
" <td>100.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>3</th>\n",
|
|
" <td>3</td>\n",
|
|
" <td>25020.184050</td>\n",
|
|
" <td>100.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>1750000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>4</th>\n",
|
|
" <td>4</td>\n",
|
|
" <td>24975.477024</td>\n",
|
|
" <td>100.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>3500000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>5</th>\n",
|
|
" <td>5</td>\n",
|
|
" <td>25011.535675</td>\n",
|
|
" <td>100.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>5250000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>6</th>\n",
|
|
" <td>6</td>\n",
|
|
" <td>24915.638230</td>\n",
|
|
" <td>100.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>1750000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>7</th>\n",
|
|
" <td>7</td>\n",
|
|
" <td>24988.338720</td>\n",
|
|
" <td>100.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>3500000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>8</th>\n",
|
|
" <td>8</td>\n",
|
|
" <td>24956.621765</td>\n",
|
|
" <td>100.000000</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>1750000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>9</th>\n",
|
|
" <td>9</td>\n",
|
|
" <td>24969.915061</td>\n",
|
|
" <td>100.083333</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>100.0</td>\n",
|
|
" <td>3500000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" time_step P_Ext_Markets Price Price_Signal Price_Signal_2 \\\n",
|
|
"0 0 25000.000000 100.000000 100.0 100.0 \n",
|
|
"1 1 25067.681057 100.000000 100.0 100.0 \n",
|
|
"2 2 25042.191206 100.000000 100.0 100.0 \n",
|
|
"3 3 25020.184050 100.000000 100.0 100.0 \n",
|
|
"4 4 24975.477024 100.000000 100.0 100.0 \n",
|
|
"5 5 25011.535675 100.000000 100.0 100.0 \n",
|
|
"6 6 24915.638230 100.000000 100.0 100.0 \n",
|
|
"7 7 24988.338720 100.000000 100.0 100.0 \n",
|
|
"8 8 24956.621765 100.000000 100.0 100.0 \n",
|
|
"9 9 24969.915061 100.083333 100.0 100.0 \n",
|
|
"\n",
|
|
" Sell_Log Trans Z mech_step run \n",
|
|
"0 0.0 0.0 21000000.0 0.0 1 \n",
|
|
"1 3500000.0 0.0 21000000.0 2.0 1 \n",
|
|
"2 5250000.0 0.0 21000000.0 2.0 1 \n",
|
|
"3 1750000.0 0.0 21000000.0 2.0 1 \n",
|
|
"4 3500000.0 0.0 21000000.0 2.0 1 \n",
|
|
"5 5250000.0 0.0 21000000.0 2.0 1 \n",
|
|
"6 1750000.0 0.0 21000000.0 2.0 1 \n",
|
|
"7 3500000.0 0.0 21000000.0 2.0 1 \n",
|
|
"8 1750000.0 0.0 21000000.0 2.0 1 \n",
|
|
"9 3500000.0 0.0 21000000.0 2.0 1 "
|
|
]
|
|
},
|
|
"execution_count": 13,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"mean_df.head(10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 14,
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>time_step</th>\n",
|
|
" <th>P_Ext_Markets</th>\n",
|
|
" <th>Price</th>\n",
|
|
" <th>Price_Signal</th>\n",
|
|
" <th>Price_Signal_2</th>\n",
|
|
" <th>Sell_Log</th>\n",
|
|
" <th>Trans</th>\n",
|
|
" <th>Z</th>\n",
|
|
" <th>mech_step</th>\n",
|
|
" <th>run</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>991</th>\n",
|
|
" <td>991</td>\n",
|
|
" <td>26410.506385</td>\n",
|
|
" <td>145.750000</td>\n",
|
|
" <td>145.548819</td>\n",
|
|
" <td>143.552273</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>992</th>\n",
|
|
" <td>992</td>\n",
|
|
" <td>26405.654546</td>\n",
|
|
" <td>145.833333</td>\n",
|
|
" <td>145.683610</td>\n",
|
|
" <td>143.620952</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>993</th>\n",
|
|
" <td>993</td>\n",
|
|
" <td>26310.767129</td>\n",
|
|
" <td>146.083333</td>\n",
|
|
" <td>145.783925</td>\n",
|
|
" <td>143.690089</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>994</th>\n",
|
|
" <td>994</td>\n",
|
|
" <td>26307.866107</td>\n",
|
|
" <td>146.250000</td>\n",
|
|
" <td>145.984528</td>\n",
|
|
" <td>143.764878</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>995</th>\n",
|
|
" <td>995</td>\n",
|
|
" <td>26322.610708</td>\n",
|
|
" <td>146.250000</td>\n",
|
|
" <td>146.162394</td>\n",
|
|
" <td>143.842538</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>996</th>\n",
|
|
" <td>996</td>\n",
|
|
" <td>26314.820915</td>\n",
|
|
" <td>146.333333</td>\n",
|
|
" <td>146.221090</td>\n",
|
|
" <td>143.917771</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>997</th>\n",
|
|
" <td>997</td>\n",
|
|
" <td>26308.436075</td>\n",
|
|
" <td>146.500000</td>\n",
|
|
" <td>146.296293</td>\n",
|
|
" <td>143.993258</td>\n",
|
|
" <td>3500000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>998</th>\n",
|
|
" <td>998</td>\n",
|
|
" <td>26207.081554</td>\n",
|
|
" <td>146.500000</td>\n",
|
|
" <td>146.432777</td>\n",
|
|
" <td>144.071593</td>\n",
|
|
" <td>1750000.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>999</th>\n",
|
|
" <td>999</td>\n",
|
|
" <td>26228.247568</td>\n",
|
|
" <td>146.583333</td>\n",
|
|
" <td>146.477816</td>\n",
|
|
" <td>144.147481</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>1000</th>\n",
|
|
" <td>1000</td>\n",
|
|
" <td>26214.746221</td>\n",
|
|
" <td>146.750000</td>\n",
|
|
" <td>146.548513</td>\n",
|
|
" <td>144.223602</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.0</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" time_step P_Ext_Markets Price Price_Signal Price_Signal_2 \\\n",
|
|
"991 991 26410.506385 145.750000 145.548819 143.552273 \n",
|
|
"992 992 26405.654546 145.833333 145.683610 143.620952 \n",
|
|
"993 993 26310.767129 146.083333 145.783925 143.690089 \n",
|
|
"994 994 26307.866107 146.250000 145.984528 143.764878 \n",
|
|
"995 995 26322.610708 146.250000 146.162394 143.842538 \n",
|
|
"996 996 26314.820915 146.333333 146.221090 143.917771 \n",
|
|
"997 997 26308.436075 146.500000 146.296293 143.993258 \n",
|
|
"998 998 26207.081554 146.500000 146.432777 144.071593 \n",
|
|
"999 999 26228.247568 146.583333 146.477816 144.147481 \n",
|
|
"1000 1000 26214.746221 146.750000 146.548513 144.223602 \n",
|
|
"\n",
|
|
" Sell_Log Trans Z mech_step run \n",
|
|
"991 0.0 0.0 21000000.0 2.0 1 \n",
|
|
"992 0.0 0.0 21000000.0 2.0 1 \n",
|
|
"993 0.0 0.0 21000000.0 2.0 1 \n",
|
|
"994 0.0 0.0 21000000.0 2.0 1 \n",
|
|
"995 0.0 0.0 21000000.0 2.0 1 \n",
|
|
"996 0.0 0.0 21000000.0 2.0 1 \n",
|
|
"997 3500000.0 0.0 21000000.0 2.0 1 \n",
|
|
"998 1750000.0 0.0 21000000.0 2.0 1 \n",
|
|
"999 0.0 0.0 21000000.0 2.0 1 \n",
|
|
"1000 0.0 0.0 21000000.0 2.0 1 "
|
|
]
|
|
},
|
|
"execution_count": 14,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"mean_df.tail(10)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 15,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def dist_plot(x, y,lx=False,ly=False, suppMin=False): \n",
|
|
" plt.figure(figsize=(12,8))\n",
|
|
" if not(suppMin):\n",
|
|
" plt.plot(mean_df[x].values, mean_df[y].values,\n",
|
|
" mean_df[x].values,median_df[y].values,\n",
|
|
" mean_df[x].values,mean_df[y].values+std_df[y].values,\n",
|
|
" mean_df[x].values,min_df[y].values)\n",
|
|
" plt.legend(['mean', 'median', 'mean+ 1*std', 'min'],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
|
|
" \n",
|
|
" else:\n",
|
|
" plt.plot(mean_df[x].values, mean_df[y].values,\n",
|
|
" mean_df[x].values,median_df[y].values,\n",
|
|
" mean_df[x].values,mean_df[y].values+std_df[y].values,\n",
|
|
" mean_df[x].values,mean_df[y].values-std_df[y].values)\n",
|
|
" plt.legend(['mean', 'median', 'mean+ 1*std', 'mean - 1*std'],bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)\n",
|
|
"\n",
|
|
" plt.xlabel(x)\n",
|
|
" plt.ylabel(y)\n",
|
|
" if lx:\n",
|
|
" plt.xscale('log')\n",
|
|
" \n",
|
|
" if ly:\n",
|
|
" plt.yscale('log')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 16,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1YAAAHaCAYAAAADsdjhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8nGW9///X7DOZLE26t5S2bBellKIgCIoiAoKKuOHBoyLqcTsouB3lp4KIy3FFRT0eRf0KoiyKiCIiB7DIqlBogZJelNK9TdvsyWQy+++P+85kJpnsM0navJ+PB4/cc93blUxC7898rutzeXK5HCIiIiIiIjJ+3qnugIiIiIiIyIFOgZWIiIiIiMgEKbASERERERGZIAVWIiIiIiIiE6TASkREREREZIL8U92Bclu7dq3KHIqIiIhIxZ1wwgmeqe6DTB8HXWAFcMIJJ0z6PRsbG1mxYsWk31cml97nmUHv88FP7/HMoPd5Zpiq93nt2rWTfk+Z3jQUUEREREREZIIUWImIiIiIiExQRYYCGmMCwC+BZUAI+CrwGHAdUA/4gIuAGuD7Bae+HHgz8C/geeBZt/12a+0PjDEfBD4MpIGvWmvvrET/RURERERExqJSc6zeDbRYa99jjJkNPAXcD/zGWnurMeY1wNHW2r8ApwMYYy4Adltr7zbGnAncZK39eN8FjTELgEuBE4Ew8JAx5v+stYkKfQ8iIiIiIiKjUqnA6nfA7wtep4FXAE8bY+4FtgKX9e00xkSBLwOvcptOAF5qjHkA2IcTUL0MeNgNpBLGmBeA44DHK/Q9iIiIiIiIjEpFAitrbTeAMaYGJ8D6InA90GatPdMYcyXwOeBK95QPAL+z1ja7rzcCa6219xpj3gX8EPgj0FFwmy6grtT9Gxsby/wdjay3t3dK7iuTS+/zzKD3+eCn93hm0Ps8M+h97rfs8r9cBLy/zJf95dZvvOGGoXYaYy4GzgMiwELgB8D5wLHAZ4Ag8CkgAzxkrb3cGHMI8BOcUWizgauttX80xjwNPICTPMkB51trOzhAVKzcujFmCXA78D/W2t8aY64B/uTu/jPwtYLD3wW8veD1/UCPu307cDVwA86crD41QHupe09FyU2VdJ0Z9D7PDHqfD356j2cGvc8zg8qtTws11tqzjTEXAp/EqZtwurt9BHCitbbHGPNrY8xZOEHTd621a4wxp+KMXPsjUIs7HcgY8xvgXODmKfh+xqVSxSvmA/cAH7PW3uc2PwS8Hvg1zpC/De6xdUDIWruj4BI/B24DbgVeC6zFKWjxNWNMGKcgxgr6i1uIiIiIiMxobmZpyOxSBT3lfm0HGq21OWNMG1ANzAXuMsaAkxg5DCcu+KIx5gM4QVagxLV24GS0DhiVKrf+eZzqf1cYY9YYY9YAnwYuMsY8ApwDfN099iicOVeFLgc+6p73EeAya20TcC3wIE5G6wvW2t4K9V9EREREREYnN0z7DuAsa+3pONN7/gl8BbjBWvse4O+AZxTXmvYqNcfqMgqKUxQ4q8Sxj+OUWC9s2wK8psSx1+GUbBcRERERkektBVwDPGCM8eEkU27FKXR3rTGmCSfwmjNlPSyjis2xEhERERGRg5u19lcF23cDd7vb63BGqQHcOOC0m9z/Bl5rWcH25WXuasVVaiigiIiIiIjIjKHASkREREREZIIUWImIiIiIiEyQAisREREREZEJUmAlIiIiIiIyQQqsREREREREJkiBlYiIiIiU1UN3/IzfX/Xuqe6GHACMMUcbY9a42zcbY4JT3KVx0zpWIiIiIlJWVVd8j5VJaLtkF/VzF091d+QAYa29cKr7MBEKrERERESkrCJJ5+tjt/8P537oa1PbmZnkqrqLgPeX+aq/5KqOG4baaYy5GDgPiAALgR8A5wPHAp8BgsCngAzwkLX2cmPMQuA3gAdoKrjWVuBo4AjgGpzRdbOAS621jxhjNgEPAwbYC7zNWpsp4/c6IRoKKCIiIiJllXafMNuffGRqOyKTpcZa+3rgm8BHgbcCHwI+AHwZeK219pXAYmPMWcCngZusta8B/ljieiuBT1trz8QJsN7nth8GXGGtPQWYC7ysgt/TmCljJSIiIiJl07xnC/6ss+3r6Jrazsw0TmZpyOxSBT3lfm0HGq21OWNMG1CNEwDdZYwBqMEJjlYCv3bPeRgnGCu0C7jCGBN3z+l025uttTvc7R1AuALfy7gpYyUiIiIiZfPIzd/Lb/uS6SnsiUyi3DDtO4CzrLWnAz8E/glsBE5xjymVdboW+JK19r3AMzhDBoe7z7SgjJWIiIiIlE3gzntprgNPDnyJaTP9RaZGCmco3wPGGB+wFbgVuAK4xRhzIbClxHk3AncYY/YCO4E5k9PdiVFgJSIiIiJlE43l2L8wSLQjRSCZneruSIVZa39VsH03cLe7vQ44x911Y4lT31DiWsvczWvc/wbuX1CwPe0qCGoooIiIiIiUTTgBmZCfVNBDIDmtR26JlJUCKxEREREpi0w6TVUvZKpCpII+ggqsZAZRYCUiIiIiZbF/9xZ8OSASIRPyEUxOdY9EJo8CKxEREREpi307nwfAE60mG/ITVmAlM4gCKxEREREpi/bdToE3f+0ssqEgkSSkkokp7pXI5FBgJSIiIiJl0d28G4DQrDkQcdZubd5Tqpq2yMFHgZWIiIiIlEWivRmAqtkL8USiALQosJJJZIz5hDHmG+52lTHmUGPMz4wxy4Y55y3GmEUl2h8b7ryBFFiJiIiISFmkOlsBqJu/FF91DQCd+3ZOZZdkhjDGRIwxNwKXFDTPAq4GzgfOHub0y4DaifZBCwSLiIiISFlk9+8DYOkxJ7Jz3RoAulubprBHM8uq61ddBLy/zJf95TPvfeaGoXYaYy4GzgMiwELgBziBzLHAZ6y1dxhjLgA+BWSAh6y1lxtjDgF+AoSB2cDV1to/GmOeBh4AjgNywPnW2o6Cex1trb28RFfCwA3AvcDRANba3caYbcAngCZjTBi4Fahz+/tZIAocD9xgjHkl8CWchY13AHPG8oNSxkpEREREyiK0r53mOpizcDnhOueZtNcdHigHtRpr7euBbwIfBd4KfAh4nzGmAfgy8Fpr7SuBxcaYs3CCn+9aa88CPkZ/pqkWuMla+2pgF3CuMebVxpg1wOXAvxtj1hhj3lPYAWttm7X2noEds9Z+yVp7k7X278DhwAKcQPDfgSpr7V+AdcBFwFHAq4CXua9rxvJDUMZKRERERMpiVnOKttk+AKoa5gGQ6mybyi7NKG5macjsUgU95X5tBxqttTljTBtOFukIYC5wlzEGnGDlMOAh4IvGmA/gZKYCJa63Awhbax8ATh8hYzUia+0GY8yPgZvc+1074JCVwBPW2izQaYx5ZizXV8ZKRERERMZt3YN3cPPHzqK7o5U5bdAz1/mQv2buIQCke7qmsnsyOXLD7NuCEyCdZa09Hfgh8E/gK8AN1tr3AH8HPKO83rgZY1bhZNfeALzX7QtAFicussBJxhivMSYKHDOW6ytjJSIiIiLj1vL5y1m9H/5+1Fc5IgveQ5cC0LBgGTEgF4tNbQdlSllr9xtjrgEeMMb4gK0485x+B1xrjGlilPOZrLW/mmB3NgFfMsZcBCSBK932R3AyfWe7/Xoc2A3sG8vFFViJiIiIyJhsfuYRNtx3C2/6xA+IunFTbP3jAMw77hUAzF20nBhAPD41nZRJURjsWGvvBu52t9fhFIHAWnsjcOOAU29y/xt4vWUF22Me8jdc8GWt7QXeXqL9i8AX3Zffd/8bMwVWIiIiIjIq9/zqqxy66lR2fPISjtwHne/dlx+/Vbu9lYwHjj/DeW6NRGtJBMDTm5y6DotMIgVWIiIiIjKipx64nSXf+A2blt3E8v1O297tm/L7FzZlaauFY2cvzLf1BsGbSE12V0WmhIpXiIiIiMiI7PXfAcCbgZybpmrdsxmPW2YgnIJ42FN0TiIIwR5lrGRmUGAlIiIiIiPy9vQCkA5684FV176dRcckBwRW89rgqM0ZbvvaxZPRRZEppcBKREREREbkTWUA8Key+VrYPS1NBNP9xyQjxbNMnl0dASC85vHJ6KLIlFJgJSIiIiIj8qWzAASSufyKQ/G9OwkVTKFKhwNF51xwy5M8fWINh+7Kkoj3TFZXRaaEAisRERERGZEv1R9Y9WWsPFu3FR2TrQoNOi83by7+LGx57rFKd1EEY8zJxpg1Ba8PM8b8yhizbJhzVhljXlWi/RvGmItHe28FViIiIiIyIl/aCacKM1QNu50sVGut2xCNDjovNP8QADZ+6TJlraSijDGfBX4OhN3XHuAi4E3ApcaYqiFOfRtwzETvr3LrIiIiIjIif8oNrJLgc5JXLN4HWQ80HRKi4bkEeDyDzpu11AD/wLyQ5p6ffZ7zLhvX2qsyCo1Hr7gIeH+ZL/vLFRsbbxhqp5vROQ+IAAuBHwDnA8cCn7HW3mGMuQD4FJABHrLWXm6MOQT4CU4QNBu42lr7R2PM08ADwHFADjjfWtsxyr5uBt4K/BrAWpszxmzGCa6OtNb2GGO+BpyBk2C6CfgdcDGQNMY8CSzBWSx4PxAENo7y3spYiYiIiMjI/G7GqioB/mx/e/MsSC5Z4Lzw+Qadd+jKl+e3M8neivZRpkyNtfb1wDeBj+IENx8C3meMaQC+DLzWWvtKYLEx5izgaOC71tqzgI8Bl7jXqgVusta+GtgFnDvaTlhrbwNSA9p+ba2901r7PbfpIuDfgVcBcWvtLuBXwDXW2n8B3wLOBF4HjCnFqoyViIiIiIwoMMQ6v/sOreLNX7+VOwLv4rwv3Tho/7IVJ/G8u51s3V+5DgpuZmnI7FIFPeV+bQca3UxRG0426ghgLnCXMQagBjgMeAj4ojHmAziZqUCJ6+1wr5FnjPm5e8391toLxtHXC4H/BhYAfx1w7flAp7W2xX39yFgurIyViIiIiIwokC5+/fzhTnYqeNKpRKK1XPidPxOtqRt0ns/vZ/05SwHIdrRXvJ8yJXLD7NuCEyCdZa09Hfgh8E/gK8AN1tr3AH8nX2ty+OtZa//DWnv6eIIqY0wIuAB4J85wwIuNMUuBLE5c1ALUGWPmuqe8bCzXV8ZKREREREYUSEFPyBkKCFDz7vfRFq3l/Dd9cMRzL/jOnWz4v1V4ursr3EuZbqy1+40x1wAPGGN8wFbgVpy5TdcaY5pwAq85k9CXhDGmFVgHtAH3ANuBtcC3gUbgfcDf3OOGyNOWpsBKREREREYUTENzfX9gtfTYUzh81amjOtfn99MdAV8sUcEeylSw1v6qYPtu4G53ex1wjrt9IzBwnOhN7n8Dr7esYPvycfRnK/DyYfZfDVw9oPkv7n99XjrW+0KFAitjTAD4JbAMCAFfBR4DrgPqAR9wkbV2szHmWuAVQJd7+vk4Yyx/i1NdZDfwPreKxweBDwNp4KvW2jsr0X8RERER6RePdRLIQPMhVSxsdubzL1tx0piuEUzByg0J/nzusbz+z+vw+fX5vhxcKjXH6t1Ai7X2NJxKHj/CqbDxG2vtq3BKGB7tHvtS4HXuWMnT3XKKVwK/dc9/CviwMWYBcClOEPY64L/dcZIiIiIiUkHtzbsByM6elW8ba2CUcQsGHrElQ9OO54c/WOQAVKnA6nfAFQWv0zgB0SHGmHuBdwFrjDFe4EjgZ8aYh40xfXX3X4mbRsSp1nEmcBLwsLU24QZfL+DUtxcRERGRCupsbXI2QmHWn7OMdafPH/M1kl/8GM+ujgCwa9OT5eyeyLRQkRystbYbwBhTA/weJ0N1PdBmrT3TGHMl8DmcSWI/BK7BGR74d2PMEzj16/sWAusC6ga0FbYP0tjYWO5vaUS9vb1Tcl+ZXHqfZwa9zwc/vcczg97n8tmy8VmWAyk8nPjha4CxP2/NWXEGO1Y9CesfYeuzT1Cz5ISy9E3vs0wXFRvcaoxZAtwO/I+19rduNZA/ubv/DHwNZ9GtH1hre9xz7gdWA504Ne7j7tf2grY+fe2DrFixouzfz0gaGxun5L4yufQ+zwx6nw9+eo9nBr3P5bNn3V0AROfMn9DPtOmIlcAj+OKdZXtvpup9Xrt27aTfU6a3igwFdBfXugf4nLX2l27zQ8Dr3e1XARuAo4CHjDE+t+DFK4EngYcLjj0XeBD4F3CaMSZsjKkDVgDPVqL/IiIiItKve+92AKrmLprQdeYtPxaAdOu+CfdJZLqp1Byrz+NU/7vCGLPGGLMG+DRwkbuC8TnA1621jcBvcCoGPoCzSNgGnCqCFxpjHgZOAX5krW0CrsUJsu4HvmCt7a1Q/0VERETElXADobqFyyZ0naVHnwhArqNjhCNFDjyVmmN1GXBZiV1nlTj2WzgVAwvb9uLWvR/Qfh1OyXYRERERmSTpjjYA5i2d2JC76roGekLgjcXL0S2RaaVSGSsREREROUh4urrIAosOO3bC14qHwNebmninRKYZBVYiIiIiMqRnH/srqx9pJRWASLR2wtdL+8GbyZWhZyLTiwIrERERERnShh9dBUCoTEmmtA+86Wx5LiYyjSiwEhEREZEhZavCZb1exu/Bl8nx9CN/IdalIhZy8FBgJSIiIiJD8vYmAHjhP88ty/UyPg+1HVkC7/8Mf/74oFplIgcsBVYiIiIiMiRvPElnFZx36TVluV7GD3Pbne3o3q6yXFNkOlBgJSIiIiIlPXHfzRxm48TLOBow6+t//OyZW12+C4tMMQVWIiIiIgLAnT/+Lx78w4/7Gz71ZaqSkAh6ynaPrL//WjlP+a4rMtUqskCwiIiIiBx4Dv/hnc7GWy8BIOpMryKYKl959Ky//3N9TzpdtuuKTDVlrERERESkpL6i6NGeMl6zMLDKqOy6HDwUWImIiIjMQLdeeAJ/ePPq/Ou2/bsGHdNd5XytiZfvvjm/L7+t9azkYKKhgCIiIiIz0Kp1xWmoHc8/SWCIYzdefBorynTfrL//8XMsGatMOo3Pr0dXmb6UsRIRERERmrfZ/HY81kkmnSYah/Uvn8VbLv9Z+W5UEBx5M6Obu3XrFRfy7PGrePG5f5WvHyJlpsBKREREZIZp3rMlvx2PdQLQVdC2fdM6dm/biC8HVJe3JHouUDAUcJQZq+BTGwim4fFvXFrWvoiUkwIrERERkRnm+SfX5Le3b1oHQKJlb75t35YNNG1+BgBv3awy372/xPpoM1apKmeQYqCzjJO9RMpMgZWIiIjIDNP8/FP57f3bNgKQ6WzPt3X9+Ie07d4MQLB+bnlvns3kN32ZYY4r4Es4ZdlV7EKmMwVWIiIiIjNMb+u+/HbHLieA8vQ6i1ZtWu5j+c4cresfAaB63iFlvXdhwYrRZqz8yeyYjheZCgqsRERERGaAR+/8BXe84Via92whG+vKt8eb9wDgSSRJ+mHhJ78AQMNTWwGYtfiw8nYkM/aMVcANrHwKrGQaU2AlIiIicpC75bNvZtZnvsNRmzM8/NtroLd/rlLmhecB8CbTJALw0jMuIOOB+c1OELPwsOPK2hdPtj9jNdpAKZh0jvOlFVjJ9KXASkREROQgd9yfCkqpb7UQT5AF7BF+Dnu6g1hXB95UhlQAfH4/iSAE05D2woIlR5W1L95Dlzn9CI4+YxVyRikqsJJpTYGViIiIyEFu17z+bf/ufXgTSXqDkDnpJVT3wsO3XYsvlSHprhCccL/GwpR9Ud63XvUbWr75SbYcERp9YJV0+z7K40WmggIrERERkYNcIAXbFnnYscBDdXsSbyJFIgjHnf9hAFofvQ9fKkvK75RCTwad8+KR8vfF5/fzyvM/RM7nGVWglEmnCfcFVuny90ekXBRYiYiIiBzkamLQuTBKPOpj6a4cKzckSAbhyNWvoKUWgnvb8KdypANOYJVyk1TxiGeYq05M1ucbVWDV0bIHvzstSxkrmc4UWImIiIgcxJq2byKShGxtDemwL9/eN1spVuUh2JMuCqz6viYLji+3nN+bD5Tuv+m77HHX0xpo385NAGQ8yljJ9KbASkREROQgdecPP836e28CwNswm0wokN9X1et8TUS8LGrKcsg+yASdR8O0+zUVCVApOb8Pfxpa9+5g4Zd/zuMfeXt+X+Pj99L4+L0ANL3wNABttRBQxkqmsfLORhQREZnGbv3CBeR64xz3H9+e6q6IVFx7yx4O//Fd+deR+UuINe0BugGodiuuJ6v8RJJOxJLxu4FVwAtkyFSFKtdBvx9fDp577K/MBhY0FURN7/m483VjI+07nmc+0FnnpaEzSyadLntBDZFyUMZKRERmjFW3Pctxf9k81d0QmRR7t9ui17OXrYCqqvxrrzsWMBPtD55yXufRMBNwvuZqohXrX84Njvb89qcA+YqEAyX27QYgXhfEm4PeeKxifRKZCAVWIiIiIgeh1l3FHyIcsuIkPNH+QKlptvM1WxBsBWNO+b1s0Al6fLWzKtY/b00tAMeu7wH6KxEWat27g1xrCwCpeuf4rrZ9FeuTyEQosBIRERGZ5h776/XceuGJJOI9oz6nc9+u/HbSB4uXr8RfUw9AVwSWXnc9AJ5UKn9cVcwpv5cNOumjYP2cCfd9KLOOfknR64z7VJpKJvJtzz32V3xdMboi4HEDQAVWMl0psBIRkRmnN9411V0QGRPv57/BqnUxnnnkT6M+J97alN/uijrrRwWqqgHYP9fLYcecBIBv4eL8cS0rFwKQCznpo6q5h0y470M55vS3F70Ou/HUni0b8m37G58g2JWkOwqeoDNkcf+258ikVR5Qph8FViIiMuPs+ezFejCTA0YmnabGLTTRuXfnqM9LdrTmt7urnfLp2Yzze58rWJ7qrVf9hqarPsiSfz7MBdf+DQBPOAxAw5IjJtL1YS05/Nj89jMviTKnA267+iL2bHk239679XnqWzN01vvxuoFV/Wev4dZPv7Fi/RIZLwVWIiIyI8Rjnfnt5TtztOzdNoW9ERnZ335xFbe+80Ta9u/It3Xv3U7j0Su4+X2vGPH8bFdHfrun1hnat+p173Yazjs3v8/n9/OaCz9FdV1DvtreIa99G40rgqw4qf+4Sthx+b/T8b3LyfmcR9Jjfvs4W276SX7/8Wv2Mrcd4gvr8YbC+fYlj24b07BIkcmgWpUiIjIjNDdtL3q9+8Vnmbf48Cnqjcjw1t73Ow799i0AND56F30znXpecIbJrfxn6xBn9sv19FfPSy52rnD4qlNhYyMrRjj3led/CM7/0Jj7PVZnX3wFAFt/97N82+p/tg86Lnz4Cjze/jTb7E6469pP8pbP/bTifRQZLWWsRERkRtj71guKXrfufGGKeiIysq0/+mp+e799Kr+9+j6n9HhH9cjX8Pb05rfDy44sX+cq4Myv3ciLl76J9afU59s2HOtkqDYf6uWkd1zG0We8A3AKcXRWQe6xx6akryJDUcZKREQOeqlkgmiiuC22b0fpg0WmgXB3mizOJ+CJXVsH7e+bMzUcX69T7W9fPbz83z5d3g6W2ZyFy3nDf36TNbd8Hx51slDn//Yxutr2sWL+Eueg5cew4fofkOxooesrV+NLZIa5osjkU8ZKRETK4pE/XTdt5zzs2bZxUFtvy94p6InI6IQSWfa560z597cN2p8KjhxY+XvTNM2GVz/ayIJDp3fGqs9pb/sYzx4X4fkPnkkgGKKhL6hyrTz5bF529jvJ+Dz4Mrkp6qVIaQqsRERkwp76+23Uf/Ya/vjh10x1V0rau+W5/PaGC08AINM5+GFVZLoI90JHvTOwKNLeO2i/Lz1yUBFIZEmERg7AphOf388Ftz7J+Z/+4bDHZfzgVWAl04wCKxERmbC2PVsAmLOlc4Qjp0ZH05b8dnj2fGejKzbouHiss6h6oMhUifRCsjZMPAi1Hdl8e8oHLyz3EUgNc7IrlMiSDB2cj3pZnwefVkyQaebg/GsTEZFJlU46n6iP5mFvKsT27wLgmeOrOPej3yQWAm8sPui4xlNO5uFzT57s7okUicc6qUpCNhKmKwpz3SJ5L176Jmb98WbSAS+B1MjZmlAC0mFfhXs7NTQUUKYjBVYiIjJhyS5nWF1wmgZWidb9ACy9+DJ8fj9d1RDqGjy8KpKExfsmu3cixfrmBOaqo7TN7q8ztmjFSRx65GoyAS/zW+HmT75+yGv88+4bmNMB6XCg4v2dClmfF79qV8g0o8BKREQmLNntLEQ6XTNWfQulzl96DACddT5qOoqfylLJxKDzRKbC/u1OYOWrriW+qCHfXlU/F4Bs0Am2Vv91y+CTXbWf+G/n2HCoUt2cUlm/B58CK5lmFFiJiMiEZWJdAFQl4eb/PIN/3XMjN3/iHDLpaTIJorubLLBwmRNY9cwK09BOUf92vLA+vx1zAzGRqdDhLmYdrJ9DdMXqfHv93MUAZINjyEJFq8rat+ki5/finyb/exHpo8BKREQmLBvvLwSx+v491Fz6NVbfvY2nH7xjCnvVzxeLE4tAKOI8ZGYa6gml4fmn1uSP2b1pXX578zMPTXYXRfK6djmLV1fPP5TDTjk3314/9xAAPGP5wCIcLmvfpousz0dAGSuZZsq+QLAxJgD8ElgGhICvAo8B1wH1gA+4yFq72RjzSeBC99S7rLVfNsZ4gJ3AJrf9UWvt/2eMOQ+4EkgDv7TWXlfuvouIyPjkegcXggB48aE/8ZLXvG2SezNYqDNJZ3X/a+/cRcBOdmx4lBUvOxOA9h3P4y4bxJ6Naznu1DdUtE9N2zex8dG/cPq/faKi95EDT7qxkaQPTnrj+4nWNPC82x4IOsP6/D3J/LHxWCeRaO3QF+vqqmBPp07O79McK5l2yh5YAe8GWqy17zHGzAaeAu4HfmOtvdUY8xrgaGNMDngXcDKQAx40xtwO9ABPWmvP67ugG6x9D3gZEAMeNsb82VrbVIH+i4jIWPUmSzanXni+ZHul3PSR1xDdvp833fVsUXtVd4ae6v7qaP6aegB625vzbT17d+a3Y03bKtrPRLyHLW99E/O74f5shjPe+emK3k8OLLN2dbFnvofV9fNK7s95+9em2vnCMxy5+hVF+wsX6l563nsq08kplgv4CGgooEwzlQisfgf8vuB1GngF8LQx5l5gK3AZkATOsdZmIB9BUnm9AAAgAElEQVQ89QInAIuNMX8H4sAncTJfL1hr29xjHwJOc+81SGNjY/m/qxH09vZOyX1lcul9nhn0Po9dLt5L0g/BAQ86odbuSf1ZHr/G+bxt4D1ru6F1QSDf7gnVANDVvDfflmjemz++p71t2H637t1GbcMC/IHxFQbYv6ORud3Odsvvf03j8UNXd5PxO1D/lme35th8dCTf944o1MX6f6/nffhKdn31CyzeB41PPkg62FB0fkfzTuqAta+axwmHn3pA/gxGkvF48OZg/VNPkMV3UH6PcuApe2Blre0GMMbU4ARYXwSuB9qstWcaY64EPmetvRJodof+fRt4ylr7vDFmAfDf1trfGWNeCdyIE1wVziTuAuqG6sOKFSvK/W2NqLGxcUruK5NL7/PMoPd57J5NZ+gNwry/3M4/fvJ5jvuj85DjS+cm9WfZ92i1eMFsat1P+9tb9kAcsrNq8n3Zss5ZJDiQSeXb1hdk3YKeofu93T4JH/kk6185hwt//uC4+tm9o38+V1VXSr9vFXKg/S3feuGJBGMJTAJytdX5vu/6/W207d3Gse7rFStW8OfGf8BP/kYwHRv0PW5a30oa8FdVHVDf/1isd6sdLpxXT0tnckq+z7Vr1076PWV6q0jxCmPMEuDvwK+ttb8FWoA/ubv/DJzoHhcGfgPUAP/p7n8CuAPAWvsQsBgnkKopuEUN0F6JvouIyNj5khmSAVi49GjmHf/KfLs/PTULeG5tfDy/veXpRwDwzJ6db4vUumWrC4ZMeeP961plE6XnjAG8uO4fAMzb2DzkMSPpaOovkx1IaJFTcaxaF8NsctK+nln1+fbFy4/h2JefW3RsdN4SAHqa9wy6Tne7sxibJxypVFenXC4QBKCns22KeyLSr+yBlTFmPnAPTlbql27zQ0DfOIdXARvcTNUdwHpr7Yf7hgQCXwI+4V5rNbAdeA440hjTYIwJutd4tNx9FxGR8fGlMiSd5xxOPf8jPH1iLS214EtNTdCwb/Mz+e22pq0ABOr6A6vq2QuB4qIb/niK9qj7Ill6zhhA935nLlYq4BnymOHc/q2P0Pzg3U7fqiE4RT8jmd6CcxYMu79+wTIAUh2tg/bF2p0FsX3hg7PUOoDXDaxinYO/f5GpUomM1edxqv9dYYxZY4xZA3wauMgY8whwDvB14M3Aq4Fz+44zxpwCfAN4tTHmAeAa4GJrbQr4FPA3nIDql9baXRXou4iIjIM/lcsHGqFIFf924z9pnucnMEUZq56bbsxvx90CFcGaWfm2qmg9WQ94EgXD/3ozdFe7wVJi6JWO4007AEgFxxdYzbntAVY/6Dz4dtZ6CGldYsEdslqgZtHyYY+vndP34UDPoH3Nzz8JgK+qetC+g4Un6ARW+z512RT3RKRfJeZYXYZTnGKgswa8vh0YanGFQTVurbV/xhlGKCIiY7C18Qlina2sPPnsit3Dn8yRChUHGlm/l8DQ8UlFZDzgy8GRL2bY/MwjHL7qVFLdzlChcG3/BH+v309PELwF86pCvTl6Ix6Svhye1NAdz7Q6gVo6ML7PJiP9Iw7pqfEzr3mSf0gyLW1au4bCMGjeYSuHPX72ouXsASgYwgpOGX/ziwcACBzEgZU36DxCLmiBtqYtcJDOJZMDixYIFhE5yHVc8B68763sp7rBVG5QoJGZgnLIvcH+7VhnCwCp7k4Aog3zi45NBMCb7O9guDdHKuwn5QdPqnTH7bp/sPr+3c6LcSSsMuk0kYJRhslZUSLJ4vLYMjPt3fRk0etlx5w87PE1dXNJe4FEccqzbW//UgHB6iHrfB3wvKH+z+a3PfqHKeyJSD8FViIiB7mBJdArIZCCTNBX1JYL+ghOcjLGl4WkOxYj3uVkqrI9MQBq5iwqOjYZBF8ym38d6YV0JEAqAN5U6ZVHn/79j/vvlcqWPGY4+3dvweuOjkz4IVfjTOpqdueByczVs2tL0evaIdaw6uPz+50PBwYMW4119hdVidQ2DDztoOHx9v//Jt20c5gjRSaPAisRkRkik06za8tzND5+b9mvHSwRWGUDfqc9XbnIbsM/7+HO161ka+MTZNJpgilodT+kT/Z0AZBzs0F1c5cUnZsMePC7AVSsq4NoArJVYVJ+8KZLB02Z7v6VPwLjKDrRvPuF/HZPGLxucYGWPVuGOkVmiOx+p5LfC8u87LnyA6M6JxEszroCxAuq5EUKCrYcbBL7nczxtkUejrrwc1PcGxFHJRYIFhGRaejes47j0D1uMLCxvItphpOQCwaK2nLBAL4cxGOdVNdV5pPzDd//PKu2ZXnsR5+j7qob8AKJkAfIkYw7mSp6nTkocxYcWnRuOujJB0eP3/X/mA94Fx1C2rYMGVjR0UXWA5uX+ajqLp3VGk7bnq3MAZ4+oQa/ORpf1rlGd/PuMV9LDi6+9m46q+C8uzeM+pxkAPzJ4t/DRFd/YFU9a/is14HshPdczo7H/oPZl19Bdf3wFRRFJosyViIiM0Q+qCqz7o5WAhnIhYJF7R53DkRbBYOGnM/9ZyydocNdzycZdtpSbsbKk0iS8EMkWlt0birgIZB0fiZNj98HwGGnv5m034NviMDK391DVwTSoeGHOd5/03dLzpvqaWkCIHLiy3nblTcQcCsVdrc2jebblYNYuCtB5xhrTaSCHg7fnGbdg3fk2xKxrvx2TcPBG3AcufoVnPFQIy87+51T3RWRPAVWIiIHsbb9lV+ZonWfU36c8IBCr6EQAI/+4qoK3r2vPHqCzlYnsEqFncEYabcMtTeZIhEcfGayJsSi/XDzJa8lsGUHsTC85NVvJ+334B9imF8gliIWdQpzDBVY3febb7Hwyz/n9kvPGbQv7q4vFK53FigO181x2lsUWM101V1Zemp8Ix9YIB3w4M9C/BOX97f1OMVa1p82l8XLjylrH0VkeAqsREQOYPff9F0e++v1Q+5v2lp6yF8qWb7Fk9rdBXM94UhRuzfkvF71hw0Vm2fljzvfR6AzTre7XlU64gxJTCecxX99iQzJwOBzM3Od4Ymr79vNMRsSdEWdggAZP9R05bj5w6cP+jmFe7LEI16yQf+QgVX7i85QruiOlkFZq5Q7/6WvkMYRJ7+OeBC89z4w1m9dDhB3fPfj3PLZNw97zB++/gEWtEB8Ts2Yrh1IOJnVWbH+tnRPNwCLXveOsXVURCZMgZWIyAEs85Of0/z9bw25v3nnppLtbfvLV0Ur5g5j81ZFi9p9VVX57ReefaRs9ysUjDnRTaQrxW53OF8u4mTOMgknqPGlMiRLZKxCSw4rep10F/zN+L3M7oTVD+zl3l9dnd+fSaep6c6RjPrJhQKEkkMEqDkn23XE1ix/ufDlRbsybun3+oXO4q+HrzqVzUdHWLBn7PO1xqpp+ybu+O7HK34fKXbUdfdy3J/ssB8upJ9ZD8AZX79xyGNKqXbj9piTHMY+tYbUfufvMVw7a4izRKRSFFiJiBzAQkloaBm67HfX3h1Fr9ef7Dxste3bUerwcYm1OcPbAtXFc5jSXf0V9DY99Key3a9QpMf53qtiWY64bS0Anln1AGQTCeKxTuY3ZUgFBi86Neeo44v76x6TLViPK/e7P7J9k/PQe9+N36C+G1JHLINwGC/Q0rR90HUz8f70wQpbnNbK9ThPwnMWLc+3ZQN+/JWPq3jokxdw1HX38uidv6j8zWSQJ+//3ZD7vMk0bTUwb/HhY7pmrZOcotv9TGPvRz/K6nuc38lo3cFbuEJkulJgJSJyAAukoL4b9mzbWHJ/wh0e9/RJtWw+1ItnoTOZvauMxRJ63YV4A9X1Re2LTjozv9216dmy3a9QlfuJfTgBvgy01cAR574HgGwywV++/VHqYtC+tH7QuS8549/YvNRL3M1mpYLOP4kZf/88l+U7sjzx2YsAaP3HX8l64FUf+yaeqFNlYN+OwT/3bFdn0eu//uwL+W1PIkkWqC8o/Z7z+yoSWHV3tPL3U1fks1QhN7vXtOFf5b+ZlFSYpdo6zIcLvlS25HDVkTxvnJMSQQ+pZIK57f37ambNGfsFRWRCFFiJiBzAAu5z24YH/lByfzrufKR96Ds+xBvv2YC/xlnkqbt1f1nuv2vLc3RveBIYvGbOaW+9hKOefYakD7wtbaVOn7Aqp5I6Effr9pWziM5y+pFLJki3O0Hfyz717UHnVtc18Ma/bWDbcufhNONmqrKR4ifcFY1J7vzxf+HritMdgYVLj8bvDrPacOuPadu/i5s/fDq3fOZNzpyqWPG8qmXX9L83nmSSRNCZy5Xn9+HPlnfeG4B94j4WtMLsW5x1yxJR5/vq3b2trPeRoW17/sn8drpp6OqY/lS2ZFZ1JGfdsIatiz0E0jm227VF+2rnLBzz9URkYhRYiYgcwIJuYNXauLbk/qxbPCFa7wwLClQ5w/USHc1luf+z7387q+93Hhhr5x8yaL/P76crCoHu3rLcr1Bn2z5CaYgHIZgBfxaoilBV7c4tSaXI9TrBSv28JUNeJx10gpys+zVXPbjm9eE/vJNAPEWPW58j5Fb1O/5v29jwhjNZ/cBejrtzEy++5AR8PUN/r75kelBmIudzMmTxWEeJM8YvEWsvep0N+PN9fvyem+juaC3r/WSwresfzG97Y/Ehj/MnxxdYVdc10FMXJJiEXfbJon01dXPHfD0RmRgFViIiB6h4rJOAO4Qst6t0WfVcr/MwV9vgfHodqnGGxCW620seP1aFa2Md9dIzSh4Ti3oIxcpfFbBv+GN74dSuqijVs9wHynQaTyIJQE390PNNsiF/0VdPbd2gY7oiEI5niEech9+oW9UPYHbxyD/8vUMvcOVNDq5Q6HEDnljnxAKdmy95Lffe8PX+PrvrevXxJfvfg+pLr+b+C181ofvJyFoLgp0527toPHoF9//2O4OO86dy+Tl+Y5V1S/+373i+qL0oKyoik0KBlYjIAaqjZW9+O9zcXfqghJOxqXOHBYXcdZNSZcqOpAqW3akdIniJR31UxYYusDFeLbs2A9BV198Jf3Ud0Vp3SGIqhSeZIhGAQDA05HVygUDR12DD4O+jbZaHcDxHMuLca9bC5YOO6VPVMXQQ6UtlSQ2cS+Pet2cCgdVff/YFVt+3G891v8639bpFRfoe133JDMmC9+vILZNQMWOGy7zwAikfNDXAInf07d5//GXQccEUZILjeyTLhvyEkhDfW75KnyIyPgqsREQOUB2t/RmJWW1DPCQnU2SB2vr5AETdwCoTGyIQG6P40PFKfxeqQ9TERj5urPoqHiZm9a+fFZw1m1CkiowHSKfxptMkRioKMCBREJ23eNAhibCXqjikqpyLzTvUDHm5hvbSiwuDk5kYNOTL78596hn/e9L1978B0BPt/2c91VUcqPlTWToGLJNUqfXFxFHT1E3THE/R++KrG1wGPZhyFp0ej1wwSDADuebyzJsUkfFTYCUicoDqcTMS8SBEh5i+MbBYQu1cJ3OV7R16vsdY9I4isMrURokmoG1/6eGK4/H7q95F/A9O+ers7IZ8e1WDE0Cm/eBJZ/AmM6RGGhHlcQMdd/2p+kVHFO3etshDKJ6lJg6ZKieIKyyLvfF9xUPqqnth62IPHVUMEigx5MsbcMoS9naPP4sY6HaGPPrS/UFd2l0zC7cpkMzRXV18741r7x/3PWVkDW1ZOucESYb7g6ZsKjnouGCyfyjqmEWc38lgcyex8PguISLlocBKRCZN854t3H3dFVPdjYNGzC1z3hPurw44kDeZIVnwvJYv4hAvT2CVdZ/Tty8cen6Ip9aZBLX7xQ1luSfAypufxLzgfNOhxcvy7TXznAIaKZ8TWJUceje4h84XNwBZcPiq/J51r1tKOuDh0CZnZ67WSfkUDi18y+d+yvwH7mFXQa2ArrlVbD+3/zoxd00vJ7Aq/qfX4wZWid7xZ6wiPc7PIhIvyJb1FKcJA6lc0QM+QOvuzeO+pwwvk04TjUO6OkK6quCPcMDfXiadJpyCbLDEKtaj4Ak7gVVdS5KOGtj+mXfQeNGp4+63iIyfAisRmTQPfOwtLP3u71n34B1T3ZWDQl8BinjEQzBduly3L5UpCixmz19K2gueASXBxyuUgi2HeFh9/dDvqTfirF7a3VaetbMGZr4WrDwpv92w0MkkpX3gTWedMtb+EYoCDNi9aOnRAGxa7uOdP7ibjL//n8rj/v1TRcf2ZQga5i+h/qqr8+3ZqhDv+NqtrD/FKRbS3uz0OZCCTLA4uPGGnCAtOY6hgDe/9xT+9ourqIo5AVWk8Jk97lQn9LnT24LJ/pLyffqynlJ+LXu3OZUqoxGCXQVZqt7+v9NEvIcHbv0+3hzkQuMLrLxVzt/XvBaI1fh43X98mbd+XotAi0wFBVYiMmmqW5yHi70DygLL+CS6nMAqEXYig662fYOO8aaLMzY+v5+uKqjZ3VWWYWChBHTPi7Lg0COHPMZf5ZQvj5XpIX7tX68ver3qtLfw7OoIzXWw6LBjAcj4wJPJ4k+PXG3NvOsTdEXg8Hd+DHB+RqlffIvTbnDmLfUFIxuPDLDy5LPz52V+dQ3zbvlN/vWiI/ozVESdh13qncCqu915b4Ipp4pbIV/Qic7SvWObiJZJp1n9z3YO/fYt+Tls1fH+eVPeuPP3Fnaf44Op/pLyfZJdKrleKU1bnwPAU11L4vij8+3egsDq9kvOYuHVThDkCY9iXG0J0YXLAGe5gd7a8V1DRMpDgZWIVFwqmeC2r7yXVMh5wO3evWWKe3Tge/G5f9G50QlQkxHnYbmzde+g40plbHqqYPnOLJl3XzKhPqSSCcJJyI7wSXuw2ilf3tvRMqH79Wl57nEANl58Gutet5TqugYuuOVJTn34GaLuAshpP3jTOXyjKGP9kte8jZOeauRlZ78z33bcK86jfq5TxCLrZqwyA4bRHfvycznUvDT/et7i/rlZXrdkuzfkBE19CzKHkoODm/EGVp1tBVUhU9BRBb4c7HbL0PsSTtn3UBru+O4l1MQHB3XJ7gG14qVsWnZsAiAwazbv+PrvOeLpdbTVgLeg7P2sbf0LZ3vCJSbljYJ5xRvz29n6wUsFiMjk0SIHIlJxf/j8BRx356b86+S+3VPYm4ND42XvY/UOZ4xXOhIAkkUP2n1KrY/TG/ECWbxDF68blZam7c6nc1XDz5gPumtnLf/+7dzt83HOB78yofvmmppIe+Gcj3+HSLR/EavCdXvSfvClswTS0O2f2GeIfcFIJjx8AFl4/0CdU/K9bxhkT2cz8VinU71tQCDqCzkP1OnesQ3P7BiwTlXLHC9127Ps3vQkSw4/lkCiv1Lk3Juc7GQuWgV05dszMQVWlRJzh6yG3YIqgWCIRAD8yf73xVtQzLMvsztWh686lUZ3O7ri+HFdQ0TKQxkrEam4XFvxcCNfa3nWUJrJ6tv714XKuoFNvHNwRsifzpEZEFh5JhhQ9WnZ42QePW7wMJSIG2QAdN7/1wnfN9Qao62WoqBqoJ6oj2h3xh3+NsF/6rzOzy8bGXmYVYf7o6iavQAAn5uFSHR30LrPXWdoQGDld4/JJHvH1K2BgXTXMU5hkhfvvAGAYCJL3L1VvTt969Wf/9+ic7Lx8sy1k8H61hGrmb8k35YKevAn+/92fZn+P0Z/dOLZprM/+NUJX0NExk+BlYhUnqf4wT7YObYHSCn24MkrqO9POpCrdj7pjncMni8TSA0uWOBPlieyamvaCoCvumbY46obFuS3c4GJD5Sobk/RMWv4f74StSHqOie2PlBexnkQ9oRGrmXdPMfpV6DKrR7oZiES3R3s2+rkFTw1xQFhoC+wSozt72JgIH3469/LjvkeGjY4GeFQb47dC/p/Ti8e6mXh0qOLzsmVqTqkDJZx/x7nFqx5lgp68Kf6//58BRmrUO3g9a1Ga++XP8z2z76TUGR8wwlFpDwUWIlI5Q0IrPyp7BAHymjMcRN+exuch+XwoqUAJEoM6wqkKKpqBwzKYI1XmzuXp2rB0mGPq5vbv+BuLjhi7fNh7dj8LHPbIF4fGfa4TEMd0QREeycezHndwIrAyH1f8Z3rWP/q+Zz2NqcQRt/8snRPJy07neGwwfp5ReeE3CAsW6Kq43AGBtJHnnA6HQsizG7NkUmnicQhXhei3c2ipdzM3X73+T3rAU9i8JpKUh65bidNuGDZinxbOuAlmCwdWIVr+zO7Y3X6v32C173/ynGfLyLlocBKRCovmSp6WbiIqYxNvCB4ajpmDm+4ZwPBWmeB3FTP4MAqnIRsuDggOOSqbwD9D9jj7kvTdgDmHHbMsMc1FAyFYoKB1cPfvZRQCua99b3DHuefvzC/nZs1sSFWnqzz++rxj9z3w1edyoU/XZNf5yoYdX7I6d4Y3Xudn1d0/iFF5wTCTlYrmxpbYFUYSHdWwazZC8nMm000AQ/e9iOivZCpCtFV4wTS6ZCTuVv265vpvvZKegPgVWBVOckkGY/zvvRJh3z5Ko1QHFhF6+dPYudEpBIUWIlIxfl6ix8YfUMsZisj275pXf+LsDM0LeRmRVID1kFKxHuIJCEbLh7CdtwrzmPDyhD+DBOSaXWGoi1becqwx9XUFaycO3DRqGFst08WBZIA3tYOuiJw+gUfH/bc2oIsQWjJYaO+ZymeTF9gNfbMV1WdU7gj09NDstUpuV6/6IiiY0LVztDAXKr4A4iRpGL9cxU73boH4aXOted/6af5NZR6q/qqGjqB4aFHruZlZ7+TZLC4Qp2UlyeVJjXgVyY1K0pdN3S72cbCv8HauQsRkQObAisRqTh/b/HDmz+jjNV47duyIb+dS7vltN3AKjOgqtxed+gZVYOHzeX8XvwTfKb2dXTRE4R5iw8f/rjCgCQ5ugxJ694dxM5/F3/+0GuL2r2pzKCH1VJOPLc/ozV/5cmjuudQUkc4Qx3nHnfqmM+tqXfml2XjMTKdzrpjCw5fVXRMxM1q5VJjyx6l4v3l2WN1zg9lyUteU3SMp7o2X44/NyDATgSdBaSlMjzpLOkB0/u8CxbizcGGR+8EijNW9fOWICIHNgVWIlJx/kTxw1tgbB/MS4GO3S86X6vglMu+A0BV7RzAeXgv1LLzBQA80cFV+7J+/4QzVsHuBF1jrRCdHl00Zx+/B4BFm4qzcL4BCx4PpXD44bGnvmH0/Svh7d/4A9nrf8BrLvzUmM+d7xYuyPXE8HTFSHth0YACEmE3MGaMGatMQYayd7bzRpzw2gt47l0n5dv9dQ3k/M7TfW5AVcNUoLhCnZSXN50hPeBDgLrDVgKw59nHuPfX3yBcEEvXzy0eIioiBx4FViJSccFEcYZqopmSmax3v7N2UeqKS1m24kQAorOcSe/ZAVXlOvbtAMDvriNVKBfwEZjg+xDuydBTNbZ/RjyjzJDs3bgWgFhV8dBBX2pwFmAo60+by7ZFHmoHFIsYK5/fz8qTzx7XuXWzF5LygbenF3+sl1hkQAYPqK513p/cKIPOPkUZyoaG/ObbrrieJrcOQrBmVn4dLk+mOIhKhjyE4gqsKsWbGfy7uuwEJ6MY3/EiHbffTLwgidg3L09EDlwKrESk4sK9OZIFDxgTfaCfydLtzrymectX5tuis5zAITegqlys1VnnKFTXwCB+P/4sg+YwjUU4niMRGV2U01eZzpseXWDVu9PJzCUGBG6+9OAFj4dy4XX/4Jz7nxvVsZXi8/uJh8AbT+LvTRc9SPepqnYCK88YA6vC9zu6zBTtW/Tjn/LMS6t5xb99sr8q4oCMWLw2SG1X8YceG9fezx/OP46tjU+UvGci3sOa3/1wTP2cqTzp3KDA6ohVryQWhuP/to1jnkuwd54ew0QOJvqLFpGKisc6mdUJG19aywsffR0bVoUVWA1ja+MT3Pyxs8gM8ZCd63GG+y1efmy+rX7OImdjwPylRLuzQGlVwTpSeW51vliJRYVHqyoO6arRFXQ4ZW0jbTXgGWVg5dnvTO4ftAZXKkfGX55y8ZMlHgZ/Ik0gmSUZHNz3UKSKtBc8yTGOkXUzlOvPWMjr//NbRbvM8a/iHb99nIb5S6g6zslshs3KomPSs6qpi0F7y55827r/uZIVNsU/v35JyVvefslZzL/if3jw9p+Mra8zkC+TJTPgz8Pn99NS3/87EGsYeW00ETlwKLASkQnp7mjlT9+7lES8p+T+Zx7+E8EMsHgx5132fdK11QQzDHn8TLfus+9j9b07uff6r5bc70mkSHuhuiALFYnWkvEMfjBPdznFEmrnl5i7EQwC0Nm2f1z9TCUTbjnv0T8Ypn3gTY9u6Fmw2wkavAPWPPOlc6QPsMAqEfQQ6M3gT+ZIlQisANpqIdju/E0k4j387edfGvnC7vt93jdvHzS8sNCbPnkt2et/wJv/63+L2r3znPLez6+9L98WanYymPU7uiileqfzO9W8af3I/ZvhvJkcGV+J97sgSZjz6TFM5GCiv2gRmZC7vv4Bjvzp//Hnd5eumLZz7RoAZh/jfGrelynpat87Gd074AR6nUAi0dVWcr83lSY5oHiDz+8nEQRvojiwynY7D8cNCweXG/cEnPkcPePMWO3ZthFvDihRGGMoab/zsDkafUUV/APWPAukIRs4sP7pSoY9BBM5gqkc6SH63l7vo7bNef9u/8TrOfQ7t3LX/35+hAs7QXa0ZuR1ukrNEYsuORKAvRufzLfNaXL6EO4t/T7l3EAh2dw04j1nOl+6dGDl+8BFbFvkYfNSL+YjX5yCnolIpRxY/zqJyLST3ecESPX7Si9umtzhzJVZ+eq3ApCbYKbkYGafWsOcFiegKFyjqJA3mSZZIjmRCIJv4JpEPU4GZP4SM+h4jztRPu6WAB+rvVucuUve2tEvvpv2efCNMmPVF1jVdGb5/dtfgn1qDeAEVhn/gfVPVzrkI5TMEUxCJlR6Tlp8dpQ5rU62KrjXCaq7d2wa9rreVOnfhdGas9xZ66t33y4AMuk0dWIQnAsAACAASURBVG6hwaGG6/aFW7lm/f2OxJuBbIm3+8z3XM459z/HG/+2geNPO59nLljNs+84fvI7KCJld2D96yQi006g03l4rxpiZJ+nu4eUDxa6Jaa97gN9d7sezAZq/8BHqXV/junW5pLHeIcoN54IgG9AWXtfV4zucOmMhi/kDOHrjY0vsGrbvRmAYP2cUZ+T8TuLQ29tfILHTljBvTd8fchjA0nnEX5uO6x8tpenb3Pm9ARSkA1MIJqYAumwn0gvhJKQCQ7R9wXzCWag8Yn/I+d1shy5zPCTET0lynmPRaTWrSbpFsHYvW0jAfdXaKjAKuRmVAPtsdIHSJ4/M7r5gO/4ys1ccPVNk9AjEak0BVYiMiHhLmfoUG1P6XlT3t4k8YIqwp6ws1htT0fpwGEmqy348eU6SmesfKlMycAqFfTgHzAfKdyRoKO29L284SoAkj2l59KMpKd5NwBVcxeP+pyMz4Mvk2PtH35EXQx6bv7tkMeGBqyVm007DcE05IKjrLc+TWTCIap6IZKEbKj0IlzBOU6BkZbtlpz7LD5S+XVvOjuhwCrqluHvqy6463mnxH17dOglEaIxJ+Ct6hjbYsYzkS8DWc2hEplR9BcvIhMS7XYe5r052PLcY4P2+xNpegsCK5/7QN/bWXoOkTi8sXjJdl+qdPGGVNCTz/L0qe7KEqsp/eQdiDhzo5JDDDkcSdIdylm3YOmoz8n6PfjSOTweNzAaZrpVcECBvFxPD6lkwgmsAsGxdndqzW7Al3P+RnLh0msVVc1ZCEDdt/4fEffDCnpKZ4XW3PJ9bj//OHzJzKjX9ColWjfX2Ugl6e5oxfOFbwDQWeshlP7/2TvvMEmqcv9/uquq4+SZ3dmcd2uHjWQBUS4gGQOSDOhFjHivGEC5YuCa9YcYr3pN10hGQFAREQQEybDLLrO1gY2zafL0dK7q+v1xqtNM93TPTM9OOp/n2WerT5+qOt1dVXPe877v92WQMqVlmlQ7Q5rZYRdVrpQIVBNSkyxsVSKRjA55x0sk48Qe40Vuf/eJtO0c3zo7o6WmHzodr8j+rS8Nel+NW8S9WUNA9YkJfXwU9ZOmA1qksEdALVLHKelx48kxrCzTpK4P4rWFVfs0fxUAZnRkIV0pxztZ17yg7H0s1Y1qgW2LeLOhgqR8Az6+HYvS2ym8ZBTx+kxUcmtMpT22A6mZJb7HYByW7HEWK7r7ChovB/9yOyuNJNW9JtYoDKtqp3CynUyy8Z/3ZTymkRphjId688N1u9v34rGgvQ4Ccdj45P0jP/k0QJUeK4lk2iHveIlknHj6d99i7fN9vPiRS8Z7KCPCMk1u//Rb8SegY6aYiPUWSLb3xG0SuYZVQEzokxFpWOXScWBn3mtPxCo4qS5Wx8nyKFT3w8E94jfYu+1lfElINdQVPJ8WFNZwMtI/sgHHhBx6TaEaWUVIqW5UE6ywc067sMsqHOrFM+Cju2MJejucekuewl6ficq8dadmtt2BwiqKTfNXDmpb81KYu/7r7YPa/e0ifLMqTGE57zLx+YOkXOBKWiRyroNErfAq93Udzuu//7VNAByeL4z1nU/9acTnng6oFtjSYyWRTCvkHS+RjBMuZ1K5eHd5KmkTjfu+9SHW/tEAINYsJu/JzsES6t64TTJHCc0brBZ9Rzqhn6Ls2PBE3usle1NsXb1mUD/NHFw0F4RhFYzD3je/GYBDu4UnVKlrGNQXoHam8JCYIw3JdIoR16WLE5dBSnGL8YeH/u07HWGMXNzxJCFH8MTtnVxFVY864ezMthIsnPQ2b9ng3xpA3bF7UFtdl/D41UQYlcdKUVWSKriSJrGerBFlN4jcq/AAgZmufeJ3MecKYzopJdeHRDXBVidXPqBEIhkd0rCSSMaJVEzk0CjllfWZcFg5hpG2SNRJsnrzFeaefeh3NHeB6c3m+XidhHkrJgsE59JdRFr7wO4tea+1ZGG58ZRX5B1VxeC2q08n7HgbFMeQHciMBSvEfv0jE69wJZIkFVGcuFxsjyLU5pwwQleRa7/r8F4AOhwxw7gqpOR79guvnrvIZ5qoeP2BzLZWZOzFvsdEU357T+cBmnJus3JU54YiqQh1wbgju//qu07A7Yx3w09uzOvb374PgMAice3Y/XJxpBiWaaJZYA9RuFkikUw9pGElkYwTdjw23kMoyUO/+jK3vfekgu+5csKx6peuIa6BO5Sfr+P/+FeBfCU0f40wrFLSsMoj6ohBbHnfG9l4XHbyvePlx/P6eUxIFZDsdieyag/rHjlA1PE2eKoLhwI2zxPFYdO1roaLKzG4UHEpUh4NbwLcUaFCp5iFLavu668H4OA5R+O/57d01YGSsDi84Z8AzD3mjSMa83jy8mnNAFQNIycNwGXle7Rffvh2UZjZITWKUEBwijabFqYjYjJz9etwe0Ue2LonO9n8zEOZvnHHWK9fuJK4Bq4iAisSiEXDQqxEkx4riWQ6IQ0riWScsOPZgrrh0MiU2caa+d+4hXXP9BAtIDRh5ch0Ny1qod8PaiS/SLDqzAm9PdnJe7BG1D2aDIblWHDPNz/Evx74xaD2ZG8nAPPWvxG7PmsMdWx7Oa+fJwl2gTpOnlD+dx89LLwLvtrCdaa8/gARL7gjI/sdRlSc1uPBDahhMVZvvLBhNavTOYfHx6KW40h4XKgJG3btJq7BMWe8Y0RjHk8u/eHD9H7nek5/x6fK6t/vg4QqPIN/+ekN3P3V9wFweFO+8uZocqwATAXcVgrT8UBXNcxC8WfzwPZuzIaomr1dADTNW07EJ+53qQxYmFC3MEJd6uQSWpFIJKNjTHzUuq5rwC+BRYAX+ArwNPAzoB5QgPcYhrFD1/UPAB8CTOArhmE8oOt6E3AL4Af2A1cahhEp1Hcsxi+RHAlcyayHoX3fNoItx43jaIam4+Ae5i9dnddm53g6FrUczzN+F55o/iSrLyDyQBJrs6powboZhAE7Mf3q4CQTcVb+3+OY7sfhgqvy3rOckLzGeUvZVVsPiHC42P5sjk003CfCizyDJ2uJdS2w/ZXMa/OwyH8J1s8oOp6oF5RYsuj7Q6EUKVQ8JF7h5fSGxTm98cFdcmuhnXD5JwEwNReemE3V4QiHmlyszwmtmywoqsrrzn3vkH22X30uVjyC/ovHMjLqrqTJopv/IF7cAKm9uzHdIrfKm6yUxyqVUXmsnzmffTmGVe+OzZntdOjfrEUt7PfBUa/G+cM7T+CSO14c1RimIpF+J3exwL0qkUimLmPlsXo30GkYxqnAucAPgW8BvzcM4w3A54CVuq7PAj4GnAKcDXxd13Uv8AXgFmf/l4APDdFXIpmUuHJCtzr37xyi5/jT2753UJsdy4YB1dTPJBZw44tmPRAvPXo3qgmvtni49Gt3ZdrrnHo9uR676ULrcyKsSh2gV/LsQ79j/V+FATV74UoURzkRgM6uzGZPR1pufHAdp0u/egevXnFi5rW7W3hBq4cQl4h5QYtbw/oMaZRkiuQwl+bSUuOBsPgCqqLQ3d6Wef+ui4/m2dOOBWDDOQszxrypuZl/yGbxvhTh2qk7Ub3wYzfz1ut+wubLj8H+0qdJquBOZn+fR279Nuue7uHgDBf9jmr7aFXnTAXcpo3LUXlsmLUATyAbijrrsdaMsesKR4mrUD9jLm7nGl69UYYDFqLXua7TYZUSiWR6MFZZlXcCd+W8NhEG0UZd1x8GdgHXAGcATxqGEQfiuq5vB9YCrwe+5uz7F2d7R5G+zw08eWtr61h8piGJxWLjcl7JkaWSv7MrnvXu7DI2EJizeojeI+Ple79Lg34iC1oK50mVwnQLI+C11g0otYvy34yICdXz5yyG1lbiPoWGDivz/fg+8jkAkl417ztLOaFDdjw+Ye+ZsbqfNz16L0cDUU/+c6rzm18jPZXdtaeNeM6al9YbzvTd9sz9LAeSvmDB8WlzjwKeAcDTJybKPWGz6GdJ+FxosdSIPquSTGGqrmHtm3SJz1XlpOJ5TPjTNz/CsVd9E4BVm7JhiaavKnNsLZ61RGNV3or8NhP5mb3qMnHvHNbyDauab/4cgEOvW0nzv1qhDyz38H6DgViKC7dlk4pGMd2wd98h+hPZc87shnu+9ynWveVjuKNxIj5x7VblpFNO1O8Rxu933vbiE6wBzGDthP5+pgoT+X6WTC/GxLAyDKMfQNf1aoSB9Tng10C3YRhn6rr+BeAzwFYgN7kkBNQCNTnthdpy2wfR0tJSsc9SLq2treNyXsmRpZK/c2tOUrrXjlf8+rFMk/jvH2fr2hdpueV9IzrGBifKKKAOvq82JS1Cfrjiu38WfZtqqWttp3vbPznxvCvZmu4Y8A3a92UNFCs1Ye+ZsbqfNxwSnr/eajgm5/g7FBcgvH0tLS2sWP5j7up8Kw3Pv0YgZNLS0sIjt9xE5OVHAZi9/uSC42tpaeGPPW0s/8lDBPvF9XXs695YVHHO8CrU9Jgj+qx7TEhqrmHtu6Ve5HtVR2HrUoV5+yw8+9oyx8idFtXNX5xp3/OOy+BbtwLgbmqsyG8zGZ7Z+9V8gY9gDDav8fGOr97BX89dB6RAU0f1OXaqLlTLRk1axDU4bs0a+nY/m9dHS4RpaWlha8wk6oeTW1podWzgpAJrJ/D3OF6/8+Y7OwCYv/r4CX+dTQXG63d+4YUXjvg5JRObMROv0HV9PvAo8FvDMG4BOoE/Om/fDxwH9AG52rPVQM+A9kJtue0SyaTEncwaVoneriF6joz9u7fgNUELjzzkLuU8IWK9HYPeUxJWnircCZ+4CVOBvXf8jP05EuF2YHAoTGJAiNN0wdUrRECSWn5eTCKQv8alqCqXffsBQg0a1SExsZ79pV+w7sFdAKx+4+CisWnmrBHeyZqQTVwdWg7d9KnM7oB7b7q67M8Qj0a49T/OxB+1sbTh5ffkSo2bXpWYV1xHhaidsySzffb7vsBBpxyXp3nusM45mTFVF95Yftxo08XvRVFVEl5xc442FNBSQDHBnTCJOxGmvmC+kqTZL65bTyxF3DnvK8dmw1WlgMVgzHaR47hw1ciiBSQSyeRkTAwrXdebgYeAzxiG8Uun+Z/Aec72G4DNwLPAqbqu+3RdrwVagE3Akzl9zwWeGKKvRDLh2fjUn2hd2cIfvv7+TJtipgg5NocZqvwawf5tIqHcExm5AZNy5s3J/sGqgErCIp6T5bjkqBPorQZPKMahXdlbs1AdpaQj8TzdcCXFBFRL5qvhWUUkmRO1AepCg2tZzVqwvOg5muYsA4RoSHxwKlYeze8U12N8Q/mrrg/cfDXrH25jRk/xcRcjV/rd8qoktOKG1awla/Nep41RX/3MYZ1zMmOqLmr7stdK1AMnXiC8z5ZHfPe2MrrAE0t1o1g2SiKVWSjRHHGQhPPz2hER9+eL2SR8Ytpw6e+fY8OZ89As2L1VilcMxNXdQ0KFuUvXlu4skUimDGPlsfosQv3v87qu/0PX9X8AnwLeo+v6U8A5wNcMwzgIfB9hOD0C3GAYRgyhIni5rutPAicBPxyir0Qy4dnzwiMA+B9+KtOmJm36HfGtVLjyhTbTBWf90VSJnsVJe6ySBeTWtYQ9yPMSCbjwRix62l7LtKUFC3JJK5FNN9JeOm2AEJ/itMcH6jI0NaHY8Py9PwFgi66x6eKhJ2rNTuFfoGSdqVMv+ighv/BWlIvLnZ3Ip4bpLfHXNGT39XlIaC7qukyee+jWQX0XDVDJ9F/zUbYvcnPS2z86rHNOZizVRV3Oo+FAszvjgUxpjseqgPT+cEgpLlQTPHGLpEfcz2ljwLhgpegUFfmUvpjwcqZRm4SR22ZM73CoJ/7wP9x147vy2jyhGL1VwvsskUimD2OVY3UNQpxiIG8q0PdnCBn23LZDCOOrZF+JZDKgBUU6YDCcXX1WTYgE3EBqxEVahyJ8cA8AgSFEu/704/8i9cf7Of2OJwlWD05ZTBtWdmSw4aclbGL+fMMqFlCo7Tbpy1F6S8UHD8BU80MhpwsZw2qAHaMkRL5a42/y61tVL10NbCf67JMA+M6/kHM/+NUhz+EP1hDxQCABiRIeK2CQ8lwp7FR28IUKFQ9FoDbH2+T3YXpcLDhow8e+BFvya1NpnnzR11Mv+ihcNH2MKgBLcwPZ3yY0L+vxS6nCneRSRleANqW68SRh1sEUr7WIRZD6GXOp39JKC/DSn1twxUS9qmAMrED2olL8IhwwkVPTbjrS9Nkf0gRwY7bNG7GIBEYnhS+RSCYfskCwRDJMDu7ZxkuP3j2sfcyYCKWpyVHSUpM2ptdNXANXtPLS48lukRcVjBbOgehub2PJ9+5l2U6LHRsfL3iMjGEVyzeOkok4DT02ser8yW8yqDGrE+b+9pFMW+OqExmIqbrykvKnC4pjTHoHeKy0pE1Xg4ula07Oaz/2/PeRAuZtFYbt7JYTyjpP2hOa8JSe2CW14Rm56XpbACnv8KTPqxqyNbVc/gBmjsczt35VtAyDcDqQ6xHccMEyTrjuO5nXdtoTMsr8Jlt1UxsWhrirQPJ/zKl1tvGJ+0QNtWC2xpXi9YkhRMOD9puO5JYO8MRSxH1yiiWRTDfkXS+RDJNXrnhLRkq8XExn0pg7odZMkaMS9YASH1mR1iFxhBLUFLTt3Mzhth3cdtWphENCXPPRD56X6dpzYHfBQ9jpeW8s3/D71x9/RiAO9oqlee2WI1QRdIJ0+7//Bc684vpBx7VUF+o0NKzSn9mbFMZppr1AWCWIXKrDjVAfghSwfP1pZZ0nvVIeqyrtUUpqLtRhhGWmcgyguRe+a4ieg6ltzApPuKtq8nK0Og7uymy3vf/cYR13qpIO9+uohctvup8lR+UY1lplDKuUY6BFPXDMpYMDTeIeWLU5nnnmuYJZ0QrFIwyrZEwaVgC7tzyf2fbH88MmJRLJ9EAaVhLJMJl3SEyOcyfGpbASWY/Pa68KKWN/HCyPStwLarzyqlpKf3ayc2DHBh757LtZ92QHD/z3FRzYvYWl2xIZ8Yz+dOHZgcdwopBc8URe+4GnRaHbJafnq9MpkezntFyw/rSLCh532nqscj5zb6f4zh/61ZeZf8jGLCIE0Vcn2qM+CoZrFiIeEPskqn0l+5pq1pNWDmnv5ebLjxXhecOgfkbWsNKq6zICDADdh4Rxv/GC5Vz4sZuHddypiu0Wf6K7GgtcG5rwFqYFUUbK/Hd+BGOZymsXHZtvuDlYA07tcoQtAFSf8F5ZBcJ9pxOWsybSsauVcKiXPcaL+GNg+qduMWuJRFIYaVhJJCOk08lhKofcPKNnf3YjHQd2EoiDVVdF3OtCjVc+30gLZ71g3Xu34XLqZqX6+3jmo5fgMWHn6cLjFOs+XPgYzpxNieV71FJ9QsVw5XFn5bU3vPnyzHYoMDhPJrO/KhLmpxtqjhpg9+H9PPfQrcz/xi0AWJ7Cj+Oks+odKW0jZUgpjrBBfV2JnmBqrkFiGkPhisWxXPC2z/2q/J0cvDmTcn/dDGwl+5lfvf//AHDneESmPS4xYzdPOnbwe2nDapTqmieffyVvfeAVLr7xdwXfn+FUgmh97ym8esVJnHftj7JD8DuG1TAWmaYiMecx139wFw+9+1TCb3kX/kThUhMSiWRqIw0riWSEdB7YWXbfVG7Y194D7NjwBABK40ySHheeeOW9N96oRcTJVQkfbsN2hAZc8SRz2ky26BrLznsvAGZfd96+8WiEB3/2eTzOhFuL5ltB7kiMuAZVtQ157We869NsOHcxIHJ3imGp7kECDtOB3M+8/8Pvp+pjX8q+Fy38hVh+MWuLe8tPhHfZ4npy15T2cFmqe1hhme54krhn5Gpn6fwpb20TrlR2QWHN3a8AoA5Rd2u6cex/fY/tHzmbt3/+14Peq165HgB7wfwxHYPm2G0nXv5J3n7DL/PueU9AlFJIxae3QG/MuabjnYdYaeSsUuTko0kkkumBNKwkkhHS17637L5pw6o3AN5wkvbtGwEIzl1M0qvgTVTesApEbDoaxWQ82d2OnVYRSyQIxiDeUM2MecJjleoPYZkmu1pFjsA9H30TC799F4ozLG/UIpmI88gtN7F3xyaUWJJoYWcUWn0TMDiEKJeUqkxPwyqZNSxm5tuy1PQW9jzYQbHqbQ7DjklfTW6ttAqE5VGG5bHKLSQ7EraeKQr/zl95LC5r+oWDDoela07mwmu+W/C986/+Jr3fuZ6Lv3bXmI7hlYtWsWmdn7mLjxr0ntfvGFbJ6e2xSqtvpnry6xEqNaU9xhKJZGohDSuJZISEOg6U3ddOiplrb60Lf79FZP8uAGYuW4/lVfCOwbwkGIFQk7B+7L5eXI5Ahrc3htsGqoI0L3Dq1EQi3HnN2UTfdgWbnv4LgQO9ecfyR23uvv4iZn/pF+x65yWs2hTLhL8MxOfk0QxlWNmqG3X61QfGY0K4SHTQoRUNhd+oHlxguRTLPvN1Wls8nP6Rb5Tsm9LcGc9kOagJa3C9rWFw+c1/YsFzT7N0zcmZ8NRcVv7bxSM/+DTjdee+d8zrJF36tbu45PbCBYC9TtimnUgUfH+6kBb5cYfyRTy89TMK9JZIJFMZaVhJJCMk3ttRVr+XHr2blr+LxPxwrUZ1GFLtIqdp2dFvwPJ68Fd4XtLf20UwDmZdtVAd7I/idgyr+k7hKlJq6/H6A0Q84A7HmLlBiCm0bXoadyrrSUi5hJFGt3CxNDk2V7HQNF9NvRhDTfEJn60p0zLHSktCuGrw97ZpjZ+3/+8jBfYAzfk+h1MRZ+3J53PRPRtoaC4dJpbSVDxFfos9xos8eXwL93/v45k2NZEqqGA4HNIiHLY7/zgb36zTcvyZozq25Mjhderz2cnpbVilRX4CXfn1CAONs8ZhNBKJZDyRhpVEMkIS/T2lOwG+j3wOrzNxTdRXUROB+u0dHGwUKmmpgBePCT2d5XvASrGr9RmxUVtL2A9qJIGSEINIh6B5G5sBUb9mzcthZjt2Yv+BXbhyHAmdtRCMg3tArS1LKTy5Pu2yT/Ly2Qs55tuD80LS2KqKxypcX2uqEo9G8FgQDQ42OK26qqJCH5lV7zGKmrM92iD59zRP/fB6GkJg/e3vmTY1aZMsoz5WORx94484lOOoU2uLeO0kE5JAtfN7TaP7uBDpRaL6TmFhvXJsFRtPqOGkt02vgtYSiUQaVhLJsEk5c0oz1Feyb7pmVBpXk8g/WnDAzoR+KfWNAOzc+FTFxti1bwcAWm0DEb8LT8RESeTH3lU1LwBg95z8SXKy/WCex6prhjAEfL35E28tWXimr6gq7/jegyzQjyk+QEfRLNTbXsanmRqki4cmc4oqb18s4iXtIewUt1Yk5rJC2B6RIJKWf8+lceM+AOL1WTU/T8LGrJBhtXTNycSuzIb++RqaK3JcyZGhyvGm2uYY1OGbRKQNq0bnT0LwlNO57DfPlF0eQSKRTB2kYSWRDBPTuWvsSOmimF2H8wUuZh77xsz2rPOENLlvtjBwDm4rnMcwEqJOmKJWXUfC58Ibt1ET+fksDfOXA/D6e/7JxhOyEwBXdw+eHDGN2DzhManuyzfMPKMR3EgbVj2dIz/GJKO3S3gkU7XZnKmk1xEUSRX/LhcefRoAPWsXjs3AvMJwe/jrH85rfuIP/5Op2ebOkdv3xcH0Vi6vx1c3M7NdnVPnSjLxqaoVC0Wu5DRMmAQO7tnGH77+/oxyYprqmWOr1CiRSCYu0rCSSIZJKn3XREsXxewdoBz4hos/ltk+9W0fAaBpyWoA+tvKl28vRTwk4v281fWYHoV5h2yW7klljEKAecvWAkIy/aKfP8bmy48loYIWiomcKoeqo44GoD7f+TY6wQ3HSxLpKy9PbSrQc3AXAG7HQwmQmCeMCndz8VyMVSeexYxH/8wlN90/JuNKqzjqj+bXZTvc+kJme/UrUW5/lyge64uDVcHCp1UN2QT/BkelUjI50Dxe8UyZpqGAj377P2n59ZMEBjwL5XUskUxfpGElkQyDTX/7FT5n8d4VK21Z9HUezHutqCo9N11Lx9c/llHzWrjmFACs9kMVG2cyLKwgf20Tlpa9zROOo2HbEoWm2Ysz7ZrHy8U3/o7d8xVWGAlqc5xxTY4B5h0wd9p/0YkjHp8rY1h1l+g5dejeuw0A34w5mbYLvno7Oz56Hm//71uH3Ldp9uIxU3+78DM/ZW+za5BaoRXpByDsFCZe+0KIcKgXfwJS/mFUKy7Bqtedl9mes3h1xY4rOTJYyuiLFE9W3B1dBdvldSyRTF/GVqdVIplirP7RHzPb7kTpVdpY7+BQt5MuuCrv9az5KzjkAXdP6ZytcrHCYlIcrG8m5dUAYQQGEpD85U2ce1xh5bW5134R5aNfyGubs2w9aTtrxwI3p935BFW1DbSMYnxuj5iYR8sUAJkKhA8Kj1DN3GXAQ4DwFl7wn98ex1GB1x+ge14VMzeG8trtmHBbRr0QdOq/HtpriI1AgErhD9bw6hUnoTz9HCsaZ1fsuJIjg6mAy5qehpWnL1sYOewVIj8AtfI6lkimLdJjJZGMEHcZeQXRAobVQBRVpT8AarhyxaxSUTEprmpsJuXNVnPd9qE3sfbk84sq0B17xiWZ7QNfuIrg/bcxd/GqTAihpbmpqoBym9sr3CMJxysyHUh2CaGO2cvWjPNIBmPXVOFNwuG2Hdm2uLgec4U1OvZtBcBdXVPR87/9hl/y1vtfGfOaTJLKYyrgLlCPbDoQ6M8uroWqsu3yOpZIpi/SsJJIymSgNLhShmGV7C8v1C2pgZKs4OQkJlZSG5vnYzuG1f4Z8OZPfL/krm2OlsApb7uaBcvXCcPPCROzPJV5ZKg+x7AK95boOYXo7SUFLFgxhFriOOGuE+pue7Y8l210DCtXjq5Gz36RB6jVSFl0iUB4rMaoFsAEpzqU/dwdc4tU/pZIJNMKaVhJJGVgmSaPnp7vaSjHEDLDoZJ9AJKaC9Ws4OQkcCIvvQAAIABJREFUFicF1DbOweUXf/CHkvTOpeXXd9Nz07V4/dlwr4izaWlKRYan+MQBk9HSyopTBSUcJewXoW8757kITaB5mLdJ5H117tqSbUwkMd2g5Fzmvds3AeBvmIlEAiLHajp6rKLhvrxc1NSSMVLtlEgkkwrpr5ZIyqC7fS9zD+e3KWUYQumQvFKYqqtoXaiR4EokiHuEKIU7EATAdpVnWc1dfBRzFx+V1xbzu4EUKa0yjwzNLyTHrdj0May0cJKwY6Ce9/Cr4zuYAdTMFUIm/W2vZdrciSRxDTqaFOpDwjtrtYm6VlVSTlriYCngruSi0CRh28uPoeV8bLfXT89N12K75Hq1RDKdkU8AiaQM9u/MToT7AnCgCbQyamLmGlZRT/F+luauqGGlJEwSjiK2EhBGzGiOHqkXYhO2WhmPlScgEhLMWHmG51TAG7WI+itTWLfSrD/jMhIKmEbWY+V2rqFjf3QHG04Vkuj+QyJ0s37WovEYpmQCYimuaemxOtD6fN5rxRfgpAuu4uTzrxynEUkkkomANKwkkjJI55YA9H/qSvrqVdQyDCHbyXXy/uHXLPjrn4v2E4bV6MeZxp2wMoaVp7pOjGUUc3p72RIA/B3lhTaWwlclChKn4qVrgU0VfDGbhK8yhmmlqZ8xl7Y5bhr3ZH9fxUyR1IQHc9FFQslyxWsW7XWw4ug3FjuUZJphKeCefnYVfU75hDQ185aN00gkEslEQhpWEkkZhA5nC/2ueN15WJqCp4yamK54AtMNC1cck1c3aiCWplAXgo1PVqYIrJoUk2LICkUwCsNq3SX/CUBsVWUmD76gMPZS8ViJnlMHXwxM38SNvu5d3MjcdnjspBb2bNuAksheQ3NXHJvpt39VY1FVScn0I6W4UKaheIXVnl+jcP6ak8dpJBKJZCIhDSuJpAxi3aJ4b+vHL2X+0tWkyvQwpfNUSsnvpjwKagq0qz5dieGiJm2SmrCkUk6Yzmg8Vvr6N7DohWe47Fv3VmJ4+GuECp2dqJzE/EQnEAfLP0Q86DjTePKbAJjZDS8/8AtU08ZUxUUzZ+HKTD914ZJxGZ9kYmKpLhQTWp97mIN7thXt9+AZR3HH5y8/giMbW9zdfXnh3UuOGnnBdIlEMnUo27DSdX2Vrusn6bp+oq7rf9d1/YyxHJhEMpEwe0Uh20DTXABSmoanDMNKjSaJ+kr3sz3Zv9B93YeH6FmaOz7zNpoPp0h6xKR4xckXAND/htHJfPuDlatdFKhpBMBOJCp2zIlMd3sbHhNSwQkkBTiAUy+5JrMdO7gXNWljOsZ57sJA/dLVR3xskomL6XHjjdtwxX+y5fI3D3o/HOrljncez8I2mzV3bhiHEY4NaiRBf06dbOnFlUgkMDyP1U+AOPA54Abgi2MyIolkAmL39wFQM0NI6tpeDa8JyRIel6ruJH21pW8z26tltjePIhxw8zMPsea+LQTikAiIYy5fdwotW1q5+Mbfjfi4laa6rgkAO1nBxLIJzP7XNgPgqqoe55EUxx+sgd/+AIDU4cPCY6UNvnaXHnP6kR6aZAJjelW8zvpIc9fg9//6w0+x5sWpVwhcTaZITFwHtEQiGSeGY1glgc2AxzCMp5FS7ZLpRDiK6YbaBlHvB8fD1N2+b8jdGnptIvVlrGR6s26tg5ueyW7v2caDZxzF03/5dVnD3HzfTzPbZnDirqBW1QrDypUsI1FtCtDVJkKkVCcEcqLScvyZpFyw7l9dzO6AVAHDav7y9eMwMslEJeXTqBlC3NOtTU3rQ02IcOs9113GoS9fPd7DkUgkE4ThGFY2cAvwZ13XLwWmTwEaybRHicSJ+MCdDonyCqOlt+Ng0X12tT5PMAbmjIaSx3dpWY9VfM/2zPaTv/oyC9tsDv7PTeWNc0t2X7u6qqx9xgPN4yWpAObQhtXmZx5i745Nwz7+bR94A3d+8Z0jHF3lCR1uA8BXP2OcR1Ka/pxoRTPHk7rp0vVseF1dyXxByfQi5Rs61tmKTD1vFYDmhMqefdWNnOaI+0gkEslwDKvLgF8A3wfagUvHZEQSyQTimQd/Q0/nAbRokkjOhNPlKO31dxU3rHa8+AgA3jkLS58oJ9fIt6c9ex5VTGxddmnVLcs0mb0nG5rorpvY3pGkAu4ShpX7vdew77JLhn3sdU+0s/r2l0Y6tIoT7RTXSaBpzjiPpDSub9yQ2U411ma2L/nSrVz+q3+Nx5AkExhXIDDk+1Y4v0TDaHNIJwrCsJqY5RMkEsn4UdKw0nVd0XXdA/wU+BugAU8Dd4/x2CSScaVt56vUfPzr/P2D5+KLWEQD2dtFcQrc9vcUnyREnQmE18knGop0vSsAfbuZCf1LG1YD68T0dB7gz2cexV9/cWOm7bm//Z76nMVhb+PskucdT0wVXKZVsl/dFFjwThzYA8CS9RO//tMJZ707s63NmT+OI5FMBpSqoUVtUhER3NI2U7x+bdPUMM49SbA8UlhZIpHkU85T4X2AAZzr/G8ArwB7xnBcEsm4s2ezmADMaIsTiNjEA9nVSdUxrKK9nUX3TzqCF77axpLnqlp1NACvrhIhhunQP9sSHh1XKt9j9ez9v2DxPhvt/27PtO16SGyHHM+ar7Z0COJ4YqrgNotXFj3ctuMIjmZs0Q51EvLDopbjxnsow6Jh6drxHoJkglMybzAiioD3nn0SAF17i0uyTya8CUh5ZFisRCLJp6RhZRjGzwzDWAx81DCMJYZhLDYMY5lhGP8+9sOTSMaPDkfJLe51URWBZI4YhBYQ6m6JcG/R/c2ICIEJlGFYXXjNd/Hc+QvefvfLtM0ET1wYHFZUrPa6BnqstgnZ4nStKgDftr101cBrp4lCxAvWnVryvOOJqQxtWO3Z8lxm2yoRMliMke5XSfYYL7K8NUZX/SgKiR1hEs58cdnxZ43vQCQTHl/d0M83VyxOTIOqWQsA6D+UvyZ7//c+XrY4z0TBMk1hWOXkIEokEgkML8fqIV3Xf6fr+l91Xf+AruuyGp5kShPZvwsASwV/AqyqbC6Bt1qs0iYH5A/kkooKqaxgw6yyzrd0zckARANutISdd4yBOVb23r3i/Zw7uK7LpH2myiX/7480P/YQLcefWdZ5xwvhsSqeO3Zoa7bmzcG9W8s+bjTcl9nev3vLyAZXQf715Q/jMSFSM3kmYe2fvoINJ9YxX9askpQg2JAfcjxwMUOJJ4l5oXaOWPCJdR3m0dtu5tmjWzBefpxlP/4rtZ/4xhEbbyUI9baj2GREjCQSiSTNcAyr/wV+CXiAx4HvjcmIJJIJgt3ZAYDbmSfkikGkvVBWpLhhZcdECEzdMHOdTI+ClhQGhx0XuVcDc6x8HSLxaFGbzZ9/8lnRFgfTr6KoKg3NEz83xlJcuK3CHqvDbTtY8r17M6/TYZnlEOrJin+0bX1h5AOsEFq/EBSZd/V14zyS8jnzPZ/l8l9PjVwYydgyY+HKvNfhUH4xKyVhEffAzIUtAFh9PXTf9muqo/DSb755xMZZSboOiYUt/GVUf5dIJNOK4RhWPsMwHgFswzAMIFZqB4lkMqP0CuOlpl8YOZ6mrOcpUC8ysdMepUKkjaKGWYuGdV7Lo2QKbtpOAeKBoYBVoazoQ9Wv7gGEYWV5J0/NGEsBpUik3q4BhlT79o1lH7c/J++texiernK4+8vv5fG7fjisfZSkxf4Z+aIQEslUoeX4M9n6gTPZcKooJdB1MD/UT4tbJDwu5i5eTQpwhULYbhEW6zrccaSHWxF620X5BJdvaEVEiUQy/RiOYRXXdf1sQNF1/XVIw0oyxdEiSQBqnYpt83IU3arrxCQiFY8W3d8VT2K6oWqYIhKWV80YVq64GINi5YfM1fXB3mYxOQnVuOnv7cJrgu2fPKEpluIa9LnS9Ozfmfc6urd8IYv+HI9VaPc27r1wDbdf++aRDXIAR/3+WWZ87n/Y1fp82fto8RQJz+TJr5JIhstbPvUD3A3Ci9/T0ZZpf/7vt7F0d4qkx4XXHxC1ACOxjGHl7RELU4lJpgHR37kfyIoYSSQSSZrhGFYfBK4EmoBrgQ+PyYgkkgmCJ5Z1EyVUWHvqWzKv62eKUDs7Fh+0Xxp3IkliBGk1tteDPwHJRBxXUhhWnmT2/b07NhGIQ9eq2eyc58KVsjm0R+QS2SVqykwkUmpxwyrirAjv+fQ7SCrg2n+wbCGKaF/WY1Xzr03o20zqn98+xB7lkXv+XRv/WfZ+3rhNwitlmSVTG7c/CEAkp07V9nt/CUBooTC6In7QoklsRRhWNT3insotSj0ZiHSLxRs1WFuip0QimW4M56+9bRjG5YZhrDIM42LgdWM1KIlkIpBW5gM43ABef9ZoqW2cLcJa4okCewrcCZP4SPQKfCJu/3DbDgIdwl3my7Hfdrz4KADarLmYmhstCV0HdgOgVFWP4ITjg6W4i4YCJrpFiFDDvOXENVjzUpg7Pn5OWceN92fFK+p6HRGQCtg1od6sJywRLb+4li8Opm+SLclLJMNEdepZ5RZNT4dDX3CTyJeM+Vx4oha2S9yQTd2iX3zyONoBCB/eB0D17DKKv0skkmnFcKYbd+m63qjreq2u67cC7xmrQUkkE4FcYybUkJ+7pKgqCQ1ciSTFUMwUyREYVi6/WL598rPvYdkuYdxVR4VsN0DP7lbRtmA5lseNlrQJOeE3WnWJmjITiJTqQjPh1v84kwMD1PtSfULGvnnxUVQ5QcfrH24ry2sV6+/JbKfDONVkcfXBcunryq7EJx0Z/HLwxUR4p0QylamdtwyAUE79uYHh0NGgQiCcwmWL55rmpIoqBeqEH9yzLSsSMcFItB8AYPby9eM8EolEMtEYjmF1DXAf8E/gb4ZhnDc2Q5JIJgb+HMMqUTs4xC6hgXuIib6SSI0oFNDlxO3P254/eX/ZqfViOh6ZQH0zlqbQ3AWHHv8TAJ4yamZNFGzVTWOfMJh6zn4b/7jzBwDcdvUZ1L3aRsoFsxeuZMuVb6BLLIaz8cn7Sx43WUCp0VPc/i2bUNehzLYVLy5akks8GiGQgNQkyn2TSEbC4nVvACB5cH+mzR1PEs9Zk0pUeagOC6XAXLQCj9Ftl7yZ3WdO0Dpq3T2kXLDoqBPGeyQSiWSCUdKw0nX9LF3XzwLqgL8DIWCf0yaRTEni0QiBHMPK1TTYYEmq4E4UWGp1UJM2pjZ80QKtyonbH+BkiWx+CcgKZvir6kl5hCdk/T9E+E2woXnY5xsvUqqS97r58z/ito+fw7pH9rNwv03YB5rHy9s+87/0vf8iAPY8/3DJ45oFlBorYViFe7MeKytWXLQklz995z/FxiTKfZNIRsL85euJa+Dq6s60Kcn8cOhUbTXBGHgi+ZaUVuD+bOoFXxIe/s3XxmrII0YNRQgFwB+sGe+hSCSSCUY5Hqt3OP8uBxYARs5riWRKcmjftrzX3tkLBvVJaqAkC9dhgpEbVp4aETZTnWMf7JsJdTtE3lHKyVsI1jWS8ua7xGpnTvz6VWnsAYYVwJoHd2e2IzkJ7frrhXBIZKdR8rhmbHCYXiUMq1hfNsTQipXnsWr5zVNiQ5WhgJKpjaKq9FSDtzcrGKwkrDyvfVo5sLYn/7npS8DdF63n0dtuHnTcLuOlsRnwKPCGk/QHx3sUEolkIlLSsDIM40rDMK4EetPbzr/3HYHxSSTjQvue/PpH1bMXDeqT1FyoRQyrjU/9ieZOm1jt8EPA0l4n1Tm0sVylc0UT8/fb7HjlKXCUAoN1M7EH1K2au2LyxPzbA4yN1z725rwHUsyXNUqXHHUCIT9oBzspRSEJfG+CslUFixHrz67Ep5LF1SALsfDMi0d1bolkMtBf7aa6V9xnd3/pPejbTJI5i0v+WWLhp6k3fz81BUe9Gif0a6EiGA5lO1i93Uw0/GGLSHDwwpBEIpEMJ8dqpa7rdWM2EolkAtF7SHhOtuhiuXXNaW8f1MfUXKhJm9uvv2hQuMqrt30fjwmLrrpu2OeeseiozPYrRwd56/2voC1cghvYv+0lSAglwtqGmbgcBUEAY5nKzLlLh32+8cLWsobVxmOrOf/qb7J7TnYSlvDlP56661wEeourMGaOG88vsdfvEw+63s4Doxpvoj872bPjpQ0ryzRJKLDx+BpOuuCqUZ1bIpkM9C+fw5x2+MtPb+CoW54DwMyp4TZTP2bI/aMzRH7pwV2bM22uUPlCMaPBMk3u+daH6cuRix/In3/yWe668d00dkOszle0n0Qimb4MJz7lKKBT1/V2RPaHbRjGnEIddV3XgF8CiwAv8BVgH3A/kI6x+jHQC1zvvHYBrwdWA/6BfQ3DuF3X9S8C5wMm8HHDMJ4dxvglkrKJOJLBnrPPpeW+bxbsk/C6qe0yWXtvK9zbCu/5bM4BRKjY6lPOH/a5F648jrQWVqpexPC7PeKPeCIahkSSFBCsbgC3WDV9bYGbs29/ctjnGlc82RihN918NwDu97wTvvF7AJL+/MdTpEal8VCSbRueZPailqKFl1MDDKuuehdVB2w6D+6hoXnkoZJmjsR6KlnawGvfvxOPBXa1LCIqmR6cecNPaX/4PHr/9Y9MW26pgxPPeQ93rvseqzcUDqW1XcII62jbTjp7SQ3HCvatNI/d8V1W/vIxHnn8DN76wCsF+yz+7j3ZFwsmT9i1RCI5cpRtWBmGMZyCDe8GOg3DuELX9UbgJeBLwM2GYXx7QN8HAXRdvw540jCMVl3X3z+wr67rxwBvBE4E5gN3A8cPY0wSSdkkI2IS7R1CvjwZ1Ai2ZcPLLNNEccLbXLEECXVkyc25BoMyY5b43ysMKzMWwZU0RX6XqmInhOck3BSYdInULi0bxljbOBuAs/79c9zx4L2seTmM6c8Pc0zU+KnbnsS87P08pGtcdN/GwgceYPT012lwIEFfx/7C/cskVxQjXbh5KPZte4Eg4K6bPBL4EsloaJq9mF0+WPevrkyblshX4Wn5xFfg3z9ZcH+XE67be3B3xrDSohVIkCyDvrbtzAb07eWFDDeuPWlsBySRSCYlZRtWuq6/DrgS0BDepTmGYZxdpPudwF05r03gWHEY/S0IT9THDcMIOceeB1xB1lAa1BfhzXrIMAwb2KPruqrr+gzDMNqRSCqM5RhWvprCXhEAK+AnGM3m82x84j6O/jcRMuhOJIl5iu1ZPtXzRGif4nisup/9B+ue7yPkCDu4YsKwSqsDTibcvqw6hZKTb2WrYok7FfDn9bcb69EsITW/YusQk63+CKY7m6OWbKoF2tn38uOsPOEsgtW1IxpvKlewogzDqnP3VoKA1zEaJZLpQCgIwRwnkzaghtzq153Lbef9EM+OvbQY+feR2xQqq5EOEbYbV8EbLS4QVEnindlyCl2H9pb0bh9z1rvGekgSiWQSMpzZ2PeB7wAXA68ARaeNhmH0A+i6Xo0wsD6HCAn8uWEYL+i6fgPwReBaZ5dPAt8xDCOduPBsgb49QG7meggQM6YBtLa2DuNjVYZYLDYu55WMDVEnebovksj7XXN/56Tfl5ekuPWFx/HNEvlR7rhJQqvAtVg7l9bWViIJsYq67jHxxz/lEseec+kn2Lr/CzRf9olJd/25mhcBrwL535NtiYmUNaDdqmkCRO7bUN+tp7uf7hqY4Yj4mY0zgXZW/OxhHvnbIyz7zl0F98ul0P2cCGXrY6USiZLfd8cugwWA6a+ddL/NdEA+s8cG20mp2rTay+pNcbyJwffqug/cxPP/+ykwdua1u5IWra2thA6Jgucd9eCP2qP6ncr9nZOdWS/bkw/dxbLjzinat7sK6OjjYEffiMclqSzyfpZMFIZjWPUYhnGrrutnGYZxo67rjw3VWdf1+cA9wI8Mw7hF1/U6wzDSesX3AD9w+rmBC4Abcna/p0Df+4DqnD7VCGNrEC0tLcP4WJWhtbV1XM4rGRs22GJyv3TlavSc3zX3d97UNBPIhpet/flDbHWleMunfsC2ZIqEZ+TXYvrPw6nnvoNgdS0HXsr3emiWOHZLSwucddGIzjHe1AU+QM9P/gzkf0/p7AbV681rP7TqOOAFABIqHFPku93bZxGqcTPDkXSesWwVIJLhl+1KMauphvoZc4ccW6H7+WU7W7NMseySv+1GJydr+boT5bNhAiKf2WNDh+OESi1bApta8SYKPwdfbZwB7GTrUoX5ey00M3tfbX9lOwkVemd4WfBafFS/U6nfua/7MDX1M9mYE33gDh0ctE841MseIOIB/7e/Jq+dCcZ43c8vvPDCET+nZGIzHFVAW9f1VUBA13UdmFWso67rzcBDwGcMw/il0/xXXdfTZcrPID1DEmIVWwzDyNVILtT3SeBsXdfduq4vANyGYXQMY/wSSfk4Agg1DUUvc3yNg4vxNt0mCtiqCZukZ/g1rNKk1fHSYWuaP79oijY65fAJweyFK4fuoOTLGS9Z/4bMdtLRvdj09F/oOrQ3r19tn0201kO7o2HatHh13vt//cylJcfW27GPP/34v/IbHTXGqAdcZvHC0GnssDCsZs4v8TklkimE6jybFrz+fHbOd9N2xZkF+3nrZwAQnV3PMRtbOdwIbjPFwT3bWLYrRevxDSTrq6iKQTQ8Np6hx+/6IW0nvZF7vvVh1HBW6TOyf9egvtte/of4/8wlHP3Gt43JeCQSyeRnOB6rTwKrECGBtwA/GaLvZ4F64PO6rn8+Z//v6rqeAA4CH3TadeC1Aft/BPhhbl/DMPp0XX8C+BfCIPzoMMYukQyPhFh2rWkonh9TPWvRoDZfAvp7uwhEUoRqhrNukc+Jt/+N3o6sPLg3WJ33vlZ6Xj8p2HDOIlw+H7nrjEdf/z023ng1p1/3w7y+c5euZaMGviSYqiMW8u+f5KmFbi74q/BIdR3aS00EkvU1rPj2HYS6D7N6xdG8xhcAONQAy17ooru9bUiv1d7vXsfqzXGeW7qW4896BwCuRBLTDXEN3FYZP0A0RsoFM+YsHtZ3IpFMZvaduxbffRtZdcqF1AxRZiCQzj10avGZigvFtDmwcxM+wNU8EzsWBTr5y/c+wUWf/UXFx3r41WeZAQT/9Dhxv4tDDdDcBVZnfobBbddeyLoHtgOg1jVWfBwSiWTqMBxVwM2k42mEuMRQfa8Brinw1skF+t6JELvIbXuxSN8bgRvLGrBEMhqcSfRQQgdNC/VBbYE4/POi17OwC7qbRl5Asn7G3LyJv8dfPUTvycvl3/3LoLbl605h+T0bBrUrqkpPNczqgqTqYtuGxwFYujub3H5ojwGAq6aGWQuWM2vB8rxjdF14Cs2/fpJHf/5FLvqvnxcdV6BPGNb7Xn4sY1i5kyZJFSwFXGbphHp3NE7Umy/MIZFMdS75yu2iwEoJ6tMLU47iqaUKw6pr3zbmAJ66GVixMLCblt88xVPr/o+Tz7+yomNNq6rOP2RzoMmmr1ahLmTh6uvn0dtu5vD9t+I/7qSMUQWgBUcmfiORSKYHJf/i67qeArqAtIZxOr6paB0riWSy4zZNEiXujpnzV+SpqaRZ2CZUsGxl5KGAA/FX1XJktLEmNuFqN3SlsN2w68VHWQh059ic/d3tVAFur7/g/qvOfQ+pXz9Jor1wsWDj5cepqZ9JtEoFEsy64zEOv2sHM+cuxZW0SKjCW+Y27YL756LGk0S9w/+MEsl0YO2pb+HOc3/BCe//IgCWCt4ohA/vAyDQNJtkTu243ALdlcLqz4YYzu6ADcuqibT3oMQSdN75G9ZujtOx/W8AbDipAZdpctZ7ri92OIlEIinLY3UtcC6wA/i9YRhPjO2QJJLxx5WwSJa4OxqbFxY0rNJ4+yuXCOUP1BCu2NEmL+GmIOwOoVg2nTuEAz1UlTVgo32dVAFKIJC3X993/4tDrc9zxtJ17AHoK5yzkbr8Q+yqAnuhsIjq+uGfv/4aF332F7iTlghBVMBtlTZz1ZhFXBpWEklBFFXl8u/8OfPaUt2olkms6zAA1bMXYUazTz0zXrio8GiwI/lPVW25Tmz7M2gxMyPz3uTYcyvf92nWn/qWio9BIpFMLUomgRiGcbNhGG9CSK2fpev633Vd/7IjYCGRTEkU08oIJBTtUyLEq6q/cj6mQI0sMgvwppvvZuc8N6oJ9iEhPR8NZkMuY/3dAKi+/NDJE895D2/+xPcJVtcS8YI7HKUYdf2gJrI5VKmEEDJRkimSmpMLYpX2WHkSKRLekefZSSTTiZQq7murT4j9zlq8ihk5AjfxcKjYriPGHYmTconyFQDL/+0S4l4XnliKpq7sPW66QT/m3yp+folEMvUo+6++Ifg88F5gBTA4CUIimSK4kynMUabGHHz9isoMBvBXFS9UPJ1oaJ5PtEZDM0HrFavNrhwbJx0upAWL56SF/aBGhy7wq8VT9DlOLysmjDDFsjFVF5YK7nIMq7gtDSuJpExSigvVBFcoRAqYu3g181cck3nfjFReGVCJJQgFoPqPt3Hovz/E2pPPJ+FzU99jE4xlDa7eKvAHayp+folEMvUoa+qo63oDcKnzD+B2hHKfRDIlUcwUpjryHCnjqjdy2XVDCWcOD1+O3PqGkxuYeebbmK5VVFKaGy0J3rAwjnLD8pIRkZPhra4run/M58ITHTpM05Ow6Q9CTSSb4K4kbUxVTAA9sdKGlTcOpnfkAiYSyXQipSmoFrgjMaI+8PoDeP0Bti1WWL7TwoxVPhhaiVvEvLBg+ToWLF8HgOlTqQ0Lj3Vbs4v5B216a+UCiUQiKY+STwtd1/8EPAo0AR8AzgH+D+gfaj+JZDKjmPaoPFY185aX7jQMcsMO13zoi5z+zmsrevzJREpV0UwIhIVB5c6JuLQcw8pfXTx0Mu534y1gGFlm1tjyxG2ifufx6NSvUk0bS3Vham7UMjxW/jikfCXiSSUSCQC2quAxQYskCedozzRf82kAUtHi4bsjRYtbxL35C2imz5PZ7jp6EQDqZRdX/NwSiWRqUs5UtdrkAAAgAElEQVTUcRVgA1cB73PaXE7bkjEal0QyrqgmxH3le6x2zXWxqC072W4qVfx2FFQ3DC5MPJ2wPRq+pFDxAvLynayYSHD31zYV3T/hV6nvjA9qD/Vma9f4EtAZFMqAJIVnTDVtIlVKxmM2FNFwH/4EpHy+Mj+VRDK9sTUR4usPm0QC2WdvsE4UEk7FKm9YeeI2cX/+c94O+ACRz3X6tT/A94VqWupnVvzcEolkalLSsDIMY9FQ7+u6/hbDMO6r2IgkkgmAatpE1PLDuE656x9see4hqj/2VQDmL18/VkOjpmF6/5G3tfzHljsnqs+OC6GJqrri35EZ8FAViYsCwzmewFBPVuPRFwcz6CVFIlMsWjVFgr2lKiUNq/Z9Tt2bQGHZd4lEko+tKbhtqA7ZHJ6d9fRW1c4gSjYk955vfBAzEuKSL906qvMlE3FqQzb7Gj35bwSDgFhkmTl36ajOIZFIph+VCBwuVAhYIpnUeBMil6cU7U4qT7C6gfrmxZn23OK+laa6dsaYHXsy4I7le5uUVE5YXly8V9s0q+j+dlMDXhPuvuESbnvfKdz2kdMBCPcczvTxmmD7vCRVcDkhgppjWNkeEbI0FO37doixVk3Nws4SSaVx1YjCuw19kKjK1imobZoNZA2rlb96gtV3vDzq8z1x9w+piYC1cllee92q4wBIyvRIiUQyAkapewZkCwZLJFOCtp2v0tAHe9YXF0BI0/zjH7P1iT/Soqo0L1hO2xEYXymZ96mO1idCgiwX7J/pwpPMlQUU+VC1DbOL7u+btwTYzZr7tmTa+nu7CPd0klv9SpkzD1PtwJUUiexaUiTYpzwa3iSDPF659LXvJQCoUiZfIimLpnWnwAPC02vXZhckauqbOQjMe+kQHQd2Vux8h5/6K7OBdZf8R177OR/4Mnfu24EarGFtxc4mkUimC5XwWJXO4pZIJhEvP/hbAAJ66T+r+tGnceHHbgagRsbhHxHmX309m1d5WfDUY/Q3aChOyalNT/+Fdf8UiVdef6Do/rNWnTio7dHLTqV7/47885x0DkkV3KY4gccUYYi2puG2IRzqGnSc5/9+G+FQL+HOA2IcddPbuyiRlMtx5703s+2uz+ZIphcvmnrhkU9eUrkTOmIYC3Ik3dNc8t+38LZPV07VVSKRTB+khqhEMoDQqy8AsPKMCv4Rl1SM4896Bxff/TI19TNJuV0Zw2rzj24sa/+VJ5zFwNLNy3al6H7gzry2Y8+4HFMBt5kiHo2gWUI4w+UVYUo9HQfy+t/+6bcS/Oh/c/815xH556MABKe50IhEUi51jbPZ56xNNR51XME+WiQxqnMYL/2De2+6WrywLCyXrE8lkUgqiwwFlEgGEgphuuGo1ScPe9e+AOyfr03bGlNHGlt1ozqGle33A6WLiNY1zmarH6oHiIzZruyjbMtylRaPF1MVhtWDP7qOFQAeDZdXKP31de4Hp/YNgGfLawCseyrryaqdtXBEn0simY68/i/P8NqmpznjxLMKvm+po1sL3v2Jq9EP2nS8ayeupElyekdVSySSMaDsp5Su6+8f8PpjzubNFR2RRDLOKNEEUe/IcplOfLGVt923cQxGJSmErSgoFtz91fex8IVDZe+XGKK81IYz5rDsqyIc1FRdKJbNip89It70eHH7hNJf6wO/4vl1LRgv/QMQRaUH0lThemYSyVTGH6xhVRGjaiC5defKpSYkMhe2PvcwLtPClAIVEomkwpScOeq6/g7gzcC/6bp+utOsAKuB7xuGcf8Yjk8iOeIocZOYt3Q/yfhjq24CCTjqt//KtKXK8KEnHIXlrUsVVuwQLi81JjTUZ5x8NqomLgBLFcWiM+eLRXHPEMIYix/YSDAOrz50K/rRp+X1SzNrvjSsJJJK4evP1jmIhvuoqm0Y1v4RP9SG4fDWl3CbqVEVgZdIJJJClPNYeRA4ADQC/+u0pYAdRfeQSCYxWtwi7p14Ea7q7T8nlSpRQGmaYSuDH2Gz//FQyf2SmqhxHq/2AWEAtJhYAfdWZdUgTcWFlqs66PWhBYViWVCUzEL1BwEKGlaaR1roEkmlqO7LeoW7O/YP27CK+dxAiljbLjxWSnqsJBJJxSkZCmgYRrdhGP8AvmMYxmPOvyeAi8Z8dBLJOKDFUyQmoGG1fN0p6EefNt7DmFgUKOLc0Dy/5G4p58ln1WTVA71RYRj5q7IS6SnVhWrapFywc76bt37tDjwDkt3NqDDMFNNmx0I33d/+NK++6wQ2HieT4iWSSrDxrSJrtT4nhTK37ly5mJp4rrvaO3GZtjSsJBJJxRmOI/xTuq6fAnwf+DnQMTZDkkjGF2/cpjcg/+JOCjTxCGubCXOHMc+y3cJjlRaiAPDFhWEVyKk9ZaluAlELtw19y2fhD9bgqcqvb2Y5hpVqQtjj5uTzr4TzrxzhB5JIJAO57Bt/4L5X1rBiRzavqn8EhpXqeJW1/hiKlcKSoYASiaTCDEdi503AAmAP8KBhGO8bmyFJJOOLNw6mT/7FnRQ4oYD9NSrbFitsOHdxWbvZjkPS5fOz/SNnAzCjR7QFc2pPpVQ3Nf1O32AVAIG6bI0dgFRCxARq5uhVyyQSSWGSvvzFrmhf97CPoTphvVrcwm3aWMrEi0yQSCSTm+HMAr4CLAfeC3zIEbWQSKYc/jhYviFk4yQTjmTQw5v/sonLv/PnsvrnGlYXXvPdvPcaZy3KbKc0d+YhqdYIT1Vt09y8/v6XtvDPE1rwJSBVIDRRIpGMHsvnyXsdDw1tWL302D3c9fb1xMLZ+MF0vqQnlkKxpGElkUgqz3AMKw041TCM24HTgIvHZEQSyThy+3VvwZcE2+sp3Vky7rh6xaTJqgkOa7+0YZUWnkiz6bKjCVbXZl5bQX9m21svPFkLVh6ft8+ynRaNfULMwtakYSWRjAlz5+S9jIdDQ3Y37vkpqzbH2fvKo5k2j6P9443bKBYyFFAikVSckoaVruuzAQzD+LRhGKaz3Q38vzEem0RyRLFMk7X3bxUvqqvHdzCSslD7RRieq66+RM8BOMWAXe58Q6hq7oBQwtqskRVoFDLruYbXQFKanKlJJGNB87Gn5b02IyWKgTuLLon+nkyTJyH+98dAsWxSigzdlUgklaWcp8rv0xu6rv82p/1rlR+ORDJ+vPDIbQC82uLh7Bt+Ps6jkZTDoo/ewI6Fbl5/9deHtV/aY2WnrLz2ujlL8l5r9dl8qvoB7xVEGlYSyZhw/Hn5gjBmLDxkf6U/KvrlGlaOxyoQE2IzKVWGAkokkspSziwg98kzr0i7RDJpuf26t2CHQ+Dxsg5Y8JHrqZ8xt+R+kvHn2DMugTMuGfZ+tuOxsi0zr33mwpa81/6Z84DnAFh53BmlD+yRuXkSyVgQrK5lz3WXYcajLPn+H7EikSH7eyLCPWVFhfpMONSLx4KoB/wJ4bWSHiuJRFJpRvNUGVwNUyKZhKy9fyvrHjnAosd30VELx5w+/Im6ZHLR/B/Xsmuui1Pe+7m89jlLVue9rpu/PLPtD5ZRl8ojc/MkkrHi7KtuZNGxYoHDjg1tWPkiopiw7RhWXYf3AtDrRHlXR4Xqp0QikVSScp4qdpFtiWRK0CNUtKmNwKH5vv/f3p3HSVbW9x7/dHdVV+89PSszOOz4MOyrCqjghhJUNMZojMYtRuMSiMlVo3JRr+aaRI1b0IhyE03cwIuKXgVDBBEVcBxZhpmHYR0GmK17pvetlvvHqanunumZ6Z7u6q0+79fLF2d5zjm/4mna+vZzznOoSXk710L3rIvfyMU3389hRxw/Zvve4elpx5027vEDxYGproax26tq6/ZtLGnaHH7cKQAUug78jFVDX/J1pTCY3BL4yLpbAOhrHPnaU3DEStI0m8hvlWeHEJ4MITwFnD9q+bwy1ybNiPyo/wqyyyc5CYIWtJVHnwTA+pPHBqb+T7yXuy86gsG9Bqiq0o5YSeW0aMlK+jJQ3X3gEavm4u6qgWSCmyd//C3yVZB5wxvKXaKkCnbQP83HGA/4TSGE8MwY4x3TV5JUfnfd9C1SmTrOuOCVZIZGtqcOe9r+D9KC9dC7L2GgYztr9tqers2w5OYf8bLFK8dsP+/lb+O8l7+N/3722CPyxb+OSyqfngZI9w7td//2Jx4iU5yoomooadf05G6eXF7Fi97wAb678Xec8r17D3gOSToU03HP0/8Gnj8N55FmTNNffQyA3H0vo25wZHvbsSfv5wgtZC9996f2u2/54cfud1+2pooxd0j3HXimMklT19dQRaY/y49efBJL2vOc+9sNY/Zv3ngXe95QVz2UJKxUtsBQJpm0pmHVkcC91PWOnbxGkqZqOm4wdnZAzVtPPHQPNaO+Fx97pn8j0MTtecHotsXJP9vOvnDWapEqxWBDDQ19BY59LM+iZG4Krr3ydXz7TecC0P7oxlLbmqEkPNUMF8gVp1dfecIzABiu9RkrSdNrOkasnNBC80pvd2dp+a7rvsiJwCNPq6I6Dy86/vTZK0zzTvJFrcD2o5s49+ZbWVPfcNBjJE3NcH2aFR1jR5tO/s46AH580Ukcszlf2p4aTpbTWehJJ0HqrBe8mute+wPO/OO/mqGKJVUK/1yjipLLZtl8zrNK68MPRgB6zj2Vl/z3/c4IqEnJFr+o5WvTZAxV0ozIH3XEfveNDlWdDZAaSl4Cns5CbtT06n/0kf/gmBOfUb4iJVWkCQWrEEJLCGF/3xq8FVDzRmf7U2PW013JMzG1LYtmoxzNcwOrlwGQ7jrwDGWSps8f/f11PHTkwb++tC+tpq0jz2B/H+lhKKRqZqA6SZXsoL+ZQgjvBu4G7g4hvGScJt+c9qqkMtnx5ENj1uu6kwebM61LZqMczXPHvPItAAwtaZ3lSqTKUZNKMVw7EpJy2fEnoeh/9lks7YTvX/FaarOQT3tHgqTymshvmdcBAWgBvgH8dPTOGOPVZahLKovd2zYz+hWwTd3JbSP1bYfNTkGa155x0eu552utvPzU5852KVJFyadH/i7c292xz/7haz7Fy854HjffdjZPv3ETmWEo1BqsJJXXRG4FHIgxDsUYdwK+/VLzWk/7VgA2vvm5dNfD8l3J9pXHnzaLVWk+O/X8l9HY7IiVNJNymZGQtHvnU/vsP/W8S8jUN7D7gnOpK77TqlDrVxhJ5TXZySt8nkrzWv/uHQDUtixmsPj/sf21cNzJ581iVZKkyTj7iqtKy08++Pv9tgsXvXVkJZMpZ0mSNKFbAU8KIXyTJFTtWQYgxvi6slUmlcFQVzJE1dC2jKFisOpYhLMBStI8csyJz+C7rzyRU66/n50P38foMeP41gtYU1xuaG5jMA2ZYajO1M1GqZIqyES+Tf7xqOUvl6sQqZy2bt7Eb2/4Ctme5B1WzctWsaM2eQdR96L07BYnSZq06kw9AL0Pbyhty1bDK/7H2K8qA7XFYFVXP6P1Sao8Bw1WMcZbZ6IQqZx+8f4/4ZR1vaw/OfmLZdvyI9helQSrwaXNs1ucJGnSauobAQg3jcz2mh/ngYXBWqB3pL0klYsvCFZFqMols/+ddN8AAEtWHc3ijmRbwylnzVpdkqRDkyqOQGWG4d7Tk1dtbjh733cSDtUmaSvd0DRzxUmqSD5YooqQa24E+kvrza3LqC4ky2e94h2zU5Qk6ZClG0buNqg+4QSO+tqXeHqmYZ92Q5nk7oRCPj+D1UmqRI5YqTLs9QLJmlSK3ve/jXsuOZbDjz5xloqSJB2q2saRKStWnfNC6htbxp2IaLAh2ZYd6Jux2iRVprKMWIUQ0sA1wFFABvg4sAW4AdhUbPalGON3Qgg/BJYAw0B/jPHiEMJxwL8BBeA+4F0xxnwI4UrgEiALXB5jvLMc9WvhqcrmGEjDo2+4gIEH72cN8LzXvhde+97ZLk2SdAjqmkaC1RkXvmq/7U7/+6u56xPv4qXv/vRMlCWpgpXrVsDXA+0xxjeEEJYA64CPAZ+JMe79m+044KQYY2HUts8AH44x3hJC+DJwaQjhMeAC4JnAauB7wDllql8LTFUuR7YGXvk+J7aUpIUg0zjyPFV9Y8t+2x1z4jM45j/vmomSJFW4cgWra4HrRq1ngbOAEEK4lGTU6nKgAVgE3BBCWAR8Msb4o2LbPbMR/gS4CIjATcUAtjmEkAohLIsx7ijTZ9ACUp3Nk/WJQklaMBoXLaFw8GaSNGPK8lUzxtgDEEJoJglYHya5JfCrMca1IYQPAVcCnwM+XfznYuD2EMKdQNWoEaxuoBVoAdpHXWbP9n2C1YYNG/beVHYDAwOzcl0d2Mb3/TG9h7VRn01GrKbaR/ZzZbCfFz77eP7r6k++GPzuWYtgP31pP1cG+1lzRdn+hh9CWA1cD1wVY/xmCGFRjHF3cff1wBeArcCXY4xZYHsIYR0QgNFT9zQDu4Gu4vLe2/exZs2a8TaX1YYNG2blujqITVnYtIONx6fJ1Uz9Z8N+rgz288JnHy8Ea9h9+3/z2tZl405aAfZzpZitfl67du2MX1NzW1lmBQwhrABuAt4fY7ymuPnGEMIzissvANYCLwS+WzymCTgZ2ACsCyFcWGx7MXAbcDvw4hBCdQjhCKA6xrizHPVr4anO5cnWzHYVkqTptGjJyv2GKkmaaeX6bfRBoA24IoRwRXHbe4HPhhCGSEaq/iLG2BVCeHEI4Tcko1QfjDHuDCH8DXB1CKGWJGhdF2PMhRBuA35NEgjfVabatQDV5ArkaqpmuwxJkiQtUOV6xuoy4LJxdp03TtvLx9n2AMkMgHtv/wjwkalXqEpTnSuQd8RKkiRJZeILgjWvDQ8N7ndfb3dnabkmhyNWkiRJKhuDleatH3z6XWw8/XR+/u3PjLu/e9f20nJNrkA+ZbCSJElSeRisNG8N3vUbUnnI/8vV445cjQ1WkHfESpIkSWVisNK8lelKwtSqHXDdX72E/t6uMfv7ezpKy6ks5Gv8cZckSVJ5+E1T89aiXTnicSkeX1HF6bds5ft//dIx+/u7d5WWHbGSJElSORmsNC/lslmW7oaBJU0s+Z8fBSDd0T2mTf+oyStSOSiknBZQkiRJ5WGw0rzUtWsb1QUo1Gc46wWvZusSSA1kx7QZ6h0JVg0DkE/54y5JkqTy8Jum5qXu3TsBqErXAjCYqSI9mB/TZrhvZASrpgCFVLnehy1JkqRK5zdNzSv9vV08fN9vqNkTktJpAIYy1dT35sa0zfb3jT3YYCVJkqQyccRK88oP3n0x1W+8jEd/93MAqjN1AGQzNdTtNeN6bnBssCqkfcZKkiRJ5WGw0ryy6LFkpr/dd94KjApWdWnq9w5WA2ODVVVDY/kLlCRJUkUyWGleGWhIRp1aHmkHoKYuCUv5+gz1g4x5UXB+aGDMsem2pTNUpSRJkiqNwUrzSu1A8hzV0vZkooqauvpkR0Md1QXY/sRDpbaFwbFDWHVLV81MkZIkSao4BivNK009BYDSbX/phiYAqptaANixZVOpbWF4aMyxrauOnoEKJUmSVIkMVpo3ctksLT3Jcqo4s3q6vhmA2qUrANj2wLpS++pdneSqRo5fcdRJM1KnJEmSKo/BSvPGuluvIzP2HcBkGpNgtfzEZwLQ+fB6IAlhh2/q4ZGjRmYCfNpxp8xMoZIkSao4BivNG5uu/yoAT42ag6KuaTEAJ593CXkgv/UpAB5YdwtLuqA3PK3Utr6xZcZqlSRJUmUxWGneqH90G9vboLMtPbKtZREALW3L2d0CtR3dAOx8PAKQXrycLctnvlZJkiRVltRsFyBNVGN3jq7WagqpkQenmlqXlZY7W6pp6BwGoGvrZpYCmcXLOfeG2xno65zpciVJklRBHLHSvNHSXWCgOUO+ZuTHtmnRktLyYH0NdQPJrIED7VuT/SuOpKl1MUtXOiOgJEmSysdgpXlh144naOmDbFsT+dTIj23zohWl5Wx9ivriO4GznbsAWLr6uBmtU5IkSZXJYKV5YdO6nwNQs3Q5hVQy01+2GjL1DaU2uYYMjf3JjID5ni4AVh198swXK0mSpIpjsNK88PC3vgRA67EnU0gnjwYO7/2EYGMDNQVYf8dPOP2WbQAsXrF6JsuUJElShTJYac6786b/4OTfdLDhhFpe+MYPQ00yYpXb66e3qrkVgI1f/OhMlyhJkqQKZ7DSnPfwd/6VqgKcdOXnqEmloDaZbn3vYFW7KHnB1Snreme6REmSJFU4g5XmvNqOLna3QDjjwmRDKglWw+mx7RqWrhyz3v35D81AdZIkSZLBSvNA4+5hOltH/ajW1gLjBKvFY98E/IyLXl/u0iRJkiTAYKVZ9MPPXsbN//mPB223qLNAX2ttab06nSxnR70oGOAZF7+Ze85pAeDe0xuQJEmSZsre86pJMyKXzXL8l29KVv70ffttt/2Jh5L3Vy1pLW2rztQB+warTH0Dr/nGHeSyWdak/NGWJEnSzHHESlPSse1xbvzqlZM+bv0dP5lQu0fuvR2A6qXLStuq0hkAcumqcY+pMVRJkiRphhmsNCW/eOsfcMSnvstD9/5qUsdtuvna0vK3//L5+2236/FNANQtW1XaVhgeBCCXGj9YSZIkSTPNYKUpWf14FoA7/+WDfOfPnjXh44a3PlFaPu3nT/Hbm789brverZsBaDn8uNK23EBf8s90zaTrlSRJksrBYKUpqUsGjzj9lm2cemfnxA8cHBqzuuk7V43bbLhjBwCHHXNSadueWwGHW52gQpIkSXODwUpTsvcPUG/3xMJV1V7BKt3eNX7Dri7ywJEnnF3adOkHr+HulxzJH3zm+5OoVJIkSSofg5Wm1ZaH7p5Qu+rh4THr9d3D47ar6emjtx7qG1tK2zL1Dbz2sz+lpW35uMdIkiRJM81gpUP26Ibf7rOtfXOc0LHVw/kx681d+XHbpXuH6fWOP0mSJM1xBisdsvU/v3afbbuffGRCx9YM5cast3bDt99yPneesYZdO0Ymtqjry9Hf4I+pJEmS5ja/seqQdcV9b/vrb986oWNTe41Y1ebgtF910NwPW5/zQtb9/HsANPQVGGxw9j9JkiTNbQYrHdQNn38vN3zu8n22p5/cRnf92G3Z3e0HPd/2Jx4ilS3Qm0zux/0nZvZp88T6XwPQ1AfDDbWTL1qSJEmaQQYrHVB/bxfHXfUTjvvSjfvsq+0dprtp7Lb8QWYFvOHz76X9BS/lyCcKPLmqhtV33E7q/PP3adf361v51jsupH4Ics2NU/oMkiRJUrkZrHRAP7v6itLyzqfGPj+VHswzVFvFzr9/NwNf+ji7m6DuyY4Dnq/3d78uLedqq2lqXUzdomX7tDtlbQ+n37INgOpFbVP5CJIkSVLZGawqyHf/7lV8539cOqlj+reMhKnf3fgfY/bVDhUYzlTznD98F2c871U8eUSGEx4Y5rsfevWEzp1LJ89ONS5ddcB2tUtWTKpmSZIkaaYZrCpI850baLtz06SOKfT1lJZ3rf8t6269vrSeGYRsZmRiidT5zwGg7Zfr93/CqqrSYr4YrFqWHT5u022Lk3+2HbVmUjVLkiRJMy1VjpOGENLANcBRQAb4OLAFuAHY883+SzHG74QQ/gl4drGWr8QYrw4hLAYeAO4rtr0+xvi5EMLbgLcDWeDjMcYflaP+haomC7XDhckd1NcPQB449YYH4IYPcsv/2sKFr34PdUOQzYz8CF36N1/gh/91MvV9eX5+3hq2nX0Er/383s9mjQpWtWkAlh1+LLuL2+5/3Tmc+M27AFj8T//I45vu5gWvevfkapYkSZJmWFmCFfB6oD3G+IYQwhJgHfAx4DMxxk/vaRRCeB5wXIzx3BBCBlgfQrgOOBP4VozxPaPaHgb8FXA2UAf8MoTwsxjjYJk+w4KTyhWoHZrcMTX9Q/TUQa4aWvuSbVtv/3/c2dpG8wDk68bO2Jerraa+PceSLjjsps0HPHchkwSrpSuPLgWrRceeDCTB6piTz+fU8182uYIlSZKkWVCuYHUtcN2o9SxwFhBCCJeSjFpdDvwa+H2xTQGoAYaLbc8MIdwKbCcJVOcAtxeD1GAI4UHgVPZ8C9dB1eQgM9lgNZhlIAN1o+LraT99FH76iWSlfux869naFEu6hid28voGANK1I9OtH3/2C+nl/wDQ1Lp4csVKkiRJs6QswSrG2AMQQmgmCVgfJrkl8KsxxrUhhA8BV8YY/xYYKN46+O8ktwL2hBA2AmtjjP8VQvhT4AvA94HRc3l3A63jXX/Dhg3l+FgHNDAwMCvXnYx0FuqGYf2991KdmljXp4rBalF3sr6rGdq6R/YPp9NjPnc2PfZlvnv/O8nnsiNtU7X77O8eSpce/JuL/z7nQz9r6uznhc8+rgz2c2WwnzVXlGvEihDCauB64KoY4zdDCItijHvu+LqeJCwRQmgjCV+3xBj/d3H/fwN9o9p+DPg60DzqEs1QuoNsjDVrZn6ygw0bNszKdSfjzixUF2DZ0iaWrjx6Qsc8NpjM/NfRmmf5Llj21a+Sfc2fl/bXtSwa87nvrq8DRia82PiDf+aVH/hKaf2e3MgzXo1Ll5eO3fPr8KRTTuFnK6pIDxe4cA7++5wP/ayps58XPvu4MtjPlWG2+nnt2rUzfk3NbWWZFTCEsAK4CXh/jPGa4uYbQwjPKC6/AFgbQqgHbgauiTH+r1Gn+CrwqtFtgTuB54QQ6kIIrcAaRia30ASki4NF7Vsfm/AxmcECQ5lqWv/xk9z/unM4/rSxL/PN9ez1QuD6ujGrJ/zbbWPWq7MjI1aZ1iWl5XvObuHuc5P3Vb3o1vu58Ff+5UmSJEnzR7lGrD4ItAFXhBD2vGH2vcBnQwhDwFbgL4B3AMcAbyvO+AfwZuADwDUhhHcCvcCfxxi3hhA+D9xGEgg/FGMcKFP9C9KeYNW5Y8uEj9kzpfrpz7mU05+TvAMrVwU1xYGn41/21jHtq4rPTe1PdTZfWq5vW15afs1/3BS8LloAABxGSURBVDHhmiRJkqS5plzPWF0GXDbOrvP2Wv/n4v/G87xxzns1cPXUqqtMvd2dpTDU27F9wsfVDUGuLj1mW746mQhj+JpPcdZ5l4zZV9PYdMDzjQ5WLcvHf3+VJEmSNN/4guAK0b1rJEz17945oWP6e7uoH4LCXrf3rT9/GQDHnvLsfY5JNy864DlrhkeC1eKVx0yoDkmSJGmuK9vkFZpbejt3lJaHujsmdMy2zQ8kC3tNqf4nX/nFfo+pLQarjhZ4/JQlnHZ7O4P9fWSKtwjWZEcmr1ixOkyoDkmSJGmuc8SqQvR2tZeWh3u6JnTMzicfBKC6qfkgLUfUNiYz4D9xfFNppGvn1kdL+0cHq8bmcWfLlyRJkuYdg1WF6O/eVVrO9/YcoOWIrm3JJBeplrYJX+cFf/o+Nr3jIl72lZuprm8EoP2pR0r7U6OClSRJkrRQeCtghejv7qSluJwf6Dtg2z36OrYCkFm0bFLXevnlnwOgpjEZ6era8URpXyo77iGSJEnSvOaIVYUY6h1531RV/+CEjhnsTCa5aFy66pCumW5ORrp627eObMvC/SdmePp99x7SOSVJkqS5yGBVIYb7ukvLVYMTC1a5riSMtS5/2iFds25R8gLgPQENoG4QcpkUNSkHSyVJkrRwGKwqRLZ/5Pa/6sEsHdse58cXncR/feOT+7T91Q+v5trXnEm+GKyWPu34Q7pmw+IVAPQ9vBGAXDZL3SDk6zKHdD5JkiRprjJYVYjc4EiwqhnKcss1H+WYzXkG/uMbY9tls7S97zOcfHc/dY/vIA8ctvrQgtXxZ72QwTQcffvj/OqHV3Pdh/84+YHb671YkiRJ0nxnsKoQueKEFYNpSA3lGdq0AYDeZY1j2v38m/9YWj724Sw9DZCuPbQRpsOOOJ6NZy+mpQ96PvPPnPr95JpVDY0HOVKSJEmaXwxWFSLf1wtAVyOkhvPUbU/eZVVIp8e0a7/x+6XlVB4ePnv51C7clISo1VtHplmvmcR7sSRJkqT5wGBVIQoD/QD0NVSRHipQ35sDoGo4mf/8u+9/JevvuImWrT1sWVFVOu7IS980petW1dXvsy3dvHhK55QkSZLmGoNVpRgYSP7RWEPtMNT3JyNIVdksj274Laf8YCMbPvV+lrUX2L1i5Bmos57/mildtnqc2/72zBYoSZIkLRQGqwpRNTTEUAqymRSZIWgszmVRPZxjywO/A+CkewdoHIDcqhWl4zL1DVO6bqph39v+9swWKEmSJC0UvkyoQlQPZhlMJ++QauxPnp8CqMnm2b05MnoMaelZF/DkOc8jnWlgzRSvm27cN1i1rjhiimeVJEmS5haDVYWoHs4xlIZ8cyOpfM/I9mye/m1bxrR93p/87bS9wLeuZd/nqdpWHDkt55YkSZLmCm8FrBA1QzmGaqF21djRoppsgdyunQDc95ozePwDr5u2UAVQ17q0tPzwX72cDSHNqiNPmLbzS5IkSXOBI1YVIjWUZzhdxZI15wB3AZCrSoJVVWcPQyn4wyu+Pq2hCqBx0bLS8iXv/Ad45z9M6/klSZKkucARqwqRHi6QTVdx4nl/UNr2xIoqUlmo7eynq5FpD1UArcsOn/ZzSpIkSXONwapCJMGqmuWHH0tXA8TjUvQ31ZAeLrD68WG2Py1Tluu2GawkSZJUAQxWFSI9DLnapLtPvvU3XPJ/f0s+Vc2KDmgcAM48vSzXbWlzanVJkiQtfD5jVSFqhyFXWwNAY3MrAPnUSK5eecr5ZbluOW4vlCRJkuYaR6wqRN0Q5NPpMdvy6ZrS8mHHnVa2a/dm4N7TG8t2fkmSJGm2OZxQAXa3P0VtFvINY5+jKhSDVb4KVpcxWJ199wbOLtvZJUmSpNnniFUF2Pb4JgCqGpvGbC8UR7B66iFdW57JKyRJkqRKYLCqAO1PPARAdVPLmO1Vi5cAUDc44yVJkiRJC4rBqgL07NgCQG3r4jHbV1/4imR7bsZLkiRJkhYUg1UF6G/fDkB92/Ix25/54jcAsLtpn0MkSZIkTYKTV1SAoa52AFpWrB6zvSaVYuffv5ulq8NslCVJkiQtGAarCpDr7gSgbeXR++x7zh++a6bLkSRJkhYcbwVc4HLZLK13PwLAiiMcmZIkSZLKwWA1Dfp7u7n3f76Odb/4wWyXso/bvvdFjnqiAEBL24pZrkaSJElamAxW0+DBe37JKfcOEK/9l9kuZYxf/fj/sOSj/wrAg0dVU5Pyzk9JkiSpHAxW06A208BAGqrbd812KWPs/OKnSeWT5ef853/NbjGSJEnSAmawmga5wT52txbIdPbPdilj5GuqSsuLlqycxUokSZKkhc1gNQ2G+7vpby7Q1DW33rSb6U/q6a6f5UIkSZKkBc5gNQ2yA73km/Is6kxm4ZsrWjsLPHh0DYd999uzXYokSZK0oBmspkFusId0Y5aGIXjikfWzXQ4A/b1dtPVA78pWjjj+tNkuR5IkSVrQDFbToDDYQ2NDMlL10NqbZ7maxI4tDyYLjY2zW4gkSZJUAQxW0yA/1Mfi+mEAOh66Z5arSbQ/mbwUuMpgJUmSJJWdwWoaVA31srJuCIChp7aM2dfT2TErz11tufd2AFLNrTN+bUmSJKnSGKymw3AvqZoU/bVQ0767tLlj2+M8/szzufYvLpjRcm782kc47qqfAFDbvHhGry1JkiRVIoPVNKga7mOwuo7eemho72f9HTcB8NSjGwA46u6OGa2n457flJbr25bP6LUlSZKkSpQqx0lDCGngGuAoIAN8HNgC3ABsKjb7UozxOyGEK4FLgCxweYzxzhDCccC/AQXgPuBdMcb8eG3LUf9k1WT7GKCOgboqjt2chzdeBhs30NfZThOQn+H4WlU9csHmZatm9uKSJElSBSpLsAJeD7THGN8QQlgCrAM+BnwmxvjpPY1CCGcCFwDPBFYD3wPOAT4DfDjGeEsI4cvApSGEx/bTdtbVZPsYrMowlMmTZMFE765tSbCqmuGCBgdKi4sOO2qGLy5JkiRVnnIFq2uB60atZ4GzgBBCuJRk1Opy4NnATTHGArA5hJAKISwrtr21eOxPgIuAOF7bGOOOMn2GCavJDzNQ3cBQXT+QL23v70xKm/ERq+7e0vLyw4+d2YtLkiRJFagswSrG2AMQQmgmCVgfJrkl8KsxxrUhhA8BVwK7gfZRh3YDrUBVMUCN3tayn7b7BKsNGzZM6+c5mI6T3szw0CDD93wBGC7VsOupLRxFMmI1kzXV9I6MWD25tYOtO7tm7NoL3cDAwIz/fGnm2c8Ln31cGeznymA/a64o14gVIYTVwPXAVTHGb4YQFsUY90yZdz3wBeAHQPOow5pJwlZ+nG1d+2m7jzVr1kzLZ5ioNWvWJEEqdVVp2z1fez+1TS0AFKr3X9OuHU/w+Kbfc+p5l0xbPZv6c6Xlk045ZdrOqyQgz/TPl2ae/bzw2ceVwX6uDLPVz2vXrp3xa2puK8tNaiGEFcBNwPtjjNcUN98YQnhGcfkFwFrgduDFIYTqEMIRQHWMcSewLoRwYbHtxcBtB2g7dxRGnq869UebyO54CjjwrYC3vfHFpN/ytwwPDU5bGXX9ebLVcPdFR0zbOSVJkiTtX7lGrD4ItAFXhBCuKG57L/DZEMIQsBX4ixhjVwjhNuDXJCHvXcW2fwNcHUKoBTYA18UYc/tpO2dU5Qtj1mt27gIOPHnF8Q8no0sP338H4fTnTrmG/t4ulnYU2HhKPa/9/I1TPp8kSZKkgyvXM1aXAZeNs+u8cdp+BPjIXtseIJkB8KBt55JcYz3QX1pv2JWMQhWqDj4t4BMb7pqWYHX7977I4UNQtebEKZ9LkiRJ0sT4guBp9JJPXcf2tpH1YzYnj4pVFQr7OQKyxR7o3PzAtNSwY+0vADjpkjdNy/kkSZIkHZzBahotWrKSp5519D7bU9n9HzNcHDMc3LZlWmqo6uwkVwVPP+PCaTmfJEmSpIMzWE2z6trMPtvSBwhWpbGsXeNOcHhQ3/vEW/ju+19ZWk/1DtBTDzWpsk34KEmSJGkvBqvpNk6wSmXhqcc2sv6Om8Zs7+/tom4oWV6+qYP+3sm/b+rEb/yaU36wkVw2SW/pvix9DZMvW5IkSdKhM1hNs5q6utJy9be+xL1nNpHOQvyTV1L9xrHzeWx58F6qgS0rqli5E27/v1cxGZvj70rL6+9MZgDMDOQYqLdbJUmSpJnkN/BpVpNJhot2NUE440Ly6RS1WVjRsW/bx+//DQAdq5P3Hvds2zypa6370ddKy5t+fi0Adf0FButrDqV0SZIkSYfIYDXNUnVJsCrsmWE9nSKVH9nftWt7abkjrkuOKb4tfGjXjkldq3/LI6XloaeSyS8a+yBbn55s2ZIkSZKmwGA1zdL1TcDoYDU25Dz12MbS8vCTyQhVeMFrAMh3Tm4Ci6r2DnLF61T19tPf20XTAOSa6g+hckmSJEmHymA1zdINyW19e4JV9eKlY/a3P/FQabm2vYvdTRDOfH4SkHp6Jnetrn52tUBfBqoHBtny4L3JjubmQ65fkiRJ0uQZrKZZbTFY5Yv/Zo++4JVj9ndve7y0XN85RGdLFenaDL310PZYJ99+47mlGf4OpqF7mO7mavozUDMwzLZH1wOQWrR4Gj6JJEmSpIkyWE2z6qpkqGrPiNWZz3813aPuzOvv2Fparu8vMNCQTDTRVw9HPFXgtDt289gDI7P97U9/bxeLdhXob04xkIH0YI7O4mhY3dKV0/RpJEmSJE2EwWqa5QvJK3+zxffz1qRSdLRVlfYPdY5MD9jQD8MNyTNYA3Ujbbbcf+dBr/PDj/4ZrX1Qdc7ZDGWqSQ/m6d/5FACtq46e8ueQJEmSNHEGq2n2zIvfyD3ntLDoyitL2/qaU6XlfHcnAMNDgzT2Q64xee9Vf/PIJBe7HosHv9CTTzKYgkvf968MZ6rJDBbI7m4HYPnRJ03HR5EkSZI0QamDN9FkpGszvOYbd4zZNrSoESjO+NfZBcBTj6ynpgA0JbMIDh9/FGx8AICBUc9h7U9VNsdQOhkRy9bVkNmeha7k3E877oxp+SySJEmSJsYRqxlw1ns/xUNHVtPeAis3djA8NMhTj9wHQE1rGwDHvuRPSu0LHe0HPWf1cI5s8T3Aubo09YNQ3dNPbwYam1un/0NIkiRJ2i+D1Qw4/rTzeemN69ny7GNYvgvuu/1H7N6STDSRWbICgLNf8Fo6//kD9GagprP3oOeszuZLz3Hl6+qoH4JM9yC9DWX7GJIkSZL2w2A1gzKHrQbg8d/fSsdvbwWgacURpf3PuviNtC+uonHXwEHPVZMtlIJVanVyjmMeydLTbJdKkiRJM81v4TOocfnTADj+X3/G6bdsA6Bt5dgZ/LqW1bF8R+Gg77KqyebJppKZBI9+zisASOWhv6V2usuWJEmSdBAGqxm0ZHXYZ9vSI8Zuyx1+GI2DsP7OGw94rupcgVzxGavTL3glA8VJBbOLmqalVkmSJEkTZ7CaQYcff/o+2w5bffyY9ebjTwHgsbt+dsBzpbKQK45Y1aRS7FiSLFctXjIdpUqSJEmaBIPVDFq26miGasZuS9dmxqwvPy4JX31PbT7guVLZArnUSPd1PjsJZK3FYCZJkiRp5vgeqxlUk0qRyh24zXFnPJetQL5j5wHbjR6xAnj1x7/DPX/wY15y3iXTUKkkSZKkyXDEaoZ1HOQVU23LDqe3DlIHmXI9lYN8amz3nWqokiRJkmaFwWqG5d77du5+6XEHbNPVBLU9gwdsk8pCIVVzwDaSJEmSZobBaoZd+JrLOeXV7zlgm77Gahp68qX1TXffzrffcxGD/X2lbbVZyKcNVpIkSdJc4DNWs2DlUWvYdoD9g01pFrePjFit++RlnLaulxv+6R3kBwdo+O16jh2GQtrukyRJkuYCv5nPgtYlK9kGdDaMvz/bkKGpf5BcNktNKkWhOhlYrP7d3Zy0cajUzmAlSZIkzQ3eCjgLalIpNr39RTR88VPj7i80N5HOwfYnHgQgNZCEqaZdw2Mb1taWtU5JkiRJE+OQxyx5+V9/fr/7qhe1AU+yJa5j5ZEnkOlJAtWirsKYdlV7vQNLkiRJ0uxwxGoOyixZCUDH4xGA+r5kIovm/rHtqjN1M1qXJEmSpPEZrOag5lVHAdC7fQsATft5pdUJL33TzBQkSZIk6YAMVnPQ0iNPAGC4fTvDQ4M09UFH88j+oRRsXlnFqee/bJYqlCRJkjSawWoOOmrNOQAUdu9i144tVAOdi0a66tE3v5AX//z+WapOkiRJ0t4MVnNQS9tyuuuhpquXXTueAKCvdWQGwHRj8/4OlSRJkjQLDFZzVFcTZLqH6GlPXiU8vHgkTNW1LJ6tsiRJkiSNw2A1R/U11dDQk6OvczsANStWlfbVtS6ZrbIkSZIkjcNgNUcNNtXS3Av9XR0AZBYtobf42qqmtuWzWJkkSZKkvRms5qhcayMtfdD54+sBSDe20tuQ7FtUfM+VJEmSpLnBYDVHHX7J6wA4+d7krcB1LYvpa6gCoGWpwUqSJEmaSwxWc9RzXvmXPLx6pHsa2pYxWF9DvgqaW5fNYmWSJEmS9mawmsOGMyPd09S2nKGWOnrroCaVmsWqJEmSJO3Nb+hzWLYuBWQBaFmyitPe92ke+/0vZrcoSZIkSfswWM1hubpaYACAxctX09R6GuH0585uUZIkSZL2UZZgFUJIA9cARwEZ4OMxxh8W970OeE+M8dwQwunAZ0cd+izgFcCdwAPAfcXt18cYPxdCeBvwdpJhnI/HGH9UjvrninxDprTc1OpLgSVJkqS5qlwjVq8H2mOMbwghLAHWAT8sBqm3AlUAMcbfAxcChBBeDTwZY/xpCOGFwLdijO/Zc8IQwmHAXwFnA3XAL0MIP4sxDpbpM8y6qsYmYMdslyFJkiTpIMoVrK4Frhu1ni0GrE8ClwNXj24cQmgEPgrsuc/tLODMEMKtwHaSQHUOcHsxSA2GEB4ETgXuKtNnmHXVTS2zXYIkSZKkCShLsIox9gCEEJpJAtYVwNeAvwb6xznkrcC1McadxfWNwNoY43+FEP4U+ALwfaBz1DHdQOt419+wYcN0fIxJGRgYmPbrDlcn3bO9DZiFz6R9laOfNffYzwuffVwZ7OfKYD9rrijb5BUhhNXA9cBVwCbgeOBLJLfxnRhC+GyM8fJi8z8F/mjU4f8N9BWXrwc+BnwdaB7VphnYPd6116xZM02fYuI2bNgw7dfdfOTTgbU8dfZqLpiFz6R9laOfNffYzwuffVwZ7OfKMFv9vHbt2hm/pua2ck1esQK4CXh3jPHm4uaTivuOAr69J1SFEFqBTIzx8VGn+CrwPeC7wAuAtSQTWnwihFBHMiHGGkYmt1iQXvyW/8kvlxzGqy95y2yXIkmSJOkAyjVi9UGgDbgihHBFcdvFMcbxbgN8OvDoXts+AFwTQngn0Av8eYxxawjh88BtJC82/lCMcaAs1c8hz770L2a7BEmSJEkHUa5nrC4DLtvPvkdJplXfs34XyRTro9s8AjxvnGOvZq+JLyRJkiRptlXPdgGSJEmSNN8ZrCRJkiRpigxWkiRJkjRFBitJkiRJmiKDlSRJkiRNkcFKkiRJkqbIYCVJkiRJU2SwkiRJkqQpMlhJkiRJ0hQZrCRJkiRpigxWkiRJkjRFBitJkiRJmiKDlSRJkiRNkcFKkiRJkqbIYCVJkiRJU2SwkiRJkqQpqioUCrNdw7Rau3btwvpAkiRJmpPOOuusqtmuQXPHggtWkiRJkjTTvBVQkiRJkqbIYCVJkiRJU2SwkiRJkqQpSs12AfNdCKEauAo4DRgE/jzG+ODsVqVDFUJIA9cARwEZ4OPA/cC/AQXgPuBdMcZ8COFK4BIgC1weY7xzNmrWoQkhLAfWAi8i6cN/wz5eUEIIfwe8HKgl+T19K/bzglL8nf3vJL+zc8Db8L/nBSWE8EzgH2KMF4YQjmOCfbu/trPxGVQ5HLGaulcAdTHGc4EPAJ+e5Xo0Na8H2mOMzwEuBr4IfAb4cHFbFXBpCOFM4ALgmcBrgX+ZpXp1CIpfxv4V6C9uso8XmBDChcB5wPkk/bga+3kh+gMgFWM8D/gY8Ans5wUjhPA+4KtAXXHTZPp2n7YzWbsqk8Fq6p4N/BQgxvgb4OzZLUdTdC1wxaj1LHAWyV+6AX4CvJCk32+KMRZijJuBVAhh2YxWqqn4FPBl4Mniun288LwYuBe4HrgB+BH280L0AEmfVQMtwDD280LyEPCHo9Yn07fjtZXKymA1dS1A56j1XAjBWyznqRhjT4yxO4TQDFwHfBioijHueS9BN9DKvv2+Z7vmuBDCm4AdMcYbR222jxeepSR/6Ho18A7gP4Fq+3nB6SG5DXAjcDXwefzvecGIMX6PJCzvMZm+Ha+tVFYGq6nrAppHrVfHGLOzVYymLoSwGvg58I0Y4zeB0fdkNwO72bff92zX3PcW4EUhhFuA04GvA8tH7bePF4Z24MYY41CMMQIDjP1iZT8vDH9N0s9PJ3nW+d9Jnqnbw35eWCbz/8fjtZXKymA1dbeT3ONNCOFZJLeeaJ4KIawAbgLeH2O8prh5XfF5DUieu7qNpN9fHEKoDiEcQRKod854wZq0GONzY4wXxBgvBH4P/BnwE/t4wfkl8JIQQlUIYRXQCNxsPy84uxgZregA0vg7eyGbTN+O11YqK29Zm7rrSf76/SuShyPfPMv1aGo+CLQBV4QQ9jxrdRnw+RBCLbABuC7GmAsh3Ab8muQPFO+alWo1Xf4GuNo+XjhijD8KITwXuJOR/nsE+3mh+WfgmmIf1pL8Dv8t9vNCNZnf1fu0nY2CVVmqCoXCwVtJkiRJkvbLWwElSZIkaYoMVpIkSZI0RQYrSZIkSZoig5UkSZIkTZHBSpIkSZKmyOnWJWkeCSHUAa8HskBHjPGHM3DNI4DTYow3lPtakiTNVwYrSZpfDgP+PMb4rBm85vOBEwCDlSRJ++F7rCRpHgkhXA28BmgC3glsBP4OGARWA18mCUKnAZ+LMX4phHAB8AkgBzwEvD3GOLyf878TeCOQB34JfABYDzQA7yZ5ye7nSV6I3g68BTgD+FDxmMOAr8QY/2W6P7skSXOZz1hJ0vzyCeB+4GOjtj0NeBXwl8CHgTcAFwNvDyFUAVcDfxhjvAB4AnjTAc7/ZuCyGOO5wMMkAeqTwDeLtx1eDbwrxngh8P+A9xWPOxx4OfAs4K9DCMun/EklSZpHDFaSNP/dVxyB2g08FGMcAnYBdcAyYCXw3RDCLcBFwBEHONebgXeEEG4FjiQJVqOtAa4qnustwKri9l/FGAdjjP3AfcCx0/HBJEmaL3zGSpLmlzz7/lHsQPd07wS2AJfGGDtDCC8Heg7Q/m3AO2KMAyGEG4Hz9rpmBP4sxrg5hHA+SWgDOD2EUANkgJOATZP5UJIkzXcGK0maX7YDtUD9RBrHGPMhhMuAH4cQqoEu4M8OcMi9wF0hhB0ktw3eUTzmQyGE35Hcbvj1YogCeCvJqFUa+AmwBPh4jHHnpD+ZJEnzmJNXSJKmJIRwIcko12tnuxZJkmaLI1aSVGGK76X6+ji7bo0xXjnT9UiStBA4YiVJkiRJU+SsgJIkSZI0RQYrSZIkSZoig5UkSZIkTZHBSpIkSZKmyGAlSZIkSVP0/wGU/FNAIIA+PQAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 864x576 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"dist_plot('time_step', 'P_Ext_Markets',suppMin=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 17,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAHaCAYAAADR4dK5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XeYXGXh9vHv7G52N2WTkEYKvT2EjkgJHWnSm0iRXkSkCIIIgoLSeQV/gAKC0hWlCUgLvYUeCHV5AiSBFBIS0stmy5z3jxlDQjY9M2d35/u5rjhznlPm3hwI3nnOOZNJkgRJkiRJ0rzK0g4gSZIkSS2RZUmSJEmSmmFZkiRJkqRmWJYkSZIkqRmWJUmSJElqRkXaARZl8ODBPq5PkiRJRbHZZptl0s6glqPFlyWAzTbbLJXPra2tpX///ql8torH89z2eY5Lg+e5NHieS0Na53nw4MFF/0y1bF6GJ0mSJEnNsCxJkiRJUjMsS5IkSZLUDMuSJEmSJDXDsiRJkiRJzWgVT8OTJEmSStFq5z52FHDccj7srSOu2OvOBa0MIRwD7AO0B/oA1wL7ARsAZwOVwC+BJuCVGOO5IYSVgBuBaqA78IcY40MhhPeBF4GNgATYL8Y4ZTn/PAXjzJIkSZKk76qJMe4JXAmcDBwI/BQ4Hvg9sHOMcVugXwhhV2Bd4OoY467AqcAp+eN0Bu6JMe4AjAb2KO6PsWycWZIkSZJaqPwM0AJngQro3fzrZKA2xpiEECYBnYCewOMhBIAaYA3gFeCCEMLx5GaQ2jVzrJHkZp5aDWeWJEmSJH1XspDxkcCuMcYdgeuBN4CLgTtjjEcCzwOZxThWi+fMkiRJkqTF1QBcA7wYQigHRgD3AvcB14UQxpIrUz1SS7gcWZYkSZIkzRFjvH2u908CT+bfDwF+mF9193d2uyf/67vHWm2u9+cu56gF52V4kiRJktQMy5IkSZIkNcOyJEmSJEnNsCxJkiRJUjMsS5IkSZLUDMuSJEmSJDXDsiRJkqQW4fNvPuPOX+7B+FEx7ShaBiGEdUMIL+Tf/yuEUJlypKVmWZIkSVKL8MdbjmXzx0cw7e1n046i5STGeGiMsT7tHEvLL6WVJElSqmY1zuL2K4/iR49NAGCNbQ9IOVELclGXo4DjlvNRb+WiKXcuaGUI4RhgH6A90Ae4FtgP2AA4G6gEfgk0Aa/EGM8NIfQB/gFkgLFzHWsEsC6wFnANucmarsDpMcZXQwifAoOAAIwDDooxNi3Hn3WZOLMkSZKkVF0y8Ldsf9eH9J0IlGegR5+0IwlqYox7AlcCJwMHAj8Fjgd+D+wcY9wW6BdC2BU4C7gnxrgT8FAzx1sfOCvGuAu50nRsfnwN4LcxxgFAT2DzAv5MS8yZJUmSJKXm6cduovs/H6cMaLfLAPoceRJfph2qJcnNAC1wFqiA3s2/TgZqY4xJCGES0IlcqXk8hABQQ67wrA/cld9nELmCNbfRwG9DCLPy+0zNj0+IMY7Mvx8JVBfgZ1lqzixJkiQpFY989l+arriWPQYnAKx+6TV03HLLlFMpL1nI+Ehg1xjjjsD1wBvAJ8CA/DbNzQ5dB1wYYzwa+IDc5XoL+5wWwZklSZIkpeLBV+/i1+OhoUdH+h1zAuVduqYdSYvWQO4yuhdDCOXACOBe4LfAv0MIhwLDm9nvbuDhEMI4YBTQozhxl41lSZIkSUU3s2EmZUNrAVj9wguo2XX/lBPpf2KMt8/1/kngyfz7IcAP86vubmbXvZo51mr5t9fkf313fe+53h+6tJkLxcvwJEmSVHTPfv48GwxvIlsOHbf74aJ3kFJgWZIkSVJRjZk+ho+vOIc9Bie0W2UFyqpb1D390hyWJUmSJBXVPz54gO3fzwLQ54zfpJxGWjDvWZIkSVJRNGQbuPx3u3Lw/eMA6HjAdtTsvnfKqaQFc2ZJkiRJRfHGmDfpXfs1AE1dqul15GkpJ5IWzpklSZIkFUxDtoFrLt6XbR8dQVkC200H1u7GBv8dlHY0aZGcWZIkSVLBvPXVW3Qf8gXt6+HrlaoA6HPI0SmnUmsSQjgjhHBF/n2HEMIqIYSbQwirLWSfA0IIfZsZf31h+32XM0uSJEkqmP98/Dj7j0yoWqMn+//nJZL6emjXLu1YagVCCO2BW4AtgQfyw12BPwB7AG8DNy9g918APwPGLEsGy5IkSZIKIkkSPv/4GbpNhy5bbwdAprIy5VSty4Z3bHgUcNxyPuytHxz9wZ0LWhlCOAbYB2gP9AGuBfYDNgDOjjE+HEI4GPgl0AS8EmM8N4SwEnAjUA10B/4QY3wohPA+8CKwEZAA+8UYp8z1WevGGM9tJko1cCfwDLAuQIxxTAjhC+AMYGwIoRq4F+iSz3sO0BHYBLgzhLAtcCG5L9MdCfRYkt8oL8OTJEnScjduxjhu+NlWXHrjFAB6HHBUyom0hGpijHsCVwInAwcCPwWODSF0A34P7Bxj3BboF0LYlVyhuTrGuCtwKnBK/lidgXtijDsAo4E9Qgg7hBBeAM4FDg8hvBBCOHLuADHGSTHGp74bLMZ4YYzxnhjj88CaQG9y5e5woEOM8TFgCHAUsA6wPbB5frlmSX4TnFmSJEnScnf5Uxdy0otTcws1VVSuFdIN1ErlZ4AWOAtUQO/mXycDtTHGJIQwidxsz1pAT+DxEALkCsgawCvABSGE48nNILVr5ngjgeoY44vAjouYWVqkGONHIYS/APfkP++672yyPvB2jDELTA0hfLAkx7csSZIkabn4992/gyeeIAPsPmo6AF1/cTzd9zks3WBaGslC1g0nV3p2jTE25AvPEOBi4JYY4xMhhGOBYxbzeEsthLAhuVmwvUIIfYBXgUeBLLmr6CJwegihjNxleustyfEtS5IkSVpmb419ixn338+WMaGuHXSoz433+slPKe/cOd1wWq5ijONDCNcAL4YQyoER5O4bug+4LoQwlsW8PyjGePsyxvkUuDCEcBRQD/wuP/4quRm53fK53iL3sIevl+TgmSQpSMlbbgYPHpxsttlmqXx2bW0t/fv3T+WzVTye57bPc1waPM+lwfPccp337IXs8+t7qVm5Bxv+52XqR42mYfRoOm65xRIfK63zPHjwYDbbbLNM0T9YLZYzS5IkSVomSZIw9MOnWWE6dB6Qe+pd5Ur9qFypX8rJpGVjWZIkSdISqW+q54m//46GMaMAqKOevYZMBqDHfj9JM5q0XFmWJEmStEQuvP80jrjmpfm/g6YMKtdZovvnpRbNsiRJkqTF9tZrj9D+qZcpAyafsCfJOutCktDt4y/ot+k2ZDLe8qO2w7IkSZKkxXL/Jw/Q48wLODh3xR1bnXYZmaqq3MJ+6eWSCmW+2VNJkiSpOY8+/zdWnAwNHSrocdLR3xYlqY2yLEmSJGmRJtdNpsOwLwFY++Yb6XnmuSknUqkIIWwZQnhhruU1Qgi3hxBWW8g+G4YQtm9m/Ir8l+guFsuSJEmSFqqpsZGBw55lgxEJ2Uqo3nRA2pFUIkII5wB/A6rzyxngKGBf4PQQQocF7HoQsMxPG/GeJUmSJDVrRsMMrv3VDzjgyalslB+r2KAfmfLyVHOVktp1+x8FHLecD3tr/09q71zQyvzMyz5Ae6APcC25u9I2AM6OMT4cQjgY+CXQBLwSYzw3hLAScCO5YtMd+EOM8aEQwvvAi8BGQALsF2OcsphZPwcOBO4CiDEmIYTPyRWmtWOMM0MIlwI/IDcRdA9wH3AMUB9CeAdYGbgAGA9UAp8s5mc7syRJkqTmPTX8Wdb4ZBrTauCjzbvR0LmKPiedmXYsFUdNjHFP4ErgZHKF5afAsSGEbsDvgZ1jjNsC/UIIuwLrAlfHGHcFTgVOyR+rM3BPjHEHYDSwx+KGiDE+ADR8Z+yuGOOjMcY/5YeOAg4HtgdmxRhHA7cD18QY3wSuAnYBdgdmLslvgjNLkiRJmmNmw0z+ct4ebPPi1/TOQtcZULHFGmxx52NpRytJ+RmgBc4CFdC7+dfJQG1+RmcSuVmjtYCewOMhBIAaYA3gFeCCEMLx5GaQ2jVzvJH5Y8wRQvhb/pjjY4wHL0XWQ4HLgd7AE9859orA1BjjN/nlV5fkwM4sSZIkaY4nhz/Nau+PpyIL3/SuBKDP4SemnEopSBaybji50rNrjHFH4HrgDeBi4M4Y45HA88DcX7q1wOPFGE+IMe64NEUphFAFHAwcRu5SvGNCCKsCWXJd5xugSwihZ36XzZfk+M4sSZIkiffGvscnJx9Jl4kNrDoOygeszRa3PUJSX0+msjLteGpBYozjQwjXAC+GEMqBEcC95O4Vui6EMJZcmepRhCyzQwgTgSHAJOAp4EtgMPD/gFrgWGBgfruGBR2rOZYlSZIkcf0Dv+as2gam558t1uegIwEsSiUoxnj7XO+fBJ7Mvx8C/DD//m7g7u/sek/+13ePt9pc75f4mfMxxhHAVgtZ/wfgD98Zfiz/63++t6SfC5YlSZKkkvfEu/fz01u+AGD92+6gXa+VadenT8qppPR5z5IkSVIJa8g28MQ9F1NTl1tuv9HmFiUpz5klSZKkEpQkCXf/9RdkXh7EyYPrAVjj0f+SyWQWsadUOixLkiRJJejJ4QPp8MDTrDsyt1y+Uleq1lor3VBSC2NZkiRJKiGT6ybz2CUnMHb8CPYcCclWa7LqqRdR0bPnoneWSoxlSZIkqYT87tajOfn+oXOW++5xAB2+//0UE0ktl2VJkiSpDWnINvDk7X9g9pfD51vXRJZN3/0UgA6XnUenSfV0OeDIYkeUWg3LkiRJUhty6RPnc9Af/0tFduHbrXLAkT7MQVoEy5IkSVIb0ZRtYtQbT1ORhclH/oBkw02+s0VC16Gj6Lf6BhYlaTFYliRJktqIDyZ8wGqjZpNkErb8xZWUdeqUdiSpVbMsSZIktXJDP3yVuqmTeGD442w5LCFZsaNFSVoOLEuSJEmt2Pl/2o8j/jqUdsDh+bGaA7ZIM5LUZliWJEmSWqkvp4yk3cefkZDw4d6BdrMaCMNm0uvEX6UdTWoTLEuSJEmt0G0vXc+6Z97AITMg27GcH//x4bQjSW1OWdoBJEmStGSask289vStdJ2RW+512CHpBpLaKGeWJEmSWonZTbO57nd7sfVTozlzWm4sDH6Lso4+zEEqBMuSJElSKzFo1Kv0GTKGqkaoq87Qee3VLUpSAVmWJEmSWomHPnycI0cndFh3Jfrf8xQ0NKQdSWrTLEuSJEmtQJIkjPv4BTrVQfcddiaTyUBlZdqxpDatYA94CCFsGUJ44Ttjh4cQXptr+cQQwtshhNdDCHsXKoskSVJr98nET1j785kArLD/USmnkUpDQcpSCOEc4G9A9VxjmwDHA5n8cm/gdGAbYHfg8hBCVSHySJIktXaPfvY0m36eJdujinZ9+qYdRyoJhboM73PgQOAugBBCd+AK4Azglvw2WwCDYoyzgdkhhM+AjYC3CpRJkiSpVUiShH/e9msqnn1+zljX+lmsNxKq99g0xWRSaSlIWYoxPhBCWA0ghFAO/B04E5g112adgSlzLU8DujR3vNra2kLEXKS6urrUPlvF43lu+zzHpcHzXBpK5TwPnjSYzP2PssHwhNntcmPt63Ov9Vvt1OZ/D0rlPKvlK8YDHjYD1gZuJHdZ3nohhP8DngNq5tquBpjc3AH69+9f6IzNqq2tTe2zVTye57bPc1waPM+loa2f50cfvJppzz3BuMYp7DksIbvJSnzvX08D0DhpErMGD6bTzvmHO7RhaZ3nwYMHF/0z1bIVvCzFGN8E1gfIzzb9K8Z4Rv6epUtDCNVAFdAf+LDQeSRJklqil0a9xPSb/84mIxI2yY/12W2vOesrVliBml12SSecVKJSe3R4jHFsCOE64GVyD5o4P8ZYl1YeSZKkYpnVOIsnbzyPpkkT54x9NGM4Px6RMHuTPvQ8/0qqXnuHrocfnWJKSQUrSzHGEcBWCxuLMd7Ctw98kCRJKgnn33woJ/5l6Dxj6+dfV959P7pvuDlsuHnxg0mah19KK0mSVERfTv6Sbm9/CsCkXx1BtkdPAMonT2OVYePpevAJacaTNBfLkiRJUpE0Zhv5vysP5MRXEwAGHPebNv+wBqk1K8iX0kqSJGl+g754lbU+mwlAr7NOtShJLZxlSZIkqQgmzJrAy5f9nJ0+SMis0pnuJ56SdiRJi2BZkiRJKoLHPn+KAR82AdD352ennEbS4rAsSZIkFcEzQx5mxckJFbtuSuf9D047jqTFYFmSJEkqsFmNsyiPH1OeZFhxjwPTjiNpMVmWJEmSCuy10a+z0bAmsuXQaed90o4jaTFZliRJkgrsoY8fZ7PPE8pW705ZVVXacSQtJsuSJElSAb03dghbX/sYvSZD151+kHYcSUvAsiRJklRAf77/XDYekfsS2u4/OjblNJKWREXaASRJktqSp9/4F5OvvJyKhgQyCb8c2ghAvz9fTeWqq6ecTtKScGZJkiRpOalrrOOJf13KBh/X021CA10n5IpSkoGanfdIOZ2kJeXMkiRJ0jJ44P7LaXjoP2QSmJ1p4sS3G2mqhO1f/ZhMJkPj+PE0TZ9OJpNJO6qkJWRZkiRJWkofjP+Ar/99F9t/kDC7EsqzufH2q/aeU44qevakomfPFFNKWlqWJUmSpKWQJAl33HcRx3+Q0LhmZ7732BsAzHjtNdqtvHLK6SQtD5YlSZKkpfDgpw9xyM0fA9Brm+3njHccMCCtSJKWM8uSJEnSQiRJwrP//QtThrw5z/gHU4ayXh1Q3Y4ep/42nXCSCsqyJEmStBD31N5Ln8v+wnqT5x1fL/+60hUXUt65c9FzSSo8y5IkSVLe7Po6XvnPDTTNmjFn7N1Pn2DTyTB5uzVo3HPvOePtJkxm1bEz6fSDfdKIKqkILEuSJEnkLre74JKdOe7eifOMH5d/3eSEc2i/5Q7FDyYpNZYlSZIkYOikoaw4bBKNFQnDjt0FyD36u+P4qawzq5rqzbZJN6CkorMsSZIkAY99+ixhVAK9O7LfWX9OO46kFqAs7QCSJEktwRsfPsYa4xI6bbJp2lEktRCWJUmSVPKm1k9lhfgFZUmGFX90ZNpxJLUQliVJklTyXvjiZTYZlqWpOkP7zbdNO46kFsKyJEmSSt7DHz3C9z5PqFhnJTLl5WnHkdRCWJYkSVJJa8g2MP3jN6iZBT322HvRO0gqGT4NT5IklaSGpgZuuPQg1nnhMy4akwDQdb8jUk4lqSVxZkmSJJWkZ758jl6vfcaK3+SKUrt1+lLRrVvKqSS1JM4sSZKkkjOjYQYv3XA+Rw1PYLNVWeem+yBJ0o4lqYWxLEmSpJJzw9s3cdR/ZwDQd+8fUV5Tk3IiSS2RZUmSJLU5r783kOF/uoiyhqZm1/ebmitK7bbeiM6HHFfMaJJaEcuSJElqU2Y1zuLBv5/Nsa83UtcOksz827Svz72ufNZ5ZMq8hVtS8yxLkiSpVZrZMJP/XPUzyseOnWd8WjKbQ15qpLE9bPLOx2Qy87elxvHjmfXBh1Stv0mx4kpqhSxLkiSpVbrwP2dw3F1vLXB9u3VWbLYoAVT07EnND3YqVDRJbYRlSZIktRqN2UYeueV86r8ayWofDQag4ryTqN52l283ShIqB71B1613SCmlpLbCsiRJklqNv715JT+9ZjBlCayfH1vzkJ9RVl0974ZrbVj0bJLaHsuSJElq8SZOGsvgR2+jx6AhlCUw6YQ96FjWiZW7rTJ/UZKk5cSyJEmSWrTJdZO58de7ceBLDfwoPzbgtMvJVFWlmktS22dZkiRJLVaSJNz+7J9Zd3gD07tmmLphYKN1N7coSSoKy5IkSWqRkiTh/Ct258g7RgJQtfXadPrlZfTs3z/lZJJKhd/CJkmSWqQ4cSidPxkFQGO/Fehz8q9TTiSp1DizJEmSWoQps6dw8y93Zs/nZkCSG9sPSLpXsuGzr+YGamtTyyep9FiWJElSi/DIZ0+w9iczmN4Zhq/XjbJswlpDZ7La4UekHU1SibIsSZKkoppcN5nbz9qdzd+cOs/4Ok3QeSa023EDtrzpvpTSSdK3LEuSJKmo7qm9n/Xem0p5Bkat/O1T7TrOyNJ5RAN9Dv9piukk6VuWJUmSVDQjp42k/o9/YuUJULXvALa66tZ51mfr6ymrrEwpnSTNy6fhSZKkorn62cvYbXAWgD4HHTvfeouSpJbEmSVJklQw74x4g6G/PpmqWY0A/HhMAwBdTz2a9ltul2Y0SVokZ5YkSVJBJEnCzXeezsbvzaLn2AZWmNDACtNz63od8bN0w0nSYnBmSZIkLXf3/vMiGp94nJ+/Mw2ArZ58iYpuPWmaMoWGsWMp79o15YSStGiWJUmStFy9NfYtZvz7XraISe4Slk7tqOjWE4DyLl0o79Il1XyStLgsS5Ikabl64KNH2XdUQrZ/T9a46Hoy1dVpR5KkpWJZkiRJy02SJHz64dOsMAO6bL0d7TfeOO1IkrTULEuSJGmpvfX6f/ny6fvnLNclDezx7mQAuu/7k7RiSdJyYVmSJElLZfC4wdRe8ms2/yyZf2V5hsp1+hc/lCQtR5YlSZK0xCZOHsdtd/6GE4cnTF27hvpjj86tyCb0qP2SfpttTyaTSTekJC0jy5IkSVoik+omceM5u3LKS7kvmO2z5/70OvCUlFNJ0vLnl9JKkqTFliQJtz//F9YdnitK7QZsTLdD/IJZSW2TM0uSJGmxJEnC+VfszpF3jASgaut1WOPWf6WcSpIKx5klSZK0WOLEoXSOowBo7LsCfU7+dcqJJKmwnFmSJEmLNKNhBndedhhHvp6QdK9kw+deTTuSJBWcM0uSJGmRBg5/li2GzAKg9+FHppxGkorDmSVJkrRAb45+k1EnHEvv8VlWmA4VW65Jt1POTjuWJBWFM0uSJGmB/vrwRfQfniVblfvOpD6HHZ9yIkkqHmeWJEnSfP566+ms/M9nOHtUAsCm191C+w2+T1lVVcrJJKl4nFmSJEnzGDZ5GFNeeIaVx+SKEu0r6LDpAIuSpJLjzJIkSQJgyuwp/PvcA+k8bBz7xISm3lWEJ18nO306mTL/flVS6bEsSZIkAP702p/Y59kxlOcnlLpvsy1l1dWUVVenG0ySUmJZkiRJjJ32FZ3/dh8d6qHTKYfRY4f9qVp77bRjSVKqLEuSJIk//OMkTns7C0DvfX9Cu1XXTDmRJKXPsiRJUompb6rnwetOh2HDAMgCu9aOBKDbqT+1KElSnmVJkqQSc9WLl7HP31+ksnH+db1+/oviB5KkFsqyJElSCXn52bspu/teKhshe/y+1Ox/OADtPv6UTh27+tQ7SZqLZUmSpBLx9IhnmHnppRwwJrccjvwFFb375hbW3ji9YJLUQlmWJElqo8Z89RkfP33vnOUnRz3HCWOgoUsVfY84+tuiJElqVsHKUghhS+DKGOOOIYT1gJuBDPAecFqMsSmEcCJwEtAIXBJjfLRQeSRJKiXDJg9j4C/2Zcf3kzljJ+RfVznvLLruf2Q6wSSpFSlIWQohnAMcCczID10G/CbG+FII4XZg3xDCa8DpwPeBauCVEMLTMcbZhcgkSVIpufOdf7LTFwmT+7Vj3B7bAlA9aQbrjM/SebeDUk4nSa1DoWaWPgcOBO7KLx+Un0mqBHoD44AtgEH5cjQ7hPAZsBHwVoEySZJUEl4ZNYhtfvsPek2BznvtxICzr007kiS1SgUpSzHGB0IIq8213BRCWBV4BpgCRGCN/Pv/mQZ0ae54tbW1hYi5SHV1dal9torH89z2eY5Lg+f5WzcMuprffpN7P3WbfZjahn5fPM+lwfOslqJoD3iIMX4BrB1COAG4BngAqJlrkxpgcnP79u/fv/ABm1FbW5vaZ6t4PM9tn+e4NJTqeb70ukPZ85b35vnOpN/mb1Pq+6eL6bLzLukEK5BSPc+lJq3zPHjw4KJ/plq2opSlEMIjwFkxxk/JzSBlgTeBS0MI1UAV0B/4sBh5JElqC0ZMGUEy5H0qGxM+3KobCRkAuo2fzcrTKqjZca+UE0pS61asmaUrgNtDCPXATOCEGOPYEMJ1wMtAGXB+jLGuSHkkSWq1rrnpODa74zXKmuCgqZDt0o5Dbns17ViS1OYUrCzFGEcAW+Xfvwps08w2twC3FCqDJEltzfApw5n9+ut0n5Lw6TpV9JhaT8999k47liS1SX4prSRJrcTjb97DlIsuZv9hCU3dKzngofdI6uuhvDztaJLUJpWlHUCSJC1aU7aJxx+8kk2G5Z7e0HPXXQHIVFaSsSxJUkE4syRJUisw5OshrDaqnmx5wtoDn6Fdr15pR5KkNs+ZJUmSWoGHhz7FeiMT6FND5UorkamsTDuSJLV5liVJklq4b2Z9Q/Kvf7D6OKjZasu040hSybAsSZLUwv3+vtM5/LkmAHodfEy6YSSphFiWJElqweoa62j86H0AOh/5Y6o3/n7KiSSpdFiWJElqwV4b8zprjWoiWwF9z7kg7TiSVFJ8Gp4kSS3Eay/fz5iXHp1n7INZX7LvBwllq3Qj065dSskkqTRZliRJagFeGfUKoy/9HRuNSOYZXy//2n2XXYsfSpJKnGVJkqQUfT70HYa/8RQDx77MMV8kTFm/G/WHHTZnfdnUGazy6Vi6H3dGiiklqTRZliRJSsnrY15n5KnHscGXCcflx9be/3C6/+iUVHNJknIsS5IkpaC+vp5bHruKX4xOmLBOJ6ZvuB7rjK2n6/5HpR1NkpRnWZIkqcjGzxzPnafszNmvNQCw3mHH0/2wn6WcSpL0XT46XJKkIrvvk/+y7vBcUSpbux9d9zxsEXtIktJgWZIkqYjixEj73/+RNcZC+x9uRvjvM5R36ZJ2LElSMyxLkiQV0V8G3cBWMfd48BWPPj3lNJKkhfGeJUmSloPZTbO57sK92erpUWSSBW938tTca/fzTqb9plsUJ5wkaalYliRJWg6e//JF+r47mvb18MXqVQvcLhnXSPdp0G0v71OSpJbOsiRJ0jKI30TePvkQukyo53tjEjKbrsxB9zy10H2ydXWUVVcXKaEkaWl5z5IkScvgmv+cx/fen03vSblr7/oecPgi97EoSVLr4MySJElL6IsD5qNMAAAgAElEQVTJI3jxzEOomTiLn3+eewT4On++nupV16Vdv34pp5MkLS+WJUmSltDl957BL16bypSOUNmYG6vZckcyFf5nVZLaEv9UlyRpCbw1YhA//HcEYL0bb6LDGuvTNHmyRUmS2iD/ZJckaTFlkyx33XwaJ4/OLdd8fzsyZWVU9OiRbjBJUkH4gAdJkhbTRxM+YpWRdQCsctutZMr8z6gktWX+KS9J0mJ6OA5k3ZEJ2X4d6ThgQNpxJEkF5mV4kiQtQH1TPU/eeiENX48DYOaEIaw5Ftrv972Uk0mSisGyJEnSAlxw57Ece/U7c5bXy7+u+KOj0wkkSSoqy5IkqWQlScLgl//D5C+GzreuKWlihZeGAPDNz/ejsU8/2o/9hlWnZ6jezEvwJKkUWJYkSSXrT89fxk6/uJt+Dc2vXyX/us2pl/kwB0kqQZYlSVKbNnHCaMaP/HS+8QT4/On72aMBRu6yFjNX7TffNr2GfcM6629lUZKkEmVZkiS1WY8M/S+djzqHFSc3v/7U/OvOl9xJedcVipZLktQ6WJYkSW3W/QOv5bzJMHKDGiau0nO+9b1Gz2CtnmtalCRJzbIsSZJarffHv0/tMYey/rAEgA+/s/683DDbX3QD1Rt8v7jhJEmtnmVJktRq3fzC9Zw8LGHcShWM7dOBsvLyedb3+mo2/ZIaqtbze5EkSUvOsiRJapWask3M/PBtyhLY5Oe/Yty6m9O/f/+0Y0mS2hAf7yNJapXeG/8ea46cTZJJ6LLLAWnHkSS1QZYlSVKr9NAnA9n084SkXw3lNTVpx5EktUGWJUlSq/ThR0+y+jio2XqrtKNIktoo71mSJLU42STLrX8+iW7PvglJMt/6BPj9pw0A9PrRMcUNJ0kqGZYlSVKL89Kol6geOIg1RyRMbuYKu0wCFVmgsoyqDX3SnSSpMBa7LIUQ1gbWAj4ARscY5/+rPkmSltKHXwzm/Yt/QfnsBiYls9nhs4TsRn3Z4d5nm92+YcwYsrNnk8lkipxUklQqFqsshRBOBQ4AugF3kCtNpxYwlySphDRlm7j5phM5+ZVZ1JdDZVNuvM9uey9wn3Z9+xYpnSSpVC3uzNKhwHbAczHG/wshvFXATJKkNixJEh69/0qmv/LCnLG6pIGDX59Ftjxho8FDSIBpTz9N5913Ty2nJEmLW5b+99S8/116N7sAWSRJJWDgiKdouukONhk9/7pMj45kqqvJAF322afo2SRJmtvilqV/Ai8Bq4YQHgceKlwkSVJb0pRt4ql/XcXM4Z8C8N7UyGGjoW6LVVnhvEvmbFf11hC6bvT9tGJKkjSfxSpLMcY/hxCeA9YHPokxflDYWJKktuKPz1/GDy/7J5WNueX18uOr73coXfvPVY76W5QkSS3L4j7g4URgvRjjmSGEp0IId8UY7ypwNklSK5ckCfHVR9i3ESYeuAUNm36fdhOnstqoKXTe69C040mStFCLexneycDW+fd7kbskz7IkSVqoOCmy0siZAGx11tWUd++RciJJkhZf2aI3AaApxlgHEGNs4NsHPUiS1KwkSbj7xVvYeHiWbPdKi5IkqdVZ3Jmlh0MILwNvAt8DHilcJElSa9eQbeAP5+/AT/4zCYCOe2ySciJJkpbc4j7g4ZIQwqNAAO6MMb5X2FiSpNbstdFv0u/TyQBkV+rOiiedk3IiSZKW3ELLUgjhhBjj30IIl/PtpXcbhxAOiTH+pvDxJEktWV1jHdf8Zlf2fmwCmbku0F4B2CELmTVXYP3HXkktnyRJy2JRM0sj86+fAk0FziJJamUGjX6VlWq/ob4KPtuo65zx8saEUDuTVY86KcV0kiQtm4WWpRjjwPzbQ2OMuxUhjySpFXnwo0c5elRCh3X6cejtz6QdR5Kk5WpxH/AwOYSwHxCBLECMcWjBUkmSWrxskmXcxy9SMwu6bf+DtONIkrTcLbIshRA6A6sDZ8w1nAD+l1GSSsCEWRN44Mx9WOXTKfOMJ8DFo3M3KnU74KgUkkmSVFiLesDDqcBZ5O5X+m2M8cmipJIktRjXv3ED+7w2mYYqmNRlrq/nS3L/U75yd9r1XSmteJIkFcyiZpYOJ/e48M7AXYBlSZJKxIvvP8a4iy9gwLg6Os6GTsf+mAFn/H6ebZqmTiVp8vk/kqS2aVFlqS7GWA9MCCFUFiOQJCl9DdkGHrj7N5z8Qf2csRX3PWK+7co7dy5mLEmSimpxH/AAkClYCklSarJJlrv/chpVb749Z6yeLCe/WU+2PGHdQa9T/+WXVK6xdoopJUkqvkWVpfVDCP8kV5T+9x6AGOPhBU0mSSqKB4Y+SPf7nmO1r6GxPDdWls29tuvbjfKuXWnfteuCDyBJUhu1qLL047ne31TIIJKkwnrv45eo/duVkJ33HqORs8az9zjgBxux8Q3/njM+49VXqejTp8gpJUlqORb1pbQvFiuIJKlwJtdN5j/X/pxDXpz/YQwb519X3vvgecY7br11EZJJktRyLck9S5KkVqShqYGBd15C/VejGN3wDTu+10Rd1wxdbr19nu0yEyZS88kIOu62fzpBJUlqoSxLktRG/e6+UzjiypcpA/rnx6o3X53V19ti/o23L2YySZJaB8uSJLVB02dPo3HQIMqAb47blaa+q9DvgxH0OebnaUeTJKnVsCxJUhuTJAm/uXovTn4690i7bc74I5lKvypPkqQlZVmSpFZq9IiPmT55wnzjX80cyyq1ufEVDj/QoiRJ0lKyLElSK3Tx7Sew/1WDqMjOv25FYC8g6dqO3r+7tNjRJElqMyxLktTKTJk9hSnvvEZFFj7eeWUaqtrNsz6TTVhj6FTWOvgnKSWUJKltsCxJUgvXkG3gyt/txj4PjaUsP5N0fP71wD8PJJPJpBdOkqQ2zLIkSS3cO+PeYcWPx9FUAbUbdyWTJKz++SxW3m4Hi5IkSQVkWZKkFu6h2oHsOSqharUeHHrHy2nHkSSpZJSlHUCStHCff/gUPaZC1wHbph1FkqSSUrCZpRDClsCVMcYdQwibANcDTcBs4KgY47gQwonASUAjcEmM8dFC5ZGk1mjM9DGs8tkkAHoedEy6YSRJKjEFmVkKIZwD/A2ozg9dC5wWY9wReBD4dQihN3A6sA2wO3B5CKGqEHkkqbV6cthzbPp5QmOXCirXCmnHkSSppBTqMrzPgQPnWj40xjgk/74CqAO2AAbFGGfHGKcAnwEbFSiPJLVKT3/4MBt8kaV6o3XTjiJJUskpyGV4McYHQgirzbX8FUAIYWvgVGB7crNJU+babRrQpbnj1dbWFiLmItXV1aX22Soez3Pb11rP8aymWVR+UktlY4amLbZtlT9DMbXW86wl43kuDZ5ntRRFexpeCOEQ4Hxgrxjj+BDCVKBmrk1qgMnN7du/f/8iJJxfbW1tap+t4vE8t30t9Rw/98o9fP3368g0Jc2un5Vp4ldvNpGUQTjyJMqqq5vdTjkt9Txr+fI8l4a0zvPgwYOL/plq2YpSlkIIR5B7kMOOMcaJ+eE3gUtDCNVAFdAf+LAYeSQpbV/P/JpBt13Mj15LqC9vfpvyLJQn0G71XhYlSZJSUPCyFEIoB64DvgQeDCEAvBhjvDCEcB3wMrl7p86PMdYVOo8kpW30xC+549LD2P+1hPru5Ww8aMF/TzT9xRepXGONIqaTJEn/U7CyFGMcAWyVX+y2gG1uAW4pVAZJammSJOGq/zuYnz02FYAO6y38wQ2ddtihGLEkSVIzinbPkiSVqiRJePbhG5ha+y7Ts7PY9o1pAHQ56Vh6/vgnKaeTJEkLYlmSpAL727u3suEf/ky/mXMNdq2k75nnpJZJkiQtmmVJkgrkw7ef5uuh7zH0vXvZdiZ884N1aNh2e3rXjmTlHfdKO54kSVoEy5IkFcCdQ+5g7Z9eQZ+ZcFx+bPPTL6ZqXb97W5Kk1sKyJEkF8MJzt7H5TBg9oC907UlIulIZNkw7liRJWgKWJUlazibMmkDXL8YDsN0Ff6ZqTb9AU5Kk1qgs7QCS1NY8Nfx5NvgioaljGZVrLPzR4JIkqeWyLEnScvbER4+wybCEyvXXJJPJpB1HkiQtJcuSJC1HdY11NNa+R/t66LnPAWnHkSRJy8B7liRpKU2rn8Yt5/yQzV+bOGcsAX43Jfe+8x4HpxNMkiQtF5YlSVpKDw59hHWGTKSyCUavXJkbTGCFGfXUbNqf8k6d0g0oSZKWiWVJkpbQW1++xojTf8qKkxpZdRy023UTtrz+njnrk8ZGkmw2xYSSJGl58J4lSVpCt/z7XDb4pJHe+avv+hx09DzrMxUVlFVWppBMkiQtT84sSVLe/Q9dBXf9k7KmZIHbJMCZn9QD0P/RR8hkqqhcZZUiJZQkScVkWZIkYNS0UQx9+Hb2+zjhmy4L3i7zvx5VXU7VqmsXJZskSUqHZUlSyXns8T8z7d//IJN8O4M0LdPAAW8kNPRqx/Yvvb/Q/RtGjyZbX1/omJIkKWWWJUkl5bNJn/HZXTew27sJ9eXfjlc25V67bbLpIo/Rrl+/AqWTJEktiWVJUkl55NOnWH9UQv0qHdj4qcFzxpNslmlPPkmHAQNSTCdJkloSn4YnqaS8+sF/WXl8QufvzCBlysrovOeeVKywQkrJJElSS2NZklQy4vjIJoO+IEOGXvsemnYcSZLUwlmWJJWExmwjf736MA56NfdQhw4Ddko5kSRJaum8Z0lSm5RNsrw28C5mT5rApEmTGPx6PZt8VAdAn9+dR6a8fBFHkCRJpc6yJKlNOu/GH3HMdbUA9JlrvGylznQ9/Kh0QkmSpFbFsiSpzRk3/WvKPowAfHro5kzLZulYVc1qn4xnzSNOTDmdJElqLSxLktqUhmwDV12+Nyc8lyXJwL4X3UltbS39+/dPO5okSWplfMCDpDbl1dFvsG7tdAB6nvCTlNNIkqTWzLIkqc2YMGsCL172c7b9OCGz5gr0POuCtCNJkqRWzLIkqc24t/YhdnmzAYA+R/005TSSJKm1854lSa3O9befxgY3P0NF07zjm8+GTnVQvfdWdDnkmFSySZKktsOyJKlV+Wr6V3wz6Dl6TUyI61ZB5tt1nadm6TS6kd6H+sQ7SZK07CxLklI3atoonjp1f3qPnrnIbZuAQ0YlNNVUcOBD7823PjtzJmUdOhQgpSRJKjXesyQpdVc9fTFbvjmDztOTRW5bmc29dttp22bXW5QkSdLy4sySpNTUN9Vz66WHcvCjtZQlEM46m54HH7/I/RrGjqW8a9ciJJQkSaXMsiQpNfd8fC9rDqylx9TccrfdfrRY+7Xr3buAqSRJknK8DE9Sap4Z/AArfQPlO27Mag/cT3mXLmlHkiRJmsOyJCkV0+unU/nppwD0PfgI2q+/fsqJJEmS5uVleJKKqnbYW7x348VMqZ/GEW80ka2ADtvtlnYsSZKk+ViWJBXNzIaZ3H3NcRzxTOOcsXZr9aKssjLFVJIkSc2zLEkqmkGjX2XNUU3M7gQdb/krHV8fQrcf7J52LEmSpGZZliQVzX8+epQjRyZUrd6XtTfdHjbdPu1IkiRJC+QDHiQVxWfxTepffpquM6Dbjj9IO44kSdIiObMkqeCe//IFpv/sZM76Krfc7cCj0w0kSZK0GCxLkgpiwrgvmPL1aAD+9eq1nP4VZMszrLD/nrTru1LK6SRJkhbNsiRpubvhuavY4szb6Dg7t3xGfrzP/7uIrnv+OLVckiRJS8KyJGm5aso28e4L97DTbPhsix7M6NaJmomzWWtyOZ132ifteJIkSYvNsiRpmV123SHs/rf3qWjKLf8y/7rXDY9T1qkmvWCSJEnLwLIkaZkMnzIc3v2A6oaEDzfvCsBKX9TRd5U1LUqSJKlVsyxJWipjZ4zloVP3on/tTA6YDNmu7TjkztfnrE+SJMV0kiRJy87vWZK0VP769t/53rszqcx3op777D3P+kwmk0IqSZKk5ceZJUlL5ZN3nuDHddDpqB/R75QLyFT4x4kkSWpb/H83kpbYl1O/pM+ISQD02vswyqqqUk4kSZK0/HkZnqQl8kZ8nsdP2osTB2bJdiyjcu3+aUeSJEkqCMuSpMXWlG3irjvOYod3GwHoOuD73pskSZLaLC/Dk7RIH3/xDkMuPYOm+tmc9OYsEhJWve02qjfcMO1okiRJBWNZkrRQTdkmbrrpBE5+aRbZDJQlkOnekY4DBqQdTZIkqaAsS5IWaHr9dG65/HAOem4W2fKE9d55j5nvvkt5t25pR5MkSSo4y5KkBfrdP07gxHs+BSDTsyOZqio6brVVyqkkSZKKw7Iklbhx34zktTuuJGlomGc8S5Y1B78PQOWeO9H3yBPTiCdJkpQay5JUwmY3zeb/LtmHo56Y3ez69fKva/y/68mUlxcvmCRJUgtgWZJKVDbJcsu9F7LRJ/XM7gATzz5+3g2ShBWGfcVqq25gUZIkSSXJsiSVqN/ceDBHX/cxABXr9GSTw89OOZEkSVLL4pfSSiXom1nfkPnwEwAa1uxN37MvTDmRJElSy+PMklSCnvvyRcLohMaaMjZ67Pm040iSJLVIzixJJejhD//LBl8kVK61StpRJEmSWixnlqQ25qUvXmLqsSex8rgFb3N+U+61xx57FyeUJElSK2RZktqY2564gnPGwMjV2zGpZ4dmt+k6sYGVv8nQdd+fFDmdJElS62FZklqRp2ofpf60c+g8PVngNudMzr1ue/ENdPj+tgvcLkkSMpnM8o4oSZLUZliWpFYiSRLue/ASfjkq4YtVypnZofnvPupY30CHymrabzpgocezKEmSJC2cZUlqBUZNG8Wjp+3LL1+fBcDOdw2k3Yr9mt02SRKSWbP8IllJkqRl5NPwpFbgqqcvZod8Ucqs2HmBRQlyM0ZlHZq/V0mSJEmLz5klqYWpa6zjzt8fQvcPR8wZO3h0PQDdzj2F7vscllIySZKk0mJZklqYW967jU0GDqVjHcxonxvrMTX/euBRlHfunF44SZKkEmJZklqQKbOnMP7WG+kxFSoP/gHfu/gvADROnEjDmK8sSpIkSUVkWZJakN8/fDYnPtsAQN/9vv0OpIpu3ajo1i2tWJIkSSXJsiQV0MSZ3/DUFafA9GmLtf0mnw0HoOO+u1G92cIf/S1JkqTCsixJBXThDYfw83tHL/F+K/3+Cr8HSZIkKWWWJalA3h/9Luu9MQaAsr9cAt17LnKf6mFf0rWsA2Xt2xc6niRJkhahYGUphLAlcGWMcce5xv4ExBjjTfnlE4GTgEbgkhjjo4XKIxXT7KbZ3H31MRz7QQJA2PmgxdtxkwKGkiRJ0hIpSFkKIZwDHAnMyC/3BO4E1gH+X36sN3A68H2gGnglhPB0jHF2ITJJy9OUqd8w5Kl7SJoam10/bNZoNvs4/6CGy/9QzGiSJElaTgo1s/Q5cCBwV365E3ARsMdc22wBDMqXo9khhM+AjYC3CpRJWi4m1k3kprN24oCXGxa4zYr514p1etLlgIOLE0ySJEnLVUHKUozxgRDCanMtDweGhxDmLkudgSlzLU8DujR3vNra2kLEXKS6urrUPlvFs7jnecqE0dRNn8xrU99h3eENTFsBPt2l+evmypqyrDV0EjUH/MR/hloA/10uDZ7n0uB5Lg2eZ7UUaT7gYSpQM9dyDTC5uQ379+9flEDfVVtbm9pnq3gW5zxfee8Z/PD3A+nSBPvnx6q2XZctLr6n8AG1zPx3uTR4nkuD57k0pHWeBw8eXPTPVMuWZll6E7g0hFANVAH9gQ9TzCM1a2bDTMa8/gyVTVC7XR+SinLWjtNZ7aRfpR1NkiRJBZRaWYoxjg0hXAe8DJQB58cY69LKIzVn4GdP0nT8mfxsXG75gL8+Q6asLN1QkiRJKoqClaUY4whgq++MXfSd5VuAWwqVQVpW/37kCn6VL0o1u29jUZIkSSohfimtBDxV+yj1p51D5+nJPOO/yt9Ft8Yj91G59vopJJMkSVJa/GtylbwkSbj3wUtYc1TCzM7lTOhdOedXXVWGTK/OVK69PplMJu2okiRJKiJnllTSRk0bxYtX/oSz3sjdLrfz3U/RrlffOeuTbJakrs6iJEmSVIKcWVJJu+rpi9kxX5QyK3aepygBZMrKKOvQIY1okiRJSpkzSypZH415n+3++jIA3c49he57H5pyIkmSJLUkziypZF1/58/Z4IvcAx16HHgUFT16pJxIkiRJLYkzS2pTxk0by1O/PZp2k6cudLssCce8PwWA5De/orxz52LEkyRJUitiWVKb8oe7TuTUJ78km4HsQp7JkEmgPAEqMmQ2H1C0fJIkSWo9LEtqMz4YM4TNB34OwCr/up2ajbdc6PYz33mXTLsKRhQhmyRJklof71lSm9CUbeK2a49jy5i7B6nTRlsscp8O39uU9htuWOhokiRJaqUsS2oT3hv/Hqt8mXsEeL8/Xe33IkmS9P/bu/MoqaoDj+PfKuhmacEgqxDEDa6oGVwSJEoEjSvm6ISY0TPJGEQzasiJOp44OGr0RD2JM9l0ojGiDJozZJOoRMVlXAnGiCiu3VdDEghBIovsW3fXmz+q2KRYuumq1139/Zzj6Xrv3e761blS8Ov73itJe82ypIrwcHyCwxYm5AZ1o/uZY9KOI0mSpApgWVKbt3BBHX9+5pcMWgL7fGr3p99JkiRJe8IbPKhNm/vBXN6+7J+5Zl7+WqW+534l5USSJEmqFK4sqU2756XJHL4gX5RqTh1Jp2GfTDmRJEmSKoUrS2qzpseHmXD1UwD0+ubF9L7oqpQTSZIkqZK4sqQ2a9rjt2953OPzF6aYRJIkSZXIsqQ26Y7HbmLiTxYBcNC0qXTcb7+UE0mSJKnSWJbU5mxs3Ejts7/est3p8KNSTCNJkqRK5TVLavWSJOGHt32Jo3/1Gtn8vRyY8GH+62FvvuEH0EqSJKkkXFlSq/f20rfJ/mEu+62CZX2qWN6nCoAuww8nU1WVcjpJkiRVKleW1Ko9OPMe1t36A07/Y0JuQFfGPjwHgKS+niSXSzmdJEmSKpkrS2q11jes54Xf3MYxf8yfe9fn9DFbjmWqqsh26pRWNEmSJLUDriwpVUmScN+9V9Ltsed2ONZAjn99p4FcRxj86ONUDRhQ/oCSJElqtyxLStVL779E7pEnGfxewqqa7Y9lCjdz6DJkINWDBpU/nCRJkto1y5JKJkkSfn7vN8nOenGnY5YnGzipLqFxaC9GPjhzh+Mbamvp0LNnKWNKkiRJRVmWVDIz/vw4XX7+KIf9DRp3cnfvDoXVo34nn170eOehQ0uUTpIkSdo1y5JK5jevTuMbiyE5IXDkvQ8VHZPbsIFVj82g+1ljih6XJEmS0mJZUknUN9azvnY2VY3Q97Szdjou27kzHxv7+TImkyRJkvaMtw5XSfz2jWmc9Go9SSZh39POTTuOJEmS1GSWJbW4xWsX8+7tN3FCbUK2Vw0devRIO5IkSZLUZJ6GpxZV+/pzPPbyzzmuNgfAwFu+n3IiSZIkqXksS2ox9829jyHjv8uYdfntmlOPpubE0almkiRJkprLsqQW8+zTkxm+Dt4/pg/9Gvah74Rr044kSZIkNZtlSS1i0ZpF9Jq/FICRN99N9cEh5USSJEnS3vEGD2oRM+Y9w5HzExr3yVJ10JC040iSJEl7zZUlNdvKjSuZ9G+ncMrzaxieg4456DRiMJlMJu1okiRJ0l5zZUnN9uC7jzDknTVsqIF5h+9DY+cO9L3oG2nHkiRJklqEK0tqksnTb2Lg96ZSXQ+HNkDP1VD92WGMuOMXJEniqpIkSZIqhitL2mOrN63mnf/7BR//AFb0qmJ99w4A7H/+xQAWJUmSJFUUV5a0W+sb1nPvdecw6NWFXLQgIcnC2dNfJ5PJ0LhmLR32qUk7oiRJktTiLEvarV/VPsDgWX+l1+r8ds2II7esIlmUJEmSVKksS9qtp159mGuWJFSf8SkOvOb7ZGu6ph1JkiRJKjnLknZpzaY1VL1XR5YM/caMpapvn7QjSZIkSWVhWdJ25i/9EzNvuJiO6zYAsJ4GrpjdSK4D1Iwak3I6SZIkqXwsS9rOf959AV9/ehm5DCRAhyS/v+rQvmQ7dUo1myRJklROlqV2oiHXwEN3T6TxvbqdjtlEI2NeWQbAkBeepap3P5IkYc3TT9Np8OByRZUkSZJaBctSO3Hb729j9J2P0nXTHgyuzlLVux+Q/+ykbqecUtpwkiRJUitkWWon3pj1G8Zsgg3njaLL2f9UfFACNW/U0WPIJ8obTpIkSWqFLEvtwPxV8+nz1xUAHDn+m1QNOmTngz95cplSSZIkSa2bZanC1b7+HI+8PJXhMSHXvcOui5IkSZKkLSxLFWzK3CkcNv5WPrcuv931xMPTDSRJkiS1IZalCrJu7UqWLpy3ZfvFR+7muHXw/tG96dfYjb5XfCvFdJIkSVLbYlmqEK8sfoW/fOUCjpifbNl3ZeHryFsmUX1wSCeYJEmS1EZZlirE3S/cyTcWJCw+qJq/D87f9rvn4nUc0rE3VQcNSTmdJEmS1PZYltqgxWsX88CEMxg5Z+OWfVfW578O++qV7Dd2XDrBJEmSpApiWWqDfvbmLxleu5G13TMsPKgbAPst3cSAFVn2PfULKaeTJEmSKoNlqY2pW1ZH31t+Sp+VUHP+Zznhxv/ecixJEjKZTIrpJEmSpMqRTTuAmuZHT9zMp97L38Sh7xcv3u6YRUmSJElqOa4stUL1jfXc9Z3zOPiFuMOxyxfkAOhz80Q6HTGs3NEkSZKkdsOVpVboyb88Rd+Zdez/9xwdGpLt/tusx5gvpphQkiRJqnyuLLUy6+rX8cLdNzBufkJm+MGccf+j2x3PrV9P4/LlZLt2TSmhJEmS1D5YllqZ217+MeMeXgPA/p/b8c522S5dyA4YUO5YkiRJUrtjWWoFnnr6f1g69R4yORjw4UoAqkZ8gu7njks3mCRJkkAoBWYAAAmnSURBVNSOWZZStmDVAuZO+S8+Nzshl4Fs4bKkgdd8i0zWS8okSZKktFiWyujFF6exYNoUMmy9UcPi3GrGzE7YtH8nhj07l/pFi1j/xpt0CkemmFSSJEmSZalM3v3wXV770fWc/Eay3f5/KHztedRRAFT1709V//5lTidJkiTpoyxLJTTrmaksefV3ALyzbj5n1CWsO6ALNd/53tZBGzbR/Q+v0/tL49IJKUmSJKkoy1KJPPTedGquv4mwLL8dCvs/dvxI9j/25O0Hn3BGWbNJkiRJ2j3LUgtZ/P483p01Y8v2c3UPcMkyWDa8PxtO+SzZ9Rs5sHYxvS67NsWUkiRJkvaUZakF1C6r5aXLvsCIuq3XI11S+Hr0RVdRM2pMOsEkSZIkNZtlqZlWr1zGhx8sBGDyG/dy7vyEZQdU8/dRRwNQs2QtYXU1XT99SpoxJUmSJDWTZakZptc9TPdxE+m7Ir89vrC/x1mfZ+TlN6YVS5IkSVILsiw1w7THb2fiCph/xD6s6N+DLmvqGfzXenqed2na0SRJkiS1EMtSE9054yYm3rUIgJNunkSnoUelnEiSJElSKWTTDtCWbGrcRO0zv85vZKD6sGHpBpIkSZJUMiVbWQohHAfcGmMcHUI4FJgCJMBbwIQYYy6EcANwFtAAXBFjfLlUeVrC7MWzOWRhA7mqhMNffZNMJpN2JEmSJEklUpKVpRDC1cA9QOfCrh8A18UYPwNkgHNCCMcAo4DjgPOBO0qRpSU9VPc4Ry5IyAzoQaaqKu04kiRJkkqoVCtL84CxwM8K28cCzxcezwBOAyLwZIwxARaEEDqGEHrHGJeUKFOTPDPpalZNf4w/bdz62Ulnrsmx/3LodtbIFJNJkiRJKoeSlKUY47QQwoHb7MoUShHAamBfoDuwbJsxm/fvUJZqa2tLEXOX1q5eSbYhoUPD1rLUa2X+6+pjT0olk0pjw4YNzmeFc47bB+e5fXCe2wfnWa1Fue6Gl9vmcTdgBbCq8Pij+3cwdOjQ0iXbiaFDf0rtmbXbPXeyaRP1ixZRfeCBZc+j0qmtrU3l/zGVj3PcPjjP7YPz3D6kNc9z5swp+3OqdSvX3fBeCyGMLjw+E5gJzAJODyFkQwgHANkY49Iy5WmWTHW1RUmSJElqJ8q1snQVMCmEUA3UAg/EGBtDCDOB35MvbRPKlEWSJEmSdqtkZSnG+BdgROHxu+TvfPfRMTcCN5YqgyRJkiQ1lx9KK0mSJElFWJYkSZIkqQjLkiRJkiQVYVmSJEmSpCIsS5IkSZJUhGVJkiRJkoqwLEmSJElSEZYlSZIkSSrCsiRJkiRJRViWJEmSJKkIy5IkSZIkFWFZkiRJkqQiLEuSJEmSVIRlSZIkSZKKsCxJkiRJUhGZJEnSzrBLc+bMad0BJUmSVDGOPfbYTNoZ1Hq0+rIkSZIkSWnwNDxJkiRJKsKyJEmSJElFWJYkSZIkqYiOaQdojUIIWeBOYBiwEbg4xvjHdFOpuUIIVcBk4ECgE3Az8A4wBUiAt4AJMcZcCOEG4CygAbgixvhyGpnVPCGEPsAc4FTyczgF57iihBCuAc4Gqsm/Tz+P81xRCu/Z95F/z24Evop/nitKCOE44NYY4+gQwqHs4dzubGwar0HthytLxf0j0DnG+GlgIvD9lPNo73wZWBZj/AxwJvBj4AfAdYV9GeCcEMIxwCjgOOB84I6U8qoZCv/A+imwvrDLOa4wIYTRwPHACeTncSDOcyUaA3SMMR4PfBu4Bee5YoQQrgbuAToXdjVlbncYW87sap8sS8WNBB4HiDG+BHwy3TjaS78Grt9muwE4lvxvpAFmAKeQn/cnY4xJjHEB0DGE0LusSbU3vgfcBSwqbDvHled04E3gQeC3wCM4z5XoXfJzlgW6A/U4z5VkHjB2m+2mzG2xsVJJWZaK6w6s3Ga7MYTgKYttVIxxTYxxdQihG/AAcB2QiTFuvm/+amBfdpz3zfvVyoUQxgFLYoxPbLPbOa48vcj/8uqLwKXA/wJZ57nirCF/Cl4dMAm4Hf88V4wY4zTyBXizpsxtsbFSSVmWilsFdNtmOxtjbEgrjPZeCGEg8CzwsxjjVGDbc5y7ASvYcd4371frNx44NYTwHHAUcD/QZ5vjznFlWAY8EWPcFGOMwAa2/8eS81wZriQ/z0PIXzt8H/lr1DZznitLU/4+LjZWKinLUnGzyJ8zTQhhBPnTPtRGhRD6Ak8C/x5jnFzY/Vrh+gfIX8c0k/y8nx5CyIYQDiBfkpeWPbCaLMZ4YoxxVIxxNDAXuACY4RxXnN8BZ4QQMiGE/kAN8LTzXHE+ZOuqwnKgCt+zK1lT5rbYWKmkPLWsuAfJ/5b6RfIXEF6Ych7tnf8AegDXhxA2X7t0OXB7CKEaqAUeiDE2hhBmAr8n/4uECamkVUu5CpjkHFeOGOMjIYQTgZfZOn9/xnmuND8EJhfmsJr8e/grOM+Vqinv1TuMTSOw2pdMkiS7HyVJkiRJ7Yyn4UmSJElSEZYlSZIkSSrCsiRJkiRJRViWJEmSJKkIy5IkSZIkFeGtwyUpZSGEzsCXgQZgeYxxehme8wBgWIzxt6V+LkmS2irLkiSlrx9wcYxxRBmf82TgMMCyJEnSTvg5S5KUshDCJOA8YB/ga0AdcA2wERgI3EW+3AwDbosx/iSEMAq4BWgE5gGXxBjrd/LzvwZ8BcgBvwMmAm8DXYGvk/9g19vJfwj3MmA8cDRwbeF7+gF3xxjvaOnXLklSa+Y1S5KUvluAd4Bvb7Pv48AXgMuA64B/Ac4ELgkhZIBJwNgY4yjgb8C4Xfz8C4HLY4yfBv5EvhR9F5haOOVvEjAhxjgaeAy4uvB9A4CzgRHAlSGEPnv9SiVJakMsS5LUOr1VWClaAcyLMW4CPgQ6A72B/YFfhRCeA04DDtjFz7oQuDSE8DwwiHxZ2tZQ4M7CzxoP9C/sfzHGuDHGuB54CzikJV6YJElthdcsSVL6cuz4y6tdnSO9FFgInBNjXBlCOBtYs4vxXwUujTFuCCE8ARz/keeMwAUxxgUhhBPIFzGAo0IIHYBOwBHAe015UZIktXWWJUlK3wdANdBlTwbHGHMhhMuBR0MIWWAVcMEuvuVNYHYIYQn5U/b+UPiea0MIr5I/1e/+QjECuIj86lIVMAPoCdwcY1za5FcmSVIb5g0eJEk7CCGMJr8adX7aWSRJSosrS5JUAQqfm3R/kUPPxxhvKHceSZIqgStLkiRJklSEd8OTJEmSpCIsS5IkSZJUhGVJkiRJkoqwLEmSJElSEZYlSZIkSSri/wGom9SAnWFKiQAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 864x576 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"dist_plot('time_step', 'Price',suppMin=True)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<matplotlib.legend.Legend at 0x23bbc5a0518>"
|
|
]
|
|
},
|
|
"execution_count": 18,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA0kAAAHNCAYAAADLxzCnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8VfXh//HXzYCw95S9DgERFRy4xa2t1lVXq9+2Wm2ts62to9+OX63t19o6am1drVXraLVaR13gHgURUCAc9t5CwsjOvb8/ToSgjABJzk3u6/l48OCec0/ufYcDIe98PudzEqlUCkmSJElSJCvuAJIkSZKUTixJkiRJklSDJUmSJEmSarAkSZIkSVINliRJkiRJqiGnId9s0qRJLqUnSZKkBjFq1KhE3BnUODVoSQIYNWpUQ78lBQUF5OfnN/j7qmF5njOD5zkzeJ4zg+c5M8R1nidNmtTg76mmw+l2kiRJklSDJUmSJEmSarAkSZIkSVINDX5NkiRJkqSGEQTBUcCTwAwgBbQAHg3D8K4ax5wI9AnD8N5YQqYhS5IkSZLUtI0Pw/BcgCAImgNhEAQPh2FYCBCG4UuxpktDliRJkiSpAfT78QsXAt+s45d9cMGvT/nbLhzfBqgCXguCYD7QAXgMGByG4Y+DILgJ+ApRT7gnDMM/B0FwBXA+0UjU42EY3lm3n0L68ZokSZIkqWkbGwTBG0EQjAceBa4ANgJ/D8PwWKLSRBAE+wEnAQcBhwDDgiAYDpwDHFb96ytBEAQxfA4NypEkSZIkqQFUj/jsyqhPXdk83e4zQRBcB4SfOy4AJoRhWAUUA1cFQfBVoC8wrvqYDsCgbXxsk2JJkiRJkjJT8nPbM4HvBEGQBWQDLwI/AKYDJ4VhmAqC4Brgk4aN2fCcbidJkiSJMAynAC8B7wLvEK2CN5VoFOmdIAg+BAYDS+NL2TAcSZIkSZKaqDAM3wDe2Mb+o2o8/muNx7cAt3zu2FuBW+spYlpyJEmSJEmSarAkSZIkSVINliRJkiRJqsGSJEmSJEk1WJIkSZIkqQZLkiRJkiTVYEmSJElSnausSvLwBwvZUFYVdxRpl3mfJEmSJNW5Fz5Zzk+emcZvT+rJgXGHyWBBEBwFPAnMAFJAC6KbxN61nePLgfc+t/uCMAy/cAPZIAg6AieGYfj3Hbz/AqAgDMOTauy7FrgtDMNELT+HvwKPh2H4Ui2O/TbwlzAMK2rz2ttjSZIkSVKdembyUn71YgEDOrciv0vzuOOkj5+1uxD4Zh2/6oP8rOhvOzlmfBiG5wIEQdAcCIMgeDgMw8JtHLu25o1md2If4FRguyWpWq8gCDqHYbimevtkYF0t32NX3QD8DbAkSZIkKT3MXb2Rq5+YAsCfvj6KrE0rYk6kz2kDVAGVu/JBQRDcSlQ8bgJeBX4HXA2MDILg22EY3ruDD/8HcDZwTxAEQ4G5wN7Vr7t39WtlAe2BK8MwfC8IgoXATKCgRoaDgDuBs6p33QvkAaXAt4Hjge7A40EQXAI8Uf26ucBlYRh+UtvP15IkSZKkOjFlcSE/f246zbKzePfHY+nSpjkFBZakzaIRn52N+tSHsUEQvAEkiYrOFWEYbtzOsR2rj/3M0jAMLyAaoXkbeAiYEIbhC0EQbCIqHzsqSACPERWae4CvAY8Cp1U/Nxz4fhiGnwRBcD7wDaLpfr2B/cMw/LR6ut0hwDHAl8MwXBUEwRPAnWEY/icIgmOAX4dheEEQBD8Bzq0+tgg4HxgGtN35H9MWliRJkiTtsdKKKi5+aCJrNpbzy6/sTZc2TrNLI5un29XCNqfbhWFYEQTB7UQlr88uvv9iIBEEQW/gUOAnNZ5bCvwkCIISolGu9dX714Rh+GmN446vfv6zaXQjgBuCIPgRkADKP/ee/wEGA89Wf8wvdyWwq9tJkiRpj/1n2nLWbCznvgtH87WD+8YdR3UsCIIORKNJ1wL3Ve9OUvs+8ThwG/B+GIapGvvvBH4ahuFFwCdEheez167pZ8DviUajIJqK96PqQncp8M/PZToKWB6G4fFEBelXtcwJOJIkSZKkOvDK9JV0a9ucY/O7xh1Fe+bz0+0Argd+CPxfGIaPBEEwOgiCK4GngBFBEFwdhuHtO3ndfxAVon0/t/8R4NkgCFYCS4DO23uBMAzvD4LgrOppeT8gusYpj2jFvquqD3sbeBE4E3giCIKria7B+sVO8m3FkiRJkqQ9snhtMW/NWs2p+/YkkajVqs5qIGEYvgG8sQvHN9vOU2fUOOZ/auzP38nr9at+WAo0q7G/e/XvvyNauOHzH9d9W+8XhuGJNQ47YRsfd1GNzWN3lG1HLEmSJEnaI//77DSyshJcfPiAuKOoFqrvJXT+Np66PgzD93fj9U4lmob3eXeEYfivXX29dGBJkiRJ0m6pqEry3NRlvB6u5trjhjCwS+u4I6kWqlej29mKdLvyev8G/l1Xr5cOLEmSJEnaLXe/PofbX5tNv04tuWhMv7jjSHXGkiRJkqRaq0qmWLS2mE1llfzt/YUE3drw5GVjaNciN+5oUp2xJEmSJKnW7nhtFneOnwNAXm4WvzvnQAuSmhxLkiRJkmqltKKKv32wkEMGduKcA3ozvGdbBnVtE3csqc5ZkiRJklQr781dQ2FxBZceOZAjh3SJO45Ub2p7h1xJkiRlsFQqxfMfL6dls2wOHtAx7jhSvXIkSZIkSTtUUZXkxNvfYu7qTVw4pi/Nc7LjjiTVK0eSJEmStEPPTV3G3NWbOGd0b246ZVjccaR650iSJEmSvuDet+Zyx2uzASipqGLEXu245YwRZGUlYk4m1T9LkiRJkrZSXF7J3a/PpX+XVhzcvxN5udlceEhfC5IyhiVJkiRJW3kjXE1RSQX3nLw/hwzsHHccqcF5TZIkSZK2Mq5gFe1a5HJgP1exU2ZyJEmSJCmDlVZUcenDk1i1oQyIlvqetXIDXx3dm5xsf56uzGRJkiRJymD/mryUN2et5oghXWieE5Wi0f06cP1J+TEnk+JjSZIkScpQv3qxgAffmc/IXu146BsHkEi4MIMEXpMkSZKUkaYtLeLet+bRs30L/nD+/hYkqQZHkiRJkjLQkx8uJi83i+evPIy2eblxx5HSiiNJkiRJGSaVSjGuYBWHDepiQZK2wZEkSZKkDDF1cSGPT1xEUUkFSwtLuPKYQXFHktKSJUmSJCkDpFIp/vfZacxcsYH2LXM5a1Qvzty/V9yxpLRkSZIkSWrCpi0t4rmpy1i7qZypS4r4f1/Zm68f3DfuWFJasyRJkiQ1UalUih899TEFy9fTLCeLL4/syXkH9I47lpT2LEmSJElN0DOTlzJlcSHTl63nV6eP4PyD+sQdSWo0LEmSJElNzJTFhVz9xBQAjh/WjbNHe+2RtCssSZIkSU1IeWWSX71YQJvmObx53dF0bNUs7khSo2NJkiRJakL+MWkxE+av5bazR1qQpN1kSZIkSWoClhWW8NGiddzzxlz23qstZ+y/V9yRpEbLkiRJktTIpVIpLvnbh0xftp7mOVncfs6+JBKJuGNJjZYlSZIkqRGbtrSICfPXMn3Zeq47MeDcA/o4zU7aQ5YkSZKkRmrK4kK+cve7AIzs3Z5vHtqfvNzsmFNJjZ8lSZIkKY0tWVdMYXHFNp/7/auzaNM8h/svGs3I3u0tSFIdsSRJkiSlqSXrihn72zcpr0pu95iffnkYBw3o1ICppKbPkiRJkpSmHn5/IVWpFHeetx8ttjFK1LFVM/bv0z6GZFLTZkmSJElKQ6lUihenLefIIV04dWTPuONIGSUr7gCSJEnaori8kvWlFUxauI7Fa0s4Jr9r3JGkjONIkiRJUpp4I1zFN/46kVQq2u7cuhknDu8ebygpA1mSJEmS0kBVMsVd4+fQvW0e3zqsP4lEgmOGdqVT6+ZxR5MyjiVJkiQpZkvWFXPc796ipKKK35w5gnMO6BN3JCmjeU2SJElSzO5/ez4lFVX84rThFiQpDTiSJEmSFJMH3pnPXeNnU1hcwbkH9ObCMf3ijiQJS5IkSVIsSiuq+MP42fRo14JvHNKfS48cEHckSdUsSZIkSTF4I1zNuuIK7jxvPw4f3CXuOJJq8JokSZKkGIyfuZI2eTkcPKBT3FEkfU6tSlIQBAcFQfDG5/adHwTB+zW2LwmC4MMgCD4IguBLdZxTkiSpyUgmU7weruaIIV3IzfZn1lK62em/yiAIrgPuB/Jq7NsX+BaQqN7uDlwJHAqcANwSBIGL+kuSJG3D9GXrWb2hjGOGdo07iqRtqM01SXOBM4CHAYIg6AT8GrgauK/6mAOBd8MwLAPKgiCYA+wDTKzzxJIkSY3MvyYv4V+Tl23eXvjpJprnZHFUYEmS0tFOS1IYhk8FQdAPIAiCbOAB4BqgpMZhbYGiGtsbgHbber2CgoLdzbrbSktLY3lfNSzPc2bwPGcGz3NmyJTzXFqZ5KfPLCI3K0HnVtG3Xq2y4fojurBy0VxWxpyvvmXKeVbTsqur240CBgP3EE2/GxYEwe3AeKBNjePaAIXbeoH8/PzdiLlnCgoKYnlfNSzPc2bwPGcGz3NmaOrn+bmpy3hlxkqWFZawvizJk5eO4cD+HeOO1eDiOs+TJk1q8PdU07FLJSkMwwnAcIDq0aXHwzC8uvqapJuDIMgDmgP5wLQ6zipJktQobCqr5MZ/fUJ2VoIOrZpx0yn5GVmQpMaqTu6TFIbhiiAI7gTeJloM4sYwDEvr4rUlSZLSWUl5FbePm0VxWdXmffPXbGJ9aSVPfecQRvXtEGM6SbujViUpDMMFwME72heG4X1sWchBkiQpIzw+cRF/fnMeHVrmkkgkAMhKwHUnBhYkqZGqk5EkSZKkTLRkXTF3vz6HUX078NR3Dok7jqQ64t3LJEmSdtMdr81mU1kVvzlzRNxRJNUhS5IkSdJumLRwHc9MWcpZo3oxqGubnX+ApEbDkiRJkrSLUqkU//vsNLq1zeOa44bEHUdSHbMkSZIk7aKPFhUyfdl6Lj96EB1bNYs7jqQ6ZkmSJEnaRa/OWElOVoJT9ukRdxRJ9cCSJEmStIvGz1zJgf070jYvN+4okuqBJUmSJGkXLF5bzKyVGxk7tGvcUSTVE0uSJEnSLvjHh4sBLElSE2ZJkiRJqqU5qzZy1+tzOGWfHgzo0jruOJLqSU7cASRJktJVKpVi3ppNVFalALhz/Gxys7P4xanDY04mqT5ZkiRJkrbjn5OW8MN/frzVvmuOHUKn1s1jSiSpIViSJEmSqiWTKVZtKAOgMpnkT2/OJejWhquOHQxA+xa5jBnYKc6IkhqAJUmSJKnajc9M47EJizZvJxLw4EUHcLSLNEgZxZIkSZJEtLT3U5OWcGx+N47Jj0rR4K6tGd2vY8zJJDU0S5IkScp4qVSK7/39I5rnZvHTLw+jd8eWcUeSFCOXAJckSRnvrdlrmLqkiBtPzrcgSXIkSZIkZY6qZIoz7nmPguXrt9pfUZWkb6eWfGW/vWJKJimdWJIkSVLGeGnaCqYuLuSM/feia5u8zftzsxOcc0Bv8nKzY0wnKV1YkiRJUpP01qzV/Pipj6lMpjbvKyypYEi31tx61kiysxIxppOUzixJkiSpSbr9tVlUJlObV6oDaJ6TzSVHDLAgSdohS5IkSWpyFqzZxEeLCrnx5HwuOWJA3HEkNTKubidJkpqc8TNXAXD88G4xJ5HUGFmSJElSk/N6uIqBXVrRt1OruKNIaoQsSZIkqUnZVFbJf+etZezQrjs/WJK2wZIkSZKalHfmrKG8KsnYoU61k7R7LEmSJKlJGV+wijZ5OYzu1yHuKJIaKVe3kyRJTcLrM1fx3MfL+M8nKzhuWDdys/1ZsKTdY0mSJEmNXnllkh899THF5VWM2KsdN30pP+5IkhoxS5IkSWr0fv/aLFZtKOOv3ziAowIXbJC0ZxyHliRJjdqSdcX8+c25nD2qF0cO6RJ3HElNgCNJkiQpra3aUMo/PlxCVTK1zeffn/spWYkE1xw3hEQi0cDpJDVFliRJkpTWfvfKLB6fuHi7z+dmJ/jpl4fRs32LBkwlqSmzJEmSpNilUin+PXUZhcUVW+0vq6zi6clLOe/APvzyK3tv82MTQFaWI0iS6o4lSZIkxe7NWau56vEp23xuQOdWXHvcELItQpIaiCVJkiTFIpVKMX7mSjaUVnL/2/Pp0qY5L1x5GDlZW68r1TYvhxzveSSpAVmSJElSLCYuLeGn4z4EIDsrwd3n70/XNnkxp5IkS5IkSWpghcXlTF5cyCNT1tG9bR6PXHwQ7Vvm0rl187ijSRJgSZIkSQ3s+09OZdzMVSSAP16wP4O6to47kiRtxZIkSZIaRGVVkuc/Xs64mav4n0P6cWT3Ko4e0SPuWJL0BV4FKUmSGsQf35jL1U9MoU/Hllx97GC6t8mNO5IkbZMjSZIkqV6UVlSxrLCk+nGSh95bwKCurXnqskNo1zKX5THnk6TtsSRJkqR6cenDk3hz1urN281zsnjomwfSrqUjSJLSmyVJkiTtkcqqJEUlFVvtC1du4M1Zqzn3gN6MGdgJgGE92jK4W5s4IkrSLrEkSZKk3ZZKpTj33g/4cOG6Lzy3V/sWXH9SviNHkhodS5IkSdpt7875lA8XruO8A/uQ32PLKFECOCa/mwVJUqNkSZIkSbtlY1klVz0+mb6dWvK/XxpGi2bZcUeSpDrhEuCSJGm3PD5hEZ9uKud3X93XgiSpSXEkSZIk1cq0pUVc9OAEyiqTAGwqr+TwwZ0Z1bdDzMkkqW5ZkiRJUq3c/focyquSnHNAbwBaNc/hW4f2jzmVJNU9S5IkSdqh374c8vRHS1hWVMpVxwzmmuOGxB1JkuqVJUmSJG3XqvWl/PmtuQzr0ZbzDuzDd48eFHckSap3liRJkrRdz328nIqqFL8/Z18GdGkddxxJahCubidJkrZr/MyVDOra2oIkKaM4kiRJkoBoYYZ356zZvF2VTPHf+Wu5cqxT7CRlFkeSJEkSS9YVc9srIcuLSqmoSlJRlSSZSnHegX243JIkKcM4kiRJUoZ7bcZKfvbcdHKysnjk4oPYq32LuCNJUqwsSZIkZbCKqiQ/eXYay4tKueeC/S1IkoQlSZKkjDVn1QZueiYqSA/+z2jGDu0WdyRJSgtekyRJUoa65cWZfDBvLZcfPZCjg65xx5GktOFIkiRJGeiV6SsYN3MVVx0zmGuOGxJ3HElKK44kSZKUYSqrkvz8uRkM79mWy44cGHccSUo7jiRJkpQhUqkUT0xczEeL1rG0sIT//fIwWjTLjjuWJKUdS5IkSRli/MxV/PjpTwA4e1Qvjh/mQg2StC2WJEmSmrgVRaW8Hq7iofcW0L1tHuO+fyStmvstgCRtj18hJUlq4m741yeMn7mKZjlZ/PnroyxIkrQTfpWUJKmJmrK4kE+WFjF+5iouO3Iglx89kDZ5uXHHkqS0Z0mSJKkJWry2mDPveY+qZIrBXVvznaMsSJJUW5YkSZKamFQqxe9fnUUCePLSMYzs3Y7mOa5iJ0m1ZUmSJKmJeT1cxdOTl/K9owdxYP+OcceRpEbHkiRJUiO3eG0xRSUVm7fvHDeHHu3yuOrYwTGmkqTGy5IkSVIjNm/1Ro7//VtUJlNb7b/j3H3Jzc6KKZUkNW6WJEmSGqmNZZXc+nJIViLB3efvR252AoDu7fLYp1f7mNNJUuNlSZIkqREqrajimNveYOX6Mr571EBO2adH3JEkqcmwJEmS1Agkkyk2lVdu3v7Hh0tYub6MK8YO4ppjh8SYTJKanlqVpCAIDgJ+E4bhUUEQDAPuBRLAVOCKMAyrgiC4BLgUqAR+GYbh8/UVWpKkTJJKpTj//g/4YN7arfaPGdCJa48bQiKRiCmZJDVNOy1JQRBcB3wd2FS961fADWEYvhUEwV+BU4MgeB+4EhgN5AHvBEHwahiGZfUTW5KkzPHBvLV8MG8tZ+7fi/webQBonpPFafvtZUGSpHpQm5GkucAZwMPV22dWjxw1A7oDK4EDgXerS1FZEARzgH2AifWQWZKkjFFcXsmVj0+mV4cW/OK04bRq7kx5SapvO/1KG4bhU0EQ9KuxXRUEQV/gNaAICIEB1Y8/swFot63XKygo2JO8u6W0tDSW91XD8jxnBs9zZvA8b/HMjCJWbyjj1hN7smje7Ljj1CnPc2bwPKsx2q0fR4VhuBAYHATBxcDvgKeANjUOaQMUbutj8/Pzd+ct90hBQUEs76uG5XnODJ7nzJCp5/lfk5dw8wsF1LzlUVFJBWMGdOKsI/dtclPrMvU8Z5q4zvOkSZMa/D3VdOxySQqC4N/A98MwnE00YpQEJgA3B0GQBzQH8oFpdRlUkqSmrKIqye2vzaZNXi6HDeq8eX+r5jl8+4gBTa4gSVI6252RpF8Dfw2CoBwoBi4Ow3BFEAR3Am8DWcCNYRiW1mFOSZKapGcmL+XOcbMpLq9ixfpS7r9wNMcO6xZ3LEnKaLUqSWEYLgAOrn78HnDoNo65D7ivLsNJktSUVVQlufXlkKwsOLB/Rw4b1NmCJElpwCVyJEmKwfRlRXznkY9YWljCg/8zmrFDLUeSlC6y4g4gSVImuv212SxaW8zPTx1uQZKkNGNJkiSpga3dVM64gpVcduRALjqkX9xxJEmfY0mSJKmBvTlrFckUnLR397ijSJK2wZIkSVID2lBawV3j5tCjXR4j9trmfdclSTFz4QZJkhrQ4xMWM2/NJv5+yUFkZXnvI0lKR44kSZLUgB6bsIgD+3XkkIGdd36wJCkWliRJkhrIvNUbmbdmE18a2SPuKJKkHXC6nSRJ9eDFT5ZTsHz9VvumLikC4OigaxyRJEm1ZEmSJKmOLSss4YrHJpNMpah51VFOVhbXnRjQu2PL2LJJknbOkiRJUh0ZP3Ml81Zv4p05a0ilUrx93dH06mAhkqTGxpIkSVIdWLy2mIsf+pBkCrIScMPJ+RYkSWqkLEmSJO2hWSs38LN/TyeRSDDu2iPo0S6Pls38L1aSGiu/gkuStAcqqpJc9OAElheV8uOThjKwS+u4I0mS9pAlSZKkPfDQewtYXlTKrWftw9mje8cdR5JUB7xPkiRJu2lZYQm//s9MjhnalTP37xV3HElSHXEkSZKkbVi7qZw5qzbu8JjHJywimUrx89OGk5WV2OGxkqTGw5IkSdLnpFIpvv7Af5m+bP1Oj73syIGuYidJTYwlSZKkGpasK+a9uZ8yfdl6rhw7iIMGdNrusS2bZbNv7/YNmE6S1BAsSZIkVZu8aB2n//E9AIb3bMt3jx5EXm52zKkkSQ3NkiRJyniFxeWUVSa5a/wc2ubl8Osz9+GwwZ0tSJKUoSxJkqSMNmnhOs7603ukUtH2Tafkc/KIHvGGkiTFypIkScpYqVSKu8bPpl2LXH54QkC3Nnkck9817liSpJhZkiRJGevvExbxRriaG0/O54KD+sYdR5KUJryZrCQpIyWTKe59ax779WnPxYf3jzuOJCmNWJIkSRlp6pJCFn5azNcP7ksi4Y1gJUlbWJIkSRnp1RkryUrA2KFegyRJ2prXJEmSMsLHSwr57qMfUVGVBGDNxnLGDu1K+5bNYk4mSUo3liRJUka4c9wc1pdUbF7eu22LXC4/alDMqSRJ6ciSJElqEhavLeZ7f/+IkoqqLzxXlUwxd/Umrj1uCFceMziGdJKkxsSSJElqEu57ex4zlq/n2Pxu23z+5BE9uPxoR44kSTtnSZIkNQpFJRV8/8kprC+p/MJzKVJMWriOr47uza/P3CeGdJKkpsTV7SRJjcKj/13IawWrSCQgOyux1a+crCzO2L8XP/nSsLhjSpKaAEeSJElpobwyyU//PY3VG8rZuHEDrSds2ur59+au4fDBnXn4WwfFlFCSlCksSZKktPDCJ8t4bMJiBndtTVVlJesrS7Z6fnS/jvz2LKfSSZLqnyVJkpQWHp+wmAGdW/Hy1UcQhjPJz8+PO5IkKUN5TZIkKXZFxRV8uHAdJ43oTlZWIu44kqQMZ0mSJMXurdmrqUqmGDt028t3S5LUkCxJkqTYjZ+5io6tmrFv7/ZxR5EkyWuSJEn1761Zq5m6uHCbzyVT8Mr0FZywd3eynWonSUoDliRJUr0qKqngskcmUVxetd1j+nZqyfePDxowlSRJ22dJkiTVudUbynhp+gpSqRQT5q+luLyK5753GPk92mzz+OysBImEo0iSpPRgSZIk1bmbX5jBM1OWbd7+zlEDGdGrXYyJJEmqPUuSJGmPTFq4jiXrijdvbyyr5PmPl3PhmL5cdcxgcrKyaNcyN8aEkiTtGkuSJGm3LSss4Zw/v09lMrXV/r6dWnLVMYPp1Lp5TMkkSdp9liRJUq19do1RSUW0CMPTHy0lmUrxz8vG0KFVs83H7dW+BXm52XHFlCRpj1iSJEm19tK0FXzn0Y+22ve9owcxul/HmBJJklT3LEmSpFp78N359O3Ukt+fsy8ALZtlE3Tb9op1kiQ1VpYkSVKtrN5QxsQF67j2uCHs36dD3HEkSao3WXEHkCSlv7LKKv72/gIAxg7tGmsWSZLqmyNJkqSduvzRybxWsJJDBnZieM+2cceRJKleWZIkSZtVJVOsL6nYat/c1Rt5rWAlY4d25Q/n70cikYgpnSRJDcOSJEna7OsP/Jf35n76hf3d2+bx27NH0rKZ/21Ikpo+/7eTJAEwZXEh7839lLNG9WLvGlPqEokEx+R3pWON+yBJktSUWZIkSQA8N3UZzbKz+OmXh9EmLzfuOJIkxcbV7SRJVCVTjCtYycEDO1mQJEkZz5EkScogRcUVnP7Hd1m9sWyr/clkik3lVVx7fBBTMkmS0oclSZIyyCP/Xci8NZu44KA+NMvZejLB8J7tOHVkz5iSSZKUPixJkpQBnp2ylN++ErK8sJRjhnbl5tNHxB1JkqS0ZUmSpCausirJba/MIkGCC8f046pjBscdSZKktGZJkqQmpLIqyRWPTWbR2uLN+zaVVbJobTH3XTia44Z1izGdJEmNgyVJkpqQV2as5D/TVnDwgI60br7lS/y3DutvQZIkqZYsSZLUCD02YRHPf7zsC/tnLFvPgM6tePTig8nOSsSQTJKkxs+SJEnE/6eLAAAgAElEQVSNzIbSCm5+oYB2LXLp0S5vq+f26dWem07JtyBJkrQHLEmS1Ags+rSY374SUplMsmRdCRvLKnnskoMZ0atd3NEkSWpyLEmS1AjcMW42L01bQd9OLUkk4Jdf2duCJElSPbEkSVKae2f2Gp6ZspSvHdSHn5+2d9xxJElq8rJ2fogkKS6pVIpfvjCDPh1b8oMTgrjjSJKUERxJkqSYzV+ziX98uJhk6ovPrd5QxswVG/jNmSNok5fb8OEkScpAliRJitn/e34Gr4eryM3e9uD+V/btyVmjejdwKkmSMpclSZIa2KSFa5m4YB0QLec9fuYqrj52MFcfOyTmZJIkCSxJktSgSiuquPThSazZWL553+i+Hbjk8AExppIkSTVZkiSpAb08fQVrNpbzl28cwMH9OwGQl5tFIuHNXyVJSheWJElqQK/MWEnXNs05cnAXsrIsRpIkpSOXAJekBlJRleStcDVHB10tSJIkpbFajSQFQXAQ8JswDI8KgmBf4C6gCigDLgzDcGUQBJcAlwKVwC/DMHy+vkJLUmP04YJ1bCirZGx+17ijSJKkHdjpSFIQBNcB9wN51bvuAK4Iw/Ao4GngR0EQdAeuBA4FTgBuCYKgeb0klqRGavzMlTTLzuKwQZ3jjiJJknagNiNJc4EzgIert88Nw3B5jY8vBQ4E3g3DsAwoC4JgDrAPMPHzL1ZQULDHoXdVaWlpLO+rhuV5zgyN+Ty/9PES9u7WnEXzZscdJe015vOs2vM8ZwbPsxqjnZakMAyfCoKgX43t5QBBEBwCfA84gmj0qKjGh20A2m3r9fLz8/cg7u4pKCiI5X3VsDzPmSFdz/OG0goWrS3e7vPLCktZXDSPbx4xmPz8/g2YrHFK1/OsuuV5zgxxnedJkyY1+Huq6dit1e2CIDgHuBE4JQzD1UEQrAfa1DikDVBYB/kkKe2lUikuenACHy3a8Ze9nu3yOHVkzwZKJUmSdtcul6QgCL5GtEDDUWEYrq3ePQG4OQiCPKA5kA9Mq7OUkpSmqpIpnv94GR8tKuTiw/pzQP+O2z12VN8OdGrt5ZqSJKW7XSpJQRBkA3cCi4CngyAAeDMMw58GQXAn8DbRYhA3hmFYWtdhJSnd/PKFGfzl3QUM7NKKa48fQstm3n5OkqTGrlb/m4dhuAA4uHpzmz8mDcPwPuC+uoklSemrtKKKymSKTzeW8fiExQzr0ZaHv3WgBUmSpCbC/9ElaRdMW1rE6X98l4qqFACtmmVz1/n7OY1OkqQmxJIkSbWUSqX4w/g55OVk88MTBpEgwaGDOjOwS+u4o0mSpDpkSZKknfh4SSHn3fsBJRVVJFNw7XFD+PYRA+OOJUmS6oklSZJ24k9vziU7K8F3jxpEj/Z5nHdAn7gjSZKkemRJkqQd2FhWyaszVvL1g/vxgxOCuONIkqQGkBV3AElKZ+/MXkNFVYrjhnWLO4okSWogliRJ2oHXZ66iTV4Oo/t1iDuKJElqIJYkSdqOZDLF+HAVRwzuQm62Xy4lScoUXpMkSUTLe3//H1OZv2bT5n3FZVWs3lDGKfv0iDGZJElqaJYkSQLenLWapz9ayr6929MmL/rS2Lp5Dqfvvxcn7d095nSSJKkhWZIkZbSZK9bz25dDpi4pome7PJ68dAzNcpxaJ0lSJvM7AUkZ7bZXZvHunE8Z2KUV91442oIkSZIcSZLUNP1r8hLeDFfv8JjyqiSvzljJlWMHce3x3gNJkiRFLEmSmpyi4gpueHoaeblZtG2Ru8NjvzyyJ5ePHdRAySRJUmNgSZLUqD390RKmLi7cat+slRspqajiqe8cwrCebWNKJkmSGitLkqRGa0VRKdf982Oa5WRtdS1RdiLBTafkW5AkSdJusSRJarT+8eFiqlIpXrrqCPp0ahl3HEmS1ES4jJOkRuu1masY2au9BUmSJNUpS5KkRun9uZ8ydXEhxwztGncUSZLUxFiSJDU6yWSKG5/5hAGdW3HhIf3ijiNJkpoYr0mSlPZWbyjj7dmrSaVg2fIN/HthyLzVm7j9nH1pt5MlviVJknaVJUlS2rv+6U94rWBljT2rOSrowpf26RFbJkmS1HRZkiSltYkL1jJu5kouPqw/F47px5y5cxg8aBC9OrQgkUjEHU+SJDVBliRJaasqmeLaJ6fQr1Mrvjd2EO1bNmPTqlx6d3Q1O0mSVH9cuEFS2npi4mIWry3huhMC2rdsFnccSZKUISxJktLSqvWl/Ozf0xkzoBPHD+8edxxJkpRBnG4nKVYl5VUsWVf8hf0Pvb+AimSSW84YQXaW1x5JkqSGY0mSFKtvP/whb89es83nvn5wX/p1btXAiSRJUqazJEmqc4XF5ZRXJnd6XLhyA2/PXsP5B/XhkIGdtnquVbMcDh/cub4iSpIkbZclSVKdemf2Gr72wH9rfXyvDi340YlDvSmsJElKG5YkSXWmoirJneNm061tc648ZvBOj0+QYOzQrhYkSZKUVixJkurEiqJSjvrt65RWJLn59L254KC+cUeSJEnaLS4BLqlOPPT+AkorkvzitOEWJEmS1KhZkiTtsVQqxb+nLGPs0K5cOKZf3HEkSZL2iCVJ0h6buWIDSwtLODa/W9xRJEmS9pjXJEnabT/793RemraCjWWVtG6ew7HDusYdSZIkaY9ZkiTtloWfbuKh9xcwum8HBnVtzdmje9O1TV7csSRJkvaYJUnSbnl2yjIA7jpvf7q3sxxJkqSmw2uSJO2WcTNXsU+v9hYkSZLU5FiSJO2StZvKOftP7zF1cSGnjOgedxxJkqQ6Z0mStEseem8BExes47wDe/PNQ/vHHUeSJKnOeU2SpB36eEkhd78+h2QKUil4Z85qjhvWjVvO2CfuaJIkSfXCkiRph37z0kymLCqkT6dWAIwZ0IlfnzEi5lSSJEn1x5IkaSsvTVvOuIJVABSXV/HunE+5/qShXHrkwJiTSZIkNQxLkqTNissr+dFTn5BMpmiTF315OH2/vfjmYV57JEmSMoclSRLllUnueWMukxevo6ikgqe+M4ZRfTvGHUuSJCkWliRJPDNlKb9/bRatm+dwzbFDLEiSJCmjWZIk8eh/FxF0a8NLVx9OIpGIO44kSVKsvE+SlOFWrS9l6uJCTt23pwVJkiQJR5KkjLZ4bTG/erEAgKODrjGnkSRJSg+WJCmDff8fU5kwfy1fO7gPw3q2jTuOJElSWrAkSRlmeVEJExesY0VRCRPmr+WqYwZzzXFD4o4lSZKUNixJUob53t8nM2nhOgBG9mrHZd4kVpIkaSuWJClDlJRX8cgHC5m0cB3XHjeEk0f0oF+nluRku36LJElSTZYkKUP838sz+cu7Cxjesy2XHD6AFs2y444kSZKUlixJUhOyblM5i9YWf2H/prJKnpi4mIP6d+Shbx5IXq4FSZIkaXssSVITkUymOPvP7zNn1cZtPt+uRS6/OXMfC5IkSdJOWJKkJqCiKsmjHyxkzqqNXH3sYPbp1e4Lx+T3aEuPdi1iSCdJktS4WJKkJuBH//yYpycvZWSvdlx+9CByXYxBkiRpt/mdlNTIrSgq5dmpyziof0cevvggC5IkSdIe8rspqZF7ZcYKqpIpfnXGCNrm5cYdR5IkqdFzup2U5lKp1A6eg/98soL+nVsxsEvrBkwlSZLUdFmSpDT22oyVXPrIJKqS2y9KANefNLSBEkmSJDV9liQpTVUlU9w1fjbd2+Zx9uhe2z2uZ/sWnD1q+89LkiRp11iSpJg8+eFibn6hYLvT6ZIp2FhWyW/PHslZliBJkqQGY0mSYlBemeSO12bTuXUzDh/cZbvHDevZ1oIkSZLUwCxJUgP7eEkhFz04gXXFFfz1GwdwVNA17kiSJEmqwSXApQZ257g5rCuu4LazR1qQJEmS0pAjSVI9WrW+lCsem0xxeRUAlckUBcvXc+1xQzjTaXSSJElpyZIk1aMH313AxAVrOXJIFxKJBABHDOnMd48aGHMySZIkbY8lSaonkxau44F35nHKPj2567z94o4jSZKkWvKaJKme3P7aLNq3bMYvv7J33FEkSZK0CxxJkmrpjXAV/5i0pFbHllVU8fbsNfzwhIB2LXLrOZkkSZLqkiVJqoWqZIqfPDuNouIKurRpXquPOXtUL759xIB6TiZJkqS6ZkmSauHOcbNZvLaEP31tf07cu0fccSRJklSPanVNUhAEBwVB8Mbn9v0+CILLamxfEgTBh0EQfBAEwZfqOKcUm1UbSrnnjbmctm9PThjePe44kiRJqmc7HUkKguA64OvApurtLsDfgCHArdX7ugNXAqOBPOCdIAheDcOwrJ5yS3XmyQ8Xs2DNpu0+P2VxIRXJJFcfO2TzMt6SJElqumoz3W4ucAbwcPV2a+BnwEk1jjkQeLe6FJUFQTAH2AeY+PkXKygo2JO8u6W0tDSW91XD2p3zPH9tGdc9t5SsBGRtp/9kZyW49IBOlK5eRMHqOgiqPeK/58zgec4MnufM4HlWY7TTkhSG4VNBEPSrsT0fmB8EQc2S1BYoqrG9AWi3rdfLz8/fvaR7oKCgIJb3VcOq7XmevXID42euAuDVGetokZvN+9ePpX3LZvUdUXXAf8+ZwfOcGTzPmSGu8zxp0qQGf081HXW1cMN6oE2N7TZAYR29tlRnUqkUVz8xhenL1gPQLDuLW84YYUGSJEnSZnVVkiYANwdBkAc0B/KBaXX02lKdKCqu4A+vz2b6svX84rThnDWqF9lZCZrnZMcdTZIkSWmkVqvb7UwYhiuAO4G3gfHAjWEYltbFa0t15dcvFXDf2/M5dFAnzj2gDy2b5ViQJEmS9AW1GkkKw3ABcPDn9v3sc9v3AffVVTBpdxUWl/PBvLVAavO+4vIqnv5oKaeM6MFd5+1H1vZWaZAkSVLG82ayanJufGYaL3y8/Av7u7fN46Yv5VuQJEmStEOWJDUZVckUz0xeyn8+Wc4FB/Xhawf33er53h1b0rq5f+UlSZK0Y37HqCbjXzOKeGDSfPZq34JrjhtC59bN444kSZKkRsiSpCZh3aZynplRRP/OrXjm8kNp1yI37kiSJElqpCxJahJ+9tx01pclue8bIy1IkiRJ2iOWJKWtZDLFivWlNdao27YVRaU8//FyTh3alv37dGiQbJIkSWq6LElKW//vhRn85d0FtTq2U6tmnDGsXf0GkiRJUkawJCktrSgq5fEJizkq6MLJe/fY6fFjBnZi48qFDZBMkiRJTZ0lSWnpyscnk5WAn3xpGAO7tK7VxxSsrOdQkiRJyghZcQeQPm/yonVMmL+WH5wQ1LogSZIkSXXFkqS089zU5TTLyeLs0b3jjiJJkqQMZElSWqlKphg3cyWHDOxE6+bOBpUkSVLDsyQpbSxYs4nRv3yVhZ8Wc/p+e8UdR5IkSRnKkqS08ee35rKuuIKfnzqc0/a1JEmSJCkeliSlhddnruKxCYu5aExfLjqkX9xxJEmSlMEsSYpdKpXi9nGz6depJTeckh93HEmSJGU4S5Jid+9b85i6uJBLjxxI85zsuONIkiQpw1mSFKvi8kr++MZcxg7tyrkHuOS3JEmS4ucay2pwv3lpJjOXrwdg5foyikoquPzoQSQSiZiTSZIkSZYkNbCpiwu55425DOjcitZ5OeRmJ7j59L0Z1bdD3NEkSZIkwJKkBvTslKXc8uJM2ubl8Oz3DqVNXm7ckSRJykwL34PyTTD4uLiTSGnJa5LUINaXVnDD05+wYn0pd1+wvwVJkqS4vHsH/OUkePQsmPFs3GmktORIkupMMpninjfnsnpD2Reem71qA5vKq3j+isPYe692MaSTJEmsDuHV/4XOQ2DtPJjyGAw7Le5UUtqxJKnOvDl7Nbe+HNKmeQ5ZWVsvwpCdleCGk4dakCRJagipVPQrKwsKF8H6ZdBjX3j5RsjKgf95Ad65HSbeByWF0KJ93ImltGJJUq2UVyb563vz2VRWtd1jXvhkOd3aNuft68bSLMeZnJIkNajpz8Cb/wcn/QamPg5LJsLl/4U/HQalRdD/CJj/FpxyG7TuCsNPhw/uhkfOgLP+Ah36xv0ZSGnDkqRa+eekJfzqxZk7PKZtXg73fG2UBUmSpDi8fjOsmQXv3w2z/hPte+SMqCBBVJAOuxYOuDja7jUaugyFpZPgjn1gyEnw1b9BTrN48ktpxJKkWnn4g4UM79mW5684zPsZSZKUbjatiQoSbClIAHPHw4ivwl77w0d/g4O/s+W5RAIuexeWT4X7x0Yf97uhcMQPtz5OykCWJO3U0sISCpav54aTh1qQJElKN1UV8NFD0ePT/wzv3gn9DoVjfwbrl0PnQdFz2yo+2TnQaxT8eDH861KY/Sq89GPoczD03K+hPgMp7ViStFMPvbcAgLFDu8YbRJKkTLdhJbTsFJUbgHUL4eUbYObz0CUf9jkHRp675fjPCtLO5LWF8x6LpubdOgheuh5adICTb4V2ver+85DSnBePaIdmrdzAvW/N46ujezGoa5u440iSlBmSSXjpBpj+ry37ipbAbUPgP9dF21WV8KfDo4IEcPo90RS6PZHXDroOg0XvQ/gizH6ldh+3ZjZMfgTKNuzZ+0tpwpEkbVNxeSX/nbeWhz9YSF5uFteflB93JEmSmq5F/4W54yA7Fw69GqY8Gq089wHQvm90TdH7d0fHfvgArJwe3d+orAiatYFvvw6dB9dNlqzsLY9X7XjRps2evwYWvB0tN370DXWTQ4qRJUnb9H8vhfy1eprdTafk06GVK91IagDLpkQ/xZYyQTIJM5+DvUbBQ1+Gquqbsb91G1SWRI+btYH7xsKYy+GDP0Lvg6Lrhd69AxZ/EK1O9533o/sh1ZWR50Ur3rXdC1bPjKbgTX40msbXsmN0zLIp0KpzNBVv/TJY8E71/sl1l0OKkdPt9AUbyyp58sPFnLR3d8Z//0guPnxA3JEkZYI1s+HeI+GOfWhWND/uNNKOVZTCog9gdQjJqmhq3PPXRMVn/lvRvp2Z/jQ8eSH8fjgkK+Hsv0Yl6LOCdMiVcO106NAP3v9DtG/46XDcL6Db3tH2YdfUbUGCaInwG5bBwLEw/034dR94+Xq4Y2RUltbOgwdPhD8fCRPvjxZ8yMqBPmOi6Xnv3gnz3oxuZis1Uo4k6Qvemb2a4vIqLhzTjwFdWscdR1JdWDEt+sbt4O/s+TUL9WH+W9FP0gE2LKfv+EvhoEVfzFq4CNr1Ts/PQZkjmYQHjoMVH0PzdnDir6KpcQAfPhj9fvJv4cBLdvw6Ux7d8vjI66IC1LIzPH4BHPF9OPDbkNsCznwAXv3f6AawI86Ojh95LnzyT9j7zLr//BIJaNYqWgp8+ZTo8101HcrWw7Pf/ewgyM2DF74fbR73C8htGV3L9OpPon0n/tqlxNVoWZK02YqiUjaWVfD0R0tpk5fD6H4d4o4kqa48dTGsLoDZL0c/7U1kQ7u9YN/zGzbHugXRFJ7s3C37Uil4/ZbocetukJNHTuFC+O+ftv4Ga/ar8OhZcPgP4Jif1G/OZFV0fUWrLtBteP2+lxqfjx+PCtKY70V/T5+/Jtrfpgdk5ULRInjxB9EiBodf+8WPryyH20fAxhVRyRl6Cgw/I3qu/+Fw/aKtj+81Cr7xwtb7Drki+lWfOvSFy6qn0ZVvilbSK98E0/4JA46CzkOi6Xhte0bLhVeUQF576Ng/Gl2a94YlSY2WJUlAtIrdSXe8TVUyGhq/6pjB5GY7G1NqEJvWREv61tfoSFUFrKuevjbvjejXZzoOhD4H1c/7fl7p+mi6TosO8O03o2/AIJpytOg9OOn/YPS3IJHFxntPovXrt0TTfrJzoyL12s+j49+9A4768dZF6zPJZPQN3Fu3wiXjofkurspZVQETH4ANy+Hd26N95z0OwUm7/3mraagohcfPj4rzJ09CtxFwzE+j6XFPfSuamnbBU9HUt39fGd23aNzPo7/DeW23vE4qBRPujQoSwLE/h/a94/mcdkWzVtCt+nrB3gds2d9p4JbHuS1gn+qRrh77Rv8WF08EnJWixseSlMEqqpIUFlcAcNf4OeRmJ7jt7JF0at2MwwZ1jjmd1ESkUjsuP6tDuPvA6NqDyrJoOssRP9z6G489tegDqCyFM+6PLrQuWw/TnoIZz0bfyO21/7YLR12Y8ndYOz9a7WrR+9G+knXw3FVw4TPR9uRHoEP/6JvJ6lW11g08ndbvfhBl7LEvLJkAKz+BQcfCnNeii8b32n/rVbggmgo09bHo8dzXYdipX8xUUgifzoFeo7/43Ixn4aUfRY/b9YkuWH/vLhh8Qt1f96H0UFke/f3f0b/TyrJoWtnccdF2iw5w0b8hp1n0d6zr+9C89Za/IyfeAv0Og6cvgdd+Gv0A4LN/Y3PHwys3Ro+v+rhxFKTd0WVo9PsDx5J33F8BV8lV42JJylCpVIrz7v2ADxeu27zvyrGD+Mp+e8WYSmpiVk6Hv34JTvgV7Hveto+ZeH/0+3t3btmXlQOn/aFuMix8PyoqWbkQnLhlZGXYafC7YdE1EeuXRj8Bz67j/xKKlsIz1VNt8trCKzdFj9v03LIC1oT7om8aD7liq8KzqfuB0bUeT31ry+v12De6seWd+8EDx0b79jkHBh8fTVka//+igtS+LxQujP5sK0qg7xhYPCGa5tdtGDzxtWgqHcC+F8CRP9oyqvXxk9Fxwcmw9xnRfWLeuwve+BWMvWnP/jzKNmw9slW0JMp41A3RN9tv3gqrZsARP4hGFtt037P3086VrIN7j45Gh772FJCK7hP0eU98LVqQYO+zoqlkw0/fssobfPGGrc1aRX8nn74kukapXW8Y/Q34xzdg3uvRMXuN3vL3rikafjos+wj2GkVZ235xp5F2mSUpA1VWJXlv7qd8uHAd5x3Yh2E929KpVTNOHO5/yBlv3pvRfTba9ow7SdMw6yUoWRsVhTbdouk4NaVSEP4n+olr12HQaVA0DWfBO9FPt3P2cOn94rXwlxOjx4OP/+LUsxNuhpdviqbfTbwfDr5sz97vMyXrovu5rJgWbWflbClIY38SfQP50o9h4yp4+7Zo//4XbfUSqZwWcP4TMPG+aNQL4JTboOOA6ML24jXRvo+fiH69fVtUMIacBGc9CC/+EKY8Eq3MVVPXYdFxn5nyaLSq2Bn3Qnlx9GdxwLeikQCAXgdEq3kt+XDX/xySyagM9twX/v5VmDMuGn3of0T0/PPXRteI9RgJQ78Er/8y2j/96ej3Md+LzpHqR0UJPPT/27vv8Kjq7I/j7xQSWug1UkLz0nuRjgKLgAiIFDu6orKuutafXVZ3xYJlVRDEQrGhYmEFFgTpUhQQBMMFAtJ7b+nz++PMOJMQSAgh9fN6nnlm5s6dmTu5yeSe+/2ec661qahHtsJLVe1kwkPRULy8rRN/2oLZmHlQ80roPy7jJxOCQ+CaNyxfafMcG730BUgAw+Zm/WfKTcrVhhtsVNcTHZ3DGyNy4RQkFTDrdx+j/5ifiE9MpnrZojx7TX2KhIWk/0TJ3777O3iS/ZWWnjl46aZf5Xexx+Cnd+zA/swRy/k5fQjWfX12kHRkKxzbYQf/re60ZSWrwH/vh3+Vh7sXQeXGmd+W6Gn+21e/dPbjDfpD/X7wwV9sitne36Df6My/H1hi95Sb7LXARmRqd7WpSk5vGyXZ4g1cVk203J9r3ky7CWb1tnY5fciCl8jmtrznyzbCFBFp/WLWf22BT1AI9B8LYUWhzd32+9zlccuF+mORJdr7AqRWw+z2tiU2HRBsnaQ4m9LnE1II6nSHP5Zc+M9i9WTbl1Ed/SNX390LgyZDhXo2hRBg8Rv+xP+618CG7+328rFw5VP2eSTrrZ1ivxMDJ9q+2jwHkhNs9LCFN2if3N96EQF0fPjCR1tb3mEnA+aPtN+1Dg9B/Emo1ChrP4uIZDkFSQXM+IVbCAsJ5sFul9O3aaQCJLGD2tWTUy7b+TNUb5cz25PbxR6DkDBLUE7LvJGw/F27HVHZyvXuXm3TvVJz/2fXNa/0L2tyg+UwnDliB9aZDZLiT1tDyooNrTrVufItgoIsCNi5wkZeer5suRXpWfuFTUO74382MgRWEe7DHhb43DDFyhWXqg7FykKNzv7pY1XbWFWsH70jJ6mDx9Ru+NzO+vvyPRpdD/X6QGi43feNvDyx0x9QVG4MT+1JuZ/iT8M3d1lzzt6jbNkPz8KydyHupI3iFS0L1dunfP9ydeyAOu5kxn42Pru8o09/LLKRvFbDbFTxvc7+dZrfZsEiQJXWNgr2ZiP7bEe328hD3d7+9Y/vtgqBVa9IO0fqzFGrPlZSU6fT9dtXNrJYv68F8rHHYUIvKwxSuATsWuUPkMAC8sxo/w8bjSpc0oJ23++tiORqykItQGITkpi1fh99m0YyvEstIkud4yBPjMeT9xvhJcTC2A7wVnP/2fJAycnw1R3++2HeA0B1TD9bUoId1L9UDT7qde51Vn9svUL6j4OHN8CVT0DV1nDQhZMH/OsmJ9m6kc1SFmkIDYOHNkDxSrBnTea3d/XHVob46pfSr5oX2Gdl7292WTXp3OufOWK5FnvXwntdYP7LtnzfeguQeo2y/KfLmluABBZo+Kb7FSoMN34BtbvDtW+nn5dRqEjK/A9IeaD51x/s9VKPuKQOZMOKwuCPof+7/mVOb0iKt0p2m+dAm3ts+wJV8gaqy8ZYntXcF+CTQef+fog9bj+jPWvtfqnq0OctuPwvcMcs630T2dwCx2vetAAK4Nbv7HM9FA33/myFI/73BCQl2t/q5rkwug181NO2JbWkRNsfb9S3Zp9ybh6P/Z5XbW1/H+ERFlj2HWP5bF8OtTzBUt7fzdAimR9dL1TYcgx7/FsBkkgeopGkAuSnmIOcSUiiW/2KOb0pecP4q+DUATtTXrJKTm9N2jbPtZyJwPKyPvNGwoKAKVZzRsCgif77ifHw5W12tgozGYcAACAASURBVPvat6HpzYDHzmIX1CDJ47F9XrzC2Y8tG2NlpcGSkf/T1CpWXf4X/zp71kD8CRg4waay+dTpbkUFRtW2g/A291gu0v711iQytUKFLXjasSL96njnsmoiXNbCeq6kp2wtC8xer2v7/sd/QcIpy50pHZVy3cR4+OJW//2DG62oQfNbLbEd4PKr03/PMjXg5q8y/HHOq2rri3tupUb+fZtWY87a3aHetTDv33bx+XcleGyr5Z0Vq2AB7oGN1hS3cEk4HGMFKbq/4N+H5Wpb8YlAgz+B2KP+IC84xC5XPgnf3mMB9val/qadYH/PlRparxqfdVP9pd4/6gXD5kGJypn/2eRnx3fbz7xiw5TLo9rDXfNtSmixctBoEKz80EY/RaRAUZCUj42a5TJ11c4/7x89nUDFEuG0rVk2B7cqlzqyzQ5iSlWz+8d22oEwwKrJNhqQ1bYugg3TLUE8MwfBR3fAx9fZAemNU1I+lnDGHyDV6WFn9OePhIWjLCfkj8UwwTuFJyjYDgR8U3cimxXcIGnKzZYPcv9qKxDg89Ud3uIBQRZ0bF1oB6OfDoQH1kChYlbB6oA3Obl6h5SvW6kxFCljB9PLx1r56qQ4q27V6Pq0t6VuL9g4E+Y+D92ey/hnOLEP9q2zy1UX0HC1RGWrwBU9zQIkgM9vtpME4cVtqtn4q+zgf+cKm0rY9Eb7W1k7xQIssPybvFTSOCjIclK+HGplndMqvR4cbJXtAnO8wMqqR0+zpplV29h0voMbAY+/B06lJun/fYeGpR2YRzaz6z1rrTQ5WAC+YYb16ZnU19+bJygIlo2Gcg70+Y8V7Hi9rgXh5/odKyiSkwFPynLxWxfadeogCSxoDswZ8uULikiBoiApn9p3PJb3Fm6hXmQJnIo2hSo0JJih7aIoXCgf5yHFn7aqWZ0evbADtY96wfGdNm2namsLIsAObNd8ZvPIs7LRZ1KCJXQf3mJnLuv1gTWfW1W5am3tgHzDdNjzK3R8xJ9E/OfzEy1vCKyCWmoLXrHrutfYNJ/QcBt1+vEFm28fd9y/7v2rU04vimxmgcKZo1CkVNZ95tzu5H5/wvymHywAOHMENs7yV1e74TNrKhozz/bP2ikw+TrLUfIFSC1u91fG8gkKguFLLPiceqc/z6Hrs+fengbXwbT7YPHr0GQIlHcy9jk+G+IP8H1V1DKqRmfLSwILnH/7AkZeBkM+s1Gvg649VqkR3Py1Hdh7PFZtbvm7FlimDtjzgrK14J5F51+nvAOPxti0rO3L7GfwSg0LkAB2LLdeTy2GWnW80d7RLV/zzcwoV8emeX3rrTrY4UEboTx92PYNWPn0idfYsgPRVk2telv7/Vn/tTUzLehB0sQ+dlLizjlwcLNNr5wzwk5eVGmV7tNFpGBSkJQHLd50kJEzo0lKPne+zOFT8RAE/xnclKhyxbJx63LY5jneill74aYv0l//6HZLPj/uHXGb0NsqjS1+0/IBuvyfVaPavjRrCxmsmmgBUnhJmP+STZnxHWw1v9XyQYpXhJP7LJiKP2Wlguv3swPmd9vbVB6f7ctsxOHwVqtSd3Kv5VoMmuQ/ezp0Orzb1srQgp3x7/jw2dOp/jx7vQZqdqbA8AXGADMfs0ugwZ9YgARQ60q7NOhvid4A3Z+3+yXPEZyXiLTL/avhNW/A0+QcvZPARm/uWwVvN7cqbd2fT/l47HEruHHqAFz1rI12xJ/yB0it77bpdheifl8LkkpHWZU434H45wHb2exm6Pa8P9coKAiufhE6P2a3w/Lx900xb5Nt39/FZS1tumr3522ErfFgfx5UjU42WlE2jap9GRUcYkHX5h/sO6LDQ7a8xe3eQhgVYWQVq5pWqpqNIjUeYusM/MiKV8wZYcVG0ur9k98lJdpo3zbv3/avn/r7dgH0G5P1vcFEJN/Qt0Me4/F4eHXWBvYdj6V5tdLnXK962aLc0LpawQmQEuMouncFLLjf7vvKD6dn5uPgTrfbXZ+10s3T7rMDiiGfWvPK2c/Y5c45WTea9PMHdoDV6k47SzwyIOdp1SQrmzxospWi/eIWmOWd7rdlvrdUsDdArtLagqWPB1hZ2UC9X0s5vSQ0zJLBV0+CA641OE3r8/iCpN2rC1aQ5M6wwhVNhvgbvPr0fAXqXXP2c6LaW77K5h+g5V8zVvksohIMnWGjT+n1oypT0w5+l/wHKjaCxgP9j3073D/ytfgNuPNHf+A8dDpEdTj79dJz+V/gzrn2+x8cYgf/PwSMdt34BVzeI+3nFqRRR5+h31uPpdT9p8B+Vif2XHyvq54vAanKtwcH+5uX3r3IpgmmNXJezhuMH9wEVVpe3HbkNR6P5c75vt/BHyCVr2uXwKqSIiKpKEjKY2IOnGTNzmM8e0197uhQI6c3J/eYdh/V1wZM8znhLZObepQkUGK8BR0+Na+0M8HbltrBou/M61VPWcL0vH/bmdyL6VmSGGc5C/t/t2Tu+tf6p9JUqG/ll7cvt+k6IaH2+DMH4cAG2941n1rVsvp9IbSwTQNc9zXMfspe47rxdua0WIW0E7aDg+3M9PkULWM/N9+IREFwwLVywO3us6lJP79vVceqtrFpOr7AMS2DJtmZ+gspDR3VPv11wILYQZNgUj+Y8YjlAtXuZqMKm+faqMHaz23dD3tYoFKmJlS7iFHPwIPp9g/YeywaZYF7LR1UpnCuMvC+xwLz2i6V85WI903RPLDBKrNVbHR22XCPB04dhL1roEaX/DOysnJCygCp6U02ItvqTjuBJCKSjnzybVhwzI3eD8DVDSvl8JbkAnvWWiJ8WW8PE7CDuooNrTzx1oXnD5IWvWYJ6teNt/ybyGZ2UBp4th6sMML0h6361daF0OUJ/8Hi3OetlHP3f6Z8zsHNVjkp8IBz8xx7nSN/eF+3h01NqtoG9kfD8J/s/VPnkYQU8icRV2lhJZ0DS9G2vstK1gI0HpTeTy1jIpvBzpXnX+fodgvYOjx0dsnk8zkUYz/7ni+nfQY+u3k8sPQdG9lp/4BNqXpog434ZGTkMKzopW32GdkMhv1o0zFXvGcXn3p9LKDePAcWvGxT7wa8n3b/nMyKqHh2NTbJG0pH2ZTe2c/Yd2Vg02KfJf+xvlxg321dHk/5eGarK+ak5GSY9yJUbmLThouVh76jbXpxCfWPEpGMUZCUR6zcdoTxC7ew4o/DNK5SUj2OzhyFcd7Sxg0HQHAhNveaQu2WXe2f+uynrYRr81vTfn5SoiWa173Gmn2e7yCgZBWIiLTRqR3LYXI/+Ntya4a5yHtGstMj/gP+fevh3Xb+bev/np3R/OJWKOOtnFWtnf8s763TbMpORg9EUvfqCA3L+oPYyGaw/hs7w+zLwwi09gsLRMGqnnV+1Kb8ZMTPH9gZ3SKlLYfn4EYbrbjYA/vju+3scd1rMt6ANf4UvN3CpkW1vtv/WXNb2eSyteCO2fazmv20Te8rUtqC9bBiNnWzUFEb7Sl/eU5vreQWwSHQoK+/51XMvJRB0sFN/gAJLBez1TBY95UF3p0etVHMm77I3PTNnLJ7NZzab32JipW3YCkoKO3KhSIi56AgKY94cUY07t4T1I8swYv9G6X/hPwusNHluqnQ6TESinnzO3yjMVsWpF36FeD3b22KVMMBGQtO/r4CggtZzse77Sxhfuk7/se/+zv0edMOXL+7F4JDLfBZN9XOZJ7cb2d1/7bUSiZHBByEX8goTHbxJfxPudlGviKbW/5MeIQFIxtn+tddNtouaZ2FTouvj8uaz/w/w4hKVsr4Yvz8vgWt25fCbf9Nf/24k/Dh1RYgNb3ZDqhys+BgqFDXegttW2q/T74iCcHB0OEfObp5kku1e8CaSm/7yb4T962Hig1sRPfLobZOv3ftb3xMG5jzrI0Qg039TTgFy96177AG/e37Mv40TLnJcp56vJi1I5fnk5Rw/oauifH2+C8f2Pd17W5nNyEWEckgBUm50M4jpxk9L4ak5GQATsQmsnLbEUb0qc/Q9spDAqxKUdnaVqktqqM1Xdywwf94jc7w25c22rH+a+g/zqa1la5upXK/uxfCS6RsxHg+vlGiig2g6hUpA6Tmt1m1ukJFLPF/92rrT9N6GLxUzV9NrvNjVoo7L5zNrNzErrcvtest8+w64bR/nVu+tXLly0bb1Lz5I61gRlIC3PC5HTglJabMcUiMg52/2O3Th4AgwAPLxtrPrW6fjI2EpH5dsAM6sIPAjEwRWvIm7PsNyteDvu/krSlF1dvm9BZIXlGuNgwYb0HRuM52kickzMpgg42gNr3Rbvu+y3zijtn1hu/tUrKKlcye/6KVHo/50X4X6/e9NNuenGSVSkteZn3Ipj9sU2K7jTh73YQzMLYjHNtheZnt/6EASUQuioKkXOituZuYumoXFSLC/1w2qGUVbmkblXMblZucOmj9QLqNgHrXWvWv1Ae4DfrBD8/YtBHwTw0b/LGNjoD1c8nMP9FOj8An19tUlC5P2CjV/mgbGfGp0tIKP7S+24KnRten3bQwtwqPsAByy3w7y9x4sI2MxcyDzwZbA9qaXezn3vFhO5iZ0Ntfbe3QJsudWTfV8nt8o2WL3/BOg3kRZj0JXZ+BHSus19OmWZbj1fB6uP6Ds7fp9GFYNZGgUlfB2Pb2nl0et59tYjzsWmnbdfqQHVidb8pcwhlY/p5NzRs0OW8FSCKZUbYW3L3ASsonxfPnCYomQ/zr9BplFS3/WGL5bdHTrBn1pln2+K6VNkXvp7dttDn2mE0jrt8PBk1M610vzqLXrGCO09tO2HiS7TvE6W3VKHcst4I7Kyf42zgAtBluzX9FRC6CgqQcdioukXELYjiTkARAQpKHr1ft4sbW1XihXx46qM5OvtGNam3PPSoTHmG9RBa/nnK5L0AqHWWjTZlRpzs8sDZlcFbescpjPpHN7brXK5l7j9zgxi9tqmBVb7PF4BBwroa/r7TALzCwCA6xAhjjOloDVl8jTbCAqVIjG93ZNNvysdreC7W6Wl7Xyb0ws5D1DIqZBz+Pt2IEoYXtORXqWWGEBa/A8nepVOMXq9YFMONRmzK5dy0knrGgdMU42+7zBUkbpttZ8tZ3Zd9UIZGcVraW9d7yJFuj2mO7bJTGJzTM/p4aDrBpwWVrw5VP2cmHN+rblL39v1uxnNtnWt7iN3fb9OUj22ykfv23ENn0/EVzMuLEXlg+1m5v/J9Nyb3pR5jcHz7o5l9v2xKr5tnmHihcKusbf4tIgaUgKYdNXraNt37cTNEwf85M06qleKSHk4NblYvFHrcD4yJlrIfR+TS/xYKkXqPsH/vmuVYFrv97VlnuYv6Rlq6e8n6Q90C7y5NWtrtwicy/dm4RGuYPkAL5+rOkVqoqPLbVphjGHfcv//UzKDITlo+D0wdt5AksvwYs12mwNweiZhdwZ8JHPVO+douhVqwDKLX1eyha1qbd/PCs7dv3u9p6V9xj03K2LbFtiKgMNTp68496WOGD0lF2HVHZpmqKFCSBJ5ZKnqfSW8kq0C2gqEPtbpaLCXDDFJs63HiwNbz+4Vn4T2Pr//XlbVZqfPjitF/3fBa/YSPB3V+wqXWnD1lhmyotbYpgSCFofx/8+C9ratzmHpvy1/SmtAvMiIhcBAVJOWjH4dO8t3AL7WqV5dNhV+T05uR+Z47AV3dYov3Q6ekXPChTE5455M9d2bvOpt81Gpj1owdNhthc/oYDzh1EFARBQTB8iY0CBYfCKzUsZylQvT7nfn5YMeg9Cj4bknL5ygl/3jxavSeleo+AuBO2wNcgslR12+dVWsJPb9myYuWh2z+tWMS+dbbs+G67bnmHRpFEMqr3a9bLrWgZG1EG+3tvcbu/4fCEXnbta2p8Pjt/saIwoQ3sfnISzBlhty9raY83GnR2Q+tOj1pw5MsTraRCRiJyaShIykGvznKJS0jStLrUPB47kC15meWrfH2X9bY4EG1nFis1guoZbMYZmNxfqaFdLoXq7WDEsUvz2nlNqWr+24VLWb+ov86BrfOh/YPpN6sMrHL3sAsTrrEpewBDPmWPpyalKtS1IhBhxb1TAttYjhlYnpFvSuapA/Dd3/yvd/+vNoJ0bEf2NPoUyS9Cw6Ht385eXrgE/P0XmP+SPwc04bRVwwstbKXpU//NJ8TCl7fDyb0E9/VWyvSNUoGNRoG/gExquaG/mojkewqSLrHkZA//Xbub47GJKZafjktkxm97uK1dFLXKF8+hrcuFtsyHjwdYkYAeL1rD2CNb7VKmJlz/kc1315zzvGH4TzY6VKRU2lP30hIaDoMm2ShQRCW45RtLNh84Eer2guho/3q9X7NmmH3H+Ps0tboTYuZC8Yopi2kAlPFWhyxXJ2s+n4jY39N179kUuOIVYGwHeL2efY+3vgt6vgKfDrZKn+ERsOfXP59aevNUqF0TZjwGJavaNNoZj9iDl+qklohIBihIusRm/76XBz7/Nc3HLq9YnPuuKsBTswLF/Gh5JtPus3+sYNXPQsJs3nulRjaVrURkzm6nXJjz5TycT2BJ4VJV4en9aQfGTYakrM4FNg3zlm9sOt6OFVaSfPDks58rIlknOMSaGwN0fc7fpPbnD2wmgK9Cns/lPeHYTiqsHQNrx9iy3q9ZvmjjQdbCQTmDIpKDFCRdQqfiEnlzziaqlinC1OHtCCLlQV7pooUIDSnAORFJCZaMn5xoFYt82gy33htf3GoFEbo+l/mDbckfMjNyGB5h04CSE2zUSUSyR4d/WO7h5H5wdLs/YAJrhdB3tPWcCwpm+4LJVFvwgD1WtY1dFy5pI8IiIjlIQdIlNG5BDO6+E3w4tBUVItIpMpAfHdlm12n1MQKY+ZhVIvNVNms4AIqWs6arhUtZFbpaV0Hx8tm3zZK/BAdDsAIkkWxXthb0fgM+GWBT6Lo8YUV3UuUCnqrUxsqJ71pl03JFRHIJBUlZLHrPcQ6ciCMhKZlJy7bRtW5FrnQq5PRmZb/o/9pIkCfZAp4mQ6DnyynX+eVDu17tDZJ6jUrZ3LXJ4OzZVhERyXp1usHDGyGiot0/V7GU6u3sIiKSiyhIykJbD56i91uLSPbY/YjwUB67ugD1Ozq2Cyb2gbq9reJY6RrWNHTjLGsK2OwWfyKuxwNBIeBJskaBxSulDJBERCTv8wVIIiJ5jIKkTNp68BQnYhNSLBu/aCuhwcF8MLQlRcNCqFamGOUjCshUn8NbrSrd4Rh/j5oWQ6HVX6FBf6t0NOtJS6gPDoHZT1uA5FO3d45stoiIiIhIagqSMmHdrmP0eWcxHs/Zj93ftQ4d6xSgHJrEOOuP8duXEHscOj4Ci0bZY5HN7LpoGbh6JHz/IHzU06bg7fzZ+tlc9TQseNkaBIqIiIiI5AIKkjLA4/Gw6+gZkrzz6N6cs4liYaG8PqgJIcH+ggQRhQvRKqp0Tm3m2RLjYcU4aHi9jfBUb5+xKmEeD8z9p5XlbnKj9aYJbBAaaNaT8PP7UKOTBTqVGvuDpOod/Os1vw0Wvwk7ltv9wiWhx7+hdBQMnHAxn1JEREREJEspSMqAj5dt45nv1qdY9njPuvylQaUc2qIAyUlw5ggUK5dqebJVj1v5kU1tA7huvPWfSO/19v8Oi9+w+3vWwLwX4e75sGmO9Smq0RHCS9h6v3wIre+GXq+kfJ2w4lAuoAdUcAjcNs2aCQYXgpqdL+pji4iIiIhcKgqS0nAqLpHEJBs1iktKYtzCLTS8rAR3tK8BQNni4XSqU+58L3HhDriwcgJ0fwFCMrhbEuPh/atg3+/Q9VkoUhqiOlgFodWTLUAKNONR2L4M2t0Hpw5C1VYpH/d44IXyKXOFQsIg8Qy81SzlusGFbDQoPAK6PJ7ysQfW2vLUSkfZRUREREQkF1OQlMpPMQe56f3lKfKNgoPglQGNaVc7iwOjQKs/hmVjrIBBVIf01wfYOBP2/mYNVwOb9fmEFYcH1sC2n6B4BZhyM/zygV3A+hL1GwuhYXb/6DZ/gFS+rvWuCC0Mn98IW+alfO3IZpAUDy3vOLsqXenqGf/cIiIiIiK5jIKkAMnJHt6eu5lyxcMZ3rnWn8sbRJagTc2yl/bN9/xq1xumZzxIWv0xRETCXfNg7vNQp7v1J1o31R7vNsKm4dW/1u7fvxpGVvE/f91UaDQInKvt/o6f/Y/V7uYPfrqNgKXlrI9R7FFYMd5GrkILSOU+ERERESlQCnyQNHZBDC/N3JBi2fN9G3Br26js24jkZNi9xm5vmA4dHoSvh0HlptD9n3D6MCTGQqGisPBVcGfYtLWYH6HDQxBRCfqNsefX72fLKtSzPKBA4RHQ+3XAA1GdYGwH+Gww9B0N7kx7XYCSVaH1MP/zIpvCgPftdpFSVnBBRERERCSfKtBB0onYBMYtiKFJlZJ0cSoAEFWuKP2aXpa9G7J3DcQds+pz25bAe13g+C7YMh+ufMrKZh/cBGHFIOG05QLF/AgV6kOrO1O+VlCQv2FrWlr91X+7z5vw7XD47l7/MqcX3PBZVn46EREREZE8pUAHSY9P/Y3jsYmMuLYBzarlYOnujbOBIOjzFky61gKkkHBIirOCCcd3Qv2+EHfCRonK1bEAqtHAs0eLLkTTGy1IAhg0CZaOgU6PZMUnEhERERHJswpGkJRG19eYAyeZ/tse7ruqds4GSIlxsGoiVG1jJbNvn2HV6kpU9o4o7YQeI6Ht31I+r8mQrHn//uNsql29ay0QExEREREp4DIUJDmO0wZ42XXdLo7j1AYmAB5gHXCv67rJjuM8B/QGEoF/uK674hJt8wW7bOnTsLEy9H3nz2aq037dTXAQ2Zt7FOjYTqsat8ebi9TlCbsOLJPdaxQc3gJXDL9029FkSNYFXCIiIiIi+UBweis4jvMY8D5Q2LvodeBp13U7AkFAX8dxmgOdgTbAEGD0pdnczDlTpj78+jEsHQ2nDuHxeJi7YR/XVz5A+ZNu9m/QlvnwyUALkMJLWKW4tAKV1sPg6pF/BnYiIiIiInLppRskATHAdQH3WwALvLdnAt2ADsBs13U9rutuB0IdxymfpVt6EUbH9mRFodYw+yl4tSavvToCd9dhXjn8AIzreO4nejyw8xerPpdVDsXApL6w/3do/wA8vh06PgwhhbLuPUREREREJNPSnW7nuu5Ux3GiAhYFua7rS/I5AZQESgCHAtbxLT+Q+vWio6MzvbGZFR7i4ZsiA2idYDMAHzn9Jo8U9j++Yd2vhMQeJrFY5RTPK7llGpE/v8iRmv3Y2+IRCL6wFK7QMwcpun8lx6t2heBQQuKOUmP2UHzhUEyJtsRv2HDe15CMi42NzZHfL8le2s8Fg/ZzwaD9XDBoP0telJnCDYHDKhHAUeC493bq5WepV69eJt7y4lxHNPUG3g1LE2D202c9Xjf6TVj/Dfx1DlRtZQtP7IWZEwEoveVbSleqatXkKjaC4AwMwB3eCu8PhdMHuSx+C1z7FvzwHJzeB7d9D9XbUysjryMZFh0dnSO/X5K9tJ8LBu3ngkH7uWDIqf28cuXKbH9PyT8yc5S+2nGcLt7bPYFFwBKgh+M4wY7jVAOCXdc9mEXbmDWCgqDdff77T+6B//sDile0AAlg1hNw5igkxsOcEXD6ENw1H5ze8NPbMK4TLHg5/fc6uBlGt4b4U1ClNaz5DPZHw4rx0HAA1OiYsUBLRERERESyXWZGkh4GxjuOEwZEA1+5rpvkOM4iYCkWeN17vhfIUUNnQOESEFYUKGpB0IxH4eR+2LkCXo7CCvcBV9wLkc2g16sQfxK2LoAFL0HZ2tB44Lnf44+FkBQPN34JJavA2PYw5goICobOj13yjygiIiIiIpmXoSDJdd0/gCu8tzdilexSrzMCGJF1m3aJRLVPeb9EJAz5xG5//yD88qH/sdbD7LrkZXDbNEg4A5P6wfSHodaVUKwcnD4MX94G1dpC5abw6ydWnKFoWajT3Uawbp4K80ZaBbvyTvZ8ThERERERyZSC0Uw2o3qMhKY3w+Yf4PhuKFMj5eOFilhu0ZgrYOEo6PkSLHwVti60S3gJiDtu617e01+6u9ZVdhERERERkVxPQVKgQoWhSgu7nEt5B5rfCsvfhdhj1vPI6Q0Hoq3xa4P+EBEJV9yTbZstIiIiIiJZR0FSZnT7J+xeDWs+tfuX/x80vQGm3GK9jyKb5ez2iYiIiIhIpqnEWmYUKQVDp0OYt+p5nR5Qrw88tkUBkoiIiIhIHqeRpMwKj4Dhiy0PqWgZW+a7FhERERGRPEtB0sUoHZXTWyAiIiIiIllM0+1EREREREQCKEgSEREREREJoCBJREREREQkgIIkERERERGRAAqSREREREREAihIEhERERERCaAgSUREREREJICCJBERERERkQAKkkRERERERAIoSBIREREREQmgIElERERERCSAgiQREREREZEACpJEREREREQCKEgSEREREREJoCBJREREREQkgIIkERERERGRAAqSREREREREAgR5PJ5se7OVK1dm35uJiIiISIHWokWLoJzeBsmbsjVIEhERERERye003U5ERERERCSAgiQREREREZEACpJEREREREQChOb0BlxKjuMEA2OAJkAccKfruptzdqsksxzHKQR8CEQB4cC/gN+BCYAHWAfc67pusuM4zwG9gUTgH67rrsiJbZbMcxynArAS6I7txwloP+crjuM8AVwLhGHf1QvQfs5XvN/bE7Hv7SRgGPp7zlccx2kDvOy6bhfHcWqTwX17rnVz4jOIpCW/jyT1Awq7rtsWeBx4LYe3Ry7OzcAh13U7Aj2Bd4DXgae9y4KAvo7jNAc6A22AIcDoHNpeySTvgdU44Ix3kfZzPuM4ThegHdAe249V0X7Oj3oBoa7rtgOeB/6N9nO+4TjOY8D7QGHvogvZt2etm53bLpKe/B4kdQD+B+C67jKgZc5ujlykL4FnAu4nAi2ws88AtyBqXwAAAk1JREFUM4Fu2H6f7bqux3Xd7UCo4zjls3VL5WKNAsYCu733tZ/znx7Ab8A3wH+B79F+zo82YvssGCgBJKD9nJ/EANcF3L+QfZvWuiK5Rn4PkkoAxwLuJzmOk6+nGOZnruuedF33hOM4EcBXwNNAkOu6vjr2J4CSnL3ffcslD3AcZyhwwHXdWQGLtZ/zn3LYiauBwD3AJ0Cw9nO+cxKbarcBGA+8hf6e8w3Xdadiga/PhezbtNYVyTXye5B0HIgIuB/sum5iTm2MXDzHcaoC84DJrut+CgTOX44AjnL2fvctl7zhDqC74zjzgabAJKBCwOPaz/nDIWCW67rxruu6QCwpD5K0n/OHB7H9fDmWHzwRy0Hz0X7OXy7kf3Ja64rkGvk9SFqCzYfGcZwrsKkdkkc5jlMRmA38n+u6H3oXr/bmNoDlKS3C9nsPx3GCHcephgXHB7N9gyVTXNft5LpuZ9d1uwC/ArcCM7Wf853FwNWO4wQ5jhMJFAPmaj/nO0fwjyIcBgqh7+387EL2bVrriuQa+X3q2TfYGemfsKTA23N4e+TiPAmUBp5xHMeXm/QA8JbjOGFANPCV67pJjuMsApZiJwLuzZGtlaz0MDBe+zn/cF33e8dxOgEr8O+/rWg/5zdvAB9692EY9j3+C9rP+dWFfFeftW5ObLDIuQR5PJ701xIRERERESkg8vt0OxERERERkQuiIElERERERCSAgiQREREREZEACpJEREREREQCKEgSEREREREJoCBJREREREQkgIIkERERERGRAP8PQckDWqKb3ocAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 864x576 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.figure(figsize=(12,8))\n",
|
|
"plt.plot(mean_df['time_step'][1:],mean_df['Price'][1:]) #, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\n",
|
|
"plt.plot(mean_df['time_step'][1:],(1/250)*mean_df['P_Ext_Markets'][1:])\n",
|
|
"#plt.plot(df['time_step'],df['Zeus_LT'])\n",
|
|
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 19,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"time_step 2.889637e+02\n",
|
|
"P_Ext_Markets 4.009858e+02\n",
|
|
"Price 1.288208e+01\n",
|
|
"Price_Signal 1.287143e+01\n",
|
|
"Price_Signal_2 1.264218e+01\n",
|
|
"Sell_Log 1.506585e+06\n",
|
|
"Trans 0.000000e+00\n",
|
|
"Z 0.000000e+00\n",
|
|
"mech_step 6.318237e-02\n",
|
|
"run 0.000000e+00\n",
|
|
"dtype: float64\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"print(np.std(mean_df))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 20,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"ename": "KeyError",
|
|
"evalue": "'Buy_Log'",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
|
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\indexes\\base.py\u001b[0m in \u001b[0;36mget_loc\u001b[1;34m(self, key, method, tolerance)\u001b[0m\n\u001b[0;32m 3062\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3063\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3064\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'",
|
|
"\nDuring handling of the above exception, another exception occurred:\n",
|
|
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[1;32m<ipython-input-20-39b695b3883c>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m12\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m8\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Buy_Log'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m#, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Sell_Log'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;31m#plt.plot(df['time_step'],df['Zeus_LT'])\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mlegend\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mbbox_to_anchor\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m1.05\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mloc\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mborderaxespad\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;36m0.\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 2683\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2684\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2685\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2686\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2687\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 2690\u001b[0m \u001b[1;31m# get column\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2691\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2692\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2693\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2694\u001b[0m \u001b[1;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[1;34m(self, item)\u001b[0m\n\u001b[0;32m 2484\u001b[0m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2485\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2486\u001b[1;33m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2487\u001b[0m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2488\u001b[0m \u001b[0mcache\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mres\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36mget\u001b[1;34m(self, item, fastpath)\u001b[0m\n\u001b[0;32m 4113\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4114\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misna\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 4115\u001b[1;33m \u001b[0mloc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4116\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4117\u001b[0m \u001b[0mindexer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0misna\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\indexes\\base.py\u001b[0m in \u001b[0;36mget_loc\u001b[1;34m(self, key, method, tolerance)\u001b[0m\n\u001b[0;32m 3063\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3064\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3065\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3066\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3067\u001b[0m \u001b[0mindexer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Figure size 864x576 with 0 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.figure(figsize=(12,8))\n",
|
|
"plt.plot(mean_df['time_step'][1:],mean_df['Buy_Log'][1:]) #, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\n",
|
|
"plt.plot(mean_df['time_step'][1:],mean_df['Sell_Log'][1:])\n",
|
|
"#plt.plot(df['time_step'],df['Zeus_LT'])\n",
|
|
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 21,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"ename": "KeyError",
|
|
"evalue": "'Buy_Log'",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
|
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\indexes\\base.py\u001b[0m in \u001b[0;36mget_loc\u001b[1;34m(self, key, method, tolerance)\u001b[0m\n\u001b[0;32m 3062\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3063\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3064\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'",
|
|
"\nDuring handling of the above exception, another exception occurred:\n",
|
|
"\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[1;32m<ipython-input-21-34e10cc56ca1>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mbuy_delta\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Buy_Log'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdiff\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[0msell_delta\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Sell_Log'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdiff\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mext_delta\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'P_Ext_Markets'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdiff\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;31m# df_delta['Buy_Log'] = buy_delta\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[1;31m# df_delta['Sell_Log'] = sell_delta\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 2683\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2684\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2685\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_column\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2686\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2687\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_getitem_column\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\frame.py\u001b[0m in \u001b[0;36m_getitem_column\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 2690\u001b[0m \u001b[1;31m# get column\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2691\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_unique\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2692\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_item_cache\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2693\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2694\u001b[0m \u001b[1;31m# duplicate columns & possible reduce dimensionality\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36m_get_item_cache\u001b[1;34m(self, item)\u001b[0m\n\u001b[0;32m 2484\u001b[0m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcache\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2485\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mres\u001b[0m \u001b[1;32mis\u001b[0m \u001b[1;32mNone\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2486\u001b[1;33m \u001b[0mvalues\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_data\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2487\u001b[0m \u001b[0mres\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_box_item_values\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2488\u001b[0m \u001b[0mcache\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m]\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mres\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\internals.py\u001b[0m in \u001b[0;36mget\u001b[1;34m(self, item, fastpath)\u001b[0m\n\u001b[0;32m 4113\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4114\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0misna\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 4115\u001b[1;33m \u001b[0mloc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mitem\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 4116\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4117\u001b[0m \u001b[0mindexer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0marange\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0misna\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32m~\\AppData\\Local\\Continuum\\anaconda3\\lib\\site-packages\\pandas\\core\\indexes\\base.py\u001b[0m in \u001b[0;36mget_loc\u001b[1;34m(self, key, method, tolerance)\u001b[0m\n\u001b[0;32m 3063\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3064\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3065\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3066\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3067\u001b[0m \u001b[0mindexer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n",
|
|
"\u001b[1;31mKeyError\u001b[0m: 'Buy_Log'"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"buy_delta = mean_df['Buy_Log'].diff()\n",
|
|
"sell_delta = mean_df['Sell_Log'].diff()\n",
|
|
"ext_delta = mean_df['P_Ext_Markets'].diff()\n",
|
|
"# df_delta['Buy_Log'] = buy_delta\n",
|
|
"# df_delta['Sell_Log'] = sell_delta\n",
|
|
"# df_delta = df_delta.append(ext_delta)\n",
|
|
"# df_delta.head()\n",
|
|
"sell_delta.head(20)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 22,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"ename": "NameError",
|
|
"evalue": "name 'buy_delta' is not defined",
|
|
"output_type": "error",
|
|
"traceback": [
|
|
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
|
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
|
|
"\u001b[1;32m<ipython-input-22-0cd1f5cb3736>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m12\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m8\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mbuy_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m#, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0msell_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmean_df\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'time_step'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0mext_delta\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mylim\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m-\u001b[0m\u001b[1;36m400\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m400\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
|
|
"\u001b[1;31mNameError\u001b[0m: name 'buy_delta' is not defined"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<Figure size 864x576 with 0 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.figure(figsize=(12,8))\n",
|
|
"plt.plot(mean_df['time_step'][1:],buy_delta[1:]) #, df['Zeus_LT']], figsize=(15,10)) #, logy=True)\n",
|
|
"plt.plot(mean_df['time_step'][1:],sell_delta[1:])\n",
|
|
"plt.plot(mean_df['time_step'][1:],ext_delta[1:])\n",
|
|
"plt.ylim(-400,400)\n",
|
|
"#plt.plot(df['time_step'],df['Zeus_LT'])\n",
|
|
"plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 23,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"<seaborn.axisgrid.PairGrid at 0x23bbcaed940>"
|
|
]
|
|
},
|
|
"execution_count": 23,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAABxUAAAb9CAYAAAAZ6xzAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3X+UHOV95/t3PVVd3VPTI8QMyMYgGAmJNgsIYSF7Zcuxb5x7WDY5xAvBFjeGXDjHTlh7IXs3Xp8s+KzuiX19WBzWcG/iYPY6NmEjbjCJliQmZPPDa2y0QRaSsQhpEEIWwjISMwhppn/VU0/dP6q7NT0zEkKWNNWjz+scnZnuac081fV0dfXzre/366VpioiIiIiIiIiIiIiIiIjIkZi5HoCIiIiIiIiIiIiIiIiI5JuCiiIiIiIiIiIiIiIiIiJyVAoqioiIiIiIiIiIiIiIiMhRKagoIiIiIiIiIiIiIiIiIkeloKKIiIiIiIiIiIiIiIiIHJWCiiIiIiIiIiIiIiIiIiJyVKdtUHHLli0p8Jb/du3adUyPO5n/NIa+HMNJd6xz+ET8y8Nzr3Gc8nGcVP10DD7Z/+b7Ns7R9p10msOnzzZqDs/v/Xu6busp2N6T6nSbv/NlO/poW066o83hvDxHeRlHnsaSl3Ecw1hOqn6Yv3kaS17GkaexzOX8hf46j9AY+nIMJ5WOwf05jj4ayzE5bYOKx6per8/1EDQGjWHO5WW7NY5eeRnHyaRt7H/zffveyumw/fN9G+f79r2V02n7T6dthdNje+fLNs6X7YD5tS0nS16eo7yMA/IzlryMA/I1lqnyNK68jCUv44D8jCUv43greRinxqAxvB15GmNexpKXccD8GouCiiIiIiIiIiIiIiIiIiJyVAoqioiIiIiIiIiIiIiIiMhRKagoIiIiIiIiIiIiIiIiIkeloKKIiIiIiIiIiIiIiIiIHJWCiiIiIiIiIiIiIiIiIiJyVMFcD+BoKpXK+4C7qtXqhyuVyjLgG0AKbAc+Xa1WXaVS+Y/ALwIW+M1qtfr0kR47F9sgIgKQJI5anDBYDKg1E4wHpYIPQC1OiEKfWishKvgY483xaEXyxVpHK3G4FKKiT61picJArxXpC86lxDah5VIGiwGTTctA4BMEurZP+kM/HoM7512Vd7+bQ42YqODj+/l9zTmX9tX5YL+NV/qXtY66Pfxa1vun9BPNX5H5Qa/l/qT9dnLlNqhYqVT+PXAjMNm+6x7gzmq1+p1KpfIHwC9XKpUfAx8C3gcsBh4FVs/2WODPTvU2iIhAtrA1Vmtx+4ZtbN41zurRYe6+fgVDxewQ/BsPPdO9/94bVrKwGBAUfFpxQjxlETrvC2IiJ5JzKS2bYICadUw0LZ995Nnua+W+G1YyMljUIqbkVpI4ksRhU5hoWm5/+PB7wL3rVjIchfpQI7nmXIq1Sd8dg5PEMTbZmvGaGxkMc3ke5VzK2GSL2zZsnfL8XsHIYJjL57ffxiv9y1rHeG3ma1nvn9IPNH9F5ge9lvuT9tvJl+dn8SXg2im3VwH/o/3948AvAGuBv65Wq2m1Wt0NBJVK5ewjPFZEZE7U4oTbN2xj084xrEvZtHOMzz7yLG/UYt6oxT33375hG40kZc/4JAcblk89uIWL7nicTz24hbHJFkmipGuZ/6x11FoWgKZLOVCL+ewjz/a8Vm7bsI1anMzxSEVmZ62jaR1Nl2Jdyu0P974H3P7wNupW81fyy1pHyyZ9eQyuxcmsr7k8j/e2DVunPb9bNV457dXt7K9lvX9KP9D8FZkf9FruT9pvJ19uMxWr1eqjlUpldMpdXrVaTdvfHwLOABYAY1Me07l/tsfO8Pzzz7/lOBqNxjE97mTSGPpvDBdffPEpGM2xzeETIQ/PfT+Po/Lud7N513jPfZt3jbN4OJrx2M27xhksBngefOrBLWzamR3iOm+A99+4ild3VY9rHG/HqZjD/XIMPtnm+za+ne1bfMEFhEFI06UkLiUFBosBURjM+hqKCv6svztPx+D5vn9h/m/j29m+C5YsITABTZeSplAuZafas83fwWJwxN+rOTw3TqdthSNv74UXLqfpso9Sx3MMhrk9jzjSedfRXnNz6UjjjcLDz2+e5uaxjPdo8rQtRzLXx+C8PEdzPY48vpbn+jmZ6mhjmctjcL88RydbHucv5Gf/zPX8hf45D9YY5nYMx/Na1jE4o2PwTP2wf451/uY2qDiLqek5Q8AB4GD7++n3z/bYGY7lSXr++edP2RuaxqAxvF2n8mQrD9vdr+M41IhZPTrcDRACrB4d5pXx2ozHrh4dZse+CZa/ozzrG2C5FHDekmVEoc9kM2Gw6FOPXV/2sumXY/DJNt+38Vi3r9Ozq9ku+dsx0bCMT7ZmfQ3V4mROnzvN4cx838afZQ7XmgkuTWedv5NNO+fPm+Zwr9NpW2Hm9nbKnU6dw5NNy9hEfx2Dj3TelYfX3GyOZbx5mps/6/M7F9vS6amTt762R3oe8rK/53oceXwtz/VzMtVcjyXv8xfmdix5nL+Qn/2Th3Hk9T1LY8jXGPL6WtYx+Ojyut/m0/6Z+zPpY7e1Uql8uP391cCTwPeBqyqViqlUKucDplqtvn6Ex4qIzImo4HPvDStZs3SEwHisWTrC3dev4MyowMKo0HP/Xdet4Inte5lsWlaPDvf8ntWjwxysx3zqwS389M0m3/j+y7z6RoOvP7mTsckmtabt/lOZVOknncU+217IrjUTDtZjJpuWl/YfYmFU4O7rV/S8Vu67YSVRwZ/roYtk/T9btmcOTzYtEw0LpBgD967rfQ+4d91KBgLNX8kPa11PQLHWTJhsWgrG67tjcMF4s77mCjm9+CoKfe66bsWM88EozOfz22/j7fTUmdpSYLzWwlqdK+dd8Qiv5WJOX8siU2n+iswPei33J+23k6+fMhX/HfBApVIJgeeBb1Wr1aRSqTwJbCILkH76SI+diwGLiAD4vmEkCvnaTau6C3XGA+OBS+H+G7P7d+ybYOPWPax77/m8Mdnk3nUrZzQV3rj1VTbtHOO3Hvkh66+5hM89+izrr7mE2zZs474bVhInKWHg0UoM5WJAPU4oGA/rUqLO3zZQCvovs1HmnyRxJNMyuyabFuN5eF62MHzuwoiXX5/goncs4IGbriQq+tSaligMNIdlznWyE5O0dw77ngceuDTFJikDod99D8hTlowIHL6wA+jO0WwOZ+cPoW84Mwq7x+DOHM7rMdiQBb6++on3sGCgwMF6TGC83F5NW2slbNy6h/XXXMKyReXu+eDNa5cwVMrfqPttvFN76sDhlgJfu2kVQzoO596CUtDz/pnXiwNEZqP5KzI/6LXcn7TfTq5cBxWr1eou4J+3v38B+NAsj1kPrJ9236yPFRGZK75vGPKzhYtOj61GywIQ+h61lmX5O8q8a+ESAM4aKtKMk+4b4MF6zMatr7L+z/8RyEqhLltU7vk6Ui7yqw/8A1+69jIgWxy89aFnuHfdSh5+ejf3/d0OVo8Oc/f1KxgqBgyVCrldEJT5z1pH4hytKZldaQpBe06mKdStY2EpYGDREANhtpDtkpRyqTDHoxfJ5nDDJrh278TOHK61YsrFbI4GxiMwHvGUeR4VfHxfC9ky98pDQ7RadsaFHZ0P3A3rCH2D8eirOZwCofFI27d94/XczpuC8Vj33vNnXEiW14WPgYI/63gHcpq5OlicvSfo1FLrkl/TjzT5PfKIzKT5KzI/6LXcn7TfTi6dSYuIzJEw8Km1LODhex615uFeL41WQtM6Cr7H7rEav/2nP5pRC3zHvomer7VmwuZd4ywejgDwvMNXY6+/5hLu+ZsX2bRzjM8+8ixfuvYyfD/LZhQ5lab27ILDWTGh8UhSaCWOMDAMBIaWSwkKPs12MHFIwUTJgSNl2BaNh03BeIaJZszCgbAbiImbltRpDkt+WOtYtOidPeVOU1ImmzELSiFA9zhcCrM53C/HYQ+waXZxCmRfbQpBPmN0uBSKBdOTWem1q1nkUT1O2PLj8Z7xbnrpddYuP7t7AV2edFoKzNZTpx/ms4iIiIhI3uTvrF9E5DRhjMdAwSdJU0rtPjSNVsJA4NOwDps4nnxx/6y9jL58/eU8sX1vtwfj3devAFJWjw7zyniNV8ZrHKzHwOGsxo5O4DGvvW9k/rLW0ZrSs6sTUCy2A4rGyxaxSSF2tBe6LYNhoFKRkgu2fWyeGoiZaGRzuOVSfA/OKAUMFguE7aydTiAmz5ldcnrpZNlOzRQ3XpbdZzzDwUYL36Pn5/1UsrcTQPTaQUTPy27bnAbpAOLEcaAWk6ZwoBYT57g39kDBZ9UFw9z60DNcdMfj3PrQM6y6YDi3mYoDga++tiIiIiIiJ5BSVERE5pDneTiXsnusxvnDERMtS9ED3/M4oxzy/mVns3P/IZZP6Sc32bREoc9N7x+lXAy4ZuW5lIsBT764n9/92OWEgUdgDBu3vgoczmrs6AQezxoqKlNRTpnZenZ1OLKAokfvIrZKnUqeHLnvXBasKLTLK8Z9GoiR00NnHs9W7rRuHWeUAloupVDwafVRduJUgQc1mwXpojBgbKLFwqhApNfiCdFvmYp1m/DqgRr337iKcilgomF5af8hBkJfPRVFRERERI6DzqJFROZQLU74jYee4cNf/g4v7pvg1x/cwoV3PM5PDzZ4ZbzOb/zRFqKwwCe/+QMuXf8EaQpRGBBbh288jPEYKYeUiwEfXH42CwcKRIWATS+9zhf+8vnu1dhPbN/bvTr77utXcGZUIMrpFeUyP3UWsTvBlqDd4ypxKTZNZwQUFYyRvJk+hwvGw/fAJilJu86iAoqSV86ltFq2O49rzaQ7j12aldrslDvt9znsgCgwjJRDPA9GyiFRYMhr7p/xIDC9z3Ngsl6WeRQab9ZMxTCnA45Cn5HBEr/+R1u46I7H+fU/2sLIYEkVO0REREREjpNSVERE5lAU+mzeNQ7AskXlnu/hcOnSzv079k1QDAwDoc9AwfD6RJPbN2xj865xbvv5ZdzywaUEHqxdfjYvfPHq7oLhLWuX8JmPLKfWTDAGSoGPyenij8w/1rqenl2d/olxmhIFBjtLuVPNT8mLsxYtotWyPRm2k82YcrGA8TyiwNDs88wumd+sdSTO9QQMfc/DeB4N6ygFZl5d2GHItiVpNyVMXEoLchv0cmlWonVhVOj5mteeikkKUdHvyfwzJrs/j2qthI1b97D+mktYtqjMjn0TbNy6h5vXLmGo1J9zXERERERkLimoKCJygjmXUosTotCn1koYCAx164jCrHTpQMGnPuXnq0eH2bRzjB37Jnq+LwamW7q0c//v/f0OPv+LF2OMRyvJFgK/dtOqbsDGAw41LcODRSYalqjQuyhYLumwL6eGtQ7rHBdeuDwrGWlpl4r0iF1KYDx8z+v2plO5U8kbax3OOc4YOoOmS2m2M2wNUPcME82YhQNhzxyOCr56J0quzFa2t2A8PLJyp6XAdDMV58uFHY7D5YgBfONlGZlzOaijMB7dXopDpQIHajELo0JuMxWNBy2bcqAWM1gMGJ/MysuWgnwOOAp9PnrFeXzu0WfZvGuc1aPD3HXdCmUqioiIiIgcJ616iIicIM6lNFqW1yebfPKbP+CiOx7n60/uZGyy1b39h997mfHJFp96cAs/OdDAA+69YSVrlo7w1e/s4O7rV3S/L5d8fvdjl/PE9r18+frLWbN0hG//aC8bnt5NseATFQKMZ7qLhKEBl6aMlIvUWpbBsH+zDKS/Weto2ISGdd2AS9F47YVIh/GyhcfWtGCM5qvkRWcON13aM4fTNCtxurAUMFgsELbLSHeyExVQlDyZ2j9xekAxdlmmeOxSSqFPStq9sKOfA4qQfcCNp2Uqxi7N9QffwHg9mYpBzvdBP413aqZi9QtXs/6aS9i4dQ+1VjLXQxMRERER6UtKWREROQGcSznUiMHzuH3DNjbtHAPgqkvP4faHZ7997pkD2f9NU+6/Mcs2/Ombdb76ifewYKBArWmJClnp0oHQ78lINMDY/p+y+LzzALql9sL2eFR6T+ZS3SYkLstiOH8kYrJpKbYXHDulIkthQNy02DjRfJXc6czhBQPZ3OzMYd9jRoZt0XgKiEuuJIkjSQ5f1NEpPe17XrekZmh653E/lzudTTAtUzHPQS+X0u3L2pGkKSbN55j7bbzKVBQRERERObHmzydHEZE5VIsT3qjFlItBt/8h9PZJnH671kw4WI/5xvd3kaYpk03LOQsHCIyh0Upw0M4eoF0uNetbM1AwRMWAiUOHTvFWihydc2m399yCgQKLh6NuZkyrnSUyPRijzC7Ji062+dQ5fLAeM9m02CShZt2MvnNZQFEL05If1jrslIDiZNNivKwcaCtx4IHvMa8Div1mavnTqV9zHAclTlzPeOMkr8VllakoIiIiInKi6dOjiMgJEIU+i4ejbv/DjqPdfrPewvNg3XvP55tP7WLvmw1Sl5KSlSIzeDRaCYHxiMKAeiuhXAwUhJHcsdbRbFkacVYucrJpOViPeWW8BqQ0rCOYpZ+VMUbzWXLBWketZXEpPXN400uvUzQecQJp6rApZMUjwQOCwO/7UpEyf3TKnU4NfIft0tONdv9EUohdb/9EBRTnlkvplhGd+tWlb/1/54LxIDC9cyYwJrdB0E6m4vrHnqNy5+Osf+w5PnrFecpUFBERERE5TvoEKSLyM3AuZaIRU2smvDJe44nte/nKuqxHYmA8nti+l3uPcPvuJ6rEiaMQGG5eu4Tl7ygzGScMBH7WY67o49Ls6nVSKJcCLV5L7nR7zyUpdkrvuU6/pTfrFt9ki6NWC9mSQ9Y6anGCdTPn8KoLhvnb6j4WlgIC3593vedk/jhS/8S4HZmarX/iKy/v0BzOgX7LVOy3IGg9drNmKtbj/GZXioiIiIjkmXoqiogcJ+dSxiab3LZhG+9YUOTzv/TPuHbVeTzz43H+4BOrGCoFTDQt39+xn/XXXMLyRWUmW5aBgs/9N66iXApotBKSNGUwzAItb9ZiBhcGJC4lTVPKJR2mJb86i9iJSxkqZYuK3ZKQ7X+hH+LSrJRvrWnbAXL1UJR86MzhqcfayaYFUkJjWFAKWLv8bIKCT7NpcUmqHqCSO1MDitn8BZskJM5k2YmcXuVOjxTbymnMi0JgaFrXG6Rr359HYWBoNbPyp0OlAgdqMQujAmFOxzsQGNa993xuf3hbt6fivetWMpDT8YqIiIiI5J3OpEVEjoFzKRNNS+Ic544uw6Upky3LbRu2sWnnGBu3/YRGnFDwDR9cvohyyWeyZYlCnw8sPzvLQmxZAuPx+3+/g/f8zn/nVx/4B16faPGH33uZnx5scOfG7fz7bz3LvkMNHnxql66gllybuoi9YKDAjn0TTDSygGLNOgz0ZMXYdl9QZcVIXkydw50et505XG85Ws4Rz+ifqFNnyY9OH9upAcXAeIRTSvaejlniHhyu9ED21aWQ13efWivhm0/t4rWDTdIUXjvY5JtP7cptz796nLDppdd7gqCbXnqdepzT8VrHw0/v7slUfPjp3dStzrNFRERERI6HUmBERKZwLqXWSoiKPnGc9SWKQp+xyRYP/8NuPnrFeXzu0WfZvGucF754NZt3jXf/7zvPGKBy5+PYdv2nl/6vq9mxb5Ll7yize6zGd6r7+OgV53L9lYv5zEeWZyVOQ5+b1y7B9zzu+fhKxidb/PH//DE3vO98ooJ6vUh+TV3ETlzKE9v3csvaJTiyMnvTe88ZYxRQlNxwLu2Zw7VWQqlgCIxHy6UsLAU9mV1F46n/p+RKkjiSxPXM04LxcCnE6eE5XAqzkuqdkr2nAwcEHiTttxzPy27nNYQ0EPhHyKTL53ngQOCz6oJhbn3omb4YbxT63Pd3O7jnb17s3hcYj898ZPkcjkpEREREpH9pdURETitTMw4PNWJcmt221tFoWV6fbPLJB3/Ad1/Yx5sNy6ce3MKOfZPcvmEbV116Dp979Fk27RzDupRaM2H16HD3d+/YN9Fz+1DDsv6x5/hudR9R6PPEc6+x7ZU3GCwGkILnedRb2aJ2kqY0WgnDgyG3rF3CyGBRARjJHWsdtaal1bK92VvGY917z+fr33uZVpIt2yZpSlTMFrNL87zUnvSPzrG+Nm0OFwNDnDiaicsCM9P+n+8bBRUlN6x11OOkJ6AYGo+GdRgPCsY7rcqdTmeAlktJ2hd5JS6l5dLcfvCt24RXD9S4/8ZVvPDFq7n/xlW8eqBG3eY186+/xjvZtD3n5wCrR4e7pYJFREREROTtyetnKxGRE6YTCOkEDb/+5E5efaPBpx7cwkV3PM6TL+xjomVpJim3t8uZvuf8YW5/OPt+2aIym3eNd78elvKfP76SNUtHCIzHE9v3cu+6w7c3vfQ6965byf3ffZl/3Psm99+4ip+7aBGh73VLoxrPy8qRFYNsEbvdb04BRckbax0TLUvsssyYTjDGptkC9oJSwM1rl1AuFWi6lIEgm997Xt5xWi1mS35Z62jYhIZ1RFMCii2XEgWGqBBQMIZCwcdOm8MKKEpedMr2RsWgJ6BYt46BwGSZilPKnUaF0yug2BEaD799LuW3S8LmVRT6jAyW+PU/ys5Lf/2PtjAyWCIK85v512/jveu6Fd3z8zVLR7jruhW5Ha+IiIiISN6p/KmIzEtJ4rCJwwNq1pG4lMA33L5hG+uvuaSbcQiw5sKzOFCLWTwcdYOG5VLQ/b6Tgdj52vl/39qyh49ecS733bCSkXKRWjMhMPC1m1YxWAw41LDsGZ/kq594DwsGChxqWN6sxxR8w1C7BFlUPHwYLhd1SJZ86ixiH6jFLIwKDJYCbJzggM46bXwaZ8VI/nXmcOJSDtRiAmO6AcVOZmKSag5LviVJbx/QlBRIqduUgcCQtHsHRkWfWtMyUPBP24D49GxjR36vpq21EjZu3cP6ay5h2aIyO/ZNsHHrHm5eu4ShUv5G3W/jrbfcrOO9Ze1Syjkcr4iIiIhI3uksWkTmnSRxNK3jzYal2V5APtSwlIvBrBmHCwYKLB6OesqXTjQOl0r6vb/fwV3XreCJ7Xt7rnR+4rnXCIxHaUrvQ9fO2mrFCb7ncfG7zuBQw/L//O2LHGrEGFCvROk7nUXsxcMRCwYKTDYtTZct2XbKzCkYI3nWmcOd473xICXLZkpRUFz6Qy0+HFA0XjZ/6y2Hb5gRUIzC4LQOKE7fckN+eyoW2iXE1z/2HJU7H2f9Y8+x7r3nU8hpduVAwZ91vAM5Pb81Bq5ddV7PeK9ddR7m9Hx5iIiIiIj8zJQWIyJ9y7mUWssSTVlgM162OJymcPvD2/ivn3wfUZgd6o6UcXiwHnOgFvPE9r18+frL+a1Hfsgzu8e5d91Kbn94G9/+0V6WnT3I//6BJQwWff7gE6sYKgXtEqZBt1RpFPrU4oRiYGjGWV+jWtNy7pkD3LJ2KcZAKfBV2lT6irWuG2wZm2ixMCoQBYYDjQRCAK+3v6KCMZIzU+dwJ1PxXQuK1NrlIqcGFDWHJY+cS7HtwPhk0+J7Hr4Hdes4oxTQcimlMOth65KUcrsawulq1p6KkNsSqC6FYsF0K1scrMd4XnZ/HtXjhC0/Hu8Z76aXXmft8rMZymEguxT4DBUDvnTtZSwejnhlvMZQMaAU5DMIKiIiIiKSd30VVKxUKgXgm8AokACfBCzwDbILzrcDn65Wq65SqfxH4BfbP//NarX69FyMWURODOdS3rl4FJem1JqWwHgcalpu27CNzbvGWT06zN3Xr6DczkQB2LxrvBsIAbqZhhu37uGu61bwuUefZfOucTa99DprLjyLa1edx6NbXuE//coKzj1zgDhOuqVMJ5sWD/h3f/JDXjvY5L4brmBkMOwJEBrjdUuYRsXeRZVyqa8OtyJddZuAzTIpFkYFPC9brF1YCmhOC8acrlkxkl+dsqdY8D0Pz8DCqMDBlmVBOHMOB1pklpxJEpdVYHApzfY8ddDtoahM8dkV2lnIkPVUzGvWH2QBxckJy2QrYahU4EAtZjD0KZfzee44UPBZdcEwtz70TPcc/N51K3ObqSgiIiIiIidWPj+pHNm/BIJqtfr+SqXyvwJfBArAndVq9TuVSuUPgF+uVCo/Bj4EvA9YDDwKrJ6rQYvIz8a5lLHJFrdt+GF38eIPblzFbRu2dbMNN+0c47OPPMuXrr0M33ikKaweHWb32CTnnhmRuJRrV53Hn27Zw1WXnsO7Fpa6AcNaK6HkG0LfcMvapd3SYcbzuj+PCj5167jn4yt5c7LBGVGojEOZ16x1OJdleNk4oeVSQt+QAr43s4yc7xsFFSVXOgHFzhyuWUcYGErGw6UGm4JHdhz3yAKKOq5LnljraNiEFBgsBrTipBsoiwLTExRXQLF/1VoJG57ezVWXngNA0zoe2/ZqfnsU9lmmYi1O+I2Hnul+ZgBYs3SEB37tSvUzFxERERE5Dvk76z+6F4CgUqkYYAEQA6uA/9H++ePALwBrgb+uVqtptVrd3f4/Z8/FgEXkZ1drJdy2YSubdo5hXcqmnWPd/ohTbd41zuLhiIGCT2A87l23ki/85T/x6hs1Bgo+w1HILWuXsvwdZepxwvde3M9kM+u1GASGqBhQLgUYz6NcKhAV298Xs75E5fbtn76ySwvPMq9Z62i1M2MmmxbIsj6MBy5NCQs+sUspGg/jeQyVCgooSq5MDSh25nAUGEjBOiiFfjaXDe1jfqDjuuRKJ6AYFYPuPI6dI3YpBhRQPIoUmP5q9tr351G/9VQsGK+bqXjRHY9z60PPsOqC4dyONwr9WT8zRKEyK0VEREREjoeXpnn9eDVTpVJZDPw3oAycBfwS8K1qtfqu9s9/HrgF+CdgrFqtfrV9/3eBW6rV6o7O79qyZUsaRdFb/s1Go0GpVDrRm/K2aAz9N4aLL774pH+qPtY5fCLM5XNfHhri3HPP5aI7HsdOaS7zxG/+HOsfe27GVcdfuvYyRsoh33txP/9LZVFPr6yBgs9Eu4zpN5/axbr3no8XT/L6vn1va0x5mIsnexwnew730zH4ZMvbNr7r3HMx4QBpmpXttXGCTSHwmFEqst6o8ZNXXz3gEVfjAAAgAElEQVTq75uL7cvTMThv+/dkyNs2Lr7gAlJT6JmrLZcSGm/GHH7z0Jtv+R6gOZyv/Xsy5WVbl164jJbLshNrzYSUFN+DiWbCQGiY3sv2pZdePK6/M1/PIy68cDk2BetSyqWAiUZWNj/wOO7n6mRacuFyrEuxLu1m/gXGIzAeL7fHm5e5CXDB0uXEzpGm9PSALBjDj3e+9fN7qrflnYtH+dd//MMZnxl+/3+7nJ++smvW/zPXx+C87O+5HseFFy4HZp5/wty9luf6OZnqaGOZy2NwvzxHJ1se5y/kZ//M5fyF/joP1hjmdgzH81rWMTijY/BM/bB/jnX+9lu9j38LPFGtVn+7HWD8OyCc8vMh4ABwsP399Pt7XHzxxW/5B59//vljetzJpDFoDEdyqsYyl9s90bQcrMesHh3uWQx4Yvte7rth5aw9FXePTbLqgmFu/sYP+BeXvoPrr1wMZD0PfeMRhT43r13CQMGnHvtcdNGZbyvLKi/zIC/jOF79cgw+2fK2jYcaMYPtcmBZhldKaMyMDA9jDGcsWMAZCxYc9fflbftOJM3hTN62sTOHa82k21ctbPehm8oYw9kjI5w9MnLU35e37TuRNId75WFbp2bZ1poJxsv6gb7ZsJSLPknKjAzF4x1zHrb3Z3GksWcl7MFrfxz2PDAe2PTUnTu/HTZxWJfMuD/wD+/bPO2rTjWDA7W42wNyYVQg9I9tLp7qbXEu5b4bruC2DVu7nxnuu+EKzohCzpzj5/RIz0Ne9vdcj6PVskf82VyNa66fk6nmeix5n78wt2PJ4/yF/OyfPIwjj+9ZGkP+xpDX17KOwUeX1/02n/ZPvwUV3yAreQowTtZPcWulUvlwtVr9DnA18PfADuA/VSqVLwPnAaZarb4+B+MVkZ9RFPo4Z/jKupX85sOHA4jXrjqPfQcbh/siNhPwsl5vF59zBo046f7sUN3y1Ev7WXr2EOsfe467r19BqWD4/MbtvHawyb3rVjIyGKp8o5zWksSRJK67WJ2mUPI9DjSS9uU7vZkxKrUneTO1D+hkuy+uB8TtLMVY5SIlxzrH4KlX0/qeh+9B3TrOKAW0NIePSeBBzWZBrygMGJtosTAqZCWQc6hTkn/NhWd173vyxf257VFYtwkvvz7BhWcP4XkwPBjy0v5DLFs0xFAOn2NjPEYGQx74tSuJQr/bK10lr0VEREREjk+/BRX/M/D1SqXyJNkS538AfgA8UKlUQuB5snKoSfsxm8j6Rn56rgYsIj+bWivh9UNNnt/7JvffuIpyKeBALaYUGN61cIBWnDDZtAwWAw7WYx7d9ip/tf017rthJb/zF8/z2A9/AkBgPKpfuJpNO8f47CPP8qVrL+PWDy/jqq98l9sf3sbXblpFBAosymkpSRxxkvXqajYtofFI0mxRdmEpmFEyIgjUh0jyxVpH4hyt9hwuGg+bZsGYgcCo/5zk2tT525mnBZMFxTtzWAHFtycKDH45xPNgpBx2yx3lURT6XPKuhdz60DPdi+fuum5Fbnv+RaHPyGCJX/+jLX0xXsgCi+V2FYbOVxEREREROT59dUZdrVYngI/N8qMPzfLY9cD6kzwkETnJooLPmVGBy85byEv7D3HROxYQ+oZiwTDZtEShT9xKSNMU33jc+M9H+dBFi3Ap3YAiwOrRYXbsmwBg865xFg8frj++edc4g8WA1yeaDA+E1G12BbMCjHI6cC6lFmdl1waLAXF8uARbKTDYFLKlbfCAINDV/ZIvnXKRkM1hGyc4snKHCsZI3k2fv1MDirFLiRQUPy7TS3anQF7fueotx8ate1h/zSUsW1Rmx74JNm7dwy1rl1Iu5W9f99t4RURERETkxNJZv4jkmjEeQ6UCw4MhyxctoBgYUlI8z8P3PGqtdt+hVsKWH4/zq//lHyj4Bt/AmqUjBMZjzdIRvnz95fze3+8AsgDjK+O1bpBx9egwB+sxt2/YRi1O+MPvvcxYrUWSTO/AJTJ/JImj1bLYdu+uzoK1ByRpVj4udiml0CclxcYJ5VJBAUXJDWuzOVyfNoebLjt2G1BAUXLLuXTW+RsaD5dmx+HQeAooHqfp71R5fucyHly76jzWP/YclTsfZ/1jz3HtqvPI69ttv40XstfbRNPi0vZXNz3sLCIiIiIix6qvMhVF5PRkjEcUBt0mskO+wbkUB+1+ilnfoZ+7aBGrLhgmCn3qseOBm1YRFQMmGpZvfP9lvv2jvaxZOtLtqfiVv3iBNUtHuHfdSjZufZXNu8YplwKuuvQcbt+QlUTt9LLpZHNFoc+5o8tInKMeO/Vkkb7UKbXXTFI8D5rNrIl10XjUrJuRGaOSp5InzqVYm5DSGzTMpNRbbkYfUAVjJE86/T+b0+Zvod37M2hnKiqgePz6KVMRoFQwfOnay1g8HPHKeI1SId/7up/G61zK2GST2zYc7s1+3w0rGRks6hxeREREROQ4KKgoIn2ppzdKqQBkiwYe4Hkeh+oxUeize6zGeWcOcPPaJXzmI8upNRM8L1tYuufjK5lsWnaPTbL+z/+RNUtHOFiPWbao3C2JCllG11itxe1TFiPuum4FG7fu4Yb3nc9g2D6UelBSaUjJuaml9sqlbO622iVPW+1Se9NLnhpjNK8lF5xLacQJSZqFDLILSxLC9vx8s5EwEBoUUJS8stbRaAfFZ+ufWGrPVWXZipwYtVbCbRu2sWnnGACbdo5x24ZtPHDTld3zIBEREREROXb6dCoi84YxHuVSgdSllEsB5VLASDnEGA/nUg41LFHRx6UpxYJhomn53ov7+eXfeyrLWLxhJZteep0d+yZYPTrMZNOSJI7JVsLt7cUI61I27Rzjc48+y1WXnsNtG7ax71CT8VqLWstyqBGrpJLkVieg2Cm1V2smTDYtsXNYl1IwHg5I0pSo6GeL2QUtZkt+1FoW2w62dEv2tuPdSQoLSwEKKEpedY7B0ZT5W2gHxDv9E10K1h2uxDAYBprDb9NsWYkeM7MX88J4EJjefRwYk9tyov023qjos3nXeM99m3eNExVVgUFERERE5HjoE6qIzDu+bxgqFfCNwfM89h9q8kYtZqi9gOe3V6B9z+ODyxfxwhev5ms3reLVN2pc8q6FPLF9L/euW8lAwacWZwGY2RYjOhmNi4cjPvvIs0w0Et6oxdRayVxstshRTQ0oTjZt9q+V9e+qtxwpKS2XEhayRTaXpNnryNepgsy9Tv+5qJhdMNKZw/sPNboZXr6ncpGSX1OPwZ0LOgrGw7oUl2alT5tT+ti6JFUf2+PkATaFdkIzaUo7Az+fXAqeBwujQs/XvF6j1m/jrTUTVo8O99y3enSYWlPn6yIiIiIix0MrLSIyr0UFn1JgKBV8fvW//AOf37idN+sxnueRuJSBMMtYjEKfZYuGOPfMEr/2gSVs+fE49XZAsZO5ONXq0eHu/Tv2TXSDi4uHI6KiT61pcWnKRMNSa1llL8qcmh5QLBiP0HgUA8OhluUMZXdJjnVKnjZdSq2ZMNE4PIfLxQI/PVhnIDAqFym5Nf0YbDwIjUfDOgLjYTyVOz3RfI9uFrPnZbfzLE4cB2oxaQoHajFx4uZ6SEfVT+M1Htx9/QrWLB0hMF63v7ri9SIiIiIix0dNBERkXjPGY6hUoBAkPHDTKqL2gp1zabu3osf4RAsXFXjwqV3c93c7WD06fDhTsZnwxPa9fGXdSn7z4Zk9Fb+ybiVf/MvnWT06zCvjNSC7YrveSljxf/41q0eHufv6FZSLAaXAEKrnopxi0xezrUsJjdcttWdTQzyt1J7mqORJrWVxadYDtNFKYEpGzMJSwEDoUyj4tJq2m2ErkhezXdTRya4dCAxJms1nHYNFThIPSgXDl669jMXDEa+M1ygVTH5TV0VEREREck5BRRGZ94zxiMLDh7uhUiELKgJ4cFa5SGDg5rVL+MxHljPZtEQFn7p1eB5cu+o8nvnxOH9w4yqGigEHGzHlYsCvfWAJG7fuYf+hJndfv4JSwZA6KBcDFgwUuv0XP/vIs3zp2ss4czCkaWOGVM5MTrIkcTTb5SCnZr8UTZah20gcA77pKRXZKbUnkgfWOqxzGCAqZsfvzhyu2RTfZJleKncqeeVcirVJzxztBBQ7F3XoGHzyTK8PMVufRTk9FH1DyxjgcLnTwBiKKu8uIiIiInJcdCYtIqclY7ysV5HnUS4FlMIgC/Z5XrePXFTw8ciChBefcwaDoc+hpmXBQIFGnFAwHjeuGeWBm65kOAppxo4NT+9mzxv1nj4tndKo5WKQ9VyM1cNFTp4kcRxqWmLnugHFiUYWjHFAFBgKxtCakp2oYIzkibWOhk2wLu0peZoFFB1Re64W2v0/bZwwGAaaw5IbbxVQVEBc5NSpW8eDT+2iabMSrc327brNb8lWEREREZE8U6aiiMgRmHafo1JgGCmH3dsuSXFAyTdMNCzf+P7L3bKpd1+/goGCz5v1Vvf3dEqjNq1j2aJyt8ePyMlQixMO1GIWRgUGS9mC9Uv7D3HxOxd0H5OkWsyW/KrbhKRd33TBQKFb8tSmtEv2ZqWrIcs8MsYo+1typdaypNA9zobGI2mnzimgeGpMf0b1DJ++otDnvr/bwT1/82L3vsB4fOYjy+dwVCIiIiIi/UtBRRGRI3Auxbb/Na3Dw2OwGFBvJZCC8T1C53XLptaaCYlzpMCjW/YQGK8baCz6hse2vUpx5bmcNVSkXNThV04sax3OOQaLAVEY4HlQayYUjce5CyOe/+lB/tk7F2gxW3Jr6hzumF7y1Pc8BcUl16x1PSV7C+0etkE7U1HH4JPPMbPUacrMkqh54XtZOc7p5Tn9nF4rYY4w3rxe21FrJaweHWbTzrHufatHh6m1Ep2Pi4iIiIgcB32KFRE5glor4ZMPbmHj1lcpBoao6HOwHtOILXvfbPDE9r20kpTBMOBgPWYgzLJlymHAzWuX8MIXr+aBm67EAzY8vZtfuXIxC6MCUbtkn8iJYq2jlTiaLmWyaXllvMbBeoznZYuoC0sByxYN9ZSL1GK25Emn5GlnDh+sxxysxwDdsr2A5rDkmrWOuk2oNRMmmxabJDSsI2hHW1oKKJ4SnTKznYznxKXEnV7aOZSkEPgew4MhngfDgyGBfzi7NW8C3xAYj4VRAc+DhVGBwHgEOe1RGBV87rvhCtYsHSEwHmuWjnDfDVfofFxERERE5Djp0jwRkSOIij6bd42zaecY6//8H4GsXFL1C1ezMCryi/c9yTOf/wUmmpahUoE3ai3KoU/dJkShn2U0AucsHOCWtUvwPI/Ag0acUAp9as0E40ExMPg5XYiR/lC3CWkK5VJAK066C30eWS+hgWkL18YYLWZLrnRKni4YKBDHCXH7futSPA8K0+pGaw5L3nQCioPFgEYrIfA86i0o+A6XGlx6uI/tYBioZO9J5AHG87qZc9n3Xm6DipCdG040svkzPtmiXPKJCvn8qF6PE7734n7WXHhW974nX9zP2uVnM5TD81ljPIajAl+7aVU3qB8VfL0GRURERESOU/7O+kVEcqLWzMolTbV6dJgd+ybYsW+C1aPD3LnxOYyX9U8aHgy7j/M8j6S9GE4KLoUXXjvI/skWtdjyf/x/2/jkgz9gvNbiUNOSJO4Ub53MJ4PFgHIpyALVZMFvv72gOhAYZcdIriVJVvJ0wUCByabtBgR841EKDAaP2PUGZDSHJU+mBhQnm5YkddSsY2EpIPB9SqFPSopLUsqlgoIZp0Dg0e1h7XnZbTkxCsZj1QXD3PrQM1x0x+Pc+tAzrLpgmEJO57VzKeO1mE89uIWL7nicTz24hfFajHM5TQUVEREREck5rciIiByBMXDvupU95ZLuvn4FX/3ODp7Yvpd7161k/6Emd27cTq2VlTubWvrJ86BUMBxqWP70mT38q9/fxGcfeZaJRsKtH17Gpp1jfPaRZzlQi6nFyVFGIjI7ax2tlmWyaZloWCAlBULjZV8LPi2XUjQeLkkZKhUUjJFcsdaRJK5b8jQ0HjXrCLwsSzEs+CRpSmiAFAVkJHemBxSLxqPecvimt39i0Xg6/p4iKVnZ5Kkc+e2peLhH4WF57lEIEIU+X/3Ee3jhi1fz1U+8hyjMbynRWpxw24atbNo5hnUpm3aOcduGrTr3FhERERE5TvmsqSIikgOlwMeFKffftIpye1HQ8zzu+fhKJpuWgvF44KYriYo+Ew3Lt7a8whPPvcYDN13J0t/+Nju/9C+56I7HsVOuhN68a5zFw9GM216OF44knzo96DpBxCQFl6Yqdyp9oxOMASgajxaHy/XaFDrFCj3A942CiZI7zqUzAoqdDMWZAcX8Bl3mG4+sT2HaPv1K2xUj8pqt6FK6vQmnfs1rIl0hMDQbtue+xKUM5DSwGIVZO4OpNu8az3UgVEREREQkz7TCKCJyBMZ4RGFAYDxacULBeKTp4RUelx7ORPyzrXt44rnX+N2PXc6b9RZw5PKpr4zX2LFvouf2ZLN3cUbkaDrBGNtetO6skwbtcpFTy51GBZU7lfyZmt01WMyucSu052/SDgBERZ9a0xKFgfrOSi7VWrYncGhTiGYJihujoPip1m/lT+PEcaAWk6ZwoBYT57gsfq2V8M2ndvHawSZpCq8dbPLNp3ZRa+Uz82+yaWc9H9e5t4iIiIjI8TllKzSVSuWsSqXyvkqlMvzWjxYRyYdOYLHU/lcwHrVWgodHKfSpt4ONN64Z5Z6PXU7BeNz1V1UAJluW3/3Y5TPKp5ZLPl/9zo7u7YVRgaigq6Xl2HWCMZ0edJAtmMbtcpEANk4oGk/BGMmdqdldB+sxk01L0zk8sjnc6T9n44RS4CsYI7lkrSNqBxRD4+HIylimQJKmREWfyaalpD62p5xNZ5Y6Tdv351G/lT8Njce6957P+seeo3Ln46x/7DnWvfd8wpwOOAp97rpuRc/5+F3XrVCmooiIiIjIcTol5U8rlcq/Bv4tsB34Z5VK5Xeq1epDp+Jvi4icSAXfcHCyxe0Pb2PzrnH+7xtW8oFlZ0MKURjwzade5ts/2suapSMUA0PiUu67YSUj5SK1ZtJdcLzn4yupNRNoXz1ft47I87R4Lm/JWtfNjElcSpo6PPxZF/MUUJQ8mprdteml1/lIZREHGgmEAIfnscr2Sp7VbYJnvaxnLVl2re/Rkyk+oIDinAg8qNks8y8KA8YmWtkFXDneF4HxesqfBjk+H0yBcjHg/htXUS4FTDQsQbuXcx7VW46NW/ew/ppLWLaozI59E2zcuodb1i6lXMrvnBARERERyatT1VPxk8Bl1Wq1UalUIuB/AAoqikjf8X2DF0/ytZtW9SwaTrYs5aLPTe8f5TM/v5xDTQtpyn/9nz/mqkvP4cwoJCWlFAbUmgljE01+5y+e59s/2ssLX7yar/3ti9zwvgsYGQwVWJSjqtsE7OEedLUWQEJget/Sfd8oqCi5FE0pF7nqgmH+trqPj1QW9fSgUzBG8qxzcUejlXQDKYGH5nBO2BTCwDBSDvE8GCmH+O3ytOFcD24WRzrry/PZoEtTXLslQPY9mJw2CDcGrl11Hp995Fk27xpn9egwd1+/AqOXp4iIiIjIcTlVQcXXgE7Tgjowdry/qFKp/DZwDdlnwt8nC1B+g+yiye3Ap6vVqqtUKv8R+MX23/3NarX69HGPXkRkitf37ePii0cAGCoVcGnKnz69h49ecR5DpQKvHqizoBRQLgXcvHYJg8UskOh7Ho1Wwpv1Fh+46+8BWLN0hN1jNa669Bxu27CVr920iij0qceOqKCyf9LLtResbZzQcikF47GgFHTLnsZNi0tShkqFuR6qyAzOpbRsgnVZULxmHQtLAWuXn01Q8Gk2LTZOGAwDHfsktzr9QDsXd9SsYyAwPQHFovEUUJxDfrsCxPRMxYGc7pMkBbzDQTnjeeC175efWSnwGSoGfOnay1g8HPHKeI2hYkApUPlTEREREZHjcao+WRlgW6VS+RrwNPDOSqXyx5VK5Y/fzi+pVCofBt4PfAD4ELAYuAe4s1qtfpDsgs5frlQq72n//H3AOuD3TtSGiIhMV2sm/NX21/j8xu3UWpZzzxzAN4Zm7PDbC0SdK7pdmvLolj09PV2+8jcvsGxRmc27xhkMA376ZpOvP7mTsckWzmlFSTLOpdRatttDsdAuNRZrIVv6QGf+Wpd2+4RFgcGm4LXzcTyykqcKKEpedQKKg8WgW/Y0CkxPydOi8TBKgZpTHhD6huHBLFNxeDAk9E1uM//CwGCTlPHJFmkK45MtbJIS5vT9PDhCFYQj3T/XjPEYKhU4a6iI58FZQ0WGSgW914iIiIiIHKdTdeb/ReDTwH8Ffgu4Hbi//e/tuAr4EfBnwJ8DfwGsIstWBHgc+AVgLfDX1Wo1rVaru4GgUqmc/bNuhIjIdM6lJM7xux+7nP2HmvzpM3s4WI851IgJA0PSLg3leVm/nFLB5+a1S3jhC1ez/ppL+PJfV3ntYJMd+yZYPTrMwUbMbz3yw27mYi1O5ngLJS86AZlOZozHbAFFXXUv+dSZv9al3X5nAEmaEhV9JpuWUEFxybGpAcXJpqXp3KyPUy/QfDBedu4F2dc8x4/qccKml17v6am46aXXqef0HLAeJzz54v6e+558cX9uxwtZYLFcDDBe+2ueJ4SIiIiISM55aXrys2AqlcoQ8DngHOAvgWer1eqO4/g9DwAXAL8ELAEeAxZUq9Vz2j//eeAW4J+AsWq1+tX2/d8Fbpn6N7ds2ZJGUfSWf7PRaFAqld7uUE8ojaH/xnDxxRef9E+qxzqHT4Q8PPd5Hcc7F4/yr//4h3z5+hXEScr5IxHNOCFOUgaLPrXW4QVI61I8wDrHv/njbd2+Lnddt4KNW7Pyqe9aWOLdn/8rql+4msqdj/PCF66mWv2ntxzHiXay53A/HYNPtmPZxsUXXEA0MACAbS/a2RRcClHRp9YOyLz00osnfbxv11zswzwdgzWHM5V3v7v7fWcOTy8XCWgOt2kOz40jbetZixZRGlzQM18PNCwDoQG8nvvzOIePZL6eRyy9cDkeM48xKbAzh/tnyYXLOdiw3P7w4XPDe9etZEEp4OX2ePP0OjyW8R5NnrblSOb6GJyX52iux3HhhcuBfJ0vzPVzMtXRxjKXx+B+eY5OtjzOX8jP/pnL+Qv9dR6sMcztGI7ntaxjcEbH4Jn6Yf8c6/w9VT0Vv06WRfgh4P9t//vQcfyeMeCfqtVqC6hWKpUGWQnUjiHgAHCw/f30+3tcfPHFb/kHn3/++WN63MmkMWgMR3KqxpKX7Z7LcXRK9w2EPs3YdYM5AJt3jfPOMwao3Pk4//Kyc/idX76EFPDal8g32oHF195s8Nf/+FP+xaXn8MBNVxIVfQ7VLYNFn5veP8qDT+3iqkvPYfXocDdzsRYnR9zmvOyX49Uvx+CT7a220VpHwybUmgnWOaJ2BkySzjw5yuNzNZ/3oeZw5ljmcGf+At05PJs8PlfzeR9qDveabVs77//RlONty6UsLAUzPqT6vumr56rf9+2Rxt5qWWwKnWtn0zS7ECfw8nmMqTUtxYLhq594DwsGChysx3heduFQZ7x52lfHMt6jydO2zLW8n+PP9ThaLXvEn83VuOb6OZlqrseS9/kLczuWPM5fyM/+ycM4+uU9S2OY2zHk9bWsY/DR5XW/zaf9c6pq84xUq9WvA3G1Wn0KjrulxfeAf1GpVLxKpfIuYBD423avRYCrgSeB7wNXVSoVU6lUzgdMtVp9/WfbBBE5XTmXMjbZ5Ovfe5nxiRbjtRaffPAHXHTH4+weq/UEAR/74U/4/H97rvt/G3GC52WBxaFSgRvXjBKFPl//3k4uuuNxfuOhLfzkQIMHn9rFR684jye27+XL11/OE9v3ct8NVxAVVM7ydFe3CVEx6JZyO1J9AfXwkjxKkqxkZGf+BsbDHmESaw5LHk0PKNo062k7vfipMQY/pz3lTkf+tPKnfs6rXcaJ40AtJk3hQC0mTmYvr5sX/TZeERERERE5cU5VpiKVSuXd7a/nAcfVcKFarf5FpVL5OeBpsoDop4GXgQcqlUoIPA98q1qtJpVK5Ulg05THiYgckywrIWEgNNRaCR5w24ZtrL/mEiZbCb/9pz9i084xAO757y9w77qVPPz0bu66bgWfe/RZvv2jvSw7e5Cb3j9K0zpu2/ADNu8a57afX8a6957Pw0/v5l+95zw+85HlTDYtUZj1WZz69ZYPLiUq+Or5chqz1uGcY7AYUGsmhAZaadaLbnBappd6eEkedbJsB4sBNk5opRCnKQOBNyM4rjkseWStI+oeg7NAYic4NbWn7UDga/7mzPSzpzyfTRULhslm732py+4XERERERHJm1MVVLwN+EPgYuBbwK3H+4uq1eq/n+XuGaVUq9XqemD98f4dETk9dbISN/zDbq5btZhHt7zCZz6ynM27xlm2qAxk5U47HvvhT7jnY5fzax9YQrno87WbVrWDQFmq/ZlR2C11OtGwfH/Hfq669BzetXCAQw3LUzv2c+XoCCODIcZ4DJWyBaRyUQtJpzNrHdY5WkmK5yy+lwVhosDQdClBwafZtNg40WK25JK1WYbi1NKQnfkbFvzDWV9xlsUtkjedOexZj871PS7NgootBRRzb/qFCyn5DSzWW44NT+/mqkvPAaBpHY9te5Vb1i6lXMrf3CqFPv/hz37ErR9eBmTj/cpfvMA9H185xyMTEREREZFT4VQFFUer1eqazo1KpfIxYOsp+tsiIsesFifdrMTfeuSHrL/mEmrNpFvitBgYVo8OdzMVAfa8Ueexba/ya+8fJQVee7PBO84oUWsm+F7WGDhNU3zj8cHli4iK2YJ6ueizdvnZykiUHs6l1G2W0D9YDLDt7+vWMaAMRekDnZKnnSzbYjvDa7aZqpKnkkdTg+KNVkLgZVniA4FRQLFP9FOmovHg2lXn8WlJMCUAACAASURBVNlHnmXzrnFWjw5z9/UryOup4WTT8trBJld95bvd+9YsHWGyaXWRiIiIiIjIaeCkBhUrlcovAR8AbqhUKu9v322AXwb+5GT+bRGR4xGFfjcrsfP1p2/W+c8fX8mfbN7NDe89n7uvX9Gz8DNUCviVKxfzzad28av//HzKpezQarxOVoOH53m4NCUqHM5Y/DcbtrF6dJh7b1jJGcWAQqDgomT9uwaL2Rx68bUJlgwPYNPDWYpTM7+0mC1541xKLT4cUDRv0QdUc1jyZnqWLaS0kpnHYAUU5UQqFQxfuvYyFg9HvDJeo5Tj0qcF43HvupXc/vC27rnwvetW8v+zd/9RclTXoe+/59SP7qnpEWIGREBIjCREBwNiQAgiW/6xnJsQXvLsXLjYUgLC8GI7POdKXrnXz88xSZQbvLgEm2WR2BiT58QYPynxjxCSGMuJDbF5HgdZSDZyuA2SGEvCBEkzCM1Md1fVqVPvj+puTY9GIAtpplran7W0Rl3zo09Pn6muPvvsvb0cX8M2X5sC36EaJbKhTwghhBBCiDfgZGcq/gjoA2pApXHMAhtP8v0KIcRxqUaHsxKbHzdtf4lVV8/npuX9nNHlEsa2VdJ0tG7o9h2GxyPe95YFdBdc9oxUqUcJf/pPz7J/NOSu6y8jPGhZ9+hPWPeuS1ofjU0Z3DXM2g3beODmpcTWEPiuLHKcxpr9u8Yb5XM3bX+JD75tIW4j43ViQFEyvETeWJsSTwjGKLJNFc0sWwnIiLxbsHDREQHFWmTp8mX+dho7xW15xk4Mm2b9Hu+/6UpmdXkcqsWoxka6PGq2Nliz4XAQ9L5VA/R1F+SaWwghhBBCiONwUt9bVSqVPZVK5YvAJcCXgC8DQ8C/n8z7FUKIn4e1KWOhwSQWDdy3aoBN21/ikzdezqbtL/GbV5zPhqd2s380JJ2wYJKmKVqB1opu30ErUCrrLfOn//Qsj/7oZ2weGmFeb9CW+TixPyNkPRq7Cy6msYtanL5qJmmVi/S0YuXV83ngu7uOWByVDC+RR9XIENm0FfiGw2V7pWSkyLskscSpatu80QwogpIs8Q7TaeVP3UkbhVytc1v+VCtIUzhYjds+5nW81ShrbTC4a7i1oW/Nhm1UI7nmFkIIIYQQ4nhMV0/Fu4BdwAXAlcDLwC3TdN9CCHFUSWIZrkZsGRph6QW9rN24jV+79JxG1qHDrSsWEPjZx6ycX5ZBFvguo40sht//m228fCjk0ysH+MKTL3Dvvzzf+vnL+nvZM1IlNPaIDMiJX7Nj3xiLzylNHp44jRhjW/27mrHr2UWXW1cswPcc4tBgk1T6FYncChple6M4m8O+VrhaSUBRdIRm2d5m4LBqLLOL7hRlp52ZHqo4BpOT5lLyG1i0abYpbXbgtX3MbeZfh403KGStDSbaPDRCUJC/ZSGEEEIIIY7HdK3qrKhUKg8AyyuVyq8B50/T/QohxFFZmzIeJazdsI3li85i7cZsF/MvLTyLD35pC4v+4DEC3+FnB+t0F9zWQnlQcKlGCZ5WeFpz73sHuOv6y/jm9pe4fun5LF/Yh6sVyxf2cc+NS+j2HTZtf4m7b1jCpu0vsX5llgnZ/Jrm8UO1WHZNn6aaPbzGQ4OrsuwuxZElTyUYI/LKGEs1zOawBuLG6nIsc1h0gOamjuY8bfaxNSmoRihKkWWJS7nEztBJmYoAcWLbMv/iZHKNgnzppPFWw6y1wUTL+nuphnLNLYQQQgghxPGYrkxFp1wuXw0MlctlHzh7mu5XCCGOqhonlIoum4dGmNXltXYxN0uUAtQiy//11R8zuGu49X1P/Pd38LGvP8PgrmE2ffhtbNr+Eqvf3M9Nv9RPLTJZn5ZSgWqYoBQUPd3KfHzfWxawc/8ot7x5AR9652J27Bvjka17WXnNfFytCDzZNX26OW/u3FYPLxMnrcVs6aEoOsUFCxZQMwmOUmiVZSb6Wh0xhx1H5rDIn+amDgwUtMp676kssy1JJcu2Ex0tYS6niXQTyp8eDnLlvfxpR41Xwz03LuEjX/lxq6fiPTcuQS6rhBBCCCGEOD7TdSn9EPDnwCeBPwPWT9P9CiHEUQW+09q9fKgWt3YxN0uUArxai7jnxiVt2YelosP6lQMsX9jH/U/s4Pql5/PQ94d48ZUaX3jyBWqR5S++/Twj4xG/88UfUr7jm3zwS1sYrRu0ggvn9FAqOlQjw+JzSty6YgGzCi6B70oGxGlI+12tRWsAR0298CmL2SKvEhy6Cy6ugrqxuI3AzESOoyWoKHKnGVDsLrh4WrXOvRqkbG8HS1KI07TVBztt3E5yGlVUgKtVWzlRV6tcZ1dONd68KroOPQWXu66/jMqd13HX9ZfRU3ApSiljIYQQQgghjsu0ZCpWKpXPAp9t3Pxw83i5XP7jSqXyJ9MxBiGEmKwaJYxHhntuXMLgzgOsXznA2o3buP+JHa0dzfdsqvCHv/Em7rr+Mub1BuwZqQJQcDX3vudyzjmjyEsHa9x41TzmzCqw+s39lAouq9/cT0/B5YGbl1IquozVDV9/ei/r/uHfWb6wLztecNFKSY+805C1KXWT4MIRPbymylKUHl4ib5LEEicWTfscnjh/49Bg4kSyFEXuJIklSWzbuRZSFOqILFsJKHYeV0HVpBysxnQXXEbGI2YHHoGbz8BX0mj4qFU2Pq0UKHIbBO00WmfX2o6jUQrO6ikQeI5s5BNCCCGEEOI4TVf506N5+wzfvxDiNBZ4DiaxOBouPvcMegOfz69eSnfBpR4lfOa3r+SMLo8DYyG9JT9biCgVeLUW8T+++SzfeOYlnvvEdbzl7sdxteK5T1zHVXf+C8YeXgVytaJy53V0F1zW/cO/A7B5aIRSMevLWCrM9GlYTDdrU0brMbG1FFyHMDStDBnp4SU6QZJYanGCsSmOVq05bJm6BIaU7hV5YozF2iMDirXI0uVrQosEFE8BRVfT17h26yv5eHl+HVVQjxLG6kkrCFoqOgR+Pq8RLVlp4ImSNEXnOLdSa9W65pZrbyGEEEIIId6Ymb6izu87DyHEKU9rRcl3CRNL0XXRjiKuW8ZSQ3fBIUlTlIJu30Ur+NGeV/jPnx1sff/yhX0cqsUAbSVUJ/ZfXNbfy56RKqGxbceqYUJQkOyz01E1MrxSzeZNb1+BOM56EsWNPnTSw0vkXTVOSGyWBTS/L2j1AgVQk67stNYyh0VuJEmjfyKHA4eOgrEwCyiCkvPvKWLym8w8v+ksug6xsUzsUehpndvynM3xHqzG9BQ9DlZjzgy83I5XCCGEEEIIcWLN9DtlKeoihJhRrqspupq0cTryXJ31WoySLHssTTHW8sKBMebODtp6K65fOcDfb3ux9X+lOKL/4qfeczmzA49N219q+77xyFCNktcZnTgVBQWXeb0B83oDxkODIitxNrnkXlb2dKZfpoVolySW7oLLrC6vNYch6wXqqPY+dDKHRZ4Yk2XYdhfctgzFsTChVHCQgOKppZOCikIIIYQQQgjRSWY6U1EIIWac42h6Gv2+eope1u8utgw3Fss/9vVnGNw1zLr//U3cf9OVzOryGAsNiU256Zf6+aWFZ/GNZ17iNy4/F8/RPLj6KoKCQzU0KKX47nP7uPbSc/nQOxczFhq0ykpgBp7s6D7dGGOpG8uBsRCAc2cVsGT9nyYHFKVkpMgTa1Mik5U8TaGVqXjerIL0AhW5l517E4JWMBEmljxNUil5KmZONUr43Yefbqt0sXxhHw+uvopSMX9v1zttvEIIIYQQQogTa6bfMcumUSFErlibMh4Z1mzYyr3//BxnBF4r+/DOf3qW2x9+mlfGo+zrQsNNf/lv/Pp932PTT15GobJgYcFh93CVr27ZS2ItKxafzeJzStQa2Y+OUvQUPemTdxoxxhJFhppJ0ApKRYdS0SEFbHpk2r6UjBR5crgPaEpQcPG0wtWK2YFHlKbSC1TkWrPkaVBwqYbZ63BBq1ZAcWKGomTXipkQFBw2D420Hds8NJLbMvmdNl4hhBBCCCHEiTUtWwnL5bIDvA+YDzwObK9UKgeA1dNx/0IIMZUksVTjpFXuNPAdhscjzuousHloBGNT7n3P5XhatWUfaqVQCnzHbx1/8ZUaX/7BT7l+6fl8aXCIX3nTL7DpJy9z5z89y7L+Xu65cQlFT+NpLQHF04wxlrHI4Ohs4drECa7WhMZi0yOzFCVLRuRJkmQlI19p9E+shgl+Y3r6jQzvFKQXqMitaqPkaTXMNnUosjK9s4vuEefe55+vcPHFF8/0kMVpphomU/bkroZJLjP/Om28QgghhBBCiBNrulZ8HgAuAH4V6AEeAqhUKnum6f6FEKcBa1PGQoNNs6wak1hG6zE2TalGhrG6aR0ziWV4POKvnnyBF1+p84GHtvCzg3XWbtjGoXrMsv5eAHbuH+cLT75ANTL8xbefpxYl7BsN8V2HfaMhWsFY3TD3zC5uWt7PmYHPzcv7mVV0+cxvX8lzn7iOB1dfRW/gE/iuBBRPM8ZkGTIHq/GEHl4QNHp3Fn2H0KYUtMLECT1FT4IxIjeSxBInttUHtBmUScl6gCZpStF3iBpz2CapzGGRK8bY1rlXN/p+1ozFm9TDVgLhYibpKXpy33PjEvJ6udhp4xVCCCGEEEKcWNP17nlRpVL5I6BWqVT+AThjmu5XCHGKsvZwoNCmKdXQMDwe8v4v/pCLPv4Yf/XkC4yMR3zgoS38/t9sY2Q84nvP72sdGwsNazdu49pLz+WjX/sxg7uGmXtmF5uHRigVXO5bNcDyhX3c/8QOrl96Plt+OsL73rKA3pJPX8lHKejt9omtJU1TDo5H+I6i6GnGQ0NQcLMsnhRKRZeg4BL4rgQUTzM1k2XIzOsNWqX1qsZO+bXSf07kTTVOiG1KNUzYM1JFqyyztmaslOwVudfc1DEemqxkb2PudrmaSAKKp7zJ56jJt/Om6Gnuuv4yKndex13XX0bRy/GcVEcZb44vcSduPBwLDdbmfUYIIYQQQgiRX9P1bsUtl8tnAZTL5R5g6hVVIYQ4Bs3+XiPjEe9/KAsi7hsNWbNhG4O7hjE25dpLz2Xtxuz27e+4kI985ccsX3RW69isLo/NQyNcOKfU6gvTLOe0c/84NoW7rr+MT71ngG7fZcXis+kuZGVSszJqBlcrxuqGL35/iLEw4QuNQGa376KVolSUIOLprrlovWekikkSqsZO2X/OcaT/nMif7oJLd8Ft9QHVitYcnhiUkT50Im+aAcXuRg/QZsnTyXNXAoqnrsmvqHl+hS36Dnf+47OEjU1HobHc+Y/PUvTzudmo6B1lvF4+x2tt2rbx8P1f/CHD46EEFoUQQgghhDhO09X04A7g/wPOBX4AfHia7lcIcQqqRll/r499/ZlWP5d5vUErOAi0BQub/28GEgEO1bISpzv2jbX6wrxai7jnxiV8fctefvuXLsB3NTf95b+xeWiENe+8kFvesoCeoksYJ2ilsCmcO7uLW1csIPAdbluxkMB3JDgksDbFmKRV2nR24DEWGrp9MKnGprR6dL5y4GVK558/00MWok0zKANkQUOtebVuOFP60ImcmxhQzEpOpygUvpQ8FTlVDRNePhRy7ae/2zq2fGFfbnsUjodmyvGOh4aeojeDI5taNTKtjYcAg7uGWbNhGw+uXkoph+MVQgghhBAi76blXUqlUvlXoFwul8+uVCr738jPKpfLc4AtwK8ABvhrsoo224EPVSoVWy6X/xj49cbnP1ypVJ56I/cphMiXoOAwz28PIk4MDk6+3fx/M5A4uGuYR7a+yPqVA2x8ajd337CEj37tx9yzqcIdv3ExN141j9mBRxhbHly9lKDgtnqJ1eOE/+Ovf8jmoRGW9fdy36oB+roLaK0oFWVxUhwuzZuSBWNMmvVQ9B0fm2YZCdXQYJOUUtFjz+joTA9ZiDbGWOomwWtskGhmeDla4XoOYWgwcULgOTiOnPdEfkwOKBa04mA9ocvXhBbJrhW51OxR+JGv/Lh1fZnnHoWB77SunZvjvfuGJQQ5zawMCm7bewaAzUMjBIX8BWyFEEIIIYToBNNyJV0ulz8IfBAolstlACqVypuO4+d4wANArXHoXuCOSqXyRLlc/hzw7nK5/FPg7cA1wDzga8CyN/wghBC5UQ0TDoyFbUHEzzy+g/UrB1i7cRubh0bYtP2l1u37n9jBPTcuYXDngdaxO//pWc6ZVWhlGT5w81JKRZd6nGDbzoyHV3QKriZMLA+uvqqRZZZIZqJo0wzGGJsyq8vDxAmOyna+JKmUixT5liSWJLGENiWxKb5WRDbF0+qIuvWOoyWgKHJlqoBiZFNmT8quLWglc1fkTrNH4bzegD0j1Vz3VKxFlke27mXduy7hwjklduwb45Gte7ltxcJcbrBrtjdovmcAWNbfm9tMUCGEEEIIIfJuuq6i1wL/G/DKG/w5nwQ+B3yscXsp8K+N/z8G/CpQAb5VqVRSYHe5XHZPRIakECI/tM76e03c1b1/NKTgaj5381J6Ci5joSHwHT6/eindBZdXqzED886kt9tvHTtUi/nalr2s+4d/Z/nCPh5cfVXb4kJQOLww0jweOJpnn32Wiy++WBYiRBtjLFFiWzvfm4vXCo5Y0BYib5LEEhrbCn4DmDhpKxkZNzIUJSgj8mZyQNFvBMKnCohrLQFxId4IreD6ped3TGZlp2WCCiGEEEIIkXcqTU9+g/JyubwR+O1KpZK8gZ/xPuD8SqVyZ7lcfgL4XeA7lUrlvMbn3wncBvwvYLhSqdzfOP5d4LZKpbJj4s/bsmVLGgTB695vvV6nWCwe77BPCBlD543h4osvPulvU491Dp8IefjdTxxHqaeH0plnEyUp3b5LUHAYbwQRw/jwong1TFAKNg8N88C/vsDdNyzhk9+q8PFfv5g4sUcsLvQGPmEcM3ZwmLHXKEmZt9/HyXCy53AnnYOP1fkLLiRNQSuFsZbA1USNbK/JQcVXR1/lwL59QGc9xuMxE48vT+fgTnl+m/O3VHQZqxtsmpU8hamD4jt3Pt/63k55jMdL5nC+n9/z5s5F+11tAcUUsCk4KivfO3H+Tpy7k+X9sZ5op+p1xIJFiwGIJzz3zXLOL7zG8z9T5i9YRM1YxupJK1OxVHTocjW7X9gJ5GtuLr6ozFhoOFiNW+OdHXiUCi7PP1d53e+f7sdy3ty5pG7xiPEqU+dnL7445ffM9Dk4L8/3TI9jUeNv+fWuQ6bTTP9OJnqtsczkObhTfkcnWx7nL+Tn+ZnJ+QuddR0sY5jZMRzP37KcgzNyDj5SJzw/xzp/pyvN5jvArnK5vJOslmBaqVTe+XP+jNuAtFwu/ydgAHgImDPh8z3AQeBQ4/+Tjx/h4osvft07bWYkzSQZg4zhaKZrLHl53BPH0exbFxQcxkJDt+dQiy0aUI2SpbXYEPgub7toDv19Je7950oro7HgtpeZKhVcbJrypR/sYdU1FzD3vLlHLWuax99HJ+qUc/CxMMainWy+1KMsmJ1y9CyZs/v6OLuvD+icx3i8TuXHdyrNYdvYZDYeGnbuH2XxnB5MCu4Up0Gtddtj6pTHeLxO5cfX6XM4SSzVODmmgGKX6+C6+jUfS54f68nQ6Y/3aGOPIkPUKOMMkNgUBfha5fLxVkMDR1wtgFKH52uenqvReszgzgMsX3QWSsHswGNw5wFWLD47l+eUsdDwvef2HTHet140Z8Z/p0e7/7w83zM9jigyR/3cTI1rpn8nE830WPI+f2Fmx5LH+Qv5eX7yMI48vmbJGPI3hrz+Lcs5+LXl9Xk7lZ6f6QoqfhB4D0cJ7h2LSqXytub/J2Qq3lMul99RqVSeAK4DHgd2AH9WLpc/CZwP6EqlcuD4hy6EyCOtFSjFX3z7eW5760JqsSUoOERxQtJYHPddB0jZPxpyVqnAve8dYKxugJTAd3F1IwvHWB76/hCr39zPtZeey5oNW3nwlqsoFaS8qTg2NZOAgTSFoqOIUqgaS3cjW3HyorYQeTMemtb8nTs74Pl9o/ziL8xicj0LrbXMYZELzR62E3eemjQrdeiq9l2pcu49/TQDzACOVvg5rnVZ9B3+4O+e4fZ3XAhk16Wf/sfnuPe9AzM8sqkFvsMl583m9oefblX8uPuGJQS+M9NDm1LgO/zXDdsw9vArmqsVz33iuhkclRBCCCGEEJ1rulbM9wKbK5XKkVsw35j/BjxYLpd94Fngq5VKJSmXy98DBgENfOgE36cQIicCz2HlNfP5wvd2serq+RwYC5nXG1Crx9SjBEcpip7GphAUHKphQmgSNvzbbla/uR9HKxb9wTeAbHHh9355MT1Fj81DI7ldGBH5Y4zN+s3FCUkjmBi4mtCmuJ5D2OhD1+27R81+FWKmGGOx1mZZtWmW2TW76NI1p4eC57SCNalN6Sl6Mz1cIYDDAcVgUg9FrTiij60EFEXejYeGlw+FXPvp77aOLV/Yx3hocnnerUYJj2zdy7p3XcKFc0rs2DfGI1v3cuuKBfQU8/e3Vg0TlvX3MrhruHVsWX8v1TCR/uhCCCGEEEIch+m6ii4APyqXy9vJKsJRqVR+63h/WKVSeceEm2+f4vPrgHXH+/OFEJ1Ba8Wsgsstb1lAt+/gu1nZyWbfnGYgUStFNTLc8ch2Xj4Usn7lAK5WhOZwm9dl/b0cqsW8fCjMFhqiRDIVxWtqBmNCm4KhVZ+96GpMergMrwJc15GAosiV5vw1KSRp2sjySnGnKNnrOBrHyd9CsTg9GWOpNTIUq2GCp7OzbfIaJU/F6SUFpnrFnZx5nReeVqxfOcDajdtamX/rVw60rmfzxtOKlVfP75jxag333LjkiF7qWk4NQgghhBBCHJfpWjG/a5ruRwhxmvE9h//769v409+8lJ4ul93DVZ6o7OOXLz6HuX4XkC0iaRT3vneA8dDgaIW1KV/+wW5crVqLIQrYtP0l1q8coEsWIcVraGbJpEB3wcXESVuGYnNB28QJgWQoipwxxmKsJbYpaQqlYjaHfa1a8zduzN+CVhJQFLkxOaDYzEyMbNo2fyWgeHpTgEmzkuSQfTxaj9i8CHyH+2+6klldHodqMW6OrxtsCgVPt41Xqex4HhU9h09uqrRlVn5yUyW35WWFEEIIIYTIu5MaVCyXy79RqVT+EShP8el/PZn3LYQ4PVSjhJcPhRyqxZgkxXc1m37yMnf+07Ms6+/lz39rAJvCi69UWXR2D6Wiy1jdEHgOt65YwO/98mLGQ4OnFZ6ruW3FQr7w5C5ue+tCSo7G2pRqnBD4DtUoIfAcSj09jIWmdazoaGrm8Nc0FzQD38l6PXqSpXYqaS5qJzZlVpfXKg8ZTJGhCMhzL3LF2jTrAUoWEAdac1iIPJsYUBwPDY5SOApqxtI1aUOHBBRFo/U2kH3M8ynONjLGJ0rSFJ3mc9BaZYHag9WYnqLHwWrM7MDL7e+4+V5hcnlZqUoihBBCCCHE8TnZ77Z7Gx8/C/zChH8LTvL9CiFOE4HncN+qK/jalr2YxNLtOzy4einPfeI6Hlx9FYHnUnA1ZwYFAt/hUC2mVHTZPxZibMpffPt5hsci/uNQyJ6RGi8erHHfd3YQ+A7WpgyPR7z/iz/koo8/xvu/+EOGx0N6eue0HRupRjz5/H5efKXOBx7awkUff4wPPLSFF1+p84Xv7WJ4PMLmdfu2OGbGWKLItBa1mwFFRx1eRUvSlKDgtHp8aamtJXLEGEvUmL/N4MtY3bB/tH5EydMmmcMiDyYHFD3dHlCUkqei08WJ5WA1bgXr4uRoZ+WZZ9MsUDs78No+5vVSt/leYfnCPlytWL6wj/tWXUHgSf90IYQQQgghjsfJfsftlcvlQWAcuK7x79eBa0/y/QohThNaK/q6fW5760J6Sz5aK4LGwqJWWXkmV2vOKhXQWuFoRWpTAt/lBzsPcP3S8ykVHXqKLt2+w2ce38Gy/l7GQ0M1SlizYSuDu4YxNmVw1zBrNmzjYDVuO7Z24zaWLzqLj37tx23HP/q1H3PtpeeyZsNWqnHy+g9G5JYxliixbZkwh2ox42GMTVOiKVbStNaysC1yIUmygHg1TohtynhoGA+zYKKrFaWCx89erR3xfTKHRR5MDigWtMLYlCSFQAKK4igmJ83lNImuY3VSELT5XuHBW67KNh3echV93b5UkhBCCCGEEOI4nex6Hw8D3wb+APhE45gF9p3k+xVCnEa0Vq3yRT1F3fjoAVCPDMam9BRcRmuGUtFhPEwoFR3eunhOq1TTaGi46xvPsn805O4blhD4DkopNg+NtN3X5qER5vUGRxyb1eVN+bUXzimxeWiEwJfd0J2quaDd7D3XXNSOAK00Y2HM7C6/LeAYeI70oRO5kCSWOMn6J5aK2XkyjrN+oKWCx38cqjH3jC66fAfXcwhDg03S1jlUiJk0VUAxsimeVqQgJU+FEEIIIYQQQohpdlKDipVKJQSGgA+czPsRQoij8V2H0MTsHqkyvy+gFh3OGExJKfou9Sihy3P41HsG2LFvjEe27mX1m/s5WI1Z1t/L4K7h1vcs6+9lz0i17T6W9fdyqDb11+7YN8ay/l7p29Khmv3nJvae87XCAp5WzCq6xDbF9xxiCcaInEkS28qS7i64VMOElJSCViQpnFF06fIdPM8hCg0mTmT+itxIkvaAoj8poBhLQFGcIrQCV2vg8DWqq3VuexR22nib7QzWbNjK5qERlvX3ct+qKyRbUQghhBBCiOMk776FEKc0rRU9RY+zegoAeCrrA6MaffDiOMGmKR/80hbKdzzGukd/kpVELbh8+l+eY/2qgbYeLJ96z+V0+07bsfUrBxjceYC7b1jSdvzuG5awaftLrF81IH1bOpC1aav/XLP3nKOyYAxkpdRkUVvkVZJYanF7/8TxyOA0AjOuoq1sZEErya4VuVKN2wOKNWMloCiO2eSi5Dlt9wd0Xo/C828jjwAAIABJREFUThtvNZ6qnYG0JhBCCCGEEOJ4SdqMEOKUN7E8qu+7+I3jzYwcz6Z8fvVSAt+lFiXc8cgz3P6OC3n5UIij4HM3L6VUcPnZwRoFV/PlH/yUP/svS5h7Zhcvv1on8B2WLzqLnqLL51cvpbvgcqgWUyq4vO8tC+j2HdkJ3YGqkckWr0ODpxU2hSix+K5GIWX3RL5V44Sk0T8RwNeKxNVUI0PguUzufuU4WoKKIjeMsW0B76qxdLmaJM0CF1nmrZSaFkfXaT0V48QyVs+yxQ9WY0pFB0/nd2530ngD35myRYG0JhBCCCGEEOL45PPKXwghppHWiu6CS/mOxwB4+VDIZx7fwSdvvJwv/2A3UZywZ6TKebO7KLia21YsYO6ZXdSjLIuiy3PQSqFQVKOE8dAwq8ujbiylgisLnh3I2pSgkeFVaAQUAYquhhRie3hRu9t3JaAocqe74DKry8PTCq+R5dXl6iygmILvOSggtVnJXjlPibxolj2d2EMxmBBQDAoO1dBQdCWgKE4Nh8uJHpbncqKdpholLOvvbTvWbE0ghBBCCCGE+PnJO3EhhACqYbbg8Got4p4bl7B/NOSeTf+LVdfMp7fk01fyUSorn1X0HMZDg01TSkWXPa/U+KO/385v/+W/oYCgEWQsFVzJUOxQ1chQDZNWlpdW4Kis5F7Rd0hJMXFCqejJcyxyaTw0HKrFaMDYtC3LqxmUCXzZ9CDyp1n21GucW71GH9skTQkK2etvUbLDxWtImbr8aU6rcwLgatVWTtTN8bVFpwVBA8/hvlVXtLUouG/VFdKaQAghhBBCiOMk5U+FEKetZs88m0JiLetXDrDxqd2suno+977ncs45o8ju4SrfeOan/Nql56JQBL5DNUpaH61N6S353PveAcalFNspwRhLUHCpRwmoLEvG16qt3Kn0nxN5Zhq95xRgUo6YvyZOKLpSllnkz+Syp83z7+T+nxJQFK8lJdtAkTaiiGljQ0VeT3muozH2yKw5N6fXGa7WuDo9Igg6OdCYF1or+rp9HrzlqsPX8Z68BgohhBBCCHG88nnlL4QQJ5i1KWOhwSSW0XpMYi3VyHAoNLxai/ndh5/mG8+8xK0rFtBb8ikVXdI0pa/kc/Pyfro8h+f3HWJ4PCIylpv+8imu+B//zM3/z1OEsYUUKSF4CjDGYqylGia4CiJj0UpJ/znRMYzJSkdOnJ2Ts3O01hKUEbnTnLsT+yhOtaHDdSW7SLw2Ddg0xTaiis3/5/WsV4sTvvf8/rZj33t+P7U4n+U5aybh+X2jaJUF5bRSPL9vlJrJ53jhcH91qSQihBBCCCHEGyeZikKIU4q1KdX4cCZhl6sJjWU8MvxwaISlF/SyduM21r3rEs6ZVWDthm18+f3XsHlohMFdw6xaNo96bGkuNThKUQ0TSkWXC+f0sHt4nG8/u48Hbl5Kd8Gl1shalMWJztfs4wXZ8w4QuJrQphR9l7iR4dUlfbxETjWDMt0FFxMnrYBM0XeJGvNXsrxEXjXnbtQIpASuxqSgGq/IiiwgLq+34lj4WrU2VDha4ed43nhasfSCXm5/+Gk2D42wrL+X9SsHWiWA88bTirmzAz74pS0dMV4hhBBCCCHEiSVBRSHEKcPalOHxiDUbtrJ5aIQ177yQldfMpxomfOzrz3D/TVdy+8NPM7hrmAvnlFAKNg+NtPopDu4a5sB4xBmBRwoopUjSlK5GD8XIJPziuWcwr7cb31Hc9Jf/xoO3XCULnKeIZh8vABMnVI0lmCL4IgEZkVfNoEwzo0uITnG0sqdJKmVPxfGZXGHAkt8SPTaFgqe5/6YrmdXlcagWo1R2PI86bbxCCCGEEEKIEyuv762EEOLnVo0T1mzYyuCuYYxNufbSc1m7YRvzegM2D40wq8tj89AIADv2jXGoFrOsv5dXaxH33LiE5Qv7uGdThTC2VKOEapjQ5TmYJFuaOrO7wHho0Aoer+zjvlVXEHhShu1U0Vy4Hg8NobWtLMWJC9o6p/2ChJgYlHGUOqLkaZPMYZE3k8ueSh9bcSJM3laR520WBU8TxZaD1Zg0hYPVmCi2FLx8zvlOG68QQgghhBDixJIrfyHEKSPwnVbQEODCOSU2D42wY98Yy/p7W0FEgM88vgMFrF81wNe27KXgaO66/jI+9Z4BVONnBQWHepwFFNMJK/RFz+Gti8+m23dAkfVoTCbviRedxBjbWrj2tKIWWULb/pxKHzqRV8ZY6hOCMjZNiadIGZE5LPJmYsnegs7613r6yD62WksfW3HqqkYJG57aTWiymR8ay4andlON8tmjsNPGK4QQQgghhDix5N25EOKUUY2SVtAQaAUTP/P4Du6+YQmDOw+wfuUAyxf28Y1nXuKL3x+ip+By64oF9JZ8+ko+SoHjaLpch0O1mC7f4dW6ISULLNo05bOP76AaJfzl93Zx0ccf4wMPbWF4PJLAYgermQRvQv+l2UUXUK0smS7XkWCMyK2aSTA2paAVJs16ibmTMr1kDos8mliyt7mRQwGxzF3xBqRMnamY1+qcnlasvHo+6x79CeU7HmPdoz9h5dXzc9ujsNPGK4QQQgghhDix5B26EOKUEXgO9626guUL+3C1YtP2l1i/aoD9oyH3/nOFi889g95un8+vXspzn7iOW1csyL7Pd6hGCY5WPPT9IX73S1uoG0tP0WPRH3yDt/zP71AquJTveIyeose9//I8azdu49pLz8XYlMFdw6zduI1qLDu0O1GzbKQmW8jWcETZPVnQFnllG3N1VpcHgFbZwnksc1jkmLUpUWTa5mgtssTWyvlXvGFJClGatqpMpI3bSU6jis0KGfffdCXPfeI67r/pSgLfyW3J1k4brxBCCCGEEOLEcmd6AEIIcaJoregNPB64eSmlgstYaICU+1YN0FfK+iEqBY5SVEND4DuMhQkFT5Gm8JUf7mHTT15m/aoBxiPDiwdrACzr721lPe7YNwbA5qERLpxTat335qERugtySu00zbKRqYGCVlP28RIir6xNiUxCbFMSmxK4esqguBB5Ym2KMQmhTQmbJXvJMsSlj604EVwFVZNysBrTXXAZGY+YHXgEbj7Ph57nMPjcPq6cn1Xb0Erxw5+O8LaL5szwyKbWaeOF7LxTjZPWRsLAc9Dy+iiEEEIIIcRx6ZgV8HK57AFfAPqBAnAn8O/AX5Ntyt8OfKhSqdhyufzHwK8DBvhwpVJ5aibGLISYfjVj+eCXtrDuXZdQcDUf+/ozDO4a5l2Xn8edv3kp6YQKpUopHKUYrcWMhYabfqmf/3zF+WgN9Tjh/id2sHxhH3ffsIRHtu7l7huW8MlvVQDaAozN2+OhoafoTfdDFsfJ2rRVei+OEyxTp+/LorbIq2qUlWb2tSIGIpviT7FIKr3oRF5Ym7bm7cRz71SkB6h4IwJX4zTK2veV/FxvsKiGCQ/86wsM7vph69jyhX1cdUEfpWL+3q532nitTRkej1izYSubh0ZY1t/LfauuoK/bl8CiEEIIIYQQx6GT3qnfBAxXKpW3AtcBfwHcC9zROKaAd5fL5SuBtwPXACuBz8zQeIUQMyDwnVYW4bzegM1DIwA8+qOfUSq6/OIffZM3/fEmLl33LRZ+7BsUXY3WinNnd1GNDL6j0Ci6PJd73zvA525eytwzi9zylgU8snUv33jmJZYv7GP9ygE2bX8JV6vW7cBzZvjRi2NljKUeZwHFapigAJtO3W9JFrVFHhljCQou3QUXRZYp4jQyviZyHC1BRZELSWIxJmnN2/HQEFmLTbOLeOkBKk5XWsE9Ny5ple9fvrCPe25cQl7jXZ023mqcsGbDVgZ3DbfaFqzZsFXaFgghhBBCCHGc8reV8Oi+Anx1wm0DLAX+tXH7MeBXgQrwrUqlkgK7y+WyWy6Xz65UKvundbRCiJPO2pS6SSDNFjhim6JQrSzCgqtZ1t/L4K5hAA7V4rbbAHsbJU7/6skX+M0rzuejX/sx58wq8CfvvoRqmOKobIXE04rbVizk9355MWOhwdeKW1cs4Pd+eTHjoSHwHFm47xDGWGomIU1hPDQ4SpGSlUuT0nuiEzTnsDKKlDTrOzdh/sahwcQJBa3kvCRyIUkstTghBaIwISUFUmqRpcuHJFUSUBQn1ORNQinkuudf0dPcdf1lzOsN2DNSpejl+2+gk8bb3HA40eahEQJfNgMKIYQQQghxPPJ79T9JpVIZq1Qqo+VyuYcsuHgHoBrBQ4BR4AxgFvDqhG9tHhdCdLhSTw/VyFANs3+j9ZhqZIit5VDd8IGHtvC1p/ewflWWRdjtO3zqPZe3dlIP7jzA+pUDbTurZwceZwYe1y89n0e27mXduy7hU+8ZwNGaOEkJClnvlUJjsaQeJYzWYjxX01P00ErRU/Rk4b6DNEueloouvlY4KiubO3kBUkrviTyaWLZXK3C0wkyVYouU7hX5YEwWUGxmKGqV9bDNAooakICiEOLkqUYJy/p7244t6++lGkmmohBCCCGEEMdDpelRVqJyqFwuzwP+DvhspVL5Qrlc3lupVM5vfO7dwK8AzwHFSqXyZ43jW4FfqVQqByb+rC1btqRBELzufdbrdYrF4gl+JD8fGUPnjeHiiy8+6Zuhj3UOnwjT8bsv9fRQmt3HGUGR8TDC2pSergKvVuuMHRym2NWF19WDsZZ6bDHJ4XPX7MDj9oefZnDXMJs+/DbmzCrgKEV3waEeW9I0JWiUuXQ1RElKqZgtYO4frVNws53KZ3T5BAWH0brhDx/ZzqM/+hmQ9YlZ965LuPbT323d/uxvXc5/7Bk6qb+T13Myn5eTPYen+xxc6umh7+w5uErjeg7VMMGmKUUnC8hMlaW4c+fzb/h+j0Uezm0n00w8vjydg0/U4z9v7ly6igEmhaLvtOZp1Vh8R+OorKdicw7bqMbPXnzxDd/vsZA5fOKdKnN40aLFrXNrdUKGYmKznnczdd49mlN9Lk92ql5HLFq0GDjydR2Y8Tk2lfkLF1OLDWP1pJX5Vyo6dHkuu3dl483T3DyW8b6W6X4spZ4e/J4+Pvw3P2r1VPz0ey8nGh1mbHR0yu+Z6XNwXp7vmR5HHv+WZ/p3MtFrjWUmz8Gd8js62fI4fyE/z89Mzl+QNWEZw7E7nr9lOQdn5Bx8pE54fo51/nZM+dNyuXwO8C3g9yqVyrcbh7eWy+V3VCqVJ8j6LD4O7AD+rFwufxI4H9CTA4pNF1988eve77PPPntMX3cyyRhkDEczXWM5WY/b2pTIJNgUxiPD//n/buOcWQX++7VlPvKVH7fe+H/upitRSjEyHgHwsa8/w8O/c03r5yhFq6zRhXNKAPy3v93GR64tc2bgkzYKXqWkeK6DsZZqaHjy+f0svaCXjU/t5r7v7GBZfy/rVw2gFewfDXF1Vkp1/coBNj61u3X70++9nDOCImfKfHxDpuscbG1KNTJopagnKcqarAed5qgBRa11x/995cWp/Pimaw4bY4kSS2jTVtne/aN1fmFWVyswU/RdokbZ0y7XwS3O4oxZs97Q/R6rU/k5hlP78Z3MOdws09sMKGoFjlK8Wk/o8vWUPRRn+vd8Kj/XU+n0x3u0sUeROaK/rCUr0ZPHx5tYSzVsP5barMRoc7x5eq6OZbyvZSYei7UpD95yFYGfVSAJPAd9xvnTOoapHO33kJfne6bHEUXmqJ+bqXHN9O9kopkeS97nL8zsWPI4fyE/z08expHX1ywZQ77GkNe/ZTkHv7a8Pm+n0vPTMUFF4A+AM4E/LJfLf9g4tha4r1wu+8CzwFcrlUpSLpe/BwySvXf80IyMVgjxmpqBnmqUkNiU3//bH7UyDT/ylR+3+h4O7hrmlWrMvN6A7kJ2yto8NNLqmQhZpmKzV2Lz+MuHQt5y9+Ot+/v9/7SY1W/uZyw0gKKn4PLmRWez68Aot7x5AR9652IOjIWUCi6k8ODqqwgKTmux87a3Zv0Uq1HCK/v/IxcLEeLYVCODsVl+TKnoYuKEyKaYJMXRtPpmNknZU5EnE3uAlorZOdDECaWCx38cqjH3jK62r5f5K/JgqoCiq6BqLGcU3basWil5Kk6Gydtr89xPsRolbHhqN9deei4AobE8uu1Fbl2xgJ5i/v42Om28QgghhBBCiBOrY4KKlUplLVkQcbK3T/G164B1J3lIQojjZG3KeGRIbMrajdv48vuvacs0bP6/aV5v0BZEXNbfy2ce38GfvPsSEmtRCtavHGDtxm3c/8QO7viNi7nnxiVt2Y6rrplPT8ElTCyk2YJIqehw4Zyexq5lw9k9BepRljnZ7KXY7btorSg17rtUcNlzlFJJIn+MsQSFwy911TDB1+BrhasVsU3xPKeV4dVT9GZwtEK0mxiYAdrK9s4uunT5Ttv8LWglwRkx4ybO2/HQ4Kisd23V2CNKnkpAUZwsnRRUDHyH37zifD76tcPXrXffsITAd2Z6aFPqtPFamzI8HrFmw9bWeO9bdQV93T5a53lmCCGEEEIIkU8dE1QUQnQ2a1OqcULR1YxUI84qFYAs67AaJm2Zhs3/N+0ZqbJp+0usuno+StMKGD667UVuWDoPDRSKms+vXkp3waUeJQTe4WzDapgQ+A5aKwKnffGyuaO6+XFiAKpUkFNkJ7M2pWYSlFEYa3G0oholeEUXBcRTlDwVIk8mBmbSFLRqL9s7mcxhMdMmBxS9xoJ9zVi6JKAoplE6xe28ho9qkeWRrXtZ965LuHBOiR37xnhk615uW7GQUg4z/zptvNU4Yc2GrW1VUNZs2MqDt1wl1/pCCCGEEEIch/xd9QshTinNMqfD4yFf+N4uxsOEtRu2UQ0TDtVilvX38motYv3KAZYv7OP+J3Zwz41LWL6wD1crli/sY3bg8Z5l89nw1G7SFHoDnwdXX8XNy/vRQJKm+J6DQlGPE4qeQ1BwKRVdtFLZR9mJfNqpRobugotWWd9NTysKrmY0MkcsNkrJSJFHzeBLM7MWwCQpSZrKHBa5MzmgWNAKm4JNocvVUvJUTKtOylTUCq5fej7rHv0J5TseY92jP+H6peeT10vXThtv4DtHVEHZPDSS28xKIYQQQggh8k625gkhTpqs3FCIozVrNmxj3bsuoVR0G2/s01bZ0o1P7eaWN/fzwM1LKRVd9o+G/Nl/WcJ5s7saGTopf7t5N++9ej59paxEaXNJ3abgaAUT+o2J05u1KcYkBI3Fa0hJ0yxTptvVmFQTWxq9vkyrxK0QeWBtSmwSFBDatK3npztF2d7UplK2V8y4qQKKJgWnMX0loCim09GyEidvxsgLrbLqGHddfxnzegP2jFQpNTZF5ZHv6inH6+f077oaJUdUQVnW35u1QpBMRSGEEEIIIX5u+bzyF0J0FGtTxkKDTVPG6jFhZBitx1Qjw5oN25gdeGweGmmVSFrW38tXt+wlTcFzNbeuWECp6OJqRb3Rx3DumV2MR4a/27qXL35/iPe9ZQFn9xQYDw1Fz6Gn6LWyEAMJCokGYyyRSYhsSjXMeszVIoujGwEZz8kyWzWN+ePJ3BG5YYylHiekZAHFLNMrJbYprspK9vpelllhkyyY6DhyKSdm1lQlT1NoBUQkoCimmyIrE502oohpmt3O66u9JauoMDvw2j7amR7YUdTihMGdB9rGO7jzALU4memhTSnwHO5bdUVbFZT7Vl1B4EmmohBCCCGEEMdDtuYJIY6btSl1kzAeZsHDzUMj/PmqAZZe0Mvajdv48vuvaeuZuGPfGJu2v8SnVw7w4Y3b6D8r4MoLeukuuIzWDEqllIoe1TChHiW4SnHz8n7GQ4OxKYdqMT0FCSCKqRljqZssIJPYFL+RIjO76Lb18ZL+iSKPmvPXptnicnfBxcRJK0AzeQ5LYEbkwVQBRU0WSPS1kh6KYsY4CpLG5aJSh7Nm88jXmshYDlZjeooeB6sxswMPP6fXKl2uw9ILern94afZPDTCsv5e1q8coMvNZ5BOa0Vft8+Dt1xF4DtUo4TAc+T9hBBCCCGEEMdJgopCiOOSlTaNGA8NH/v6M62SQssXncXtDz/N4K7hVjBRKbjnxiV8fctefvOK83n6pyN87qal9HS51KKE4bGQvlKBl1+tEyeWgutQ8BxiYxkPTWtBsj5+CCfom+FHLvJo4sJ261icUDWWYIpFbFnYFnky1fw9VIsJXI2iPdOrIIugIiemCig256sEFIU4djWT8ND3h7j20nMBCI3loe8PceuKBfTk8O+mZhK2/HSE+2+6klldHodqMYM7D7Bi8dm5HC9kgcVmqVMpeSqEEEIIIcQbI1fUQojjUo0T1mzYysO/c02jR2JmVpfXuv1qLWL9ygGee/kQC84q8a6BuZw3u8isrrMoFZ3WQqP1HNI0pVR0sz53UYJCUfRdio2f21P02PvCPs7uk6CiaDdxYbsaZv02E5sSuJrA1UdkeAmRJ8ZYqnFCqZjNX5tm/WYHdx7gneU5U5brk0xbMdOS5MiAIjRK9EpAUeTA5HNnnl/9uwsu931nB/f+y/OtY65W/N4vL57BUR1dd8Hlv27YhrGHu1S6WvHcJ66bwVEJIYQQQgghpou8wxdCHJfAd9g8NNLqkdh0qBa3bt/9zQpdvsPCs3so+S59JR+tFY5WGGNRKP752f+gFiXUmqWIVLaTWEoSiWMxOVNGK3C0wtWKqpm6G5Gb0/Jc4vRUM1lAsTl/tQZPK5Ze0Mt3KvuO+HqttQRoxIyrxknbZg2bgk2zuSsBRSF+PuOhabuWBljW38t4aGZoRK+t08YrhBBCCCGEOLHkXb4Q4rhUo6y06Wce38GnVw6wfGEfrlYM7jzA+sbtbzzzEk8+vx9XK+rGthYZA98hsildvmbF4rMpuJqi51A7ShBIiKOZnCnjKIiMRStF0dWYFFQjP0GRBRQlYC3ywjTOi9Uwac1fk6TENmV20WXF4rNxvSwIbpOUnqInARox48yE1/OCVkQ2xWn0rIskoChyIP05j8+0Ls9pXTu7WrF8YV/Wo9DL5yaoThuvEEIIIYQQ4sSS8qdCiJ+btSkauG/VAGs2bOOb21/iczcvpVRwOTAWMqvo8vnVS1sLi6P1iFdrCYvnlFoLOmN1g1aKy9Z9i+UL+1j3rktYfE5pJh+W6DATF7Ynlt5rljwt+ocXtrVSlIreDI9YiMOMsdRNQmqyTRqzi27b/HU9hzA0rWCiEHnQzA7HQEErTCM7MSU7/0pAUeSBAkwKaeOiM02z225O9xTVYztlj8K3Lp5Dycnf31GnjVcIIYQQQghxYklQUQjxc7E2ZXg8ZM2GbXzw7Qt44OaljV5ghrHQcHapwFho6C44rTJIpYLPnFkO1dAQxgl//eQLrLx6PpuHhlm+sI+7b1jCI1v3MvfMhZQKcloSr2/ywnZkU7RSUnpPdITm/G32/kxczWhk6PFdmb8ityaWm47ihBRoJn5LQFHkjasgacxPpfIbUITs7+iy82dz+8NPs3lohGX9vdxz4xLyWlih08YrhBBCCCGEOLFk9V4IcUysTak3FsHXbNjG4K5h7r/pSkbGI0pFly4/O51cdMdjGJuy487r0EqRphAUHMbqBlcr+koFbl2xAE8r3nbRHBad3cPfPb2XVddcQCBlk8QxmLiwbeKkLVNGSu+JvJs4fwFMnBC4GpNqYkujHGpWVlLmr8iLyf1rHZX1UPRlI4fIqcmlTlMgzzGvoqe56/rLmNcbsGekStHL999Rp41XCCGEEEIIceLI1b8Qp7EksYzWYxLb/tGmKfXIZNmHdcNF5TKH6jEmycpNbh4aAWBWl8e83oBqmLBnpMqekSrL+nsB2HlgnJcP1UgbyzpKge9oxkOTBYNsSj1KmHtmF7e9dSF93b70uhOva/LCNmR9vKA9U0YCMiKPmiVPm/P0UC1ufS5JU4JGhrcv50KRMxPPuwWtGAsTtKItoCjnXZEnk8+iclY9cQqeJp3UBj212XEhhBBCCCHEqU+u/IU4zVibMhYaTGIZHo/4qydf4MVX6q2PH3hoC18aHKJuLCPViPc/9EN27BvnYDXGprB7+HDg8FAtZs9IlfHI0FN0KRUd7rlxCcsX9nH/EzvwXYcnn9/PWD0LJNaNxVGKKE6oxQkFT2e97gquBBTF6zoyU0a1Mg+iSQvbWsvLm8ifmkkwNm31AXUbpXun4khfKpETixYtbju/Vo1ldtElSZkUUJRqAyI/pspUFCdGNUrY8NRuQpNFFkNj2fDUbqpRMsMjE0IIIYQQQkwHWbES4hTXDCI2sw8PjIe8/4s/ZCw0rN24jWsvPZePfu3HrY+Du4Z598BcDlZjPvKV7PaFc0rM6w2Y1eXx6X95jk/eeDnLF/bx99teZHbg4WpFSopG0Rv4PLj6Ku597wC9gc/yRWdRKrrsHq7yai3iTX+8iV/8o02s2bCNWmxf/wEIQRZQjBqZss0FbJumxFMEZLTWki0jcseYbP7O6vIoaIVp9AF1tGLymdBxtAQVRS4YYwkbgfCCVpiURrleUI3cL0V23pXNQSIvpip1qshvYNF3Ne6kzVCu1vg5vZbpch1WXj2fdY/+hPIdj7Hu0Z+w8ur5dOV4Y8HE90NjocEeZUOPEEIIIYQQ4vVJT0UhTlFJYgmNZTwyrNmwjXNmFfiTd1/K2kY/xFldHpuHRrhwTqntI2RlTXuKXuv2jn1jFFzN7MDj5UMhd3/zf/G5m5fSU3SJ4oTm+3KbQtHPyve9Mh7y5R/s5oal83jo+0OsvHo+G5/ajasVy/p7uW/VFdJDURyzmklIU1oL25FN8RvBGOnnJfKumWWLgcSmBK5uzd9m2d44NJg4oafozfRwhWhpZofHcYIlKzedkpXrlfOuyCsFmBTSxvVpmma33ZzGvWtxwuDOAyxfdBZKwezAY3DnAVYsPpueHG4wqZmEFw9WeeDmpZSKLmN1w879o3T5Dj05PBdYmzI8HrFmw1Y2D4203odI6wUhhBBCCCHeTkYQAAAgAElEQVSOT/6u+oUQb1jSKG26bzRkTSOIePs7LqQ0oR/ioVrMsv5eduwba/vY/NzE/oifeXwH3b6DVrB+5QD7R0P++O+387ODNT7/3V28Uo2wKXT5mnqUoFCc2V3glrcs4BfOKHDbiqxn4m1vXchzn7iOB2+5St7Ii2PWzPAqFd1WIMabFJCRhW2RV+fNndsKzPiTSp5O7gMq2YkiT5rn3vHQEFnb2kAUyXlX5FxKFkBUjctMpbLbec1N87Ri6QW93P7w01z08ce4/eGnWXpBL15Or5M9rZg7O+CDX9rCRR9/jA9+aQtzZwe5HW81TlizYSuDu4YxNmVw1zBrNmylGku5ViGEEEIIIY6HZCoKcQqqxglrN27j/2fv3uOkKO988X/q3l3dM8KMgCjgMIAtEWG4GhQ9JlmDulmjuETIGkhMWOMvWfRs4vpLYlxyjok/o/EEkj2ucja7KgkkROO6Z2PYS+ImGqJyGRHXtFzlEpfbgEx3ddf990d193TP9IyA09NVzef9evlSWmCeqvrWt596nnq+z5rPXVaaRJw4MlmaONy4+xie3XoQKxd1YN0r+/DgzVPx7NYDePDmqbjn6W34x86D+HjHBXho4VTcvX4bfv76O5g4IoHb5rWjOSbi8SUzgz0SLRe3zRsPXZNhFCYTY4pUekiXRAECBCRjQapJFgbMkxpTD52asRdeWFrh5ftATBLg+sFqmd4TMhzYpjAS1Xjlfp+CAEEAS55SqLluz+paTRRwIu8irgKuLzDvUuhFbaWi5wOaIuLRW2egOa7gZM4OvidCOgsatfbqqlR6Hip6dW8XdJUVU4iIiIiIzgRH9t/DdU/sBrC73s0A21BU3zY8v7S9rj//VCUKKxLLJxF3Hs5gw/Z3ShOH9//zm5g29hx8Zt546KqET18xHglVCiYMVRnHDRPDCvsj6lpQ0jSmiMjZLnRFgigI0MsmB5NV/puTh/R+eJ4PX1RKpfdcHzAcD7osVpQ8DQa2OTBE4VO+0ksVhT7xWyx5mlBlrtymUDHsYHWtY7uwPB/DYnKfvMtJcAqr4kpFNyIrFUUhmPg8Ydhoiik4YdgYpisI69dC1NprWG7peahodlsLDMvlswoRERER0RngaABRA8qaDma3teBvfrUTD948FXPbW/HoCzuxYOYYPLv1AFbccAnS91+H9nObsPNwN7Kmi2RMRtZyEZclZC0HwxMa4AM524Hn+dBVGRd//RfQVRldhgUvrK8jU0NwHA+G5ZQGsIvjVDFZhOMDQuETAYAsS5yQodAp7qNYnIDJOR7iVeJXkkTGL4VOMfeanlcqN11OFLmylsLLR/WVimHuucqigGG6UtpTUQ7590KU2qsrElYt7sDc9lbIooC57a1YtbiDe7sTEREREZ2hhh0NSKVSYiqV+ttUKrUxlUq9kEqlJta7TURDRVek0t6Hj/xrGg8suBSP3NKB4bqK2+aNx6RRSRiWg2RMwsSRTZBFAd//9x04Ydj43y/sxB9O5PFnq1+G43lYvrYTB47nKvZeXL62E4blIGM6nFykQec4HvKOC71shVdx1YHt+YipEnz4cGwXMU4oUggVJxSL+yj6AHRZhOsH5eF0TYJhOojJEidmKJRKk+GWB8vzWG6aIkUE4Pk+vMKsYvG/wxq1sli9Zf19Xm9Ray8AqJKIBxZcivT91+GBBZdC5XcvERENwPN8ZEwHqdTFHPciIqqikXvTNwKIpdPpuQD+XwDfqXN7iIaMJIloTah4fMlMPHJLB1qTKizbRUwRS29p+4U3uH0Aqixi/pTReHbrAdw4fQw2bH8HKxd1YOOuo3ho4VQkVKlUOvVvfrUz2IdEk/GD3+zGsSxXLdLgyjkuHM+HYbqlCRm3SoiJosiBbQql4oRicZVtMX5d3y+Vk1Y5MUMhphRy77CYDKByH0UxxBMHREWqKEAqvHQkiQLUEL+AlHNc/ODFPTh00oTvA4dOmvjBi3uCfU1DKGrtNSwXn1+zBVc//AImfPXnuPrhF/D5NVtgWOFsLxER1Zfn+TiWtbDsiU246N7nseyJTRz3IiLqpZE3EZgH4BcAkE6nf5dKpWbVuT1EQ0qSRDQV3sJtiimlzxOqgGMZE8vXdmJUs4Z7PzYZ2byDSaOSOH9YsL/iZ+aNR1yRcOWkkRAEIKYEk44P/0saz732B8xtb4Vhupg/ZTSWr92K1UtncU8SGjSJQizlC4M9ng9IAir284rLEidkKLQSmoxM3oEmBWUj5V7xy4kZCjsRgOX5VSdimHuJBldCk7HqlzvxyL/tKH0miwK++JFJdWxV/6LWXl2T8OrerorPghckWf6UiIj6MmwXy9duLe3Fu3H3MY57ERH10sjZsBnAu2W/dlOplJxOp53iB2+++ebQt4oiLZ/Pn1LcTJ48eQhac+YxnGxqwmO3TkcyriJvuXDl4I0rAUAm70ASgz2+uvM2NEVEznaw4rk38OreLsxtb8XKRR14N2dh4shk8FCuSENyP53q+Wc73r+hiOH+2j5m/ES4ng9JBCwXiMsirF4TMjt2pGvevqESlniqlXocX71z8JjxE7HrSDcmn9cMzweEKgtkGMPRcTbG8IQJk6CKQp/J8IH+TCNo9FjurVH7EZMmpeB5vXcCDSochPH6jhk/EbPbWkqDlwAwu60FWdPBgT07AYQrNk+lvQMZ6mMZO35S1fYapov9e3ZU/TP1zsFhud71bseECf1PVNerXfU+J+UGaks9c3BUzlGthTF+gfBcn3rHL9D/dUilLq7+MsoQjXv1FoZrdja34UzuZebgAHNwX1G4Pqcav408qXgSQFPZr8XyCUXgVE/S7kFtFEVbLBYbsg7OqRiMtuiaDMfxkDWd0sBhcRGC4/lYv/FtLLm8DasWd6A1qSGTd+D7Pta9sg/zp4wOHsptd8i+NMNw/tmOwdFf2y3LgYWgXFVcrZxQLK5QjPJx9xb16/heGvn4BorhC4bpePO/TuID5zUzhiOukY9voBg+3T/TCBr5WlcT9ePtr+0Z04HvewhelwuYngfBD2f8Oo6HlYs6cOe6Try6twuz21qwclEH4rJUam+YrpVpOVXbq4rCKbVxqI/FsBw8tHAq7l6/rdTehxZOhSjWPx76+/lhud71bkcYv4vqfU7K1bstYY9foL5tCWP8AuG5PmFox0D9iKovowzRuFdvYThXZ3MbwnovMwcPLKzXrZGuTyNPKr4E4E8A/CSVSn0QwOt1bg9RaMmyiIQowLBc6KoEuzDJeMHweKkUat72kLdcdOdtPL052Hvx2a0HsGrxdOgKywfR4BFFESo8yDEZNkueUgSJoohhMRnxkU1QFAmW6cCxXcYwRYYoiv2u9CIKO12RcCzrYvnaLaVJpFWLp6M1Ec7+qiyLaNGDvdCj0OdRZAlJDXjsUzORjAXlvmVRgCKH8/zGZAlNmowHFlyKsS069ncZaNJkxELaXurB7yKKMsZvdOmKhFWLp2P52q0V/QiOe52dJEmE6/a9lyWJ93KYMQfXXiNPKv4MwDWpVOq3CF5T/Uyd20MUaqIolOrDS6qIGIINqgVBgCgIEEXA84DRw4KJRl2VcNuV7dAVCWKVPZeIzpQsi3AcwHTcSAyuEfVWjGF4bukzURQZwxQZjGGKMlEU0JpQsXrpLOiKBMN2Q99flWURTXLfvdDDSBQFxArntfzXYT2/oiigKaZAkkQIAnBukxb6eKAAv4soyhi/0RXFfgTVTmnysOxeliSRk4ohxxxcew17JtPptJdOpz+fTqcvT6fTc9Pp9O/r3SaiqClONKbTv4euykjGZIhC4cFcFJHUZHasqCZkWURTTEH6979HU0zhFz9FDmOYoo4xTFFW3odlf3XwFc+vKAiROL9Ray/14HcRRRnjN7rYj6ByklR5L3NCMRqYg2uLZ5OIiIiIiIiIiIiIiIiIBsRJRSIiIiIiIiIiIiIiIiIaECcViYiIiIiIiIiIiIiIiGhAnFQkIiIiIiIiIiIiIiIiogFxUpGIiIiIiIiIiIiIiIiIBiT4vl/vNtTF5s2bz84DpyEzc+ZMoZZ/P2OYaq2WMcz4pVpjDqaoYwxT1LEfQVHGHExRxxxMUcYcTFHHHExRdirxe9ZOKhIRERERERERERERERHRqWH5UyIiIiIiIiIiIiIiIiIaECcViYiIiIiIiIiIiIiIiGhAnFQkIiIiIiIiIiIiIiIiogFxUpGIiIiIiIiIiIiIiIiIBsRJRSIiIiIiIiIiIiIiIiIaECcViYiIiIiIiIiIiIiIiGhAnFQkIiIiIiIiIiIiIiIiogFxUpGIiIiIiIiIiIiIiIiIBsRJRSIiIiIiIiIiIiIiIiIaECcViYiIiIiIiIiIiIiIiGhAnFQkIiIiIiIiIiIiIiIiogFxUpGIiIiIiIiIiIiIiIiIBsRJRSIiIiIiIiIiIiIiIiIaECcViYiIiIiIiIiIiIiIiGhAnFQkIiIiIiIiIiIiIiIiogFxUpGIiIiIiIiIiIiIiIiIBsRJRSIiIiIiIiIiIiIiIiIaECcViYiIiIiIiIiIiIiIiGhAZ+2k4ubNm30A7/nP3r17T+n31fIftiGSbai5U43hwfgnDOee7RjydtRUlHJwrf9p9GOs0/HVHGP47DlGxnBjX9+z9ViH4Hhr6myL30Y5jggdS80NFMNhOUdhaUeY2hKWdpxCW2oqCvEbpraEpR1haks94xeIVj+CbYhkG2qKOTia7YhQW07JWTupeKpyuVy9m8A2sA11F5bjZjsqhaUdtcRjjL5GP773cjYcf6MfY6Mf33s5m47/bDpW4Ow43kY5xkY5DqCxjqVWwnKOwtIOIDxtCUs7gHC1pVyY2hWWtoSlHUB42hKWdryXMLSTbWAbTkeY2hiWtoSlHUBjtYWTikREREREREREREREREQ0IE4qEhEREREREREREREREdGAOKlIRERERERERERERERERAPipCIRERERERERERERERERDYiTikREREREREREREREREQ0IE4qEvXieT4ypgPPL/zb8+vdJCKihsWcS1HHGKZGwDiuL55/ouqK90YqdTHvDYocxi9RY+C9HE28brXFSUWiMp7noztv42i3Cd8Hjnab6M7bTDxERDXAnEtRxximRsA4ri/P83Esa2HZE5tw0deex7InNuFY1gr1+eckKA2FitwE5iaKFsYvUWPgvRxNvG61J9e7AURhkndcdJsOvvLM63h1bxdmt7XgoYVTocgidJW3CxHRYGLOpahjDFMjyNuNF8ee58Ow3dKbyboiQRSFejerKsN2sXztVmzcfQwAsHH3MSxfuxWrl85CUgvf+Q8mQU0sX9tZipdVizvQmtBCe44pmvgdS1HG+CVqDLyXo4nXrfa4UpGojOcBd6/fho27j8HxfGzcfQx3r98Gz6t3y4iIGg9zLkUdY5iiznU9eH5jxXHFyr97w7/yT1clvLq3q+KzV/d2QVelOrVoYIblYvnazop4Wb62E4bl1rtp1GD4HUtRxvglagy8l6OJ1632OKlIVEbX+nmo18L5UE9EFGXMuRR1jGGKOsN2Gy6Oy1f+9Ux6bYVhh3PSy7BczG5rqfhsdltLaCfpGi1eKLwYaxRljF+ixsB7OZp43WqP6z2Jyhimg+Ufnoj5U0Zj4sgkdh7OYMP2d2CYDpIxpd7NIyJqKIbpYHZbC0Y0afjChyZi4sgk9ncZyFsu9BCWfCPqjf0GirqEJuPg8Vw/cewiGYteLo7ayj9dkbBqcUefcqK6Es72GmYwCVos1woUJkFDHC/Fcri6KsGw3FCXw6Ue/I6lKGP8EjUG3svRxOtWe+Hs9RPVgef5kEUBi+aMw53reh7qVy7qgMyHTiKiQScKAr7/yenI2S7uXr+tJ+8u7kCMA34Ucuw3UCPImg62HzxRNY7jSjSL2hRX/vWZ9LLcUO5RCACqJOKBBZdibIuO/V0GVCm8514UgYcWTq343n5o4VSIIW1ysRzu8rVbyyZtp6M1obKfEXL8jqUoY/wSNQbey9HE61Z7Ie36Ew09w3LQbTq4c13lHiF3ruuEE9I9WIiIosp1PQgCoEhin1r3d67tDG2ZOiIgGKTOst9AEZdsaoIiCrhi4oiqcZxzornpSHHl39z2VsiigLntreFe+We7+PyaLbj64Rcw4as/x9UPv4DPr9kS2u9BTRKR1GQ8sOBSpO+/Dg8suBRJTYYW0onQqJXDpR6251fNTTa/YykCGL9EjYH3cjTxutVeOF/VJBpirutB12TEVRmjmjVsuOuq0vLoR1/YyTJ8RESDyHE8GLaLhCZDk1E974a0TB2R63roNh00xxXoqoxX93bhhmnnl0r47jycQZzxSyHnuh6aWkZCVSSoDZaHfd9HQpXx2KdmIhmTkck7kEUBvu8DCN/byVEr15pzPDz5272YP2U0AMAs/Pq2K9uRDOHEYtTOL/VIaNWfzRN8NqcIYPwSNQbey9HE61Z7PJN01gtWG7gQBQFZy8HXP/YBdOcdAIAmi/j6xz6AvO1CV3m7EBG9X64bTCgmYzJ2HMpgmK4w71JkFPsMJwwbsijiaMbE9xZ34IMTzsW7hg0giOHuvIPmmMLSehRKveO40fq/tuvBcj2cMGwkNBldWQvDdAWiAEghnPQyLLf6ni8hLdeqqxJW/XInHvm3HaXPZFHAFz8yqY6t6l8U94CkQN5yq+cm7r1NEcD4JWoMvJejidet9sL3VEU0xIqD26IAJDUZOdvFc50HsfNwBmNbdMiSyBuFiGiQGLYLXZWQNR1s2P4O8y5FSrHPMLZFBwAMTyi46qKRyJpORQwLggDLYWk9CqdiHI8ZHofQgP1fzwccr7J0q+N5CGu1o7gsYtGccVjx3BtI3fs8Vjz3BhbNGYe4HM4rkDUdzG5rqfhsdlsLsqZTpxYNrLgHZHk53DDvAUmVfPgD/poozBi/RI2B93I08brVFrvSdNbTVQmG6UJTRPg+8MzmA7h55tjSg/3nn9qMk6YDL6wjEUREEZLQZGStYGLxxuljmHcpUop9hozpIK6KECDA94HXD5zALWWTAoxhCrNiHOdsF5rcmP1fy/HxlWdeR+re5/GVZ16H5YT3OHKOF6k9LXVVwsMLp1VM0j28cFpoy4nGFAkPb0hjxQ2XIH3/dVhxwyV4eEMasZDusUmVonQvE/XG+CVqDLyXo4nXrba43pPOeoblQhSAXGEJ9E0zxmDbgeN49NYZaI4rOJmzsXHXUVw5aWS9m0pEFHlZ00FTTIZhOnh26wF88SOTBsy7LE1GYWJYLmzPQ3NMRq5QmtCHj8snjMBvdx3pG8MXjQxl+UI6uxmWCx8+EpqMg8dzuGB4vKHysOf7+Omm/VhxwyWlcqI/3bQft80bX++mVRW1Pf9Mx0MyJlXEiiAEn+tq+N5ZNiwXh06amP/dX5c+m9veGtrystTD8328tr9aXhpR76YRvSfGL1Fj4L0cTbxutVfXXnQqlVIA/ABAGwANwP0AfgdgNYDhACQAS9Lp9K5UKrUKwBUAugt//OMAFAA/AhAH8AcAn0mn00YqlVoG4HYADoD70+n0/x2yg6LI0RUJWcuBJAjImg5GnxODJrfgjjVb8OreLsxua8HKRR2IKeF7SCYiipq4HKyQAYAFM8egO8+8S9GhKxKyvo+c5QGCgO5Cub+EKmHmhVViOKTlC+nsVuz7Zk0Hqiw2XP83rkq4eeZYfHn9a6VjeXjhNMRDOklXLCfae8+/4CUcpY4t64cPdOcd3L1+W+n8PrRwKlp0td4tq0pXJKxaPB3L124ttXfV4unQuVIx9GJKP9+tvHYUAYxfosbAezmaeN1qr95PibcCOJZOp68EcB2A7wP4NoAfptPpqwDcC+Diwu+dAWB+Op2+uvDPuwDuA/Cjwp/fCuD2VCp1HoDlCCYg5wN4IJVKaUN6VBQ5CU1GTJWw+e0u5Gy3egkim3sjERG9H57nw3Q9iAKgazIe3pCG47rMuxQpCS3Yh1lXJTy79UCw8tZhDFO0JDQZiihgRJPWcP1fw3Lx5fWvVRzLl9e/BsMK57HoqoQHb67c8+/Bm6eGdqWi5wN3r99WcX7vXr8ttHtWiqKA1oSK1Utn4a1vXofVS2ehNaFCFIV6N43eQyPlJTr7MH6JGgPv5Wjidau9etf7WA/gp2W/dhBMBm5LpVL/BmAvgDtTqZQIYBKAx1Op1CgAf5dOp38AYB6AbxX+7POF/94F4KV0Om0CMFOp1E4AUwG8OgTHQxFk2C5830cm7+Cx/9iDHy4biVHNGjbcdVWpZNKjL+xEguVxiIjeF8N2AR+AAGTyDg6dNDHz/n/H7geuZ96lSCj2GQQEMfyL7Yfw4YtH4YLhccYwRUYxjg3LRdzzS/3fV/d24YZp5+MLH5pYiuOwTmwNJKHJVcuJhvV+NCwXz249UFGu9dmtB/CZeePRFKv3O8B96Vo/5Vq16MUKhVtCk/ndSpHF+CVqDLyXo4nXrfYE36//K4WpVKoJwHMIyp4+AeDP0+n036dSqfsQTHw+BOBOAI8gKIn6KwC3AXgGwKXpdDqXSqXaATwJ4G8Ln91T+LufBPBkOp3+t/KfuXnzZl/X9fdsWz6fRywWG5wDPUNsQ23bkLr4Yniuj4zlwLBcDIsr6DIsPLP5AOZPGY2JI5PImA40ScCbb7x+Sm2YPHlyzV99PdUYHgxhuP5sx9C2o9YxHKUcXGuNfozlx5e6OCg+8Ou3DmPWhS0wrODtsb9bOqvfvLtn147T/plhysGNfn2Bxj/G3jFcfBFJEgUYlot1r+zD565sh2E7yORdjG3Rsb/LQDImQVdkvL2bMRwVZ8uxpi6+GJ7nI2M6wV54toe4KuHvX9yDxXPGIWv1xPEwXUF312Fkurvf+y8uU89+xNjxk7DsyU0V5UTntrdi9ZJZ2L/n9O/HWruwfQIypoc713VWlGdKaiLe3r0LQLhic+z4ifjBi3tK39c7D2ewYfs7uG3eeOzfs/M9//xQH0uyqQlqUyvu+nFPOdzv3jINVvexfuO63jk4LNe73u24sH3SoH63DoZ6n5NyA7Wlnjk4Kueo1sIYv0B4rk894xeIVj+YbahvG87kXmYODjAH9xWF63Oq8Vv36dlUKjUWwM8A/O90Ov2jVCr1CIIJRgD4JwDfBGAAWJlOp43Cn/klgGkATgJoApAr/PtE2WdFxc/7mDx58nu278033zyl31dLbENt29Cdt5HJO/ivkzlcNKoZru/jmc0H+uzFsnJxB84dMQJjx4wZ9DacqaG6JmG4/mxHeNtxpqKSg2ut0Y+x/PiK+fax/9gDXAXMHh8M8rq+j9cPnMAtc8bhrvJB1cUdSKUuDm2JMsZwoNGPsVoMr9+0H3/2wXFIajJum9cOALAcH1955vVS/H7nE9OgK0P3XX0mGMOVzpZjLcZx5/7juHLSCCQLJX0/e2U73s3ZfeK4deR5oer/FvV3rQzTwfc+2dFnEEEUwnk/ep4Pz3fw6K0z0BxXcDJnQxYFxBS51N4wxWbecrBozrg+k6CyKIQyp2RMB8ue6Jlk3rj7GO768WtYvXRW3eO6v/MQlutd73YYphO679Z6n5Ny9W5L2OMXqG9bwhi/QHiuTxjaEcbvLLYhfG0I673MHDywsF63Rro+da2nUihl+i8A7imUMwWAFwFcX/jvqwC8AeAiAC+mUikplUopCMqebgHwUtnvvQ7AbwC8AuDKVCoVS6VS5wCYDGD7UBwPRZMkCFBkAaOa4/jcE5ugqzJumjGmz14sd67tRPPwc+vdXCKiyCrm2+98Yhoe+/UeTPvGv2DZk5ugqxIunzACd/Wueb+2MyiZShQCnueXYvhPZ43FF3/UiamFGPZ8H1/6SWW/4Us/eQ1eCCqCEPVWjONpY4dj2ZObMfUb/4LHf70bfn9xHNbN8vohCcG+f1955nWk7n0eX3nmdXh+8HkYiaIAXZUhS8GjuSyJ0FU5tC/UOJ5fdY8aJ6Rxoqv9lGuNYGnfsw2/WynKGL9EjYH3cjTxutVevVcqfhXAcABfT6VSXy98thTA/0mlUncAeBfAJ9Pp9PFUKvVDAL8DYCMoZ/pGKpW6H8ATqVRqGYCjhd+bTaVSqxBMMIoAvpZOp/NDfFwUEa7rIaZK+OrPXsfd81NYvWQWcpaLC4bHSw+f5XvL5CwXnueH9iGfiCisquVbXZNw8HgOhuUiGeu7B9aoZg3wgw6hYbnQFYn5l+rGsBzomlw1hvUqe7iNatYACIxfCg3P85F33H5zcaPEse0B617eV7FH4bqX9+G2ee3Q6t24BlAtToI9Fes9tFCdYbmY3dZSUQ53dltQgj0Z0jZTQO9nP6SwxhpROcYvUWPgvRxNvG61V9czmU6n70SwV2Jv11T5vd8G8O1enx0CcG2V37sawf6MRP3yPB9Zy4UoAIdOmrjiwV8BCCYRv3XTpZjd1oIRTRq+/seTkbWClTJHMyaG6wqaYkroB1SIiMKiv3wLBPtc/XDZZdhxKFMx6HfDtPNx78cm42jGxFhVx9Fu5l+qH8/zoWsyjnSbVWN49ZJZfeL3y/NT+MGLuyv2CU2oEiSproVC6CzleT6OZU04rg8v5p9yHEcxD8dVsbQ3JABocvDruBrOe694bZav7SknumpxB1oTWijPs2H2M0lnBi8IhY2uSFi1eDqWr91adn6nQ1e4UjHs8paLez82GZl8z71878cmI2+5HBSk0GP8EjUG3svRxOtWe+F8siIaAoblBG9bC0EpvrntrZBFAUe6TQgC8NDCqfjaH0+G6XoV5ZO6TQd5h+X4iIhOVX/5dm57K77ziWnImg42bH8HD948tfT/vvbHk5G3mX8pHAzLgWE6AFA1hsVCv6H4+V9ecxGe2XwAN04fgxXPvYHUvc/j9qc245hhRa6UJEVf8GKHg017uzCiSes3F/eO46jmYdP2+vTfTdeDaXv1blpVhuVg+drKcqLL13bCsJx6N5ZRkLgAACAASURBVK0qUayMk7ntrXho4VSIIR1ZEEUBrQkVq5fOwlvfvA6rl85Ca0IN5YQt9dU7B+VDeh8TVcP4JWoMvJejidettkLa9SeqLdf1EFclWIVyfN/+xe+x4oZLkL7/Oqy44RK8uvcYkpqMhCrj7vXbKh7y716/DR7zEBHRKTl35EjEVQk5x0VM6Ztvv/2L30NXJSy+bBye3Xqg9P+YfyksijEsCgJGNGlVY1hTRDRpMh5YcCnS91+Hca065k8ZjXue3sZ9QqmuPM9Hd96Grkq4YuIImE71vm+1OI5qHvZ8VG93SOfzy8sz7frW9dhw11UY1ayF9i1qTRKRLIuTBxZciqQmQ+MqbBpkUbuXicoxfokaA+/laOJ1q71wPqkQ1ZjpeBCFIMkYpotDJ03M/+6vAQSlnv7q2hQ27jqK+VNG97NnCMvlEBGdikTyHBiWi4QmY8ehTEW+BYKSe6bjQZVE3DJnHBKqDEEAdE1i/qVQSCTPgWkHEzEHj+f6jWEAwQR6oeTixJHJ6jGsMoZp6Bi2C9fzYdoekjEZhun26fsChTi2K+M4qnk4au3OWy6+PD+Fu9dvK5XnfGjh1NCWZ8o5HjbuOoq5E86FIADDdAUbdx3FlReNRDKEE4tBeVmrT/lTrlYMv6jdy0TlGL9EjYH3cjTxutVe+Hr9FHme5yNjOvD8wr9D+hqA7fnQNQk526lasqxj3HCcMGzMbmup+HPBniHhLEdERGeHqORZIHh5I6HJMKqUOJ3b3oqVizvgecATv90Lz/ex7MlNeGrjXmTyTj/5l6u8oi5S8ev58PziS0gOfrblwCnF8Ka3jyFr9hPDFmM4yqIUvwCgqxJiigTPB07m7NK+gtXKV7q+j9/uOgoBwG92HI5sHjb6u/dC2n93fR/PbD5QsXL0mc0H4PrhjK24IuKy9lacMGz4PnDCsHFZeyviSjiHFgzbxdqX3644v2tffpurxiMgavcyUTnGL1Fj4L0cTbxutRe+Vx8p0opvgq59+W3MnzIaE0cmkTEdJFQJUp3fXPU8H4btIq6I8PxgkCVrOvB8IKaIeGDBpRjbokMQgFvmjMOPX9mHz17Zju98Yhp+uml/xfHIfKuViOqkWMruuGFjbIuOo90mhusKmmJKaN64L8+3uiYhkw/y5oKZY0oDp8V8qkkCVEXCLXPG4a51nRjRpOGm6WPwDy/twcMLp+HpzT35N2s6oR20pFMT5n5COc/zkXdcZE0HrUkNQLCa6FRjeMa4Fry08wi+u6gDP35lX2UMy+E5Tjo9UYpfw3ZLfV0BAnRNgueKMCwXf//iHiyeM67U993fZSCpyaUSqf/w0h58+orxkc3DoiDg+5+cju68Uzq+ppgMUQjHd2Rvuiph6eVt8AEIAjCqWcPSy9tCu6rZtD0YlouvPPN6xcrKmCxB18IXG3FFxJ998EJ054NBJE0Ofh32OKbo3ctE5Ri/RI2B93I08brVHnvSNKiKb4LeOH0MVjz3BlL3Po/bn9qMY4ZV1ze5XdfDsayJH/xmN7rzDnRNgmG5eHHHEYxo0nD//32zVLrsZM7GiCYNiy8bh7gq4a1DJ3HbvPEY1axBEADf9+F4fujfTCeixpS3XXSbTsWG092mg7xT3zfuPc+HYTnIWw5O5m0c7TaRszxkCy9ixFQJD29Ilwamdx7O4K//cTtUJcjHI5o0jGrW8P8tuBTJmIxVv9yJf/3P/8KSy9swTFeQs1wkYzKylgvXDfmGXtQvwwpnPwEI+gqG2RPDluNh+dpOZE0HWdM5pRi+dsqoUgz/xdpOHO3OV/QhPN9Hznbrfqx0ZsLazy3nOB6OFvq8Ow5loKsSdE1Cd95B3vWQ0IL8+j//uafvazoemmJyqUTqpy5vK+XhE4YZuRjWFLHPgIEoCNBCOolkOx5Mx8Mda7bgoq89jzvWbIHpeLCdcH7XeT7w+oETePTWGXjrm9fh0Vtn4PUDJ0K7R41pe8jZbkW/KWe7pXK/FF6aIkKVRQzTlVKpXVUWQ3svE5Vj/BI1Bt7L0cTrVns8k3Ra3qvkk65KuGnGGNzzdOVmqHeu7axbiZni29prX96HhbPHIqnJyJoOEpqMqWOGoTvvlPaVmfDVn+O+f3wDectFXJGRs1xcNr4VhuVWPOgblgurzgP4RNSYBsqzxVKMVTecruPYWHH1pGE5cH0gb3v4yjOvI65K8DwfscJqmfJcO/+7v8ahkyaypgNdkZC3XNx/0xQAKJWN/HjHBXA8D7brYdmTm3DR18I3gE999RfDXqHseNj6CUAwodhtOjBsB04hhptiCkY1a1BEobTia6AYtmwXN88YA1EIYvh7izvQPiLJPkTEDJSDw9jPLec4HgzbxcHjBhZdNg4rnnsDOcvFyZyNhCoBPnDo3Txmt7Xgudf+UIrl4Pd58HzAsl0ooohMProxbNoeslblyzdZywntJJLt+bhzXWdlTK3rhB3S77mYImLmhS0VMTHzwhbEQjpI02+/KZynl8rYjodcr/yTs9zQTrgTlWP8EjUG3svRxOtWe+Hs+VMoFUs+LXsiGNhd9sQmHMtWDuzmLRcXDI9jVLOGl+75ELavmI/dD1yPb//p1LqVmDFsFwlNxic/eCH+8sevwSgkEcN0cU5cxRMv7anYH+lItwnPDwY+i6sSo/SgT0TR9V551rBd6JqEa6eMQud912D3A9ej875rcO2UUXXdcNqwXRw3bGTyLnzfx3//cVACMpN34Ho+sqYDSRCq7uElCQJEUYDn+/A8lMpTP3jzVCiSiEze7TMYGJYBfOproBg2bBcnshYuGB6vHsN1LPVn2C5OGDZsxwcKMfyHEzncc+3FOG7YOHzSfM8YLvYLbM8vlZFkHyJakk1NA+bgMPZzy+WcoOTphBFNuHNtEHeCIECWRGSt4PvD8/2qcSyKgK5JpT3HE1p0Yzhqk0gJTcare7sqPnt1bxcSWjh3KsnZbtWYyIX0e1nXpKrnt579Jjo1UZtwJyrH+CVqDLyXo4nXrfbC+aRCoWTYLpav3Yr5l4zCo7fOQHNcwcmcDctxEVODUPJ8H0e6Tdz7scnI28HKkuJeGysXd+DchDbke37parACpiWhYlSzhmRMhu8DJ/M2zokrWPXLndh5JFvaH2nn4Qx0TYZhOtALD/NRetAnougqltZ7eOFUnBNXoWsSDr2bR95xoasy4ooIy3Zx3ZTRuGPNlp78uqgDlt2Ti4earkoY26LD932IooBRzRq+8fEpeOKlPfjiRybB84LPH/5ZuiLXPrwhjUdu6Qj+jrKcapgunt16AF/8yCSMVfXqg4Eh3WvqbDdQDMcVEZ7n492cHboYTmgy4opU6qOMatYwPKFCVyX4PvCln3TikVs6BozhhCbDMF0kNAmGGZTrBdiHiJLksFb8Pz/qv68bxn5uOV0NSvEmNBmjmjVsuOsqxAsxvOZ3e7Fgxhicd04cX/pJZ9U4DuI36AMDQmRjOGqTSMXV+Rt3Hyt9NrutBVnTQVNMqWPLqovaJGjUzi/1iFqsEZVj/BI1Bt7L0cTrVns8k3TKdFXC7f9tPDrGDscJw0ZTTMEJw8YwXYEieZAkEbom47hhQxYFPLP5QMWAxbqX9+G2K9sRl8XS6sFiyTBJqt3b3YbpwoePvOXir669GIbp4mjGxHOdB/GZeeNLJaCee+0PAIC57a14fMlMSIKArOnAB/ggSkRDIq6I+LMPXggAOJoxMVbVS/squZJXWp237pV9lfn1lX3486va0Z23hyy3ljNMB0czFs5NqhAFAV//2AfQVNiP67Z57TiaMdEcV0qlI4vmtrfCMB0kYwoM04HnA4IACAAWzByDrOngWMaqmoMNy0WSHcLQiSsiPn1FGzy/MoaDPTeD7/5M3glVDHuej6wVrKrNWS7OiSv4+sc+EEzQFPoMh06a6MpaA8ZwsbR6xnSQs1x48OH77ENEyTl6bMC+7kD93IPHDcQVqS45GAji2LSDPRPfOZHDX117MX66aT8uGBbk4F9sP4QLW3TMuLClehxbbqnMr1TYjzBjOpGM4ahNImmigJWLOnDnus6KFy20Ok5QDyRq51dXJKxc3IE713ZWvASgK+GcZKYeUYs1onKMX6LGwHs5mnjdaq/+dXooMvK2izltrciYlXuUZEynZ8DQdDH6nBhGNmu4cfoYrHjuDXzpJ53QZBFf/MgkyALQXRgk9n3gWMZCt+nAdWtX01gUgjcUXN/HTzfthygAyZiEBTPH4MUdR7ByUUdFCahVZQ+ZiihAFoQ+v2flog7EZT6IEtHgMiwXAoLSYuV5NtjrzUVClaGrEm6cPgYbtr+DnYczmDgyic9d2Y684w1pbi3yPB+CICAZkwAIcH0fluOV9u16N2chGZPg+R7+1y1V8m1hZZquypBFAXJhELU4YThMV/qU6lvFwcDQMm0Poij26St4PpBQZew8nEEyFq4YNiwXL+44gua4As/34fo+BADdeQdZy0EyJuGhhVPxo9+9jUdumdZ/DCvBhMyuw93QZBGiAEgCqvYhGL/hlDWtfvu6tuv16ecWY3jCuQlcMEzH37+4BzsOZaCrMrKWC2cI9+wwLBeeHzxAq7KIn27aj9vmjYdQ6Pc+tHAqHvv1HmzZ14WVi3vn4unQCyt1S/1bAZAFIZIxrIlCn2NcuTi8k3Sm5+PgCQOPfWom3vrmdXjsUzNx8IQBM6TlmVSx+rORGtLzKwgCdEXCo7fOwFvfvA6P3joDuiJBEMLZXuqh9RNrYb2XicoxfokaA+/laOJ1qz2+4k+nzCuMixT3KAFQ2qNk9ZJZMGwXohCUPoMP3PP0Noxo0vCX16Rwz9Pb8OreLnT+9UdLAzXFN0UfWjgVqiRCr9Hb3DFVCkqZFgbiRQGQRRGKBFw5aSTiqojHl8wMyj1ZbmlQRUPwhrYiiRgWk0u/J2s6iMsSZJlz8kQ0uBKaDAMuvvCjrX3y7A+XXYYdhzI4f1gMz249gBunj+nJrfddM+S5tciwXMRVCV/72et45JYO+L5fWinz0MKpeHrzASyeMw4egOaYjNVLZkHXinlZLpUKFEUBMUWC47hwAaiSCNf3kVRlxGSxIgfrZWUqKVyKY+C9+wrJmIwdhzLYsP0dnD9vfN8YrkP/oEjXJPzF2k68dE8LRjXHIAhADgJ+8OJuLJ4zDgCgSCJum9feb58BACRJRNwHxgzXsedoBheNaoYkBnH/d0tnBfuFFmKfg9nhJAhCxX58QE8OLlaxKPZzy2P40VtnYN0r+ypieqhLohb3AjdtDy0JFTdOHwNAwK/fOoy5E86FIqGUf3OWi9VLZkJX5WCv3rI4LvZvs5YDURSgiALOqdIPHspVmKfLAzBMq2yzJgoYuine05PQZCz829/BKZtElEUBb33zujq2qn+uDyQ0CY99aiaSsWD1uSQGn4eRYblY9uTmijfV57a3YvWSWaUSvxROPtDnOVwTBYQ01IgqMH6JGgPv5Wjidau98D4NUt15no+M6cDzfZw3tg26Jg24R0lcEeEjWF2SjAW1i7/woYm45+lgYOb6S0cDZQM1xY1S716/DbV8EdcwXUAQYFgu7nl6G1RFwj92HoQmi9A1Cd15B89sOQAU2l4+ONgUUwAByPVaPZG1HHghfXuYiKIl2dRUyrVZ0+k3z2ZNBxu2v4OEJmP+lNGl3BoMQgpDnluLdE3CzsMZHDpp4uDxHAzLxaF38zjvnDge3pDG/CmjMTyhQpNFaMWVLT6QjCl9BtpFUYCqytBVGR6CgVbL89BtOn1WAA3FCjY6NcUYdj2v375CMX5vnD6mTwzXq39QZJguZre14Js/fxOG5QaThZqEVb/cif/5z28GJSVVuTQZk1BliIJQ0WcokmURrQkNk0Y1I65KcPxgQtJ2PRzNmPB94GjGQnfeZj8iBMr7uhnTASD239dVpYp+bnkMN8eVPnl54+5juHNtZ6lsda0ZpouM6eL//GZ3qc9bnDB/dmtPv/dkzoYmi0jGFKTTv+83jptiCgRBgCKLeLdXDjbscOdgRRaRsd2KvnvGdqGE9IXAYnmmcsXyTGGkKSIM00VXNji/XVkLhulCU8J5fqO2xyb1kGURWbvXc7jt8eVeigTGL1Fj4L0cTbxutcdX86iqYO8jpzBYLUEQg5JeAqrvq5K3XLi+j7giIZN3Sp9PGpksPcTdPT9Vl4c6UQhWKxZ/Vibv4BfbD+Gvn/vP0u+Z296KBTPG9KmrXBxk6a6yekKRxVLJMyKiM+F5PtSmVvymsJKkKSbDqFL7ffmHJ5ZWW2dNp5Rbb5h2Pr7woYl1HTAzCpNFD948FT/bcgBf/MgknMzZyJhO1X27Vi+d9Z6rdkRRKJU/9Xxg7cv1XQFE/fM8H8nhI4I9iH0JxavRO4aL8fvs1gP4zLzxFTH8rZum1DWGRQF4aOFU3L1+WxB3QlD6tL89l08nfpOaDMNy2I8IIc/z0Z23kXc8oLCKFEC/Odiw3Ip+bnkfN2s6mFj266LiZORQEAVA14K9bL/4kUmlPu/sthas+Kf/xIp/Cvq9xThueo+VhsU4zpgO1kUsB5u2B8Ny+9xzMVmCroVvIEFXJaxa1IGs5WJsi479XQYSqjRksXO6DMvF2lf2Yf6U0QAA0/FKe9U3xcJ3fosvjvTZm9l0uVIx5EzbQ9bq+/0ZvCQRvlgjKsf4JWoMvJejidet9tiLpj48z4fluDBst2JD+zWfmwPT9vD9T05Hd94pPfQ2xYL9ChNaUNrMsGxMPq8ZKxd1IGM5WP7hibh55hiMHhZH1nTwvcUdmDvhXDTHFZzM2di46yiypoNEsQSTKvUpKXamx2HYLkQAmbyDrOmUBuZXLurAnet6jm3log7E+9kbxvP6L/lKRHQmivkJPrBl33HMbGvBHWu2YPWSmXA9v0+ebUmoyFkent16AH9+VTuyVpBLPzjhXLxr2APm1qaYUvp5g5Vfy49DFAQsmDkGz2w+gPlTRiNrOjivOYaM6fTJtWeyF6KuShUrgACUVgCtXjqrNHlDQ6v8O9bzAdfzoasyurIm4qrcJ4aL8Tt/ymgoolARw4CATL5+MQwAMUXEAwsuhWG56M7bGJHUTquvMPDPYD8ibDzPR952IQiAAGDZk5tKpaQtp29ftyWh9unnZq1gwm7+JaOCmO4nD+ftYK/DwY7d8mMp7+/ObmvBweO5M+rzVhPFHNxfCduw3nOm7cEHKgY9Vi7qgGl7oRz00FUJSy9vgw9AEIBRzRqWXt4W2klQUQRWL50Jz0OpXKsoBhPxFG5Ru5eJyjF+iRoD7+Vo4nWrvfA9BVJdFd/aFkUBd67trLj59nfl4PkekjEFz3UexPwpozFxZLK0t4phuth9pBtXp0ZCVSQcOZJB6rxmLLm8DaokImM60GUJMy8MBs8rBjdkCUezZsUk5qrF09GaUM9o4KV4HB6Ac+IKntq4Fzd0XIBlV7UjZ7tY98o+rLjhEkwcmcTOwxmse2Vf8HZtlbe2WTKHiAZTMT8dN2yMa9VxxcQRuP2pYK+fd3M2mmIypF55L6FJMG0Pn5g9DoosQvaB/3bRSHQZFt58511cM/m8fnOr63o4ZliDll97H0dTXMHDP0vjjqsnYuLIJE4YJgDg82u2YESTVsq1wcqLvmX23ksYVgBRpfIYPjepwnI8fOknr2HFDZdgw/Z38Nkrx/eJYVEAPjF7HP77jzvx1GfnQJaCGDZsB+fEFXiu328MG1bhxaAaxvBXf/Y67rh6ImKKCNuTkHNOr68wEPYjwqV43RVJhA8Bd67r6e8Wc3DvyrQJLejnbtj+Dj53VTsUWYQCYNWiDiQ0Gaoi4XB3tk8Mr14yExnTGfT82/tY8o6HEU0antq4F99d1IEfv7IPn73y9Pu81UQxB0ftnvN8vyION+4+hjvXdWL1kpl1bll1tuPBdLw+k9Wa40FSwzcJqooiugyrT3tbdLXeTaP3ELV7magc45eoMfBejiZet9rjpCJVyDsuuk0H5w+L97n59h7LYMa4FvzDS3v6lEB6fMlMOJ6PuRPOheP58C0X40ckYTkeZCkYNBEFATnH7fPQfPCEgZgiYfPersLDswBdk3AsYyLvuGdUGqx4HE0xpVTu1PeBm2eOQUINSkM98m87Sr9fFgV88SOTqv5d1cpgBSVzHCR7lUslInovxfz0lWdex7f/dCouGN6Tb3cc6sac8a3oMqyKFQuPL5kJRRSCCQ/HK60Oe2bzASy9fHyf3Dr/klFQZRGCCGRNFwePG3jsUzNLb+jvOtKNuCq9rxUmeceF7XnIVilzuvuB6/Hq3i44nl8qHSmLAt765nWn/XN0VSqtvumThy03lKtkGl15DP9w2WXQtWAf5XdOGFg0ZxwcN9ifrjyG/+HTs0qrAfO2C6UwoZK3PXTng/LqvWNYVyUcz1nImi6OG+aQxfCKP/kAllzedlp9hYGwHxEuxfgdFleRLMRu0UA5WBQELL2iDa7nw7CCfRKTMRm+H0y8NcdV3LFmS+k6337VeHg+sO7lffj+JzugyhISmozuvAPLcREbhNK3xWORhGCl5C+2H8Lmt0/gnmtT8P1gX9r3G8dRzMFRu+f0XnEIFAc9wnduAcD2qk+CPr5kJmJ1bls11Z4/i+1t4r46oRa1e5moHOOXqDHwXo4mXrfaYy+6QXheMIDn+YV/937F+pT/nmCQurj3xA3TzseGu67Crm9djxnjWpCMyZg/ZTSe3XoAK264BOn7r8OKGy5BQgsG+U4YNhKaDNvz4Xo+PB+lf+JKMJhS/tC84k8+gAkjmqArEuZOOBd5x8XRjFkYoHFhO94ZHUvxOJpiMrbs68LKRR24OjUSCU3GwRM5zG5rqfj9xYGRakRRwHc+MQ1z21shiwLmtrfiO5+YFso9ZIio9t5vvi3mpxU3XILWhArDdLH8wxOx4a6rMLOtpTRZ2DvH2p6PO9Zsge35MD0fuibhphljkIzJFbl1xZ98ANdfOhp3rNmCnYez0BUJ489NoisbbFDdlbUw/twkYqe52qoPH7AcH3E5KK9XniOL3yHlivsXna6c7eG3u47gu71+xsozKKVKgcGM4azplGJ4xoUtWPfKPkii2CeGrUL8Xv3wC9A1GVahj3D3+m1IqBKSsb4xfDRjYfnaTowZFh/SGL46NXJQY5j9iMEx2H1dXZOw83CmlH93fet6zLiwpRSXI5o0/PPyK7Hmc5chocmIKSJEQUBCC3JuXJHgF/u4soTmuFIRwzMubCmViZREEccyQfwez1rIOx5c1xuEcxIcy6hzYqU4PtJtImO60AurK99vHEcxB4tCP/ecEM57bjDzzVDo/TwHBJOgiZBOgkatvdQjavcyUTnGL1Fj4L0cTbxutceedAPwPB/HsmavsmAdaE1opz1gFVdF3Dh9DEQB+N4nOwAAmXzP29iG6WLCiETFSsXvLe7A+cNiOH9YHEDwtnZSleADFT9/x6EMRjVrFW8K3DR9DBKajKzpwHQ82K7XZxNVRRZPe7VicbD9ZM7GY/+xB7dfNR5XpUbCsFzEVREPLZyKu9f3rLQcaGAkJktIqB4eWHBpaW+dhCohJodzIIWIamcw8m0xz97z9Das+dxlsB0XSy5vK72U4ft+RY5d/uGJuGBYe2lQLF7YjytnubhgeLxPbr1x+gWl1TITRyZh2m6fVWMPLZwKVRIhv4839D3fx5d+8hr+9taZOHiiciWkLKLqPl5n8uN0RcKstlasffntUgm/YB/ewd2X7GwxGOVwK2M42G95yeVtSMaCVVFf+PDEPv2ESaN6yicaplsazH11bxd2HcnivHNifWJ4zecuw6t7u2C5Xm1j+FOVMQwAedsdtBhmP+L9q0Vf1zAd7D7SXcq/AErXf1Szhr+8JlWK4c77PgrX99EUC/qskiCUSqTqmoQdhzIY3SuGiy/cSaKAEzm7avzq73NivNjf3XfMAICKFb1Huk2osvi+4ziKOViVROiqVHHP6aoE9f2+iFAjg/mdORSy/bz5XdwDN2yi1l7qIQmoei9L4Uw9RBUYv0SNgfdyNPG61V5NHlVSqdQlqVRqbiqVuiyVSv17KpX6SC1+DgUMy8XytZ0Vb1RnTRd5+/TfbjUsF/c8vQ0egLgiI28Hk3ype59HJu8gazkwbLdipeJVF42EJgZll/Z3BYMahu0iZ7vImg7yVvDvDdvfgSigtBrgxo7z0RSXkTHtYKWNKpc2UXU8v7SJqncGL3IbpoMLhsdx8LiBlYs68Niv92DHoQx838df/KgT3/5FutT+BxZciuQA+3yJooCmmIJzmzQIAM5t0tAUU0I7kEJEtWNYLta+vK9iBdbal/f1u9K5v7/jnqeDXLfzcAauj9KESZBnK3Ps0ivGQxR7BsWKudXzfew7ZvTJrc1xBddOGYXO+66BabsVG1RX5NYzW+RTomsyRjVrkETggmE6bn9qMy762vO4/anNsD2/tI9X8Tyte2Uf7DP4oaIooDWh4rYr2zFpVBI5Oyi3J4V0cDjMPM9H1nKxrk8Mvw3jNPoM5TGcMV3YhUm/YonE3jF8xaQRpfgFgv0Vi32D2W0t+Jtf7YQAv08MG5aD7y3uqGkMXztlFCShMob3HTPgDnIMl/oRAvsRZ2Iwcm/533XP09sAQcCVF40s5d9iX7c77+CuP7qoIoZlEVAKfV0AcH0fohBM6mUKfVz0iuGMaaMpLgMQahK/QE9/d++xDIbpCkY0xXD7U5ux41AGMVmEJAhV49g5jb51FHNwznHx5G/3wiwcqOl4ePK3e5FzwrnybzC/M4dCtQoFxT1wwyhq7aUeludj466jGKYrEARgmK5g466jsEJ6bxCVY/wSNQbey9HE61Z7tVqp+LcA7gTwDQBfA/BtAP9eo5911tM1qc8b1cU3uGPKqb9F7DheaSXMpj3HMKuttTQIAgAJVYJpu0ioUsUKhM77Poqc5+NYJo+WhAbfR7C/igAcy5iIKxJ0VcLiK0rZZgAAIABJREFUOeNguR4UWcTjS2ZCgIC87UIs7APTX2maM9lEVRQEGKaLMS0J/HbnETx66ww0xWQIgnBG+3yJooCkJuPNN9/E5MmTT7s9RNQYyldoFXPtgzdPRVw99cHV8lz3N7/aiW/ddGkp1yZUCRBQ8TPe+uZ1pYHslYs6SqsZBUHA15/djq9dP7kit1q2i+umjMaTv92Lz8wbP6i5tZxhurjn2otxNGPhzXfexaO3zkBzXMHJnD0o+3iVK+ZgAKHcvysqDNuF3us7vBTDypnF8M+2HMCfzhyLu9dvw5rPzsGDN09FQpH6xLBVtvJPU0TkrKAtD948Fc9uPQDTrozhj3dcAAHAFZNG1GyTdcN0ceP0MVj25GbMv2RUKYYN04HOGA6Vwci9QGVf96eb9pdit7yvmzEdjG2JV/y8rfddA8Ny0aTJcDy/sJeiX1qx17uPaxX6t915B02x2uRgoKe/O31cC554aQ9unjkGq5fMQlwVIQgCfB+DEsdRi9/B/g6qtai1N+e4pUnQiSOT2Hk4g3Wv7MNn5o0P5R6FecftU1Fh15Fu6KqEZAjbSz0Smoy/WNsJp2wA8Ez36CYaaoxfosbAezmaeN1qr1ZPhTaANwCo6XT6d6lUKvxPnxFmmC7u+qOLSqsGgGAD+uVrO7F66axTfvjPOS5cy8fyD09E+4imPoN4GdPF2lf24dPzxlf8rOKgiOMG5WOSMTkoAzUshpZE8FZ+xnQAAfiLH3WW/tyub10Pw3KgqxIcx0Mm72D5hydi/pTRpQfUDdvfgWG6pXJUp0MWAV2pTCKvr/goy98Q0RkrX6EFBLn2nqe34fElM9EUO7WBqd5luMpzbbfpQBCEip9RLBVp2S4EVSpNMALAoZMmPB+4qyy3vr7io9j8dhdumTMOuirBMPvLre9vg2pZBEadE4PvA3/0yH9UdNaYa8NJVyV055xBjeEt+05gyeVteHVvF7pNB89uPYBPX1HZT8iaDhRRgK5KePTWGTCsIKYzpoM3/nACn75iPG5/anPp9//nN+bDsFyc1xwDhODP1yqGdSWY8Nm4+xhW/NN/Fj4XsPW+axjDITIYuRfo6evObmupiN2ibtMpvZBR/Hn/8OlZSGgyJEGA7XloigUvTwiCEKxetNw+fdzXV3wUCU0urcitRfwWFeO496TU9hXzcTRjVo1jw3IjMTl4pop7FPY57jN8pqi1qJXnjNokqCgKGH1OsBq9+FLC/7qlg6vFIyBq9wZROcYvUWPgvRxNvG61V6tX83wAPwLw81Qq9QkA2Rr9HEIwmDCuVa/+FrR6am9Be56PhCYjqcmlwcDuXE+pshumnY9kLFh5kFR73rhe8ScfQNZ0cDJnQ5Ul3LFmC3YcCgZL5MIKxGMZE7osoTWp4dW9Xbhh2vnYcNdVyBUGFQ3Lhe0BL+08gkVzxmH3kW50521MHJnAZ+aNL5WWSjY1nfpJEQDPR0W5NSAoXVWt/I3Ch0oiOgX9rfpLnOLgrOf50FUJqxZ14IUvX41v3XQpuvM9eSqpyX1WtQiFSRXb87Hsyc2QRQGyKCCuBBM0I5orc6uuSrh8wghsebsLhuVCFgUsmjMOK557A2t+txcXDIvhtnnt0DUZmbwN7wzLP9iejxOGjf1dRkWeBZhrwypvuWiK1y6Gk5oc9BPK7pMbpp0PRRRK8dvxP/4VcqGMpC5LmHlhS+m+Ksaw5/t4bf/xUklVpUYxXK2fAAQPG4zhcHm/uReo7OuuWtSB//HxSyryL4BSDCfUnpicUXj4DAjYd8zAxl1HoYgCYqqE/ceyffq4xf3CY6oEz/Mr4ndUs4YvfHgifAT7emZM54xjuL/+LhCUGU7GJDy0cGplHA+wj3ijEAX0Oe6HFk5FWG/f4qrt8vY+ePPUU36OG2r95c3yl57CJCZLiCsiHlhwaWnri7gicl/bCOB3MUUZ45eoMfBejiZet9qr1auatwCYA+B5AFcD+ESNfs5Zz3U9eD5K+xidyZvInufjWNZETJFgWC5GNGmFgZrgAfeep7fhCx+aiP1dOTzXeRBLrxiP2W0tmH/JKNw0YwziioS87UIvDPj8za924ssfTeHdnI3/OpnD+HOTMBwX2UzwpvaN08fgjT+cwAXDYqWypwDw/7P37mFSlGfe/6fOfZoZmGFmRIaRw0DLcnBgEKOCSTQbxOyyCCFCYjBx1eiuAX9R18toEnZj4mYlBkne1yS8m02QBJTFEHc3hqzrJlEkHgZGhLgtKAgoO5wEpk9VXYffH9VVdM/0MIMyQw/W57q4gKHoqu76Pt++63me+75H1VbwzrE0LRdUs+qFPV3KXC2/7iJs2+nVrtKQIpHNT6Y/srCZJWvaeHmPO8GuKWJRmT4hPyETEBAQ0B2WZaObNpbjvO/dTp7XRlWZnO1w75OvsfqmS3Acx/fapG6Ss2wuHlFNbYXG3368iZBXKjLvsYeTBoeTWZrqKshZNu3Hsyy+sokbLhuBg5vREwvJXDp6CFHV3bix9qW9/OCzzUiiyLFMjrvXFZfKrolqp71jP6rJZAyLwVHFL2vpvablEHhtGeHp17Qd2o9n33cGT08aTuYzFb04obZC45tzJqDIImq+/DjA4aRBzrKorQixZG0b//TpSUUajmiufn+6aTd/8/Emsjm7TzRsO3SJEy4eUc0j+T6OgYbLA9O0yZilM896u9O0c6xr2Q41IQW7wH9f3nO0SMOLr2zihstHEtNk/vDGQaZeUENMk/nGr7bzlT+PkzJMDMtmSEWIjny1jYXTGrE5mZ2b1k0kUWTtS3v4wWebsWxKxrgrFk6mJqqetoa7i3cvHlGNJ1VFElm5aKq7SS9rokrCOZ+hJQruAvGDcycyvDrCvqNpYppctouKGcP2e3h62awbtu7nxumjiJ1GJm5/EVakLt/7jyxoJlymi9Ve+V5RFBAEqImpRE6jRUjA2SP4Lg4YyAT6DQg4NwjG8sAkuG99zxl9SonH41I8HleBHwP/CSjAH4H1Z/I8AS6WZXMkZWA78NNNu7vscO3tTuS0YbF4TRthRSKsSP6E45uHUv4D7pj6GMufeYM5kxvI5iy+/9lmrp3SQFSVSOcsntt5yC819NSr77Lstwnqq0LM/+Ef+fqvdhDTZGzH4YbLR7Lj3WO0XFDNT57fjSq6vWA6siaja6M01VWwZG0bMycM9c+deGAWS2eP5/GX95HOWb36bNKGhe04qLKIJAj+ztSc7eA4cCyd83/HcSdlAgICAkrhee3xTA5JEEpmP0hCzxNTntfajsOdT7zK5reO8O6xDPvfy/h+VxGSCSsy3/9sM393dZylT+0gbVj85PndvseePyjM/B/+kfWt+6mJadiOw01XjEK3bG5bvYWoJrPrYJLKsMLOg0m/F5kiSRxL53iytdhb17y4t9feWkhKNwkpIsnsyd5KiQdm8cPPt6BJIgReWxYU6jea/y4umcHTi4iwJw1XhOSiOOHvro4T0yRShuXrF+D8QWE++b3n/GywkCIWaTitW1SGFVY8u4uUbvWZhsOq2CVOeHDuRCRBQJUDDZcDlmWTzlkfyHuha6z7r6/soyNrFvlv4oFZvoZtx80urAjJdGRNfvT73UQ0iV0Hk7Sf0Fn22wQ1MY2lT+0gqsr8bNNubpw+ClUR0WQRRRRQFQkEoUi/3cW4a158+31puLt498G5E7FsG0V0N6WEVYm9R9I4joP6IcjOUmQRq9OMgWU7KGXaP08RYcElbjZr/P6nWfrUDhZc0shptLrtV7I5m9a3j/Lo9VN441uzePT6KbS+fZRszj7bl1YS23Y4ms5xy6pWxt73NLesauVo+v1nuQf0H6osdnl2dxz35wEB5U6g34CAc4NgLA9MgvvW95zpT/JGIAHMyv+eAF4D9p7h85zTWJZNRzaH7Th0ZHMMqasreVw6507kRjSJFc/u4tn/aS96uKuO9G7Hc0STqK/UyOZsYpqMLLkTNxu3H2DhtEY0WSStm/4kSm2FhmW7O4BThsWmnYdouaAaw7T8CZ9fv3aAvUfS/iLjzvYkQ6vCxDSZy5pqWbK2jesubkSSxPxuYndx0itvNbo26p8bQJNFFk5rJNzLp+uIIhHJl1a9/Rdb+diy3zH6q7/mkm//F6te2ENNTEUQYEiFRkVICXaqBgQEdPFey3Inxzyvra8KEVIllm1MsGz+JNq+/kl+fvMlOPkdUD3h9U6MaDL1lRob77iCmqhKLCTx2Y+4fpcxLCKqhGXD3evcfl5e6UfPY71yo0v/7U+8816GoVVhLNth7Yvuwl5aN9m4/QDJrPt72rDYsHU/sZBMw+DwB/LWoveTz/i5a92rPPzMTmYu/wOjv/prbn2slYxpURFSGFKhIRB4bX/QG/3uOpjkvKow//V6cbzwX6+392qxzIsXutNwUne15sUJd6/bRjofJwgF5Qh3HUxy8Yhqdh5MsvjKJmpimq/hZfkShcl8eb1YSCaZ7RsNpw2rS5zwsWW/4/ZfbCWTCzTcX3SnXXD1GwvJhFSptG57WR4yoklcPaHej3WvndLAz17YTVQ96b+O45DKa1gRRZasbSNrWCiSWzqn/XiWjdsP8J15kzjUobOz3V1g9OJwVxoCOctGlkS3xK8i+eMiFjozMW7R++om3v3Yst/xpce2oEiiq+EPWczb3bhOG6e/cNsfWI6bXVm4KCwK7s/LEVGAi4YP5rbVWxh739PctnoLFw0fXLaZoOmcxeI1W9n81hFM22HzW0dYvGbr+1rID+hfMjmLVS/sQTfd7wXdtFn1wh4ywb0LGAAE+g0IODcIxvLAJLhvfc8ZLX+aSCRWAivj8fiNiUTiJ2fytT8seBkFncvJWJaNJJ2cbPB6Gs2Z3EBKd0suXXlhPbet3lJUvmtID+XAbNshm7O4/y/GgeA+dNXENL7yeBt3z4yDAPc++RrL5k/iofmTuHvdNg4cyzB0UJid7UnG1MfYuKOdy0YPQRIFJFHwSw0dTup+KaZHf7eLb86ZwJGkQWNNhKsn1FNbqbGzPYkiwZBYyF2kzL8Xw7TRLZt7n3zNfz8PzZ+EnrOJaD1PuoiiQDJrluzBs+LZXdx+1RhEQeixNGxAQMCHg+68tzqi+l7rZlXnGDUkimXDzate6bXf2rZD2jD5/sJmsobF3119IXc+8So/v+kS1rXuY9aEob7XIgh+GWpwMy40WfQ9NmvarFjYzOI1bXz3twm+OWcCEVViXstw1rfu46YZo/j01OG8eaiDBdMaiWoyMycMJaWbiILwgby1EEkSiYpCt33OPI99/fXXGTdu3Pu7MQG9orf63bj9AMOmj+KqccXxwkPzJ7llzNXuvxML4wVPw//6yj5uv2qMr+GsbTG3pYFDHXpBKXWZjTvamTGm1i9H2DA4zCMLmln70l5unD6KjqxJTJP43EcuQM7HOpIAjyxoZt/RNI3VEea1NJxxDXvl1wMNnz26025NVEUQBCKqRFq3MEyrtG7zpaFPhW07GKbFrAlDSRkmCDBscJgVz+6iMqxwzUTXf5fOHs/G7QeYM7nB3wRi5uNtz4MXXtLImvwGjtG1UR5Z2Oy3ILAdiKkSQkj241snFqJCk339nokYt5BTxbsv7zlKSJUQ89mcH6aY90z04OxPbAe+/Iu2ovK+l46qYeWiqWfxqrpHEtw+kIXlZSOqhFSmi4oRVSqph3LtWRlwkqgms+LZXTz8zE7/Z7IocPtVY87iVQUE9I5AvwEB5wbBWB6YBPet7+mrnM/fxuPx1fF4fGM8Hr85Ho9fUuqgeDyuxOPxx+Lx+HPxePyleDw+Ox6P18Xj8V/F4/E/xOPxTfF4fHT+2Jvj8fgr8Xj8j/F4/C/yPxsSj8d/m///j8fj8Uh3xw4U0jmLJWvbinZSLlnbhm7aJHUT23Enpo+kdNKGxY53jyGLAl+4fCT3rN9W/P/WtJ1yB6bbX8bAchxypsNzbxzEcRw6sm5WYlJ3S0VtfusI51WFWbYxwdLZ46kKK+w9kqYq7E703Pepcdy6egsTlv6Wr/1qh78LIKJK1ERUVt4wlYevc5uhDoooZA2LeS3D/QlOWZQ4nMyS1E3UfEaO7dClvNmTrftPq/ZxYaZDIV4PnoCAgACPUt7b+vZRjmYM32sFARRZ4IbT9FvPawVB4PIxtRiWzZ1PvMrM8fUkDZOPjq3zz31eVZiUbrL3SJrvL2xm+9JPkjasIo89ls4xOKLy40UtvremDYv1rfuYM7kBAFUWGBzRqI6opHSTproYiijgOG72WG2Fxn8snsHqmy7B/ACpEKnAY8uCnvS7Yet+BAHmtjSQyZl+Fqx37N3rtmGfomqdbeczyPLxgmHZvLrvPa6b1siJTM7X8JCYxrKNCUKK5Gs4rVvc8Ymx3Lyqla/nYwRBEHCAL04fCcALuw6h5+x8dqBMyjDJ5CwUWaSuQiOpm1SFVQCcMxAf+J+b4ZZfDzR89iil3bUv7UU3bT/WtXGQJbG0bnu4757/5myHJWvbePq1AziO4y8EXjp6iH/+proYK57dxbLfJkjmFwBjIZmkbvoe/M1/f52ZE4bSVBcjk7Ooiaio+UzGsCqim3bJ+NbT76LLRpyRGLeQIN7tykD7bvIWsQtxKxuU56KXYTsld34bZVpONG1YLL6yiY13XMGb376GjXdcweIrm8o2czXgJANtLAcEFBLoNyDg3CAYywOT4L71PX21qPgj4CeACvwBeKSb464HjiQSiRm4JVN/APwT8PNEInEFcD9wYTwePw9YDFwOzAQejMfjGvB14Bf5/78V+NIpjh0QlNpZW1+pkTJMbv7ZK4y972kOntBZvKaNiCpxeVMtJ7KmX1KpkJ52YHqlYCKqRF2lxmWjhxDVZGKaxHfmTaKpLsbVE+pp+/qfkzEs2k/ozFz+B8KqTErPEdUUFBFqYiczap569V1mLv8D8fufJqrJSJJILL/b37Rh1Qt7sBwHEZBFWDCtkQ1b95Oz3BJOOdvhnWNpwqrIvJbhRb1F5rUMJ6z2TrK27ZCzbMR8pkNRr8kFves1GRAQ8OGhs/fOvuh8Lhtdy5ICr03mg4+K0/Rbz2vDqkRUlagMK9RXalw7uYGIIvnZ267XmgyJaaT0HJeOHsKxfB+8zh574dd+42dSmTZ+NuKOd48hCiDnG+QJ+QVHL3Dyylfec/WFvr/e++RrpAzztHsL2baDJAglPTb8IejZVU70pF9vsTmkiEXf2R49TV5ncxYduunHCxUhmctG13LH2jZimuxrOJUvle5WHnA1LArQWBPh5T1Hff2O/uqvufwfnyWqyUQ0iVG1Fdj5Be+sYeG1yTuezqEpEpbjENEkbNv5wPFBIWFZ9DMigzjh7FBKu3MmN3Cw42SsKwtC93FuD4su6ZzFmhffJpov2fvplgYiqkS0m1jXK9sfkSVunD7S7+95qjjXtGHtS3vz/Q1Lx7cRTSKbc7V9JjUcxLulCcvSgPpuSncz6ZEu00kP73ulUMNzJjeUbeZfWBZZMK1Tz8ppjYSDnjplz0AbywEBhQT6DQg4NwjG8sAkuG99T1/VgAklEoln4/H4/YlEIhGPx7PdHLcO+NeCv5u4i4Hb4vH4M8AeYAlwFbApkUjogB6Px3cBk4DpwLfz//fp/J/f7ObYl8/oO+wDbNshZbg7o71d0LsOJqkMyX7G4OyLzvcn59KG22cmqsm8816Gi0dUF5XNuXhEtXtMN6V+vFIwacNCwC2hlNbdHZsbtu7nphmjmDVhKLet3sLVE+r9Uqa7DiYZXh0lqslkDAs9/yDc+dwp3aQipJw8X77nzO1XjSGtm1iOOwlT+F7H1McYXVtBSnezbpbOHu//2/rWfXxx+kgqQj0/AHqZPbUVGt/4y3H8eFEL0Xx51YgiFZWSDQgICPDK0nl+1JHN+YuHes72vfbOJ9pYOnv8afmt57XJrIkggIDAHZ8YSywks+tgkqFVGrMmDGXVC3tYOK0Ry4Hh1VFSuslr+49RFVZO6bERzc0ab6qLcV5ViFw+g2DmhKGA25D6XSNNU10FRtbknqsvZN0rxf665kW3DGUs1PuwIG1Y3LzqFb50xUh+9PmWfO87E00SkIOJun6llH69RRgvU/H2q8Zw3y9fO2392rbjL/j9eFELkiBgOQ6xkLtIk9RNRAFmTRjKpl2H/JKlw6ujmJYN0sldgqU0LCDQVBdDENxNVJbj8OVftFFbofG3H28C3MVFRRTcOCXfx9PLtm2qi7HvaPp9lY7M5Cx+8vxuPveRRj9O6MhrOIgT+p5ScW9HNsdtq7ew+qZLfP8NqdL7inPB9V+v/PM3Zo/HdsjHvcIpY910zsJ2HFRJOKV+PQ/24lvHcUgbVpf4trZCI6zImLb9gWPczp9fEO92JWNavHMsXfTd9OahDsKqREUZfj8pouBrr7CsulKmTQq975VCDW/Yuv+0NdxfZEzbz0gG/EpAK2+YSuxDOkYGCgNtLAcEFBLoNyDg3CAYywOT4L71PYLjnPkyJfF4/Ne42YlfBe4BliYSiatPcXwF8BSwEvgZcEsikfiXeDz+ddyFzzeAiYlE4p788auAVcAP8z/PxOPxUZ1+VnRsIpF4pvCcra2tTiQS6fG9ZLNZQqHQab3/0yVWUUFsUA2KrJDUDURBLOot8/ObL2HsfU/z/xa1MH5YFSnd4vUDx5k5YShp3eRw0uCptneYM7mBe9ZvK3oY1Y8fJtnRUfK8w0Y08aXHWvn5zZeQ1k0imsyBYxmGRFWOZ000ReLWx1rZ/NYRNt3zcUKKREfWpGFwGEE4OSkTUkTePZYtOvd35k1i2KAQb7yR8M93fuNIbv15GysXTfV3lo+972nMfHbM0r/8M+a1NBDVZBzH4Z33Srzm4BBvJBIl30/h5zls2LCi1wa3dvIb35pF4n/+533fq97qYdy4cX0+C9BbDZ8J+mMcBNdRXtfR1xouFw/2/DeiKhzPmr73Jr55NSnD4qebdnPj9FGAw+Gkwb1PvkZthcZdn4wX+dPy6y7C6DhS0m+HjWjip5t28zcfa0IQ8SfJd7YnSRs5muoquGVVq9/P6wuXj/D7PiWzFrGQdEo/PL9xJIrsHh9Su3orwH98+XLGnV+FbTsIAu/bXws/t9767NkYL+XkwX35/rvV7wOzOJzUefylvdx+1RgOHMtQGVa4ZVXraev3vOEjqIqG+MrjbTx8XTMp3e3fduBYBgd4bf8xpo+p5ZZVrSybP4mQImHaDkNiKpl8abmw2r2G3333Xapq6hEESGZN6qtCXXQ1p/l8Hpgzwe+d95XH2/jKnxe/hxULm8meIubpzJC6Omqqq0tr+IFZJBKBhj3O9Ps/VdybeGAWq/+4h2snN/Clx1r55xumYjkO//L87tOOc8H134gq+XHrSW/Nkc3Z3ca6jTURHMdBz9loitijB9/68zYevX4KkigQ1eQuuvrpF6dyxdg6gA8U4xZ9hoNrqYqovdJwd5yrcUT8wgv75Dmgrxg+sonndh7i0tFDqAwrnMjk2PzmYWaMqWXf7l1A+cSeAGPjcf73uM5d6171Nbxs/kWcV6X1SsP9/V7i8QsZe//pjZOz7cHlcr/P9nWU41g+259JIae6lrPpwQPlM+prylG/UD7352zqF8rjWa63BNdwdq/h/YzlwINdAg/uykC4P73Vb19lKt4CLAOGAHcBt3Z3YDweHw78Evi/iUTiF/F4/GHcBUaAfwO+BbwCVBT8twrgGHAi/+dMiZ91PrYL48aN6/GNvP7667067v3i9Xr5m19s5bEbp2E7Cl/KT26Au5Oy/XiW7y9spmVENbesauVLV4x0y55mcqiSSCwkMbelgdf2H+PR66dQGVZI6SZhWUKuaOj23JZts2LByQnCtG6xvtXdZbo2PxHplXuqCivcvKrVz5b81rUTCCsSoiiwsz3Jxu0HuuxWvXHGqKLPzrYdVixsxrJt0jrYjlO0Oz1tmIQVibRu4oDfs8z7HO5Z72ZJ9HQ/0obp95Yptav8g9zPvtbD6dJf11Iu7zu4jvK8jvfL2fbgQv9duajF38U++6LzyeQsNu065JbHUsV8tqLEQ/Mncfe6bfx3or3IbyOKhFRV2m9Ny2bBJY2kchaa5H43J7NmfgFxpF/+r6kuRmRKA196bAs/XtSCZTtUhBQy3WQE3Djd9VjbdsiZFobtkNJNLLvYW4+ldVRZ8v9NEoX37a8ep+OzA12np+Jsarg7/QIcTelUhWQWTGskpZtUhRVE0S1Vu2RtGw//Z4LlC5qJqrKf6VpbMQyxRFaM7Tgc6tC54xNj2XskTWNNhJRuIgoCX3niVf7p05N8DXuxQm2FxreunUBUk3ls8x7mTRnerYaHNzRgWTa6aVNfFeqSdelleR1OGpwnuuV+7/jE2C4aXrzGzToZ3tB93FNIRzbH3iPp0tlvOSvQcAFn8v33FPceTenMndLAvzy/mx8tmoLtuJ61YFojrW8fLfJdTRRQe7jflm2TNiyOJA0aayKkdYuObI6IJp8y1n31659EFN2yORnD7tGDVyxsZvObh/2syM4aHloV8uNbeP8xrkdSN8kYZq813B0DXdvdXXtHNtcnzwF9he04bNzRzqjaCipCCu0ndDbuaGfmhKH+9ZbTverI5rhr3atFGr5r3au91nB/v5dkiTG5cfuBXo+TvqS785fL/T7b11GOY/lsfyaFnO1rKXf9wtm9lnLUL5TP/SmH6yjH76zgGsrvGsp1LAcefGrK9b6dS/enr/I9nUQisSCRSIxPJBKfBj5S6qB4PF4P/Ba4J5FI/CT/4+eBa/J/vgLYAbwEzIjH46F4PF4FjAO2A5sKjp0FPHeKY8sSr9fW5reOkM5Zfrmy2Red7zeTrwjJXD6mlqgmc/WEeqZcUE0sJPOrtncIqRIP/PvrhBWRlhHV3LZ6C2Pve5pbVrXyXiZ3yh5ZmZxNWJWIqFK+35bD3Hym4Ipnd3Eik/P7e0QKet7cc3WcqCaTzdlK1DpnAAAgAElEQVScyOTYuP1Al74aCy5p7NLHRRQFaqIaiiy6Pb8koai/RVSTefNQClEQSvaWfHnPUX+H+amwbYeo4vbKKayd/J15k8q210dAQED/U+i/kXy/rY13XMG3r51IRJOZckE1rW+75SM9rxWAf75hKtdMHFrkt0fT3fttNmex9sW9VIRkcraDAzg4LJjWSCwk+16762CSYYPDvtdVhhR2HUxi2TZzW4o9dm5LA976jygKGLZDVJMxTAtVKu4dJIli0b99EH/1CHz27NOdft/89jV+tuDal/YSViQimkxIkXh6+wEevX4K3/3MRQgC3LzK7dV886pXOJIySmrYKy/ZWBNh+TNvkNJNTNuhvipEfaXGsMFhX8NerPC3H2/KbxKy+M32dpx8fNGdhiVJJKS6x6f0XJfeV4MiCsOrI+Rsp6hHYyE99ZHuTFSTWf7MG100vGLhh7cPXX9QKu7trN2oJjNpeBUCgq/dPx043iXOPa733AtWN23/Xqd0k5RhosgCFaFTx7qC4Hrqm4dT0IN+vfh2xti6bjUcC8kcz+SQPmCM6xHO90cNNFyaiDqwvp+yhsVdM+NFmrlrZpxsPtu73DgTGu5Pgp6KA5eBNpYDAgoJ9BsQcG4QjOWBSXDf+p6+iqT/NR6P18Tj8ap4PL4GWNTNcV8FBgNfi8fjv4vH478D7gQWxePxF4CrgW8nEon/BVbgLho+C9yXSCSywAPAgng8vgm4FPjBKY4tSyKq5E+mxEJutuDiK5u465MnHywjqkxUlcgaFtdObvCP+832dtK6RfsJncPJHEvyfRdN28nv2t9KOtf9w6g74SCw72iGiCph2Q6xfB+Wi0dUs2HrO6xc1MKf/n4mad3yJ12qwirtx7MIApi2zWcubvR3cCcemMWPPt9CTUQtmfEgigIR1X3gNC3Hz6ww8xk2G7cfIKRKHOrQ/fN5XDyi2u/5eCrCqkSqILMn8cAsls4ez4at+8kY9mncnYCAgHMZr9fh0r/8s6IJvbDqZW5pXDa61s/kbj+hc/l3/pt972X8Pre98duIJjNzwlD2HknnJ+KO4Djg4Paa2/zmYVYuamFEddj32pRukjRcTzRMm6gq8+DciSQemMWDcydSkZ9o94hq7uLkz/+4F9Mu9lavlNrP/7j3A/urR0g5hc/mAp/tDzz9zr7o/C4T0lFNJqLJXDulgWzOJmtYftzQ/A//ya6DqV7HDBFFwnGg/XiW9hM6YUVCwM388LIXPQ17+m2qi5HJWaQMk4fmT+Jfnt9NRJVOqeG07h4fVpUi/W5+6whp3WLfUXf8aIpIMmuW1nAvJ+Bt2yGtm7Sf0Fn224Sv4QfnTiSqyiXjl4AzQ+e4t5R2s4bFtBE1vvemdYsRNbESmm07ZZwLYNuuz3ra1fKLCIWx7iMLmnn2ziuKYl1REP24NGNYPXqwKArENBlRoKSGU7rJ+tb9Z8yD04YVaPgUZLp9DijPRTrLcbh73bYizdy9bhtWH7QpORMUjhWP09Vwf1LYU9H7fJesbSNjBvFKuTPQxnJAQCGBfgMCzg2CsTwwCe5b39NX2wmXAL8CqoDvFWQhFpFIJJbkj+3Mn5c4diVuz8XCn7XjLjz2eGy5ks25kyl3r9vGP98wFVGAGy4fyc827fbLLCV1E1kUsByHSH5xURTgofmTEPK/D60Kv69d+xFNYvmGN/jmnAn87IU9fO4jjVSEVL4zbxI73j1G2rCIaLJ/nrvXbSOiSeimSUgRSesgCHDj9FFENIlk1iSiSkg9NL0XBfysTA9JEPxSbY+/tJdl8y8q6tXxyMLmHt+PbTukDYtMzmJuSwN3rzvZr+ah+ZMQgw2pAQEBedKGu4nj2skNWI7Dk61uwJE2TCRBIGtYVITdjRaCIPge2FQX67Xfup5k0lQX484n2vjmnAn86Pe7+dIVMOWCaiKqxGWjh5A2LMKqRM60eWj+JBRRQJFF5kxuYM1Le5nX0sCQmIYgwJCYSqTTpLG3OLlgWiOxThkEXm+mD+qvhe8pk3P7TZbqcfZhz5DpLzz9zumk36a6GCnd1fCwwWGyhoXluN+N70fD4MYK9294je/Mm0TasNj85mE+OraOxpoIX3m8jb+fPR7TdlAld5zsO+qWSf3ahu3cd804ZjcPozKkIApCXsMaEVUq0rAogCRCRahrBgw4xEInS/hufvMwyxc0c0dB/+neas8rvxlVT5Yz/tSK5/w4IaBv6Rz3dtaukXP1KiCQ0k1yptv38P1mp0Y0CcdxirQ7Y0wt4fzO1XvWb+PiEYMZOSSGQ3Gs6zhOrz3YQxRKa/hMxLiFeIuvgYZLIwpC6ecAoTwXW6MF2eZeec5Hf7erbDP/xILnwuLP92xfWWm8TTiFnG52e8DZYaCN5YCAQgL9BgScGwRjeWAS3Le+54wuscTj8U/G4/FPAoOA/wI6gP35nwWUwLZP7ky1HQdNEYlpUlE50YgqYTvuA2cmZ2Hnd62GFJGQIqJJol8ruJCedu2nc5a/e9u03NJOt/+ijV0HU2zYup/Lm2pZsrYNHAjJ7nkenDuRtG4SVmRShsWal/ZyLJ0jrErsbE/y0027yfSwaxxAkUR/l7jHE6/sI6JKqPneOetb9xVlPw7Set55nc5ZRDWZITGNZRsTRTsSlm1MFO0qDwgI+HATkkS+cPlIYiGZiHrSd8OKhCy4PY5OZHIookBYOemBGaObHfol/DadsxAFgWSB1z40fxI/+sNupnzzP9l3NAOCwNqX9hLVZP7h3/+EJonYDn4m4MwJQzmvKsw7xzL84L924kAXL4woEi35cq3JTt66Yes7/r99EH/135Nh+WWyCzNkls4eT020dJZ6wJnH0+8967cV6Td+/9OEZQnbcWg/7hZqiGoyD/769fet4VRBRpQoCkxsGMRf/+wV3nkvQ/sJHRDIGBZafpyE82XV20/ofPM/Xkc3bQRB4Fg6R9ZwS1521okmi8iiSEeJLMTndh5CFkUkUUAWBVouqObxl/YWabg63DvtpQ23/GZIlUrHCcEkc5/SOe7trN1cvpRzRJOQBAEbh9AHyE5N6SbpvJd62r15Vasf6y6dPZ7Gmii242qwMNZNn4YHe5SKbwF+/8bBDxzjdn5fgYa7Z6B9NgOt/Cm4z6GF2bshpXx3bqZP4zsvoLwYaGM5IKCQQL8BAecGwVgemAT3re8509H/wvyvBUAjkCj4e0AJCvu3RDSZtGGR1C3uWX+yBM6bh1JENLccX1STCauS39+rI2uy5qW9pHSTFQubO/VUmXzKXfuRfD/FZfMvojKs+INtdG2U6/K9vuorNcKqSFJ3FxB10yakuIucm3YeKtmfojeZApIkEpYlHim45o072gGwHKgMydw0YxTDBoURBDcb8njH8Z4/z/xE5r6jadpP6Mxc/gdGf/XXzFz+B9pP6MHDY0BAAOBObOuWTSwks+tgkrRx0nffPJRCzveha9v3HqoicThpFHigyPIFvfPbSN6vN2zdz/IFzUVem3hgFook+BtJ0gWLMKfrsZIkUhNVmT6mlqjW1VsjqsT0MbXIskhlSOaL00fSVBclbZjEQjKGTY+9ybzPLaJJ/qT5U6++6/vs0qd2BB7bTxTq9+U9R4v0a9oObx5OEVYlZFEgpEr+4p+3wBdSRB45DQ17scKhDreEpKfhoVUhli9oJhaSqK8KkSnYbKSIAo8saOZQh86nVjzH9f/vRTc7sZt1E0kSqdBkFFHoEs9MHVFDTJXdmsFATCuOEUSh+0Wezp9bRHMzVrxFz85xgttjOqAvcD//rnFvoXa9kqfeotkD//46Sd1i065DXXy3N9mpnn7ntQwv0q4X6y59aod7jCZx4Hi2KNZVRKGkByun0Fqp+NbTcEiW/Bj3/Xqw/zkWLNwHGu7KQPtsBlr5U00RUUSRQREFQYBBEQVFFNHKdGExokisWDj5tJ6TA8qDgTaWAwIKCfQbEHBuEIzlgUlw3/qeM1pTJZFIfBEgHo9/L5FI/H9n8rXPVbyJ2c1vHaEja2I7DlVhpagEzv8ez5DWTVL5yVoHx+1vdELn67/awV2fjHPXum3UV2o8OHcijTUR0rrVpbRYqXPbDqxv3ceiy0b4gw1g9kXn88CcCXxj9njShsVbhztYMK2RJflSY298axZfXtPG/Z8ax6PXT/F7dsU0ucfSpx6yLDIkqrHyhqlEVMkttaq412xZNkfSBmtfdEtODY6ohKNV2I5zyveWNSwUUWBQROlSlmdFUJYvICAgT9a0cBzYeyTNxu0HuP2qMX5/uiExxS15CowbWuWXqyss9bn4yiZ+9PkWt8dtgXd1xvPZ32xvp/XtY/zDX40v8lqAbUs/yY53j3FlvI5HFjSzZG0bEU06bY+VJJGK/L91560AgixgmxbJrMl76RwRVSZn26QMd0I/pZtElNJlrNOGxeGkztBKzb9Wv3zfgmbUIEuxX0jnLMjr9+IR1flena5+//bjTYweEiWdX+D74vSR/HLLfr/Uo1cm8dHrp7By0VR301IvNOxlVmUMq0u88I9zJ2I6Dlp+EWbJ2jZ+fvMlPP3KviL9/qrtHT5/6Yhu35ckiUQkkZAildSvLIvYtkPWdBed1ry4l5kThjJ6SJSUYfas35zF4Q6d7y90tRpouH/JmhaW7fhxbzJr+gvjnna90r2acnLR7GsbtnPXJ+N+dqpX4jfaQ5wLrmc5p4h1H5w7kZxpk7MdBkWULrHu6WoYTh3fehou9GAvsxgBOrK5bvXrv6d89vCgkBxouBsG2viOal1L5r6852jZlj/VczYpw+LOJ06W8P3uZy5CkUQiWvktLIqiQE1U7TYuCihfBtpYDggoJNBvQMC5QTCWBybBfet7+upJ5cJ4PD4okUgc66PXP2eIFPR0iakSR1MGGcPi/r8Yh2W7jUXrK0MYpo0sCogChFSZ91I6jyxsZsmaNh7+zwQPzp3I8OpwfvLEwcGdnEgbJrZNyUlDr4/EvJbhrHphj38dL+85yqEOHVEAQRCIajKjhlTwsxdO9nn0ypMt/bc/sfTf/gTApaNqWLloKrFeLiqC+5AXyz8wxwoenDOmzdoX97JwWiOqIpLUzSIjWLGwmZqo1uVh0HYcQqrM46/sY96UBn/C9FCHTnVQli8gICCP54vLN7zBfdeMI62bLL6yiRunj8S0HRRRcMtOqzLP7TzIgmmNrC2Y0M7m8l6b/9Wd33o+6/XPWvrUji4bHmKazGVNtRi2458jrX8wj+3OW71/A+jQTe598jWunlDPrIlD+ZvVxf3paiJq0cS2l+X1+y0H+fylI/jT7iP+wmoya7Jl71GuGFt3Ru5PwKnxdLV8wxtur7i8fhdOaySkShxNGwyp0Jg5YSjP5zNe13ZakIkoEoZtuxt18tUQwopIxrSLJl0LY4W71r1KfaVWpOFDHTrg9izorOHfbG/nG0/9yb/uS0fVMG/KcGKhU4efPenXdmDNi+5C/453jzE4ohQ/LJTQr/e5/f6Ng1w7uQFFkQIN9zO2fTLu3bB1P9F8L25Pu7IsoogCDu5ioCIKRbHuHZ8Ym491TaJ5n42KAtmc9b5j3agmk8tn/qUNq2icdGT7TsPgevDrB44TUaVe6dfDy1IMNNw9A+2zKdxk6nHxiGpSuklFSDmLV1Ya23G484lX/evd/NYR7nziVVYuajnLV9Y9pxqTAeXLQBvLAQGFBPoNCDg3CMbywCS4b31PX0XUfwYcicfjh3CLVTmJROL8PjrXgCZjWOx49xgrF7WQzrlZBX89YxQhxZ3c+Mnzb/GF6SPJGBayKGA5jrs7OaKx+o97/N3Tad3kYIfOupf3+dk09ZUad82Md8rWm+z3vMoYNh3ZHOtb9zFzwlDOHxRyXy+kkDJMIqrsZgQYFhVht3/Ww8/sBNzd3d4keVEm4BmqTRxRJWZOGIoNgFA0ybPrYJI1L+7lxhmjujwURjSZd97LlJwEWrloKrFQ+e2eDQgI6H8i2smSkIIokDIsbr5iFKbt+H1iq0IyIfVkxuCiy0b4fpvJWf6ixqn8Nqy4PeK8LC8v+/zhz1xEfVWItGHRkdaJaiqiJPg+29cea9v4pdZ++PkWfrZpd5HHrn3RzXCrKJjU9rK8Pjq2jrRu8qPf72bzW6/4/37pqBqmXlBNrAwnQM810roFOLSf0Hn2f9r5zNTh/PWMUWRybimPJWvb+PGiFprqYnxqxXNF+j2RyRFTZVKGSYdu+ppdfGVTUZbW6WjYzvde7i8NezHCPeu38cPPt3DrY63UVmj8x+IZNNXF2Hc0TUy1iXRalEnpJh8dW0c0HyuU1nBNjwtGAe8Pz3d3vHuML04fyb6jGV4/cJy/njEKBwfbhqxps/nNw1wZr0NRpKJMwb6IdaOqjO04pHS312d/xbqeB/fWfwtJ6Sa1FVqg4VOQ1q0B9dlo3eyk1sp0M2REk4uq6uw6mOTR3+0iEizWBZxhgngzYCAT6Dcg4NwgGMsDk+C+9T19EvknEokL+uJ1zzVs20EWBVouqOZw0qBhcJg5kxuQBDAs8qU/hxPTZKKqzJ1PtHHbx9yyZqlOGQAb77iCpU/tYOns8WzYup+ls8czbFCYnzz/VqfFuLf9xThRBEUWmNvSUDQZ88jCZobkswBThkk2Z2FYdtEO2qdefZem2ig/XtTi9r85w2Vk0oZFU12MjGERUkQWTmvExl2EHVMfY2jVSEJyidJmusUvt+zvMgn0yBmcjA8ICBjY2LZDyjD55Zb9/OCzkxkcVXls8x7mtwwnqslEVPer8c4n2vjmnAldMgZ/d9fHuPfJ1/inT0/i7/51G7UVGktnj2fVC3u6+O1NM0Z167M47m75fYf+F3FIPZj4PvvUq+8CnCxpfYY91usrB/g9HXe8e4z6Ss332LBc7JkRVWL5M2/w8HXNHDiW4bufuahL6bMgG7x/EAWwEfjBZyeTyVmoskg2Z6OIol9GL6xIJLvJeP3xohbeS+e498nX/MW47mKG3mjYzm946i8Npw2LMXUxXt5zlIp8/+ev/Hnc13BjTYSUbmKaNnJBrBBRJaI1EXa2J9m4/UAQK/QzKd1k+zvHaLnALdn7tQ3bue+acX7c6y32fHlNG9dMHMq3rp1QMtb9p09P4pdbTsa6N696pcuiclSTiKi9jHWzJqZld8kW68tY1/Ngz383bN1PrKWBYYPC3H7VGNK6iW07Jc8VUaUg3u0BUaBLVYCH5k/qtqfr2Ua3HZJ6ztdaSjc51JElrEqoZ/viSpA1rC6L+Q/Nn0TWsMp2YdG2HdI5Kyh/OsAQBaF0vCkE9y6g/An0GxBwbhCM5YFJcN/6nj6J+uPx+EeALwIKIADnJxKJmX1xroFM1rSwbYcla9tYfdMl7DroTnJ9cfpIoprMtVMa2Lb/PSrDtRxJGkV9YJb+5Z8V7Whtyk+uja6NsnBaIynDIqx2sxgniXRkc0Q1ma8++Rp3z4z7ZULfeS/j7+4G/An21X/c02UH7YJpje4DmSCc8TIyEUXy+yOldRNRFMiZNjeveuWUJVBFAea2NBRlVCR1E00SggfHgIAAwPXeiCoxr2U4humWf/zo2Dq/Z6tp2xxL52g/oXPfL7d3mbRtrIlQX6kxbHCY+kqN+64ZR0VI5obLRuAAggD1lRo3XDaCkCrx1V+e2meTHR0MGzYM23KKfPZQh05ElbBt54x7rFcuc+aEoaQNiyOpLC0jqrlt9ZZuS/Cl87303nkvwy+37GfhtMZ86e0I+46miagSITmYzO4PQqrEY5v3cO3kBm7/xVZ/IjprnCyj9+ahFG8d6mD5gmbu6FRa0ftu9/TrxQydNXzTjFG90nBHWqciovWbhsOyWxZ98ZVNpHWLOz4xtlcazuRsOjI5Nm4/wJzJxbFCb3v0Bbx/IqrEZU213PpYKysXTaX9hE7WtAl55Ud1C9txey56i9KF/ttUF6O+UuP8QSE/1o1oEvWVGn8/e7yv3UERBRFOK9ZFo4t+vVg33AexrufBacNiw9b9fO4jF6D3Is4FV8eGaQXxbg+EFLHoOyqklG+1krAiUR3VOJI0iKgyR5IG1VGNcJn2grcdhydb9xdtQnmydT83Th95ti+tJLbtcCRlsHjN1pIZzQHljSoLRWNZlYN7FjBwCPQbEHBuEIzlgUlw3/qWvtpKuAL4HvBp4DUoy02WZx23/4ubUeAtKM6Z3EBUk9nZnmRMfYzKkEJElciqUtGO24072rl28jB/giSVn5wwTNt/ONJzNoIIudzJSYrvL2ym5YJqlqxt40efb6H9hM7l3/lv/5q8DIaKfJnQtG5xOKnzm+3tOA5+CaoTmRwhWey238sHRRQFFFEgpZsIgGHa3PnEq113oqvFO2JVSSSmycxuHuabxqCIgiyW50N5QEBA/2PbsO9ohqfa3uH2q8Zw4FiGxpoIjuOg52wqQjI50/Y996GN/3My20q3SOsW91x9Ie3Hs9x7zThEUcAwbXTTLpqMXrmohZRu9uizcNJrXz9wvMhnN795mBlj606rV21vkEWBBdMaaX37KE11UZrqKrhlVSub3zrC7IvO528/3kRNVHN7lwnuJHVYFnlkQTNrX3LLvq55aS8zJwwFoDqqBgsy/YhXreD6j4zg5T1H/XKegyNKUc+6OZMbeLxTL8VoPkvDcRxfvwC5Ehr+8aIW9h5Jl9TwyhumEtNcXZ547zCSdF6/aThj2liOw6LLRiAIMLw6TE1M7ZWGTVVibksDT7buZ+aEoUWfS1/FNAEuacOiIh/3Hs8YPDR/EkOrwggCdGRMFEkgpEj+wt6vXztAU23U74OR0k3u+9Q4MrmTsW5at/jG7PFF2j3dWNeNNYWz4sHeJkIvzi3Ub3VU80u0FnprWBYxLZuQIhbFu4MjCqpcnlli/Y0ogCyKgOX/TBbFss1UNEybZL7PcWHmnyqJyGXoS2FV8ksQe9f7nXmTCJdplmw6Z7F4zdaiHpCL12zNf48FY6ackboZy1KZjuWAgEIC/QYEnBsEY3lgEty3vqevnlKOJRKJNcCJRCKxFGjoo/MMaLzd0hePqOb//Pcu5l88nA1b95PSTRTJnSipCMskdbfXogCsXDSVN741i4c/cxGKJBILyYiCQESRuGnGKAAyOYun2t7BdiCZtfy+WabtcOnoISxZ28bmt44Q1dyJx0tH1SCLApeOquE78yYVlU0SBYiF3AXNjTvamfrAM3xu5YsYlo3axxkppg2CILh9O6pCXD2hnr//q/FoBaXMcpaNbTv+37OW24tnUETxd6tvfvMwWcvu02sNCAgYOEQ0t4znnMkN7D2SZn3rfpJZk7ThBhupTp778HXNaLJINuf23AorIvVVIWzHoUKTcXAw81nnntd6v3sLPKfyWTjptRMbBnHb6i2Mve9pblu9hZYR1UT6IFPBtGHtS3u5fEwtSd3yS2Yu/cs/K/LZI0mDjmwO23bImDZr8wuJ5w8KseiyEYypi5E2TGKaHCzI9COervYdTXPxiGoOndD55Zb9RPIlGjds3X/K+xSSRCRBoEKT/ZghV0LDUU1m+TNvdNHwioXNRbpMdnT0q4YjqoQiimQMi6Tujt1ovsfXpns+zjdPoeFVL+xBAG6cPoox9TEOnsgiS0Kg334gokp0ZN1M2u/8JpH/e85dbAy7E/tpw6L17aM8ev0U3vjWLBZdNoJNuw6RNizCskRNTEMEHNzYL6SIyKJQpN3TjXUjioRwljw4pZtu1ntVqEcP9vB0rOdshsQ0BAE0WUSRxWBjRx5FFlEkgeqoiiC4G18USUAp0TqhHLAdip7XNr91hLvXbaPgtpcV3vfM0tnjSTwwy2+/4cVR5UZEPVny3ePlPUeDUsEDgJztlHy2z5Xr4AgIKCDQb0DAuUEwlgcmwX3re/pqa54Tj8fHA5F4PB4Hzuuj8wxoUrrp90PRTZOwIjG7eRhhWeK8yrB/zAu7DrFgWmNR9sAjC5uLFtf0/KKZ7cCTrW5ZuogmMVyNFD1EVYYVf9Ki8IHQK12zYet+vjh9pL97O6RI5CwbS8LPikxm+6dEWFgVEQTBLX8qCMxrGc6xtNFlF68ii4RkyS9p+OU1bZgFJiGLAm98a1afXmtAQMDAwcseXPbbBPdcHeeWK0a5C4CaTNawcHBKeq5X2lO3bKycw3lVYfScRTZnUx3VukxYVYYVOrJmjz4L/e+1XqnLmCa7fYZ0i+8vbGbG2LpufTaiSqx4dhcPP7PTfx3PX4O69P2L9/09r6WBf75hKrbjsOCSRtK65WZAXdLIkjXF+q3UTmY7ZU03yz+tWzzZut+vktBZw4VjxdOwWyVA7qLL/tRwOl+uNaKFcBzAccgaFn939YVIokBHiYwfrQcNB/Q9acPihTcP8X+vn4IsCli2g27aSPnKFJIg4ODQckHXMrYRRSKbs7BMB0kQyOZsnmp7h5kThjKmPlYy1gVI6j3HupIkojmQs0SUfvTghdMa82VfTUDohQfLWJYd6LgX6DmbztMFTv7nEa38FhYL+xx7vLznKBGtPBe9It1kKpbrIl3asPyS754PbNx+gLRhBZmKZU5Ek4Nn+4ABS6DfgIBzg2AsD0yC+9b39FUU/RVgPG4Z1F8AP+yj8wxovAeygx2ZotJzG++4gmGDwoRVET1nM7FhkL9ruzKsuD1TxOJd9XY+ES+iScxraSBnOySzJkdTButu/Qijayv80lEXj6hmzuRhPL+zxGLlguLsA1EUqAgp2OksEU3yH776Yye0nnPLmymiQM52EBC4e922LiVQvb45OdvGst1ePF55G4CLR1ST0k0qQkqfX3NAQED542V53bN+G8+83s7cKQ3csqqVlYtaEAWBnOVORhZOLKsFfapsGyRBIJmfBH+y1Z2gvnhENV+6YiRTLqj2/VbJl7jr7LNKJw/1vFbKuZsj+tpr3fLYAh1ZE8dx0GSRy5tqIb8xpXOfpC9dMcr//gj89ezjxQ/b9h9j+hi37/JTbW5T63gAACAASURBVO9w04xROI6btVRYwlEQKMp4iWgyHVmTipDMzAlD2fHuMQZHlaJ4IZl19euVovzUiud8/ZaSZX9q2F9gchyOJA2GxFQc4M4nXmXloqn85Pm3ijT82v5jzBhTSy7Q8FnDzmduT72g2s26EwVuW72FzW8d4a0Hr/HLT5/Kf23H9V5vA928luGsb93H+YNGugtyY2oBocireuvBsixSKSoc76d4N21YSJJIUrfQ8jV4TuXBN04fhWXZHEkZhBQp0HEPSIK7oNx5c0VVmS4gDbTv17Rhcc/6bUXlRO9Zv61LafdyISyLJX0gXKaZqwEnGWhjIyCgkEC/AQHnBsFYHpgE963v6ZNIOpFI7EgkEk8kEolNiUSiJZFIfK8vzjPQyRg2G7bu58LzKosyBJrqYkQ0iYxhEVIllm1MMKq2goqQws72JF/fsB2lUymmiCb5ky9VYYU7n3iVqCZRV6Expq4C23FwHAc5P0FYGVb48hq3X41XYurR66dQHVW7lAATRYH/3bcHURD6bUER3AnQsCyRsx2imkxEk6iv1Pjap8YVZWkalsN76RyqLPW61GBAQMCHF897l84ez3VTh/v+KwoCIVXigX9/nWPpHGFVcj33V9tRCzw3okmEVIkNW/cT0SSundJAWJH45xumMnVEdZHfhlSJp7cX++zT2w8UvZ6HKOY9th+81nYgqkrgOFSGFay8z3rZM57HarL7d+M0SrkG9D2ehj8WryOqyQyvjrDi2V2IAoRUiW/8agftJ3QcB9pP6HzjVzsIFdynlG4SU91+zKNro1w2upawLBXFCwCq0nv9Qv9p2FtgCisSgyIKIPjlT0tp+PKmWoBAw2eRdM4iY9iYtoMoCkVxb0o3/Zj3VP7rea/nu3ete9X1X1ni0tFDsBwH07YJy25fxq98Ysxpe3B/xbtRTaYqLIPjkLPdEtqeB8+Z3MDG7QfYdTBJU12MGy4bSUgRSecs1r60t1clXT/sGLbDkjXF5ZyXrGnDKNNyR5Ig8N3PXFR0T7/7mYuQyrQKQKnMdq+/bzmSydldynsvWdtGJhe0xyh3gu/tgIFMoN+AgHODYCwPTIL71vec0cg/Ho/bwFHAyP/IexJyEonE+WfyXOcCogBzWxowbQcje3IFfdfBJOcPCiEIgl96bObyP/j/79JRNV1W1t3SSbBp1yFmThjK1RPqyRgWkiiQ1t1JiHktwznYkWFMXYW/Yr/03/7E0n/7k/+6P17UQkWZ9BUKq6LfJymtuyUJ771mHLplF5WF+vnNl7hZC6ZdtFhQWObqxumjiJXhztmAgID+x/Peu9dt459vmEoy74dArzzX89vfbG/nU5POZ9jgMGndRBYFknm//cLlIxDzHv6b7e1846k/Fb3e3CkNZ3V3VERzF5RuXb2F5dc1U1upsbM9yfDB4S4eu/KGFiKq68OBv5YHhfFDMqmT0i0uHlFNznbQsz1rOKxIpAyLNw910FRXQUVIxjAt0oar38995AJM20EQKEv9wskYYdULe7j9qjGkdYs7PjGWbM4uGSekdSuIEc4iEVXiwLEMQweFSekmyYK4N6JK6Dm7R/9N6SYCbu/wYYPD1FdqDBscJpk1cQAjZ9P69lE+OraOiCrxhctHciKTK0sNpw0Lx3G4dfUWfn7zJQDsbHfj/w1b93cpLfnIwmZqoio3zRgV6LgXDLRFL00RUXSBB+dOZHh1hH1H0yiigKaU5/0caDu/B1p52YCTBH4XMJAJ9BsQcG4QjOWBSXDf+p4z/SneBWwFngKuSyQSQ/O/ggXFUggQUkT3AddxeGRBM5eOquHR3+1CFgUiquTvti5cWX9kQTPhTjusRUFAFAQmNgwia1jMmdyAIAiYtsOStW1cO6WBbfvfY3RtBT95fjdhpXevezbxFhQ7Miai4E5IRVWZu9dtK9ppmtJNMqZFRJM4njGY29LA0qd2EL//aZY+tYO5LQ2IgV8EBAR45L33wbkTsR2HTTsP8ciCZkK99FzPbx+aP4lf/PFtv+9rLu+3N1w2gmzO5nDS6LWH9zdp3fInXb/169dJ6xYbtx/AdujisY7jTiB6C1ld/LU8EynObfIajqgSYUWmIiTz0PxJRDWZDVv3l9RcYWnzTM7ip5t2UxMNEVElOrKmr9+FlzTi4JCz7LKOFbwYYcWzu3jnvQyiAI01EZwSGk7pZhAjnGXShsX61v0ksyYRVfIrZ1w6qoZk1uqV/yqi672C4G7uuOfqCzmRyRELyciiwNqX9vLRsXWYtsNPnt9NLCTzq7Z3ehwPZ4OIIvke3JExfQ+OajLXTmnwS0sWZtmlDbfkb+DFPZPOb7Qo5OIR1aR16yxd0alJGxZrXtqLbrqZc7pps+alvaSN8rzegZZZmSrYPObhLYIGlDeB3wUMZAL9BgScGwRjeWAS3Le+54xu10wkEg8DD8fj8ThwfTweXwq8AKxOJBKJM3muc4GQLJEz3Z3ZsZAMWdPvgeQ4DlnDImc7Rf0UT2RybH7zMDPG1hEryCgMqRI4sGxjgm/OmUBMk/Ge617ec5Rhg8NUhGS/D9OhDp22fe91fd0xxa97NolqMoc6dLbkd517E4gv7znK7IvO528/3kRTXQxwEASBtG6yvnU/C6c1Fu30jWkyIfnsT4AGBASUB573gkVEk9m4o53LRg/ptecW+u1tH2vyy6YC1FdqiKLAkrVtPPbX00gbVunXO8teG1El0vlJtqdefZd/nDuRuS0N/m7+Qo8VBHAch4xh+4uxnr+GFPFkTYKAfsPTcNqwiCgSGcNEkUQ/M9ZxKNJcSBaLSpt7i3G7DqV4YM4EfvbCbm6/aoxbPlSROZzUuffJ11i5qKUb/dae9VjBixEuHlHNQxsT/OPciSR1k1g3cUIQI5xdIorEwksa2bTrENPH1BJRJHKW2/szFpJ65b+q4nrvV3/5Gt+6diL1VSFs2yGlm/5inOU4fqzbfjzbq/FwNhBFgWQ2x8Ujqvnl1v18ZupwPvuRRrKGm4XZWcO7Dib9LLusYZX24gAfUYCH5k/i7nUnsz0fmj+pbCcRPM0WZqeWc3mmgZZZGVYkHr1+CsfSOf96B0WUstggE9Azgd8FDGQC/QYEnBsEY3lgEty3vqWveiomEonE14AbgLHAq31xnoGO4zg4gCoKpA2LW1dvofkf/pNR9/6aXQdTmLbDzzbtZvz5g7ht9RbG3vc0t63eQsuI6i47rNOGxd6jadpP6EQ1mV0Hk3RkTVK6yeIrm0jrJpVhhaRucs/6bciSm9VY+LoTGwaV1W79tGHx+Et7aW4cjJ3vT5bSTb6/sJn7PjXO322QMex8Fo3Ap6cOL9rpOziqEpLFfusDGRAQMLBI6SZ3fGIst67eguX0znML/Xbm8j+gKW4p0axh8fd/Nd7f/JDUTTI5qyy9Vsxn/HzvOjeD5720QUVI9r8z7rn6Qt9j07pbFvO5nQeROl24LIrBgsxZJKrJpAyLxWvbuOTb/4WUz6DduKOdqQ88w+dWvkhSN+ncRixVsKAc1WTeOpwia1jc/xfjiGgSw6sjvLznKILQTaxQBtkoXozw8HUXcahDJ2WYSPmSw501nDHsIEYoA1RJZNzQKl+3Xtzb25i30Hs1WSStW+x/L0NElfzFuKgm+7Gu7Tilx8NZ/hw8RNH14I072tEtG1V2S/nvPZLuEutu3H6AlO7G9bbjIHTazdH57wHuQtKDcyeSeGAWD86dWNYLSGnD6pKdes/6bWWbqZjOf+98bNnvGP3VX/OxZb9j8dq2sr1eI78J594nXyN+/9Pc++RrpA0LwywXNwg4FYHfBQxkAv0GBJwbBGN5YBLct77ljDeWiMfj1cBn8r8AHgduO9PnGejYtkPKsLht9RZ+eH0LFeHi3h//5793sXxBs59JUFgDuCaqdpkAiygSgyMKD82fREo3eetQB8MGhZBEgVuuGIXtQFI3qQwpXD2hnpqYxlcebyt63WX/P3t3HiZXWSd8/3v2qlPVIekmxJCFpAkcEQhNFngiQWfG0QwyD2J4IskMBmF01FckvCovo+CQx8FhGJCHZJ5rmCGOlyyaKMMWdZBZHEeBSDCkg8HMgRBCFjBkIaS7llN1lvePWlKVdIeQdHWd0/w+1+UlqVSn7zr37/7Vfc69PeFy5+U9w30pBlWZ1X4KK595lSsvmIqtaxhhxAXTxvLZ+9fVz/FQFTD1yux129S4pGdC0yxUXY3vQwQhxPCrTeJYs2UvL//1RWS6KgMoGVM/qpzbmG+vf/B5fvdWgbEZkxDqW4XOntJJR8qgA/jyD+OZa1OGRjkIuXX+2YwblaIchJi6yqcumHp4jtU0Zp7Syf1Pb2XeWeMB6MyY2IYmAzJtUIvhf/zkTLKpg/2HlKFxxxPu28abXd3WdMmqXja/0c9f/vH7gOpZi57P3v4Ss6d0kjY1bnzk7f+9dmjsIyy95EzG2JV2GobRIDGsSh+hjRrz7vM3f6Qpbo+2z9vU1y0FBEHIiR0mOa9yhnh/0UdRYFTK4Nmt+xh/QpovxTT/QnXFsVHJwR2WjqoqRBH8aMNOPn7uxKYYvnz2ZHRVwdBUiuXK522kqQqWHqOZgW1maiqloHnASFMVzJjsxnKopJ0BmbTyhhF8+Ycb6u1pzZa9fPmHG1ixeFabSybeTtLashCNJH6FGBmkLSeT1FvrDWnP33GcnwATgQeBzwDbh/LfH0ny5YNbeXakdfqKzQfer97wGl//4zPqKwlWb3gNgDndXaxYPOuwQ0VVVaEjZWDoKkRwwWlj+c6Tr3D13KlEVG7+Nr32FlNOzPLxcyeyt9+rr7KpmdPdRd7zyaaMYbsOR6KqCl0Zk6sv7MY2NfqLldnZHdWHRQCXnHMypq5SLIeEUcS+nMfYjhSKAl1Zk919RTRVoUMetAghqmpbfAIUSkE9/+7cXziqnNuYbysPpCL8CIIoYn++zMQxaZYt7OGNA0WyKX3AXJvzfDranGtrn0PTKiu1/HKEV6ysam98WGjqKoVyQL9X5qq5UyurjDyfPf1FxnakJL+2QS2GbVOrD2Kv2bKXnfsLg3y3B5Vt1qs0TaUrY3LP4pnYpkahVOlsBxFkTI1SSufv/qSHnOfHOn4b+wj5UkAUReztLzG5OlEADvYTCuVA+ght1Jh3D43b1Rte48aPvn2ftzH3pgyNN3MeCgoRIWEEilIZGO+vrlbNleIbv3B4Dq4N6H/w9JOaBm0uOedkxo6yuH/NVubPmMiTL+3mg6efRFfWRFEqEzxMTWn7lq5xUvTDAdu7rqpkY9jea2dA1u4D4eAZkI25Oy4a229N7YzCOLStQzXmn5pnt+7DtmRSSdwVfPnuFskl8SvEyCBtOZmk3lpvqK/imcAo4M+AfwP+G3Cr/y8a2KbG5jf6mT2lkwOFMmEUsWxhT9OB97apc/uC6U2v3b5g+qDb5qmqgm3qpEyNrKUz76zxfOa+dZWtoIo+J3akCKKIbEonY+qH/b5lC3vQY7biRFUVspZePU9RY1TaYE9/5QwlgK//8RkUy2HlzC8ispbBn9+3jtNvfJw/v28dWcs4bKtYIcS7W+3hHYCiKBh6ZctIU1ePOufW8m02pWNbOmFUmbwxqdOun6PYaRsYqjJgrjVikmtrOVZVFDKWzmO9O5uuD0CxHGKoyoD51YzJ53i3qdVRvhTw5Eu76zFWO0fsaGJY09TKgIaqYlsaYQRZSyfnBXzvV69ialqi4jdrVc6NHmMbTTFc6ydIDLdXY50cGre6qsBRxm4t9+a9AEvXiCL43P3P1VdI7XizgKYqXDV3auzjF5pj2DY1MqbG5C67qa97/TyHvBfw0427MFSFmad08mf3/ppzv/Fv/OmKZyiWA9nI5xC1XUwa27upa7E9U1FXGeS+rN0lG5htatx2WXN7jfMZkLUzpBtVBm39NpVIHC1TvrtFgkn8CjEySFtOJqm31hvSqY+u60450t87jvMx13UfG8rfmVT5UsATG1/ntsums+blPcw7azz3r9nK3VfMYFTa4EChTNrQuPEotjE7VM7zUYBpJ2V5dus+cp5PxtIqDywsjbxXOe9i1dptTf/2qrXbuHpud+s//DGwDY3+ko9e3d7p9gXTeXjdDtKGTq7kkzJUoggMXeWexTPrK2nSuiYzt4UQTVSV+talaUPjxkd+w/XzHMZ2HNu20PlSUM+tfcUyJ42ymHVKJ6Wwcu5VUnJtzvP56cZdXD5rUn1rzHGjLFQFvCAka+n17Tb7i5V8rEt+bYtaDGctnS+u7OWmi8+o9x+OJYYr/YTKrglZS2PReZPJpioDN0mJX6i0xXwpIJuqDCatWrutqZ8gMdw+jXl3oLgF3lHsqiqkjMptzLNb95H3KjuAPPzcDhbMnFRfgZu0+F25dhuf+UB3U193wpg0ec/n9gXT+U/3DT54+kkSx29DUyqTJG6df3Z9u+OspaPF9BlCOYwGjNWr5k4l1e7CDaBQCnl0/Y6m8j66fgdXz+0+bDedOFCr5w1f/+DzPLt1H7OndFYmLcTgfGDx9gb67hYiKSR+hRgZpC0nk9Rbaw33fipLABlUBFKaysLzJrNq7TbmnTWefPVh7s2rf1t/z8+/8nsDb2NWCsge4cwK29Dw/JD+6qxMTVGqK/0qDwhRKjNMl/9sM3f++0v1n9NVhWs+dFprPvBxUlWFqFQgMNN8/oHnmHfmOD51wVRsS+PXr+6lZ9IYIiqfoXFAUY/rFF8hRNuYqlp/2JgvBew64HHBbf/JE9d94Jhzbs7zURSFjrRBvhTgh1F95UxScm3tnL1yGLHu1X3cfcUMdFXFMlSKhYAwCuudMKV6Rp1M2miPWgwfKJaZPaWTpT/6LUt/9NvjjuEgCMmXwA8jdr1VZNwJqcTEL1Q+R213hnWv7qv3E2569Df85f98n8RwGx2adxvjFt55nzelVyZyRESVFUhKZXD8j84aTxiBVw6xrWT1dW1DY+F5k/HDqKmvu21vnolj0thByBnjT8DUVPywMkFQUcDSJY4PFUSQ0tX6FrFdWRNDVQiidpdsYBlLT1Ssqgr8r1mT+PIPN9QH6b71iXNiuxI0ZWrcEdPzgcWR6bqKXw6aXouI0PV4rooVopHErxAjg7TlZJJ6a73hvgON6a3G8Cv4QX1AcdpJWd4qlPnWJ85p2kZmjG2wfFHzVjjLF537ttt5appKytR4dP0O7lrYQ8rUSFcfGKpKpdJzg2wDk4vxNjCv7dxJxtIZN8ri4rPHk01VBg/fN/4E7nt6K28c8LDNysNEU1VkQFEIMaCCH3Df01vx/JCUoXJXdcuxu3+++bDt944m51a249NQiLCr+XbcCSnynp+oXFs7Z882NWad0sn+fJm0qVLyQ1RF4a18GdvU2bY3TxBG+GH49v+oGHJhGNVjOOf5Tf2EJza+ftgWekfbb0jrGqMzZj1+dU1JVPxC5XPkq7szzDqlk2xKZ3efx7wzxw0Yw7JIZXj4fjho3j3WPq+qKqjVSXJ3LDiHl3YdIG1oZEy9vp1vEuO3K2Me1tf9rxffoByE9VVViqqwL1fiQKGMocpZigPRFDhQ9Ju2OzpQ9GO7UvHQbcfh4JmKcWTqKrapcev8s3FvuYhb55+NbWqYMb33yntBfdLCqV/7F+bd9Qt2HfBie33FQWU/pBxE7MuViCLYlytRDiLKvvRBRfxJ/AoxMkhbTiapt9Yb7pWKMZ0fOrzC6gqWQ2ekXtpzMisWz6pso1cK6g9S/v5PzuGETKr+mnoU00BrKx/XvbqfWy49iwjIWhrFckja1Nj02lssW9TDkpW99Rmmyxb1xP78wbwX8NWPnkEQwYFCGU1VmgZnN7/RzxMbX+equVOx2l1YIUTsBEF4WP695JyTWXrJmZw2LkuxHByWh48m5xZKAX1FH68cousqURhhaCqmrg6Ya9MxzbW1QZkggjfzHl1ZkzCC+57eyryzxgPg+SH3Pb01ttuyjWRhGLE359GVteoxXIvfaSdlKZQC0obKiitnYZvvMIb9gP5+H9vSIYroylqEYZSo+AWwTZ1iOaj3EwxV4YLTxvLdJ18ZMIY7ZECmpWqD4EfKu4193ncSu5ahkvMCHlq3ncXvn0KhXPk9O98sMGFMmvvXbE1cX1fTVPqLfr2vuz9f5iPvew/lIJI8/A6Uwoglq3pZs2UvAGu27GXJql7uWTwzlvcHqgJ/9yc99BeDg9u1puJ7BmShHPD5B56rX1+orCy+Z/HMWObUxu2Xm7Y/jV9RxSHKoeQ+kVwSv0KMDNKWk0nqrfWGe1BRQPVhV2W7psabsV0HPCIiVEVp2urpd9u3MuaMM464ddmhVFXhW584hy//cAO2qVHyw8oWqKZOX7HMCbbJuq376mfZ9Hs+VgJmO6sKZEyNl97o4/Rxo0gZKpeeO5EbHjp4k3jbZdOxzfg+MBJCtEcYRuRKAYpCU/5dveE1dvd5lYdhKaP+/neac8edkGLnmwU2vrKXC6aNJWVq9BXLWLradF6uokDJD2N7BlYYRazfto8Lpo0lY+lEUSR5NibypYCVz1TO2arF8OoNr7F6w2v1B7qappKtxtY7ieGMpfP1Rzfy1x8/Gz+EbXvznNRhJS5+VVUhjCJefyvP6eNGkU5rEsNtVCwH2KZWXzV4tHn3aGK3UA55avNuLj9vMh0pg/5imZzn88hzO7h67lTeypextOb41VUFJeZLVGt93V++tJsPnH4So21DYvgdylg6z27d1/Tas1v31bcljxtTV+kvwVcf/k3TAHhcV/4l7fqmdI2OQ87Y7LB0UrL9VezZpia5TySWxK8QI4O05WSSems92f60TUxVOWyLsmULezCHaEpqStfIVLelKZZDUoaGbWj0FX0UFK5/8Hk+/7319Hzj3+j+6r/w2fvWUQrjv5A0ZWjYls6pYzuwNJV8KeCGh55nzZa9+GHEmi17ueGh58mXZDsbIUSzfLlyNlcr8m9K1+gv+pw8Os0XV/aSra6WUVD43P3P1XNtzzf+jc/d/xxBFN98a1s6c049kWyqcg5vzpM8Gxe2pTHvrPEtieHa9nCWoZG1dO769xcJoihx8QvU+wkpXZUYbrMwglz1Og91zNqGxqwpXfxg7Tb6imWyKQPbqNw8qqrCpy6YyuceaI7fz9y3jnw53vVe6+vOOfVEUobE8LFI2ta3hXLAkpW9TfW7ZGUvhZjGatK2a1VVhY6UwYkdFooCJ3ZYdKSMo1rFL9pL7vVFkkn8CjEySFtOJqm31mvJdELHcT7tuu63G/58reu6y4E7W/H7kiaMwKqeRfGPn5xJNlU5B1BVGLJzAGs3T5qmkjZU+j2ffbkSm15/i3lnjU/U7NJGqqrQXyyTTekUS0HiZsoKIdrHNjUOFMp0pPQhz7+qqpBpWI3zUnUr5ms+dFriclTe8+monlmrKQq25NlYqKy09Zl2Uhaq53cOZQzbpsbyRT1s35cHKrsnJPU7Nu/59euiqxLD7WRblZmgX/pBL7dcelZTzOqqgnEcK4VUVaErY3L1hd2kDZVcta+7uncnV8/tJjtIvcd9dmqtrzsqbUgePkZGdeLFklUNW98u7MGI6SBS0nKtqgyynWg8Ly9QaVfvZCW0iIektQ0hGkn8CjEySFtOJqm31hvSlYqO4yxyHGclcIvjON+v/u8HwGcBXNf90VD+viQKwwjb0ti8O8d3nnyF198qEkXw+ltFvvPkKxTKQ3dgaO3mSVNVMqbGaNvg7ImjEze79FCqopDzfMII9vZ7if4sQojhEYYR/UWfrKVTKIUD59/S8eVfTavk2mWLenhi4+tceu7EROZbVVEq55lVH7z3Fwde8SEzvIZP5SzFErapUSgFLYnhygCNxUmjLMbYBrcvmJ7I+IWD/YRsqnLDIDHcHmEYkff8+irYrz2ysR6z+3IlgONeKTRQX3f+zInYlsZLb/Qntt5rMVy76ZUYfmfCCFJGZevbF795EXdfMYOUoRLXTVkSl2uVyvW9df7ZuLdcxK3zzyZlqLInkRhySVt1LEQjiV8hRgZpy8kk9dZ6Q7396U+BfwSer/7/PwL/F/jwQG92HMdwHOd+x3F+6TjOWsdxLnEcZ4bjODsdx/l59X+XV9+72nGcp6qvPV59bZrjOE9Wf/5ux3HU6us3V/+9px3HOW+IP+NxKfsBOc+vP3BeuvoFnJseZ+nqF1h4/mRsozWzpzVNZVTKoDNj1meXNm5BFffZpY0so7LKM22qEMG3PnFO02dZvqgn9rPQhRDDK18O2NNfJF89U3H+zOb8O3/mxCHJgZqmcmLG4uoLu5kwJpXIfJsyNTKWzmv7i1iGShRFh21buHxRT8u+r8Th8uWAHW/myHkBpSAkV/IHjuHj7NWpqoJt6nQkvL+QMjVss7IlscRw+5T8AF1V6nG0u8/j4uW/5IpvP4OuDX0QNfZ1a33t2y5rjt9lCan3lKmhVQcWJYbfOctQ8coh+/Nlogj258t45RDLiOcZhUnLtZamoh/yhaOrKlZMz9oVyZU2tAG3zk5L7hMJIPErxMggbTmZpN5ab0jXfLqu+ybwc8dx0q7r/lftdcdxrqEyuHioK4C9rut+0nGcLmA98A3gTtd1v3XIe6cBZ7qu2zjH9E7gJtd1f+44zj8AH3Mc51Xgg8D5wCTgIWD2EH3E41YKo/phoY+u38HSS85k2klZ+os+GUtr6dkOtYeFYRgNfFh9QhpWvhSgoBASce2qXsZ2WPXruH1fnoypyxkZQogmtqlxYjbFU5t385Ez34OlqU050NLUIXvY2LjFVspQEpdv86UAInjkuR1cNbdyJpnk2fayTY1Tx3bw3ade4ZoPncaXftDLjR894/C4Oo6tJBslvb9QLAeEIby8u49pJ3VIDLdJOYwII8iYWktzbqPG2F10/mRWPrOtXu85zydjtravPVRqq8X7CmXypUBi+B3KlwKuXVU5o7BmTncX9yyeSUcqfgNfKUNLVK4t+CH34euo2gAAIABJREFUPb2VeWeNB8Cr/vnqC7vJysCiGEKFcsCqtQfz+OY3+lm1dhtXzZ1Kh8SaiDmJXyFGBmnLyST11nqt2kj2y47jXAAsB74N7BnkfQ8C/9zwZx+YCTiO43wMeAm4DrCB0cCPHMcZDfyN67o/rr63Nnj5OPARwAX+tTr4uM1xHN1xnLGu6+4e0k94jDKWTt4LeHT9DuadNb4e2E9sfL1y/sswBHbjeYu1w+ptIxkPWaByDQulgKxZ2R/ZDyNWb3gNAF1VePGbF7W5hEKIOAnDiP7qVohfXNlL719+hJVrtzU9DKufwTXEDxuTmG9tQ6NYDpg/cyIZybOxkPcCsimd5T/bzNVzu9l1wOOvfrKJL/z+tPp7DE0d8rhKYvwChGFl5c/YjlT9LAWJ4eFX27rzpV2Vfu5hOffCbrJWa/q9te18r76wG9vUyJcCslZyBuFso3JG771Pb62fzSsxfPSSdoZK0nKtbWos/9lm7vz3l+qv6arCNR86rY2lEiNRxtIl1kRiSfwKMTJIW04mqbfWa9Wd1YeBe4FtwJdc1/37gd7kum4/gOM4HVQGF28CLODbruuucxznRuBmYBnwrer/dwJPOY6zFlAaVi72AScAo4C9Db+m9vphg4qbNm162w9SLBaP6n1H4+QJE1DNNPlS5WHtoYfbR1HApk0vHfZzQ1mGYxWnMkyaehovvXGAU8d2MHtKZ9Ms5NlTOnkrV+R327e2tAxv54wzzmjJ7z/UcNVJHOpfyjG85RiOGB6uHDxhyql896mtXDV3aiVHFErvKAe3WlziqVH3qaeRtXQOFMvHnWfb8fnilIOP9/OfPGEChmXXzwR4q1Di9gXTuf7B57l4+S/r8RuE7YlfiF8MO8576ffKlRguSAwfSatiuNbnDcKovuX/DQ8dzLnLFvXw5u7fsb2v71iL3hJxiuXuU09j4XmT2fVWsWX93ZHaj5g0ddqA1yzv+Wx/ZXPLy9UKcYrNCVMGvr79RZ+dW9/++rbjs2Q7OsiO7uIEO8Vb+SL9+/fSf4T80+4cHJf6bnc54tiW231NGh2pLO3MwUm5Rq0Wx/iF+NRPu+MXhv+Z8LGSMrS3DMfSliUHV0gOPlwS6udo41eJoqE/sd5xnG8CfwDcBXyNysrClYO8dxLwCPD3rut+x3Gc0a7r7q/+3fuAvwP+CDBd181VX/9h9fWVrutOrL72MSqDmS8CKdd1/7b6+nrgw67rNq2WXLduXTRz5sy3/SybNm0akmTg+yFFPyCla/SXfPwwpL8Y1Le4GWMbdKSMAWekDlUZjkecypAv+ezLlSj5AdmUwZKVvfWHVMsXnUtXxmzZzN53cB1aPrX4aGN4KMSh/qUcw16OlsbwcOVg3w9RNYXTb3ycx77wfsZ2pFi1dhuLzptMrnR0ObjV4hJPjfIlnzCKUFDIl3yuPY4826bPF5scfDyfv9Z3sC2dTa+9Fcv4hfjFcL/n851fbuHquVNRFInhwbQqhn0/pL/kk7V0iuWAfKmy9Uxth46c52MbGroev21n4hTLQ5mHBzNS+xHFks8Bz2+6R1i2qIdRlk7KjOdqxSAIyZcDMpZebyNaww42cYrNIAzZ+WaxaaLAbZdNZ8KYFNpRHO473J8lDCP25kpcu3L9O2lDbc3Bcanvdpcjjm253dek0duUpW05OEHXqKXiGL8Qn/ppZ/zC8D8TPh5ShvaW4RjbsuRgJAcPJCH1c1Tx26qraAAXuq7rO47zr1S2QD1sUNFxnHHAvwLXuK77H9WXn3Ac54uu664FPgSsA/4QuAa42HGcLHAWsAlY7zjO77mu+3PgIuA/gc3A3zqOcwcwEVAPHVBsBz8MyZcC9vSXCKOQ94xKk9J1FAVG2waGPvTblo1UKb1y7sibQUSnbXL3FTMYlTbIe5XzZ+Q6CiFq/DCkVI6YPaWTf/zFK9xy6ZlcNXcqtqmRKgWJ2GasHVK6Rl+xzJv5EhPHpCXPtklj3+E/Nr3Bpy6YIvF7FGxDY9H5p/CdJ19h3lnjOXVshnsWz6xsQV8K5Hq1WCkI8cOQXClgy+4+3vueUVw1dyoZS6e/6GNqSiwHFONG8vDxsQ2tfs0OFMroMb5eQRCyN1diyaqGhx4Le+jKmE0Di3GRL1WO8mg8o+bR9ZVzmON4ZmW+HHDtyvX1meprtuzl2pXrWXHlrPoZ2CKewmjgthwO/bx4IYacxK8QI4O05WSSemu9Ie1FO44z3nXd113X/f9qr7mu+6bjOLcP8iNfA8YAX3cc5+vV174E3OU4Tgn4HfDnrusecBxnnuM4vwJC4Guu6+5xHOfLwArHcUwqg4z/7Lpu4DjOL4E1gAp8YSg/47EIw4hyGLFkVS/zzhzHR88ez5/d++umkfIOuaE5ao3njqiqgq6pEEE2JddQCNGsHEZ896lX+IcrZuD5IZ+9/7mGWeo9ZExdHigNQPJsPDT2HRaeN7kpfpct6sE2NInfAVTO0zObztPLmDqqosj1arEwjAgj6C8GbHp9HzNP6eTq7zb3eTOm2e5iJoLk4WMXRlD0A/qLAR0pg/35MtmUhm3E89rly5XVvI2DdKvWbqsM0sVwUNE2tcO2NL7tsunYptbuog3INrUBz9iMa3nFQaoCpSBif75cb8ujbYOUHt9JAkLUSPwKMTJIW04mqbfWG+o7q+9R2fYUx3Hud133k9XX/7r2eiPXdZcASwb4d94/wHuvG+C1F4EPDvD6UmDpOyh3SxX9ylY240ZZzJ8xkc/ev65ppuSSlb2sWDyLbAxvGuNKVQ8+GJQHhEKIwWQsnRNsA0VRWLKq95BZ6r0yS/0IJM+2X63v8PEZE/mc9B3eEYnf9siXA2xLY5Jpkza1w/KuxO07I3F8bMIIvvj93qYzVOZ0d7Fi8aw2lmpwSRukK5TDAVcqXn1hN1krfm07XwoGPlOnFEi7ijk/jPj8A88N0JaH5wgQIY6HxK8QI4O05WSSemu9oe71Nw73Thzk9XedMIRiKeCmPz6DbEofeKakFc+bRiGESKowjCiWAj4+YyJZa5DcG9MHdkLAwb5Dh/QdRELYpkbO89nT7zG2w5K4FW1hW4OsTItp7OVLATc89DxrtuzFDyPWbNnLDQ89T74UtLtoA6ptMb109Qs4Nz3O0tUvsOj8U7CNeF5f29BYvuhc5nR3oasKc7q7WL7o3NiWVxxkD9Z/l8FgkQASv0KMDNKWk0nqrfWGayrhu3rHWtvSyJcDogjyns/sKZ1Nfz97Sid5z29T6YQQYmSqPYzLmBp9xUFyb0wf2AlRUyyH0ncQiZHzfNK6xqiULnEr2iY3SOzlYhp7mUEeemRi+tCjtsX0iitn8eI3L2LFlbPoypixPeczaeUVB8n3iEgyiV8hRgZpy8kk9dZ6Qz2oGA3y3+9qec+n0zbpyloA3L5getNMydsXTEdV5KZGCCGGkm1phFFlcPHep1/htsuac2/tTDoh4iqM4PoHn0dVFOk7iESwTY1cKcAPI4lb0TbaILGnxTT2attzNpKJT0OrtpVw7WxdGVBMBvkeEUkm8SvEyCBtOZmk3lpvqKc/znUc5zUq2512Nvz3mCH+PYkRhhG6qtDv+aiKgm3q3PToxqYzKO54wuXOy3vaXVQhhBhR8l5Q3+ps+c82s3l3rin3yix1EXe2pTFulEXK1LjjEVf6DiL2CqWQLXv6OGdSpesvcSvaIWk5M62rLFvYw5JVvfUzFZct7CGtx+98Qqjc3+7Nlbh25fp6eZcvOlf6VWLIJa0tC9FI4leIkUHacjJJvbXekA4quq5rHunvHcc533XdZ4byd8ZZGEbkSpVltd996hU+fWE3fZ7PrgMe8+76Rf19c7q75KB4IYQYQmEYoSpQKgeUw4jZUzpZveE1Vm94Dajk3XsWz6QjFc8HduLdLQyj6rbpETdefAb9xYH7DjnPpyNltLGkQlTUYlZVoHtsBznPHzRu815ANiV9XtE6uUHut+KaMwt+yKq125oeeqxau42rL+wmq8Wvn5IvB6x85tWm8q585tVKeeV+VgyhpLVlIRpJ/AoxMkhbTiapt9Yb7ruUW4f59w27IAjpK5YJwpADxTIZSydj6Sz/2ebqOyKWLeyRLfiEEGII1XJvGEUUSz75ko9lqJTDCENVWLbo8LxryGx6EROHxu+BYpmc52ObGl1Zi3IQSAyL2Gns8+ZLPn4QYhkqHSkdTVEwdIVvfeKcprhdvqgH25Q+r2itpH3v26bG8p9tZt5dv+DUr/0L8+76Bct/tjm2bSVtqFx67kSWrn4B56bHWbr6BS49dyJpI34DoCLZktaWhWgk8SvEyCBtOZmk3lpvuKcSjuiaC4KQvbkSS1b1snxRD4oC/Z6PQuVcjJSp8bUf/Ibr5zmsWDwL29LY+WZBtooRQojj0Jh7x42y+Ov5Z5MvBURApjpj/vFfb+fuK2YwKm1woFDmsd6dfHLOlLaWWwg4PH5v+fjZ+GFIOQjr52mNti0e+NVWiWERG41x+w9XzMDzQ5as6uWexTMplgO6shZfe+TwPm+n9HnFMDANLVHf+7UzFdds2Vt/rXamYhxX/uVLATc89Hy9vGu27OWGh56XHSDEkEtaWxaikcSvECODtOVkknprveG+S4mG+fcNq3w5YMmqXtZs2Uva0NnT7zGp06RYDrl9wXTy1aW3F9z2n/WfmdPdxYrFM8nKDZgQQhyTxtz7xHUfIAgjlqzq5f6rzyNXndjx0427uHn1b+s/M6e7i8tmTCQr2x6INjs0fomgvxiwuncnn76wG8tQ6S/6A8fwzEmxfOAsRr7GuFVVhSWrernp4veS1jVURZE+r2irnDdwzpw/Y2IstztK2pmKGUvn2a37ml57duu++kQuIYZKfpC2LH14kQQSv0KMDNKWk0nqrfXieaeSQEEQ1m+wLjnnZGxLY+LoNPlSQNrQuOMJF0U5fBuob33iHFRFZmwLIcSxCMOIjKUzbpTFE9d9gNPGZet/LviV/Dto7pXVMiIGDo1f29KYOCbNovMmkzI13syXefrl3dwlW6eLGGns82Ysnc9+cCqTOjPs2F8gbWoEUSR9XtE2aV07/LiJhT2k9XjmzMYzFd1bLmLpJWeyau02Cn7Y7qINKO9VVlY2mj2lk7wXtKlEYqRS5fmJSDCJXyFGBmnLyST11npDPp3QcZxRgO+6bn6Avx5RNReGEflyQEpX2ZcrkTY1rv2DaVw9dyo5zwcqZ2T0FSuztb/68G9Yesn7uHX+2UzqtNm+L0/G1EjJQ0EhhHhHavmXKEJVFP73x85EUxRynk8EXPeHp2ObGv3FgC17+ph6YrYp99qmRiqmDxfFu0MthlVoit8wgiiK8MOIvOfz/V+9yoLZk/hB9YHztJOy5DyfjKnJwLgYVo393kI54No/mManL+wm5/nMmNxJNqXzl49t5H9fchb3Pr2VK+acIn1e0RZFP2Dn/jz/+MmZZFM6/UWfl3f3YZsa2Riu/qudqXjnv79Uf01XFa750GltLNXgdJUBV1bG8NKKESBtaE3fJWn5HhEJIvErxMggbTmZpN5aa0i7/o7jXANsADY4jvNHA7zl+0P5+9opDCP25kp85t5f0+/57NxfeUj95x/oJl8KsE2NjKWTLwX1FQa7+zy+8aPKsltFgROzFh0pQx4KCiHEO9CYf21LR1UgimB/oVzJv4bG5C67nn9PHm1z39Nb8aoz/jszJh2WLrlXtE1jDB8av1lLoyOlc9IoC1VR+F+zJvHgs9uZd9Z4pp2Upd/zMTUFTZOnt2L4NMasH4T1Pq8fRqR1jWxKJ1fd8vSR9Tu4/LzJPLDm1aa8m5W8K4aJqiiMG5Xms/ev4/QbH+ez969j3Kh0bGcmJ23lnx8y4MrKmC6sFAkXRtER/yxEnEn8CjEySFtOJqm31hrqlYp/AjjAKOB+4KeNf+m67ooh/n1tky8HXLtyPWu27GVU2uCM94yiUAqJiFi1dhtXz52KqihoisLZE0c3rTDo93xK5YBsSs6dEEKId6ox/+arKxP358us7t3JF/5gGjkvwPMDMqZez7+NAzKWDMiINmuM4XIYsT9f5qsP/4b7/+w8cl5ARGW1oqmpmLrCJT0T6rPrsikNQ5X+gxhejTEbRtT7vFlLZ+f+AqNtA01RuH3BdK5/8Hl6t+/nuj88ncldNjnPlwFFMexMXWmamWzq8Y0/VaXedmor/25fMB01pl0V20rWykqRbBHREf8sRJxJ/AoxMkhbTiapt9Ya6luVouu6Jdd19wDmEP/bsWKbWv2A+gOFMuUwIggrM7cvmzkJqIyAp8zKeYq1B9qb3+jn5sc2YsqSWyGEOCaN+VdXFTKWzsQxaS6bOYm+os93n3oFU1Ml/4rYaozhjKUzqdNm3CiLfDngu0+9QkdKpyNlkDI1bvnxpvpqL88PueXHm0iZEsNieDXGbBiBqlS3+Pd8TF2tbCldzblLLzmTb32iB88P+dIPesnIgKIYZknLnSlD4z827eLuK2bw4jcv4u4rZvAfm3bFdrvgvOcPsrLSb1OJxEiVtLYsRCOJXyFGBmnLyST11nqtnOo+op8e5EuVs2TmnTWerKmjagqv7y+gqgpfeXADD3z6fBQF9uVK7DrgMe+uX9R/dk53F3nPJ5sy2vgJhBAimRrzrx9CqVh5iFXLvct/tpmPz5iIpiqSf0UsNcZwzvMplgNu+KP3kjV1lv9sM1e+fypv5kucmDUlhkUsNMasbWkUSwH5UsC9T73CNR86jf6ij6og8SpiIV/dijcpsVgsB1w8fTz782U6Ugb782Uunj6eYjnANuO3Ml1VFf7P5T38vz84eKbi/7m8RyYPiCGXtLYsRCOJXyFGBmnLyST11npDvVLxTMdxvu84zsqG//6+4zgj5izFmrSusvC8yTyx8XX6Sz45z+c9J6TJWDrPbt3Hnj6PvOfz/V+9yv+5vIc53V3oqsKc7i6WL+qJ5Q2iEEIkQWP+tS2NR9bvIJuq5N7X9heYPaWTk0enKYcRdy1szr93LeyJ7ZlK4t0jrassfv8URtsGaV3DNnXGnZBiZzV+M5ZGxtRAUQaOYXlwK4ZZY97Nez6p6tnhy3+2mX25ErahoUi8iphQB4vFuH7/R1DyI7768G9wbnqcrz78G0p+RFx3aLI0lZShcuv8s3FvuYhb559NylCxZGt5McQS15aFaCDxK8TIIG05maTeWm+oR7Y+0fDf/zDE/3asFPyQVWu3cdnMSYxKG0RRRH/RR1MVrv2DaWSq5yV+YvZkfvhs83mKlqbIAxYhhDhGjfk37/n8dOMuLpsxidlTOhljG9y+YDrb9+VZ3buTK+ac0nSmUkpXY7udmHj38IKQIIyIIij4lZUoeS9gTMbk9gXT2fFmgdW9O/nT/zEZS1cPj2FdYlgMr1re/dP/cQqqolS3OVT4u0U9pA2NXDlgy+4+pp6YbYpXS+JVtImpNedOM8YDXmEU8eUfbmDNlr0ArNmyly//cAMrFs9sc8kGVvBDPv/Ac/XyQmXm94orZ5GN8XUWyZSktizEoSR+hRgZpC0nk9Rbaw3p1XRd978G+99Q/p44sE2Nj8+YyPM73iTn+bxxwOPpl3ejKnDV3KmkDY2H1m3HMlQu6ZnAtJOybN+XhyjClIcrQghxzGr5942+Aqqi8K1PnIOqwD99aha2pXPHEy6GprDo/Mk8sObV+h7qnRmTrJztJWIgDCMUReGHz24jY+lsfqMfXa3EdmP8XvP9XpaufgEARYETsxYdKUNiWAy7Wt5NGRoRoCgKugpzTxtLytB4dP0OTh5tc9/TW5tybofkXNEGulLJmY0UpfJ6HNnVnW4aPbt1H7YVz51tGs9YrXl26z5sOaNGDDHLUAmj5iW7YRRhGfJQUMSfxK8QI4O05WSSems9uZLHKOf5TBiT5v2njkVTFAxd4ZxJY/DDsP6A8Kcbd3HzYy/UH64AGLoqD1eEEOI45Dyfk0enmHZSB6pC/SFWEEbkvYBdBzwuuO0/+asfb2LeWeOZdlKWfMkna+loMjNJxEDa1BhtG3x8xkT6iz5PbHyd8gDxu/SSM/nWJ3roypoQQTYlAzSiPWp5N4wi/umXW/CDkHIYNfV5v/mTgzl3+748uqZIzhVt4YVR0wC354eVP4fx3E807wXMntLZ9NrsKZ3kvaBNJTqy2hmrT1z3AV7+64/yxHUf4No/mEa+FM/yiuQqlEK+96tXm9ry9371KoVS+DY/KUT7SfwKMTJIW04mqbfWkzv9Y2SbGnkvoCOtkzI1bvnxJqIoQldV8l7lAeFtl01nd5/Hxct/yRXffgbb0mQLKCGEOE5pQ8MrVyZwmIbGY707CaPKw+1C2ef2BdOZ093Fv/zmdZaufoHX3yqgKbLttIgPrxyS9wImjEljmxoLZk+S+BWxljY08qWgfo7i1x97gYylS59XxFItTufd9QtO/dq/MO+uX7D8Z5vJxHTln6pQz/21M19uXzCduKb9lFY5Y3Xp6hdwbnqcpatfYOF5k0nJJAIxxFQF5s+c2BRr82dOjG3bEKKRxK8QI4O05WSSemu9eN5ZJUChHKIqlZnbQH1lAcBv//c85s+cyMPrdshZikIIMcT8ICSMDubfn27cxc2rf8tvln6EMIKUccgZdIYKknpFjIRRpZOb9wL29Hus7t3JVXOnSvyK2CqUKwOKOc9n9pROVm94jS/8/jQmjUlLn1fETi1OG8/8mz2lk5zn05Ey2liywQ2Y+2Oq4AcsWdXbdAbkklW93LN4Jh16fMstkilJbUOIQ0n8CjEySFtOJqm31pKreYzS1RumtKGhqwrLFvbUZ5emqmci1baA2vxGPzc/thHTkBnbQghxvMphhG1ph+VfRYGxHRa3/HhT0xYHt/x4EynJvyJGbEvD1FUUBbIprTpjTpH4FbFVG1A0GnLu3T/fLH1eEUvGIfdmc7q7WLawByOuA92DFSumxc0McgZkXFeCiuSq7Qh1WL9Izu8UCSDxK8TIIG05maTeWk96/seo4IekDZV8KWDzG32cdlIHd18xg1Fpg5zns+uAx7y7flF//5zurljPjhVCiKSobbnnhxGv7Omv518Vhf5B8m++FJCVh10iJhrjd+qJWQyt8uxY4lfEVc7zsc3K1tNpU5M+r4i1MALLUOtxeqBQRlEqr8dRStco+yFw8ExCQ1Vju4VwEleCimSS7xiRZBK/QowM0paTSeqt9WSl4jGyTY1iOcRUFSaMtvnOk6+w64BHFFX+7o4F5zTNjr1jwTnYMhouhBDHLef5qIqCqtCUf1OmxiPP7eCuQ1YnLF/Ugy2rZkSMNMbvfU9vZX++LPErYs02NQqlkN8dKBCEEfvzZenzithKmRo3P/ZC/d5s1wGPmx97QWYmD5HErQQViSXfMSLJJH6FGBmkLSeT1FvrybT3QYRhRL4c4Djvpd/zsQ2t6WyYfCmACPZ7PhlL41MXTCWb0ukv+igKPLRue/1smc1v9PPQuu1cfWE3WUvGcYVIiil/8ZMj/O2WAV/d+jcXt6Yw7zJHysGGqhBGUApCDF3lqrlT61vz/XTjLta9ur+ef7fvy5OxdDnbSwy7wWI4rC6VkfgVcdcYw7mSj6YomLrGK3v6OXVsB4oCOS+QPq+InaTNTM6XAz73wHNNK//mdHex4spZsVylbugqln7IStDq60IMpXxp4O+Yq+ZOpSMl8SbiTeJXiJFB2nIySb21nlzFAYRhxN5cic/c+2tOv+lxPnPvr9mbK9UfBAKkNBXb0rj1XzZR8AL25UpEEezLlVCARedPZunqF3Buepylq19g0fmnyEoDIYQ4CkfKwbU8bBkqUQhv5cvYps62vXnCMGL5oh5293lcvPyXXPHtZ8hYemy3DxMj12AxHAQhxXIg8Sti79AY3t1XxDJULE1ljG2RsQ7GrfR5RdykdW3AlXTpmOZT29QGPKMwrjOpC6WAe5/e2rQS9N6nt1IoBW//w0K8A2lDY+F5zd8xC8+bTFq+Y0QCSPwKMTJIW04mqbfWi9/UxxjIlwNWPvNq02j2ymderc66rlyygh9QLATsOuDxVz/ZxBd+f1r951VFoStjseLKWdimRr4UHLbSUQghxMCOlINVBfwwoi9XYuXabcw7azxQOXT53qe38ukLuyX3irYbLIY/fWE3fhTx1gGPB3+9XeJXxNahMZwv+eyTvCsSQtdVOm2TexbPrK8ET+saekxX0iXtjEJVUZg/cyLXP/g8z27dx+wpndy+YDqqEt92X1t5LXkqWQrlgHWv7mtaFbvm5T3MPW0sHVo827MQNRK/QowM0paTSeqt9WRQcQBpQ+XScyfy6PodZGdOZMLoNNd86DTynl9fJZOxdL7+6EbuWHAOX3lwAxcv/yWzp3SyfFEPqepNSm0AMo7b1gghRFylDZVF500mVwqIoohxo6yDOTiq5Na/fHQj1897L195cEP9gVZj/gXJvaJ9ajEcUlnRcdq4LONPmEoYIfErEiFtqFz5/ilEgKIc7PdK3IokCMOINwslrl3Z2xSrXRkrlgNJtqlx22XTueGhg4N0t102PbYrFVOmxh2PuE0TZ+54wuXOy3vaXbQB1VZeX7tyfUM8nEtXxoxlPIiDbFNj+sQxfP6B5+p1J+chiaSQ+BViZJC2nExSb63X1jt/x3EM4DvAFMACbgF2AD8CXqq+7W7XdX/gOM7NwMWAD1znuu5ax3GmAd8FImAj8AXXdcOB3vtOypUvBTy6fgdXvn8Knh/ymft+3XRDmjY0Iipbvdz20/9uPvvIlLOPhBDieHjlEEWFtKnxZr75oeD3PnM+Bwplyb8i1rxyiGmoeOXmPoTEr0iKsh/iBSFLVvYybpTFX116lsStSIx8yefalb31lX9rtuzl2pW9rFg8k2wMV/4VSiGPrt/RNEj36PodXD23m2wMz3xJ4pmVb7cLkYgnOQ9JJJnErxAjg7TlZJJ6a71296KvAPa6rvtJx3G6gPUPAjnjAAAgAElEQVTAN4A7Xdf9Vu1NjuPMAD4InA9MAh4CZgN3Aje5rvtzx3H+AfiY4zivDvLeo5axdC6bORFFUViyqnJDesk5J/OF359GZ8ZCUaCvUGbZwh6WrOqtr1JctrAHea4ihBBDw9JVPv/Ac4ztsPjJtRdWtuDzfNa8vGfA/GvFdFsz8e6kcHgfQuJXJEU5jFj1zDaWXnImE0an0VWk3ysSw7b0gc8ojOkAkqowyHai7S7ZwGpnVi5ZdXDSV5zPrKztQnToStC0Id+7cWeoCgvPm3xYrBlxbRxCNJD4TbbattmO8176PV+2zX4Xk7acTFJvrdfuO6sHgX9u+LMPzAQcx3E+RmW14nXAXOBfXdeNgG2O4+iO44ytvve/qj/7OPARwB3ova7r7j7aQuW9gDG2ScrUeHbrPi4552S+8hGnfiPS+5cf5t6nt/KpC6Y07c2rqwpmTG+mhBAiSYrlkPEnWIwbZfGlDx/Mv8/f/BHOmTSmaW/0fs/HUhU02RddxEg2pR/Wh/inK2dJ/IpEsE2t/hD+/j87j2I5JGWoTf1eVYGw3QUVYgD5Qc4ozHt+LFcqWoaKpancOv9sJnXabN+Xx9JUrJgOeqmqgm1qh90Hx/Vha74UcMNDzzetXL3hoee5Z/FMmakec2HEwN89UbtLJsTbk/hNLtk2WzSStpxMUm+t19ZetOu6/a7r9jmO00FlcPEmYC1wveu6HwC2ADcDo4C3Gn60DzgBUKqDh42vDfbeo6aqlSDb9VaR2VM6+cLvT6tvSePeclH9cPrvPrWVXQc8oggURYn1zZQQQiRFGMH1Dz7Pnj6P6/7w9Kb8C2DqCmeMP4GOlMG2vXlKfkAgHQMRI2EEe/u9w/oQIPErkqF2FMDSS86kUA74zpNb8Moh+/Nlogj258uVGzWZTCdiSFUUbl8wnTndXeiqwpzururKv3jepxXKITv25+nMmCgKdGZMduzPUyjHc9g+Xwr4zpOv1O+Ddx3w+M6Tr5AvBe0u2oAyg6xczcR05apoVgqav3tKQTzbhRADkfhNpnw54NqV61mzZS9+GFW3UV9PvhzP7znRetKWk0nqrbWUKGrvkyzHcSYBjwB/77rudxzHGe267v7q370P+DvgMSDluu7fVl9fD3wY6HVdd2L1tY9VX3txoPe6rrun8feuW7cusm17kDK9l4iInOcTRtCR0tnXXyJXCpg4Jo2qKnzpB718/vem1fflvfvnm7nz8h7c//7vIb9GxWKRVCo15P+ulKF1ZTjjjDNa/tTiSDE81OJw7Y+3HBfdu2WISzOwx6/sHpbfA62tl1bH8BFz8Hvfyy9efIOeSWPann+HQ1zaV6u04/O1OwefdrpDv+fT7/mMH5ViX65ECIztsEZc/ILEcCu0O4ZPdxx2vlnkhdf2M++s8Zx+4+N89OzxfOH3D8butJMyvOi6rS7msBrpsXyokdyPSFKuPXnCBDzMw7Znsijx2s6dQLxi83THob/oE0F95rdCZYX+0eSE4f4s75k0hf/n+xuaVq7O6e7i7//kHH63feuAP9PuHByX+m53OeLYltt9TRodqSztzMFJuUatFsf4hfjUTzvjF97+mfDpNz2O37CkSVcVXrzlIlx3+OsuDnX2bi7DsbRlycEVkoMPl4T6Odr4bev0PMdxxgH/Clzjuu5/VF9+wnGcL7quuxb4ELAOeAr4W8dx7gAmAqrrunscx1nvOM7vua77c+Ai4D+BzQO9d6Dff8YZZwxYrn7PJ4oiCuUQU1MplkO8IOSrD/+G5Yt6SBv6gIfT571g0H/zeGzatKkl/66UIZllaDRcZYnL5z6+cgzPoOJwXqe41MuxGqzsec9nximdfPfJV/j0hd1tzb/DIen1+HZG8ucb7HP1Fct8/oHn+OwHptJpm3hBiG1o5L1gxMUvjOw6hpH9+Y4Uw4+u38GnLphK3guYPaWT1RteY/WG14BK3K5YPGvEXZeRXNcDSfrnHfRerugnKtf2FcssuW9d0/acS1b1cs/imfXyxqmuiiUfzw8PHwT1w6Mq43B/ljCMWL7o3MO2sTvBNhnT5ms62HWIS323uxxxbMvtviaN2l2WuMcvtLcscYxfiE/9xKEcR3omPOA26uX21F0crtW7uQxxbcuSg48srvU2kuqn3Xt+fA0YA3zdcZyvV1/7EnCX4zgl4HfAn7uue8BxnF8Ca6hs2fqF6nu/DKxwHMcENgH/7LpuMMh7j5ptaKCAAuzpL3Fi1uLhdZUtoNKGjqrA7Qumc/2DBw97r2ypcxxXQggxIkz5i58c089t/ZuLh7gkyRVEEVlL5+MzJta3Qh3bYUn+FYmRsXTGjbKYcUonYQQPr9vB1XO7JX5FYmQsnXlnjSeb0imWAolbkShJy7VJ256zHEYsWdU74CBoPOZdN1NVha6MyYorZ2GbGvlSgG1ocmxJAiStLQvRSOI3uWxDG3Ayim3Itv/vRtKWk0nqrfXaeqfiuu4SYMkAf/X+Ad67FFh6yGsvAh88mve+E6qq0F/0sS2dyaZORMSC2ZP40g828L3PnE/e80kZKrfOP5tJnTbb9+VJGXLIuxBCDIWMpXOgUGbCmDQA40ZZfOPSM7EtTfKvSISc5/PVj55BNqUTRZU+hMSvSJK8F3Dq2Ax5L0BVkLgViZOkmM0NsiIi5/l0pIw2lmxgSRsEhcr9fbZavmyMyykOl6S2LMShJH6TqWkyiqGRL8tklHc7acvJJPXWWtKjHoSqQLEUEFTPnHzw2e0sveRMcp6PbWgUDjmIPgrBkuAUQojjlvN81ry8hw+efhJBFHHjxWcQRQp9RZ+MKflXxJ+hKmRMnf25Eoau8uCz27lq7lTS0n8QCaEqUCgHqIqCZajkvOa/l7gVcZa0mDVUhRWLZ+KHUf2MQl1V0GP68DJpg6AiuZLWloVoJPGbbLXJKHHaqlC0h7TlZJJ6az25koOoBZltatimxqLzJmPpKmm9Mktl5dpteH4IgOeHrFy7jUIpbGeRhRBiRLBNjTNPHg1A2tDozJh0pHQeXb+DwqD5NzjSPynEsDJ0FdvSSDX0IdKGJvErEsMyVGxTI2Wo5EsStyJZCqUwUfdqulppZ59/4DlOv/FxPv/Ac+RLAboaz1t129C4+4oZ/Pwrv8fLf/1Rfv6V3+PuK2bItnBiyBXk+0ckmMSvECODtOVkknprPVmpOIhCOYQIcl6Arip4QchXH/4N375yFqqiMH/mRNmXVwghWqBQDnl0feUMunw5QFcU/Cjipxt3sWDmpEHyryRgER+Fckih5JMyNLxyiBeE9Hs+pqZK/IpEyJcCtGru1Qft90rcinjSVVh43mSWrOqtx+yyhT3o8Ryjo+AHg55R2BHDQiuKQrl6b3zwrKkeFMkJYogN/txFYk3En8SvECODtOVkknprPRlUHIRtaKBAFEUUSiHXP/g8YzssoghsS+PGR1yWXnIm007KsvmNfu54wuXOy3vaXWwhhEg829BYdP4ppM3Kg7RCKeTlN/pYtrCHlKlxh+RfEXO2oREEIRlLJ+8FPLxuB5/5QDeWIfErksE2tXruPWfSGIlbkSjlMGLV2m1NMbtq7TaumjuVVLsLN4CknVGYLwdcu7J5EPTalb2suHJWbM8rDMOociaWqZEvydlYSSH9fpFkEr9CjAzSlpNJ6q314tnrjwFVVegvlomo3OiNG2Vxy6VnYVsaeS9g1wGPeXf9ov7+Od1d5L2AbEouqRBCHI/awei5kk8UQcbSOO2kDgDJvyIRVFWhI2VUzmE2Na6eO5W+ok8QIvErEiFfqjx8P+2kDsm7InEyls7yn23mzn9/qf6aripc86HT2liqwSXtjELb1AYcBLXNeG5/GoYRe3Mlrl25vmFl5bl0ZUwZWIw5+f4RSSbxK8TIIG05maTeWi9++6nEiG3qpHWN/qLPdX94OhGwP18mV/K5fcF05nR3oasKc7q7Kkto5WoKIcSQUFWFjKVjG5UZ5SHwy5d2oyoMnH/lmZCIGVVV6isiQmDJql4UiV+REGm9ErsRSNyKxKkN0jWqDdLFUVrXWLawp6mNLVvYQ1qP5yBd0q5vZWXletZs2YsfRtWVlevJl+VMnbiTfr9IMolfIUYGacvJJPXWejI0ewSqqpAr+Ty1eTcfOfM9RBEEoY+uKmiqyq3zz2ZSp832fXk6LJ1UTG/8hBAiifKlAD8IGZUyCKOImad08l8vvsGcU09syr9ZS8eK4ZlDQuRLQX37uj86axxRFJG1dIlfEXsFv7I9YAQUy4HErUiU2iDdoWcqxnWQrhSGWIbK3VfMYFTa4EChjKJUXtdjOAfYNjVuu2w6Nzx08Iya2y6bHtuViklbWSkOMjV1wO8fU4tfuxDiUBK/QowM0paTSeqt9WRQ8W1kLJ0vruzlua9/GEWBzz/wHGM7LG74I4cTsxaKAl1Zk4ypy/YpQgyTKX/xk3YXQQwD29DA1Hh9f4FRaYMlqyrn9yz9n+/j0nMn1POvbWho0jEQMWQbGsVSQBBFfKxnAp+5bx3zzhxXj9/RtkFKVyV+RexkLJ2+oo+qwJ9L3IqEKfjBoGcqdsRwMDwM4XP3P9e0/emc7i5WLJ7VxlINLl8KeHT9jqbr++j6HZXrm4rf9c2XggG3l82XgtieASkqCn7Ampf3MOfUE+vfP2te3sPc08bGsi0L0UjiV4iRQdpyMkm9tZ70ot/GW7kis6d01vfbfXbrPvwwYvWG14DK+RwvfvMiVEUGFIUQYiipqsJbuSKqUtkKtTbLfOmPfsvSH/1W8q+IPU1TCcoBhnowhtds2cvSH/0WONiHECJu8qWAjoa+r8StSJKknaloW4OspLPiuZLONjQWnjf5sJWgthHf8i5fdO5hZyrGtbzioNoEbz+M6q/Jd5BIColfIUYGacvJJPXWejI0+zb69+9l+aJzyXl+4s6PEEKIpDvw5h7GnZCS/CsSK2PpGLoqMSwSxTY06fuKxMoPErf5mMZt3gsGKW88z/zTNJWujMk9i2fy4jcv4p7FM+nKmLFdvayqCl0ZkxVXzuLFb17Eiitn0ZUxZZehBJDvIJFkEr9CjAzSlpNJ6q314tnzj5H+vr7KTZKioKsKyxb2NB3yuWxhD4bckAghREv09/WR9yorvST/iiR6K1ckXwp48qXdA8awrJQQcaSqivR9RWKpisLtC6Y3xe3tC6bHdmcD29RYvqi5nS1f1BPrM/80TaUjZaAqCh0pI7YDijWqqpC1dFSl+v+SwxJB+v8iySR+hRgZpC0nk9Rb68n2p0dBVRUsQ0VRFH746+3cfcUMRqUNDhTKPNa7k0/OmdLuIgohxIhlmxoo8LjkX5FA/fv3MmHCBL64spebLj6jKYazlh77B7Hi3Uv6viKpUqbGHY+4TWf+3fGEy52X97S7aIMyNZVb55/NpE6b7fvymDH/bgjDiHw5wDY18qUA29BkoE4MOdPQpP8vEkviV4iRQdpyMkm9tZ4MKh6lfClgb3+Jn27cxc2rf1t/fU53F5fNnCSHvAshRIuoqkJfsTxg/p0/YyIdKaONpRPiyPr7+upbb9TOA4VK/N6zeCYdMX9wLN69pO8rkirn+ew64DHvrl/UX5vT3UXO82PZZ8iXAz73wHOs2bK3/tqc7i5WXDkrlu0sDCP25kqHnVEoW4qKoZbzfOn/i8SS+BViZJC2nExSb60Xv7uUmMpYOl9/dCO3XTadGx56vuEGSrYuEwJgyl/85B3/zNa/ubgFJUmmY7l+j1/Z3YKSxJNtaofl3/+fvfuPl6O+73v/mu/Mzu7Zs0eII5CNLUASwhsVkA/IwlEjJ3m09z6ob/ogibjYogVcfOO0vrcP4TohuY3dVk3jOi4OtWhziY2bBOI+hEOJCek1kZNru/iHEoSQrIjQNZIshECW4BzE+bG7MzvznfvH/tDu0ZEQP1Y7s3o//znnrH59ZufzHX13PvP9fD9305pUtwYTaVP+ShZp7itZVcy5bN00wZ0P7enkbZrbTRd9l52Hpnpe23loKrX/R1QbMZu37e4UQXccnGTztt2pLYJKdmn+JFmm/BUZDhrL2aTz1n+a9Z+lahBzbDrg89842Urnhakqo772ZBAR6bdaaHl095GeVmaP7j7CRzespFTQSi9JN+WvZJHmvpJVrmtYMurzpdvXMpr3mAsiijk3te2mq2HMuuXjPSsV1y0fpxrGqSzSZa0IKtml+ZNkmfJXZDhoLGeTzlv/pe9TSkoZA3ffvIa7Ht7Lz937HdYtH+fum9eA7qmIiPSdMbBx7TLuevjkU0Z337wGo7mAZIDyV7JIc1/JMtc1jLmGZ599ltWrVw86nDMq5lzuveXaU9qJpnVlZdaKoJJdmj9Jlil/RYaDxnI26bz1n2b9Z6nguYzlPT678RouHS/ywlSVsbxHwUvnhz0RkWGia7BkmfJXskh5K3JuGOOwZNTn/o+8j6LvUg1jijk3tSuCs1YElezS/0OSZcpfkeGgsZxNOm/9p6LiWTLGYayQw3UNjgMXjeVT/WFPRGSY6BosWab8lSxq5621sfJWpM+McTqr/NK+2i9rRVDJrp75E/p/SLJF+SsyHDSWs0nnrf/S/YklZbL0YU+kbfn//f++4T9z6Ld/rg+RiLw1ugZLlil/JYuMcfjxC4e4cPVq5a2IdOj/NDlX2rmWhVbGIvMpf0WGg8ZyNum89Zc+AYjIKRYuRB48R//O63n748iqDz5wkDf6fqhgLCIiIiIiIiIiIiJvhranFBEREREREREREREREZEzUlFRRERERERERERERERERM5IRUUREREREREREREREREROSMVFUVERERERERERERERETkjJwkSQYdw0Ds2rXr/DxwOWfWrl3r9PPvVw5Lv/Uzh5W/0m+6BkvWKYcl6zSPkCzTNViyTtdgyTJdgyXrdA2WLDub/D1vi4oiIiIiIiIiIiIiIiIicnbU/lREREREREREREREREREzkhFRRERERERERERERERERE5IxUVRUREREREREREREREROSMVFQUERERERERERERERERkTNSUVFEREREREREREREREREzkhFRRERERERERERERERERE5IxUVRUREREREREREREREROSMVFQUERERERERERERERERkTNSUVFEREREREREREREREREzkhFRRERERERERERERERERE5IxUVRUREREREREREREREROSMVFQUERERERERERERERERkTNSUVFEREREREREREREREREzkhFRRERERERERERERERERE5IxUVRUREREREREREREREROSMvEEH8EaVy+X3A5+rVCo/Wy6XrwP+DHiu9cv3VSqVr5bL5X8D/BwQAZ+oVCpPDihcERERERERERERERERkczLVFGxXC7/GnAbMNd66Trgnkql8jtdv+c64GeA9wOXAo8A685xqCIiIiIiIiIiIiIiIiJDI2vtTw8AG7t+Xgv8XLlcfqJcLv+Xcrk8BmwAvlGpVJJKpXIY8Mrl8sWDCFZERERERERERERERERkGGRqpWKlUnmkXC4v73rpSeDLlUplV7lc/hTwb4ATwGTX75kBLgBe7v67du3alRSLxdf9N4MgIJ/Pv9XQ3xLFkL0YVq9e7fQ7lrPN4bdDGt57xXFu4+h3DmfpGtxvw36Mgzi+NF2Dh/38wvAfo3J4uM9vt/PpWEHziCwZluOAbBzLoK/BaXmP0hIHpCeWtMQBZ45lkNfgrLxH52MckJ5YBpm/kK15hGLIXgy6BjelJZa0xAHZiOVs8zdTRcUFfK1SqZxofw/8J+BPgbGu3zNGs9B4itWrV7/uP/Dss8+e1e/rJ8WgGE7nXMWSluNWHOmM483KyjW434b9GIf5+JTDTcN+jMN8fMrhXufTsUL2j/d8yt9hOQ4YrmN5q073PqTlPUpLHJCeWNISBww+lrTnL6QnlrTEAemJJQ1xZGUeoRgUw0J0Dc5eHDBcsWSt/el828vl8vWt7/8+sAv4HnBDuVw25XL5MsBUKpVXBhahiIiIiIiIiIiIiIiISMZlfaXix4H/XC6XQ+DHwC9XKpXpcrn8HWAHzaLp/zXIAEVERERERERERERERESyLnNFxUqlcgj4ydb3TwN/d4HfswXYci7jEhERERERERERERERERlWWW9/KiIiIiIiIiIiIiIiIiJ9pqKiiIiIiIiIiIiIiIiIiJyRiooiZyGOLTP1BuWf+Alm6g3i2A46JMkYaxNm6xE2aX6thhHWJoMOS0REzoH2PMImieYRkjnWJlTDqGcek/Y5jObuIsNBY1myTPkrMhw0lrNJ562/Mrenosi5FseWybmQOx/aw85DU6xbPs7WTRMsGfVxXdXl5fVZmzA5F7B528kcuvvmNYzlPUZ9j1oUM5r3qAYxxoG8Z5RbIiJDwNqEKIo5UY80j5BMimPLbBAxE0Tc9fDeTg7fe8sES0bzGOMMOsRTZHHubm1CtRFT9F2qYUwx56byvW3LWrySTVkcyyJtyl+R4aCxnE06b/2nd1HkdVQbMXc+tIcdByeJbMKOg5Pc+dAeqo140KFJRlTDmM3benPorof38mq1QbUR88sP7uI9n3qcjz34FFPVkJkg0hM0IiIZZ21CvRET2ETzCMmkduHo1WqDux7e25PDm7elN4ezNndvPnwW8rEHnmrOBx94ism5MLWrQbMWr2RX1saySDflr8hw0FjOJp23/lNRUeQMrE0YzXvsPDTV8/rOQ1OM5rXQV85OMe8umEOXjhcZzXunFBtPtIqN9TBSuzwRkYyqhhGR5hGSYdUwYjTvcel4ccEcLvrugCI7s6yNuWojZvO23fOKtrtTe9Mja/FKdmVtLIt0U/6KDAeN5WzSees/FRVFzqAaRswFEeuWj/e8vm75OHNBNKCoJGuqQbxgDr0wVWX/8dme17uLjdP1qLOK8Zcf3MXkXKjCoohIBkSRpZj3KBU8zSMkk9o5XA1iXpiqLpjD1TCdRaSsjbmiv/DDZ2kt2mYtXsmurI1lkW7KX5HhoLGcTTpv/aeioshptG+m5IzD1k0TrF+5BM84rF+5hK2bJshp3xA5S8bA73zovT05dPfNa1hczLF939Ge39suNs4FkZbqi4hkUBRZalFMNYiZrTdXK2oeIVnSncPGgVLB5e6b1/Tm8C0TFHPpLCJlbe5ePc1Nj2pKb3pkLV7JrqyNZZFuyl+R4aCxnE06b/2nNZ8ip1GLYpzIYTYIKeVz3HfrdSwayTFda+AZB8+oJi9np+C5jPqWez70Xt5xQYFqEOM4kHNg0/svY8fBqc7GwXffvIZSq5itpfoiItnSLsaM5j3qYQwO2BjyOXPKPML30lmQkfNbHJ+aw54x5Fy4//b3Ucy7zNYjijkXk9IP5Q7N1XTzx1w6owXjONx98xruenhvz3zQOOmMOGvxQjOvq41mXs8Fzfx1XX2WSzvDwmNZZ06yQPkrMhw0lrNJ563/dHdaZAFRZDs3UyILs0GD0XwOANc4+MbB83QpkrNjjMNYIXfy5oUDIzkXHBg3hi/dvpbRVosxnOaNj8gmrFs+zo6Dk52/p71U33Gc1K4OEBE5X3UXFOeCiGoY4xrIey6u42CT5u/zjEPR91JbkJHzVxxbotienJOQUG/EFHMernEo5l3mgoiCm+55cJwADp0il3Gc5vwqGWxcp1PwXT7/tQpbbryKVUtL7D8+y+e3V7jnwxODDm1BWYs3ji2TcyF3PrSnUwTdummCJaO+CospFyXN/zPbQ9c1Dp5xiBLwBxqZyOtT/ooMB43lbNJ56z/NokXmsTahFsXMBRGuA6W8R72RUPQ9Dk9WiW1CSu9JSIoZ41DKexin9dU4zAURs2HzxvPhySojvkscJzzw/UM88vSRBZfq/8nTR/jYA08xORdw+coria1lpt4giiyz9QbVMMJaZaiIyLk0v6DoOg75VtFlcjYkn3N5ZTZgptZQQVFSydqEaiMmtAlzQYRxIE4SPGM4PhP0zIPTXohxHYjihKm5kCSBqbmQKE5wUzrs5oKIY9MBN3zhCa74ja9zwxee4Nh0kNo9X7IWb7URa0uBjHIdqEeWydnmWJ6cDalHNrVjWaSb8ldkOGgsZ5POW/9ppaJIF2sTotZNwUYjJgF81zA+6uM4MD7q4xkHV61P5W2Qa7fi8gyN2HLrl/+adyzK84n/5T1ctqRI0Ig7qxinaw0e3f0iW/7sbwHYvG0Pn914DcZxeHT3ETZdfxkvnqjyjkUjFH3LiGfI5VyqYZzqFmUiIlkXRZZ6V0FxLmhQyudardJdCiUPx4ElJZ8RT9djSR9rExqtHAY6c+AkgYRm7nbncNqLirDw/D2tRnIuWzdNnLKSbiSlXSnae9TMjzete9SM5j1tKZBRDguP5XRmmkgv5a/IcNBYziadt/7TTFqkSzWMSICgtcoAmk83xK2rjuOA55Dqlk+SHb7nEoVR8z+6ot/Zq2guiAgbMfc/cZB/8lMrSBJ432/9JVHXCsSdh6a4dLzIrV/+a7bceBV3PrSHL962ln/6R7uaxcZRn4eeOsSf7zvG1lsmKPkeBd+lGsQY09znUTe2RUTemvkrFCObYBzDbNBg8YhPwyaMtq7r2sNL0qo9/w1bK80im5B3DSOeIbRJJ7/zGWn/f7p+DWnt41BrxOx6fqpnz5cdB15hw5UXM5bCa4afc3n8qRd64v3TPS9y2/rlgw5tQXNBdNotBcYKuQFGJq/H0vzsPf+zuB1oVCJnR/krMhw0lrNJ563/0vcpRWRArE0o5j1G8x5542CTBJsk1Fr7K07XGjigG4LytjHGoeC5RDah4DefRn95JiC2Cc/+eJpN77+MYs5l//FZ1i0f7/mz65aPs//4LDsPTbFqaYmdh6YoFbxOsXE07/HzE+9utnjatofjMwHv+dTjfOzBp5iaC5mpN9QmVUTkLeguKLb3n3OAfM5QyHn4OZfYJlSDiFHf0/xBUimKbO0MVF0AACAASURBVGf+m2vtG+4ADWtPmQN7XjpXzs3nGdOZxwOd772Udhop+i5XvWsxH//K07znU4/z8a88zVXvWkzRT+f7XQ1i/nzfMSZ+8y9Y+S+/zsRv/gV/vu9Y6zqYPu2VoPO3FEjrSlA5yQChTYhbn1limxDaRDexJBOUvyLDQWM5m3Te+k/vpUhLNYyoBs29FF+tR+Ram7i6rdVczU1dVVSUt5fnGYq51iqWvEvRdyn5HldcPMbX9x7lwCtzbN93lM/dtKbnZsgXNk3wu9/a3ykurls+zmy9+ST2C1NV9h+fZdFI8+nrdqGxvY/MXQ/v5dVqQ3vJiIi8SfNXKBoHXqtFuAZyxnSKF55xtIeipNaKlVdQi+LO/DdOoB5bip7JdB7XopjZoNEzh58NGtSidM57aqHl0d1H2HLjVVR+64NsufEqHt19hFqYzmepjQN339w7L7375jWkNT3qDdtZCfrDz3yQ+269jl3PT1FvpPP9lZOiBPx5n8d94xDpuUjJAOWvyHDQWM4mnbf+U/tTEU4+pV0PYzzHIfYMM2HEbD3m0vEihyerXFjM8fIrx7l02bJBhytDxvMMY612YqO+x+RcyOZtu9l5aIrNf28Vm66/jIeePMyWG69i1dISs0HEo7uP8PJMwOduWsOju4+wddMEB16e4Xc+9F5yxuGxPS/yjkXLgZOrGtvaRUYnpTd/RETSbKGWp3nPoZT3mJxtcOl4kRemqiy2OUoZKsTI+SWKLI3EYbQ1/zWOg02a+yi+NB1kOo/zxqHmGH75wV09e/7lU3oMxoGNa5dx18N7O/GmuUiXzxnyruGzG6/p5EneNeRz6Xzw0hi4ZllzJWjP+5vOcKWL50A1spyoNij6HpOzIYuLOYoZaMMsovwVGQ4ay9mk89Z/KirKec/ahFoU40QOOdO86BQ9Q5QYCp6H48BFJZ+i7/HSzMygw5UhZ4zDklGf+z/yPoqtPRA9Ax/dsIJi3qMaNFfR3rZ+ORuvW0bRd7ljwwpGvOYqx9dqDbY9+QKbrr+MP93zYufp8f/w55XOv9FezXjRWJ5SXv8NiIicrTjubXmaMw6xTai1Vne5peZG8EtKPiOem4n95+T80577tgvjOeNQjywFr7mPYtbzOErggoLHl25f2znG9pPJ/qCDO41CrrdIV0hpgQ6gGsZse/IwN1x9CQBBZHlsz4vcsWEFY4X0xZ13DaW81/P+lvIeeXWfSb0ETvm/NW+c1O6PKtJN+SsyHDSWs0nnrf80k5bzWhRZqmHEaN7DOBADvmuox8097mySUA9jCp6bqSe0JVusTZitN7BJc++tuTCi6LuEjZhqI+JLTxzktVrEP77/r/n0o/totHqCOzjc+uUnuWbLN3itHmITuGTxCHdsWEHOM9z2k8v54m1rGcm5vDwT9LSourCYo6i9ZEREzlocW6qN3panlmZrSNdxCC2dX8tiIUaGn7UJYRh15r7tgmJkE3zXEMYJuZxLkkA9jCnmspvHM2HE5GxIksDkbMhMGA06pNPyPXPKfo+eMfgpfe9zxmHT9Zex5bFnKH/6cbY89gybrr+MXEo/K9Uiy4PfP0QQNdudBq2fa5Han6adQ/Mhgdb2qCRJ8+d0ZppIL+WvyHDQWM4mnbf+0xIVOW9FkcXaZtvT9hPMtcjiu6bTFtJxmkums3pDRdLP2oTJuYDN2/bwjkV5fvWGMnc9vJd3LMrzb3/+au7ctoctN17Frz78A3YcnGT7J36aUt5jutYgiCz/8cMT/Iuv7uHf/fdn+fQ/XM1LJxr8ya4j3HD1JSwq5Mi5Dp5xuf/2ta2VjjHGoEK5iMgbEEWWetfKLs84OEC9NW+Ik4TRvKuCoqRWFFlia3GgM/fNmWbLU+M4OA4981/fNZndR9xzaBXpTu6h6BmDl9JpT60Rs+PAK6y/4iIcBxYXc+w48AobrryYsRSeA5s0W6Ded+t1LBrJMV1r4DjN19Oo6Lvc+8393POXz3Ve84zDP//7Vw4wKjlbrgNx17XJTek4FlmI8ldkOGgsZ5POW3+pqCjnpfZ+SABhEHcKiiOeIbRJ56Zh3jh4nlZzSf9Uw4jN2/Z0CoZ3Pby3p3i489AUq5aW2HloCoBVS0vsPz7LwZdnWH/FRUTWcu8tEywp5VurCuCjG1ZSbN3c9o1DvqvFaamgy76IyBtx6eWXU4/izoMZnnFIEoiT5JR5gwqKkkbd815ozn3bKxSN42AcaAxRHhvXMAI97Y5842BSWKCD5sq/tZeP9+z5t3XTRGpX/gE0YstsPWaskONEtUGp4JJL6SaFc0HEuuXj7Dg42Xlt3fJx5oKIsUJugJHJ2Zg/CtI7KkROpfwVGQ4ay9mk89Zf6Zz5i/RR935I7banjSSh4BnipNlSss0Yo9Vc0jfWJhRbhUNgweLhuuXjna8A+4/Psn3fUdYsu5AdB16hkPMYyTULhXGSEFnLiO9yeLKKtQk5FcVFRN60KLIkJndypbfTvNbaJMEzjgqKknrtgmJ73tue+0ZJ0lmhOEwFRWiu/Ptm5Thxa+lcbBO+WTlOrRG/zp8cjO6Vfz/8zAe579bryOdMalf+mc5K0JM8Y0jrR6ai7/K5m9awfuWSzlYAn7tpDUVfc+QsmD8MUjosRBak/BUZDhrL2aTz1l+Z+8RYLpffXy6Xvz3vtX9ULpd3dP38sXK5/FS5XP6rcrn8D895kJJq3fshzQURngNRnNCwCXGSdFZ4NVcpZm6ISAZYmzAbRFTDmGoQ9xQM5xcPP3/zeztf169cwn3f3s/Gtct4ZNcLXP3uxZ0bIvWwuerAOM32vReV8owVciqKi4i8Sd0PIbULirTmDAnDV4iR4dSdw+25r2nlcfNhpPkdOrKfx37Xyr/3fOpxPv6Vp1l7+Th+iudEjdhyotogSeBEtUEjTu9+fzah06a1+2tai6DVMObR3UfYcuNVVH7rg2y58Soe3X2EapjOIrP00g1ByTLlr8hw0FjOJp23/spUH7xyufxrwG3AXNdrE8D/QWsVa7lcfiewGXgfUAC+Wy6X/6JSqQTnPmJJGzvvxglAaE9tX+YbJ7P7yMjgWJtQj2JIwCZJa2VLc++tyEIx71IPY+ZaLU+/8kvvJ2jEbL1lgju37eG+b+/n7pvXcNfDe7nv2/v51RvKPLLrBX7xumW884I8X7p9LaN5j3oYc8eGFc2bhGFM0T91f0S1ORURefPi2DIXxpQKzXmB6zh4DlR79lBUQVHSy9qEqGsfUNdxmq1OaeZxwTM9hXF/iFr+O0Ap7/HF29ZSKnjM1k/ug5pGJ1f+9e4BmdYaqHHoFD/b7U8XF3Opjbfou/zCtcv49Uf2dtrLaqVidqh1mWSZ8ldkOGgsZ5POW39l7a7zAWAj8EcA5XJ5CfDbwCeA+1u/53rge60iYlAul/cDa4Cd5z5cSZMoslhrCWyCbxzaz/92f9/muUZFRXlDrE2YqTdoWEsYJfzKH/+AnYem2Pz3VrHp+su486E97Dw0xV9+8mf4l3/yN+w4OMlMvUEQWQo5wxdvX0upVTDsLh5+dMMKiu0b1zmX2XrEqO/iuoZnn32W1atXD/rQRUSGShxbao1mQXG61qDgGRyahZiiZwi0QlFSrj3nDW1CEESdvfnqrWJi0TNEXS3/HSDnnfqAUlYlgOdA3Docx2n+nOankz3j9Kz881J+LrIUby20nZWK7e0FHt19hI9uWEmpoOt32umGoGSZ8ldkOGgsZ5POW39lahZdqVQeARoA5XLZBf4L8C+Ama7ftgh4revnGeCCcxWjpFMUWepRTGATcsYhodW6B5pFxlzzSVUbJ4wVciooyhtWbcS8Wm0wW4/5lT/+ATsOThLZhBuuvoQ7H9rT+fnS8WJn38RS3sPQbHkVRZZqEFPwXVzHoRpEFFpPUFfD5kqDesNSynvKTxGRPmkXFNt7KO448ArQbHWqgqJkQXsPxaC1b3PeOEQ2wSYw0lqd6OVc4iTBcyzGcSgNWbt01zSLpkmripgkECXN19PIJs29Wrs1924dUECvI+eZzn6VbbFNyKX0emgMbFy7jC2PPUP504+z5bFn2Lh2GSlNBxERERGR1HOSJKWfVk6jXC4vBx6i2eL0D4CXabY5/TvA7wPfBP5BpVL5P1u//2vAZyqVylPdf8+uXbuSYrH4uv9evV6nUCi8nYfwhimGtx7DshWrGM03F+bWw5iGtRTc3paneeNw4MBzb0sMq1ev7vudmbPN4bdDGs5/2uMol3+i8wR8+dOPE7Vuthz49/9bz8/bP/HTbHnsGXYcnGT7J36a7fuOctPaZVww4jPiG2aDmNGcSxBbkqTZMnW2FvLa1MvMzsz0/Jv9fD/6ncNZugb327Af4yCOL03X4GE/vzA8x3jR0qUURhed3H8ujGjElr85coK/V17aM2dwbIMXnn++b7Eohwcj68f6rne/G+OPdOa87TweK7QeYurK4ZyBZ5/ZN5TziEtXXMlzx6e54uKxTvvTAy/PcOXSRbzwozPP9QfhPeUyU7Mhc2HMpeNFXpiqMuq7jJd8flipAOnKzUtXXMnvf/cgN1x9SWfl3/Z9R/nohpVn9f6e62Mpl3+CT/7xHj7+s6s68d737f3c86EJKpX/ueCfGfQ1OC3ne9BxXL7ySlyHU7YpiRN4/uBgxvKg35NuZ4plkNfgrLxH/ZbG/IX0nJ9B5i9kax6sGAYbw5sZy7oGN+kafKosnJ+zzd+stT/tqFQqTwJXwclCY6VS+URrT8XPlMvlApAHVgP7Fvo7zqZtYBraCyqGtx6DTRKqQUxCgmcckgSOTgdcOl7k8GSVxcUc1jiv+/en4X3odq5iSctxpzmO2SDilZnm1q3rlo+z4+AkAPuPz/b8/Lvf2s/WTRPc+dCezr6Jv/rw3k6r1I/83RU4xiGJYMQ3GMdhUTHPouKys4ojS7JyDe63YT/GYT4+5XDTMByjtQmzQdQpKBoHXNNc2bT6kgvwPJejU1Vim7CokMOYXOaPGZTD82X9WGfqjU4OJyS4joNroBpGzNbjnnnvqJ+jUChk+nhPF3s1iLh4rMA//aNdnT307r55DcY5d3PnN2Km3mDbk4e54epLAAgiy2N7XuSODSs68aYpN6tBxMa1y7jr4b1v6v0918cyG0Qcmw644QtPdF5bv3IJ1UY88Pf0dP9+Ws73oOOohxG1yHKi2qDoe0zOhiwu5ih4ZmBxDfo96TboWNKevzDYWNKYv5Ce85OGONL4f5ZiSF8MaR3LugafWVrP2zCdn8wWFU+nUqn8uFwu3wt8h2Z7109VKpX6gMOSAWq3gXIdB89xiJKF9wHx1ANH3oJizuXCYo6GtfzOh97b2VNx+76jnSLizkNTvDwTkPcMv3dbcw/FH79W454PvZd3XFBgph7xrx7dx8szAZ/deA0XjeUp5ZWXIiL9ZG1CNYwoFU4WFD0HPGMIIstFpTyOA+OjPsXc8Ow7J8Mljm3nKVzXcXCdZp6ej3nsOc0W85/deE1n5V8p7+Gl9JBzxunZf3vd8nG2bpro7IWZNuY0729Kw6WYc7n3lgk2bzv5/t57ywTF1vYXkl6GhT+369ORZIHyV2Q4aCxnk85b/2WuqFipVA4BP3mm1yqVyv3A/ec0MEml9l6KvnFwgGpkKXqGxHE6rSpd41DQvkjyJrWL1qN5j7xn8BJDMQf33762tSdXhGcc7r/9fRTzLnNBRDHn8uPpOtUg4pLFIxx7rc6rcyH/7r//LS/PBPzHD08wkjO62SEi0mdxbIlj29lDERI8x+nMF1zj9Fy7NVeQNIoii7WWoJEwFzRYPOJTiywjnjlv87joGdySj+PAkpJPPq0VL5p7KuZzhvtuvY5FIzmmaw0ch9TuqWgTOjdnur+mNV4A3zU9RVBf+5Nnhm96P7f7KR7LIvMpf0WGg8ZyNum89VfmiooiZyuOTxZ7wkZMnDRvMAStfsphEBE1YsYKuUGHKhkVRZapWsidrSef//KTP8O//JO/6bQ63fOv/1c+/pWn+eJta/mnf7SLi8fy/ObPX8XxmYBLFo8wF0QkSUKp4OE6Dvd8eIJqEBFGlpxrhnoVgYjIoFmbUGvEJEDY2nuukDNUo6RnvjAXRIzo4SNJqfZ8F5ofnGuO4UQtZHzE7+RwEETYODlv5ryuZ4gju+DradWILbP15ueSE9UGpYJLLsVdVLIUb7UR88++8nRnfg7N9qf3f+R9lPK6HZJmCbDQp6EU169FOpS/IsNBYzmbdN76L50zf5G3wNqEMIyoNuLOvjLfqhwHoB43b67M1lutofSUqnRpt8CbrTewSUIQRsy0vq8Gze9ja1m2YhU2SahFMXdu28OOg5NENuHS8SI7D011/r5FIzl2HpqiVPDYeWiKx37wEmMFj+l6RJKc/M/MwWEmiPjkV/fwsQd3EdmEfIpvfImIZF37el/Me4zmPV6rhbimeaM8gZ6Cog1rKihK6kSR7ZnvjuY9ZsOIUt6j6Ofwci5JAvUwJmec8yqHa6Hl9544yEsn6iQJvHSizu89cZBaeGqhMQ3yOUMyL7TENl9Po6zFW/Tdnvk5wM5DUxR9dQRJuwSIEkhaH5qSpPXzQKMSOTvKX5HhoLGcTTpv/ZfOmb/Im2RtQtR6Wrt9M9A4cM2yxfyPHx7Htq8mDrgOKipKRxxbpusNTlQbfOzBXTzxw+O8Vo/45Qd38cmv7mGqGvIH3/0RL75a55cf3MV7PvU4o3mv5ybF/uOzrFs+3vl5utZg3fJxZutR5/WZesSWx57hit/4Op/+2j5efLXOd547Tt4z3PPhCb50+1rGi75yU0SkT+LYEkVxp+XpXBDxyK4jJBZiCzljOg8gFXMuL7344qBDFunRbncKJ+e7c0HEf/2rwzRi25nv2iTBJgm+d34VT4wDG9cuY8tjz1D+9ONseewZNq5dlto9/2phzLYnDxO0VlcGkWXbk4ephfGAI1tY1uKtBlHP/Bxg3fJxqkE0oIjkbNkEGrb3mtb8ecCBiZwF5a/IcNBYziadt/7TXWsZKtUwJrAJgU2YCyJ84+A5UMp7rL7kAsYKOQ5PVrE2wU1pix4596xNmAtjTlQb/Mof/4AdBye57rJx7nyouQrx4z+7irse3ssNV1/Crz+yt7MysbtYCPC739rP3TevYf3KJXjGYceBV9i6aYIDL8+wddME61cu4U/3vNj5/ut/c5RHdx/hp1ZdzKKRHNUwZtT3zqvVBCIi51IcW+Zac4VqEGMcyBuHTddfxrYnD3Oi2mDEdzsFRT3gIWlUi3rnuznjdPL4ge8f4th0QJKAcZr7hp9v7dTbc//PbryGym99kM9uvIZS3sNL6dtgHOc0RdB0BpzFeLvn5+tXLuHum9ekNl45yXOaKwtOVBs9X9M6lkW6KX9FhoPGcjbpvPWfNhGQoVLMn3wSO2w0n5aNWnspuiUfx4ElJV97I52nrE2oRzHWwohvmkW8vMdcGHVah7VXHrZblgKsWlpi56Gpzte2p5+fYustE509FV+eCSjlPe750HtZuqjAC1NVir7LyovGGPVdvnT72s4en+3v54LmjWvjONrXRUSkj9oPkIzmPRyn2RbSdaAaWRYXPO7YsKLnuqx5gqSRbbXmbQsbMQ4Q2kR53GX+3D+f4sJqwXf5/NcqbLnxKlYtLbH/+Cyf317hng9PDDq0BSleOZeyNJZF5lP+igwHjeVs0nnrL93BlqFSDWKSVofknHFo2ATfOD17I+XPs31lpCmOLTNBxGwQ8Se7jvAL1y7j1x/Zy85DU/zwtz7Ic8dnyXuGdcvH2XFwsrMKccfByU5b0/bXHQcnAfgnf/gU3/yVn+4UCKtBjGfANQ6OA3nP8OlH93FsOuALmyb46pOHuXHi3Vw0lmeskAPofBURkf6qhhGlgsdzx2Z51+ICvnGoRZYRz2ieIJlRDaOevUA03z1VAix0yyCt3Y7mgohj0wE3fOGJzmvrVy5hLohSOU9UvHKuZG0si3RT/ooMB43lbNJ567/z85OmDJ04toRh1GljljcOkU0wjkM9Tjp7I7mOo1Zm54k4tgRhxEy9QRTZTnvThdqYTtcbbN93lFHf5Xc+9F7Wr1zC04enOm1K7/t2s63p9n1H+dxNve2Txgo+xZxLNYgo5l0iC47jsH3fUabrEb/zoQl+77a1PP38FBvXLuPCYo5i7vza20hEZNCiyHb2UNy+7yh54+AAvmsI5s0TjNqjS0q189hvzXU1312YQ7NTSXsr9SRp/pzWZ5N943TmnO355dZNE/gpfZo6a/EWc+6C8Wo+nn5ZG8si3ZS/IsNBYzmbdN76TysVJdPi2BLHFoDAJriOw3QYschv3nCxQHu7jPbKsfP5JkuWWZvwzkuXY5PWPlimeT5rYdy5UWwcMA54riGMLLNBxGzQ4KJSoae96fw2pqW8xy9cu4xtTx7mprXLuP/2tRTzHo2uNqX1MOaODSsodrUxrYZxs3WpcSi5BmsTjAES+MCVSynmXeaCiFLe5QNXLsUYzsu9jUREBimKLLUoxokc5sKIjWuX8XtPHOSf/fRKPAfirnmC75rzdnWXpFcUWaxtznfrEa227S6+42i+u4CotV9K99j2nObr/mBDW1Au5/K3P5rki7etpVRoFoafPjzFT79n6aBDW1DW4nVdw3jR79l6YMTTnrlZkLWxLNJN+SsyHDSWs0nnrf9UVJTMahcUA9t87KC9V51nDC9NB1w6XuSlqSqLiznCRqz2NhlmbcLkXMjmbT9g56Ep1i0f5z/9owlm63DnQ3s6r9198xpKeQ8TN3Pizof28KXb11L0PfZ3tTed38b0wMtzbN93lF+8bhmXLB7h2Gt1amHM5q6/+95brmXJqI8xDkd+VGH16tWn7IFojEPR732tnXelgm5ciIica+2CYvvhENeAaww3Trwb13N5oTVPIFE7akmndkGxPd91HQfXQL0R80o97pnvKo+bTGuv1BPVBkXfY3I2ZHExRyGlDwzMBRFf/B8/YsfBpzqvrV+5hLWXj6fyfGYtXmsTXq012Lxt94LzekmvrI1lkW7KX5HhoLGcTTpv/ad3UjLJ2oRqI+7sHdN+6vSl12p4xmFxMYfjwOJiDs84eGpllmnVRszmbbs77Uqbex7G3PnQnp7X7np4LyeqDUoFj1KhuSpxNN8sKLbbmy7UxnT7vqNsuv4yfu2/7eWTX91DEFnGS80nmn/4mQ9y/0fepxsPIiIZ011QnAsifjxdwzOG2MJFpTyOA+OjPiXf0/VdUqmdw93zXc9hwTwuekZ53GWhzwNpVfTdU9rrf+6mNRT9dLbnzFq8C32O2LxtN9VGPOjQ5HUYFh7L+mQvWaD8FRkOGsvZpPPWf1qpKJnTfmJ7tLVKbC6IAMgZh1I+x/GZOhePFQBwTbMtlFqZZVvRd3valQJcOl485bWdh6a4dLzIXBCRJLBu+ThzQcT2fUe5ae2lnfamH92wkhHf9LQxHfEM93/kfRR9l2oY4+CcXGWY16VSRCRL5hcU23OEqbmAi8cKnfbUBVdzBEmf7tWJ8+e7ruNQ8AyucTp57LvNFqiSTdUw5tHdR9hy41WsWlpi//FZHt19hDs2rGAshZ0ushbvQp8jdh6aSm0RVE6yNG8ItrZDwjUOntH1TrJB+SsyHDSWs0nnrf90p1wyJYos9SgmAYKuYmL742vRd/E9w2jeY7rWaD6FoFWKmWZtwlwY9bQrBXhhqnrKa+uWj/PCVJV3LspjE9i6aYKXZ+psuv4yHnrycKe9aTWICRqW2CYkNukUDUutvVVURBQRya6FCooGzREkG+YXFNvFxHxrpV1oE2wCcasdamwTHGAkpwJJ2+lGdVpHu28cNl1/WU9L/62bJvBTuroya/FWw3jBzwzVMNacP+UMzWve/OtdWnNNpJvyV2Q4aCxnk85b/2kWLZlRGhvr3CQECBtx5+ZAaBP81qrE7qcQCp6rFQgZV23EjORc7r1lgs3bTt68KBVctm6aWHBPxQMvz3L5klEWFTxGfJcRz+WODSs6N+dGPJdaFFPyPaqNmCLgusoTEZGsm19Q7C7EaI4gadfOX+CUHG4/Veu3nrDtzuWRnKt5zDzzx3vabyCU8h5fvG0tpYLHbD1KdbtWyFa8xZzLvbdce8qeikUV4jMha2NZpJvyV2Q4aCxnk85bf6moKJlgbcI7lr4TL+dSDWISEnLG6Skmtp/oDoIIGyed1pWSbUXf5bljsywu5rjv1utYVMgxG0TUGjFLRv2TLUyDGONAnCSsvuQCwiimYRNGci61Ru+KlclqyGje41f/2w84Nh2wddMES0Z93ZATEcmw+QVFYMF5QvvhEhUUJU0Wau/fnut2d+Vo53FD893TSoCFbhkkC7yWBp5naIS9+/vZJCGf0qJX1uI1xmHJqN+zzUEx52oPUhERERGRN0l3UyQTqmFEYBPmggjjNFtA1SOL17pJ6LU+xDYaMaO+pxuFQ6QaxmzfdxQDJAm89FqN7+1/maLfvBng4FALYwqeIU6aN9oOT1V5rR5xzZZvsOpTj3PNlm/wj+//a146Uecn/vV2fuq3v8lIzuXjP7uKHQcnufOhPVQbMXGs7toiIlk0v6DoOq32kA7EoIKipFo7f9tz3bkgaq5ITMA4zZWJ3fPddjFRebwwB4iS5rwRml+jZOFCYxpUw5jf/+6POPpanSSBo6/V+f3v/ojqvMJdWmQtXmgWFkt5D+O0vqqgmBnzHwZI68MBIgtR/ooMB43lbNJ56y99EpXUiyJLMe8xmvfwjYPnQDWyFD1D835h80OhA+Q8PXU6bIo5l1vefznbnjxMNYwYL/p84MqlFH2XuSCimHdJEqjHloSE//z/PUfONbgG1q9cgmcc1q9cwhc2TfC739oPNPdR2X98llVLSwDsPDTFaN5jshoSRZaZekMFRhGRjGjvt9zdLnI2iPFdB4NDbGmtaI/04JGkTvcKxdG8R8445I1DLbK4zfzkOgAAIABJREFUDrgORCqKv2GeA07rI4HjNH9Oq6Lv8gvXLmPLY89Q/vTjbHnsGX7h2mUU/XSu/MtavJJt84duioeyyCmUvyLDQWM5m3Te+kvtTyXV4rj55LYTOZ2Wp3ECRc/0rDqIGjEltX8aSu2WRR/9wEqKObe1x6KhFsadwmI7D0Z9jzs2rKDou7xWbfAf/vc1vGvxCHNBxPf2v8zX/+Yo61cu4XM3reHR3Ufg6kuAZpFxutbgzm17+OJta/nD7/2ITe+/jCVFtUQVEUmz+SsUc8ahGlkWF7zWPMHtzBOKvlanSLp076EYtFr27j8+Q/kdiyh6higBm/QWxZXDry9r7U+rYcyju4+w5carWLW0xP7jszy6+wh3bFjBWCF989CsxSvZlbWxLNJN+SsyHDSWs0nnrf9UVJRUq7b2wquHMZ7T3FfGOA71OKFU8JitR3jGUeFnyLVbFj377LOsXr0agFLrnLdvXowVclibdP7T8FzDuy/0OTxZ5X/88Dg/856l/PAzH+TFV2t87ekjbFy7jM9vr7B+5RK2bprg0d0vsvPQFKWCxw1XX8Kd2/bwpdvXMqbcEhFJpfaDR+19deeCBheO+Hitfeicro8RxhgVYyR12vkLUAsjco7DuxcXqRyb5oqLxygVmsVyGyd6eO4NOF3707SuVhzJuWy6/jLufGgPOw9NsW75OFs3TTCS0j0KsxYvgLUJ1UasPRUzJmtjWaSb8ldkOGgsZ5POW/+pqCipFce2a28kh+kwYpHvYeltZ5T3jIqKArSKj4UccWxxnOYNhCUln9vWL2cuiKiHMe++cIQ7NqzAcRzu+fAEs0EEScKWP/tb1q9cwnStwaqlpU5LVBERSZ9T91B0iCy8WgsZH/F7VimqXaSkURSdnOcC/MF3f8QvfWAliwseI0vH1O70LYiSZtvYuOvzgus0X/cHG9qCao2YXc9Pcd+t17FoJMd0rcGOA6+w4cqLU/lwW9bitTZhci5g87aTRdB7b5lgyWhehcWUa9/86x7LXorHskg35a/IcNBYziadt/5L36xfhOaHv1ojZi6IOvsoesbw0nRAznOZnA2ZrjUY8VwVFOUUrmsYK+TwXINrHKZrDV6rNfjydw4yORMwORsyknM5PFkljGL+9Z8+01yxeMsEOw68wv7js6xbPt650QfNnJytR9gkYdmKVcTWNn+2WjwvInIuzd9D0XWa84RS3qPeSHDnzRNUkJG0aRfF2/mbNw6brr+ML3/nID+aqlH0m904lL9vjudALbJMzoYkCUzOhtQim9onk3PGYe3l43z8K0/znk89zse/8jRrLx8nl9KCV9birYYxm7ftYcfBSSKbsOPgJJu37aEaxoMOTV6H50B13liupngsi3RT/ooMB43lbNJ56z8tw5FUqoYRxbxH2IiJEzBOcx9Ft+TjOLCk5OtGi5yVQs7Fdw1zQcRHN6xkxDcUwriTR25rxeJcELH/+AxXvWsxj+4+wtZbJsgZB2sToijmRBBxZ9cTzu19GW95/2WM+q1LqQMFT+2URET6pXuFYjVo3hC2SUKYaJ4g2dCdw41GTC2y4BkWF5r7QreL5cWc8vfNSjj1epA3Tmr3UMl5hrxnelb+Oa3X0yhr8RbzLjsPTfW8tvPQFMV8etu1ykkLjWWRrFD+igwHjeVs0nnrr3TO/OW8FkWW4rybhUCrlVnzRkveOLrRImelGsYcebXGrz68l6u3bOeK33icR3YdYbrWYHI2JJ9zmalHFH2XVUvHePeFBT7yUyt4/G+O4udcwiimHifcOe8J519/ZC83XH0Jm7ft4fhMwFQ1pBpGTNcbxLEd9GGLiAyd+QVF40AQxeCAa5yeeYIKipI21iaEYdTTtvebleMUPAMJhBbl79skYeE9VNJaVKyFlge+f4hj0wFJAsemAx74/iFqYTrnk1mLtxrErFs+3vPauuXjnc+akl6WU8dt0npdJO2UvyLDQWM5m3Te+i9zn1bL5fL7y+Xyt1vf/51yufzdcrn8vXK5/P+Uy2W39frHyuXyU+Vy+a/K5fI/HGjA8oa0bxi2bxa2B3u9te9M+0lYYzKXujIgxZzLhcUc//HDE6xfuQTPOGx/5hgOcOFo84kVx4FvPPNjXjpR54rfeJz3/ttv8Of7jjEXRDRaN6kXesK5vffipeNF7np4L7P1mBPVBnNhrLaoIiJvozju3UPROECrNfpcEBO3CjJqGSlp1O560F34breQ/FblOGFsKbb2ANWDc28PmySdBxO7v08j48DGtcvY8tgzlD/9OFsee4aNa5eR1oepsxjv3Tev6XwOWL9yCXffvCa18cpJBmjYhLj1uSq2CQ2bZO8mlpyXlL8iw0FjOZt03vovU+1Py+XyrwG3AXOtl/498BuVSuWJcrn8h8CN5XJ5B7AZeB9QAL5bLpf/olKpBIOIWc5e9wqEehjjtvZD8V1De9tE1zgUdLNQ3gBjHMYKOXJuzP23r6XYbivmu8yFMTO1Bg98/xCbrr+Mh548jGcc1i0fZ+umCUZyzVamzx1r7rG44+Bk5+9dt3y8s/fi/uOzneIiNIuUc0HUs5qm+Qtqjyoi8kZ1zw/mgojIJvie0zVHcDoFGbWMlLRp7wGacHIlYhTHxNawqOCx4cqLO6/7xsHz1JLxrTrdFSCtV4Z8zpB3DZ/deA2Xjhd5YapK3jXkc+mMWPHKuZTral3sGie1e3eKLET5KzIcNJazSeetv7I2kz4AbOz6+aZWQdEH3gkcA64HvlepVIJKpfIasB9Yc+5DlTdi/g3DdkFxxDPEidqeyltjjEMx71H0m0W+0bxHLbR4jkOp4PHRDStZ1NrL6Ief+SBfun0tS0Z96pFlLojYvu8on7/5vT1POH/upjWd13/3W/tZt3ycF6aqvDBVbf4bvsd7PvU4H3vwqWZr1EZELYyZqTe0ilFE5Cy1CzLdq7scoB5bivPmCFqhKGkTRRZrm239uwuHjRiSxGITaGY0rT3p9ODR2yEBPOPgtt5L1zh4Kd5TsRrGbHvyMEHU7NESRJZtTx6mGqazPWcttAvGm9b2p1mLV05KgPlXRIf0tjIW6ab8FRkOGsvZpPPWf06S4lYwCymXy8uBhyqVyk+2fr4c+EvgNeAG4IPANZVK5ddbv/4g8GClUvnL7r9n165dSbFYfN1/r16vUygU3tZjeKOGPYZ3vfvdGH+kp3BoAZtAZBNKhWY7M8842Djkheef70scZ+Ns34fVq1f3/Y7Q2ebw2yENOTiIOEpjY1y89J1M1yMeevIwH77+Mi4ey3dWOh6fDvjcn/9Pjk0H3H3zGgqtJ55jC3nPMPGbfwHA+pVL+OzGazp/7wUFw49fOPSW4+vn+9HvHM7SNbjfhv0YB3F8aboGD/v5hf4d40VLl1IYXdRZ9Z0zzQ8CYefBDKenZeSBA8+97TGAcvh8yOG2t/NY2/kLzcJhQoLfKmylZY47rPOIK664kmiB99hz6Nt14q1YccWVTNcj7nxoDzsPTXU6ZiwqePyoFW+axuHlK69kqhpy18N7O/HeffMaxos+zx98/ff3XB/LsuUrea0enxLvBQWXI4cOLvhnBn0NTsv5HnQcaRzLg35Pup0plkFeg7PyHvVbGvMX0nN+Bpm/kK15sGIYbAxvZizrGtyka/CpsnB+zjZ/M9X+dCGVSuV54MpyufxLwD3AI8BY128ZA04s9GdXr179un//s88+e1a/r5+GPYaZeqPn6e3QNm+6GAfiVho7DhgsxWJxoO9FGs5Ft3MVS1qOexBxVIOIC1qrGNuteaM4IbFQKnjc8+GJTovTmSDCNc2n40v5k5fX7tao0MznC9+G40jLeXmzsnIN7rdhP8ZhPj7lcFM/jjGOLXNh3CkoQoKDQ5SAb5zW3nRuzwrFfr3Pw3wOlcO93s5jbc9vgVZbf6fThcObN8f1XYOXP/dz3Kyf29PFHobRKe+x55z5zwxSbC15z3DfrdexaCTX2UM+13VdS9O5imJLKe/1tBMt5T38s7wOn+tjsUnCv/rTPWy58SpWLS2x//gsn99e4Z4PTwz8PT3dv5+W8z3oONI4lgf9nnQbdCxpz18YbCxpzF9Iz/lJQxxp/D9LMaQvhrSOZV2Dzyyt522Yzk+me0SVy+XHyuXyla0fZwALPAl8oFwuF8rl8gXAamDfoGKUM4tj29PSrBZZcq2Vis0bhidbmv3o4IFBhyvnqZkwIohiXqs1iJOEC4o5alHMSM5lth7hOFDwXUZ9j0LO47/+1fMceHmu8+e7W6O+MFVNbTsrEZE0sDZhLowpFZpzAONAnCRUI4vnnDo/UMtTSRvblaPtHD7Z1h9CS6tgHjHqe8rht1nCqa2NFnotLaphzAPfP8Sx6YAkgWPTAQ98/1Bq54u1RsyOA6+wuJjDcWBxMceOA69Qa6Qz3moYc2w64IYvPMEVv/F1bvjCExybDlL7/spJpxuzaR3LIt2UvyLDQWM5m3Te+i/rKxV/G/jDcrkcAlXglyqVyo/L5fK9wHdoFk0/ValU6oMMUhbW3mcmaDQ/5hua+500bLPzsW4YShr4riGMDUFkKXiGYr5ZSCy4DtXWKpr9x2fZvu8ov3DtMh7dfYRN11/GQ08exjNOp8VSIWdwaO7vU8y5gz4sEZFUsjahGkaUCs0Viq7TbFESJs0PACooStrFsSWOLYFNyBkHQ7Nlr+8agvhk+5162Hw4SXsovv0cIEqgvctHkkCcnHw6OW1GPJdN1192SvvTES+d88URz2Xt5eN8/CtPZyLeYs7l3luuZfO23Z14773lWs3HM2ChsRyleCyLdFP+igwHjeVs0nnrv8wVFSuVyiHgJ1vffx/4qQV+z/3A/ec2Mnkj4thSi5pPh/rG4bV6DD7kjVmwpZnIIFib8GqtwVOHJll/xUXNgmIQ8fThKZYvKfHYnhe5Y8MKrnxHiXctXkHRd/knP9X8eseGFfzzv39lpzUqNG+IFzyjG4giIgtoF2OKrZanc2FEIWewjkPRMyooSupZm1BrxCRAzjjUWw8k+a0uHE5X+528Z3Bd5XA/JIBxet9v46T3yeRaFDMbNPjS7Ws717iXZ+qM+C5jKbzOZS1eYxyWjPrc/5H3UfRdqmFMUQX9TEhgwdZlaR3LIt2UvyLDQWM5m3Te+i9zRUXJvihqFhTb+8yEjZhS3iOyCV7Opd56ejtnHN0wlIGqNmI2b9vNjoOTndfWr1zClhuv4tLxIvd+cz+/9IGVvHSixl0P7+UfXP0OfvHaZRjj4OBwYi4kn3Mp+C7PHZtl1dJRgoaFyFLw3U7BUTcWReR812556jgQtgqKroFGbLHGkIAKipJqcWypNWKKXfNbzzhErQ4cxbxLI4hoNGLGCrnBBjvkEsDOezLZJpDWGtJo3uPa3/xOK1eaPOPww898cIBRnV7W4pXsSmiuMp6/yiCtY1mkm/JXZDhoLGeTzlv/6Y6MnFPtlqfd+8zUIotNEmxrpHd/LzJIRd9l56Gpntd2Hppi1dIS+4/Psm75OK9WQ0p5j89uvIZbf3I5tUbMbD2imHdxXcNsEPHcsVm2PPYMM/WIqWpItRHxya/u4WMPPsVUNWQmiIhjO6CjFBEZrO6Wp6N5D+NA+zmL2ELOGEbzzZaRxZwKipI+UTRvlW1rfgsQ2YRi3mW61sBBT8eeK1n6bDEXRKxbPt7z2rrl48wF0YAiOrOsxWttwuRcyMceeIr3fOpxPvbAU0zOhVib3pyQk7I0lkXmU/6KDAeN5WzSeesv3ZWRc6a9QjGwCXNBRM445I2DA8QLDGw/pftyyPnjdDdN9h+f5Xe/tZ+7b17DI7uO4BmH8VEfx4FR36PWiJmaC2jEMQbYvu8oWzdN8OjuF7nr4b3M1mM+/rOr2HFwkrse3suJaoNqIx7MQYqIDFAcW6Io7inGuA54xhDb5jW1vZdtMedqVbekTvf8ttOBQPPbgTrdVSKtVw/fOGzdNMH6lUvwjMP6lUvYumkCP6WPUudOE28upfF2dx6JbMKOg5Ns3rZbc+8MyNpYFumm/BUZDhrL2aTz1n9qfyrnhLXJKS1PDRDahKJniFptiaDZPqfoe9rnQgau6Lvce8sEm7ftYeehKdYtH+fum9fw+e0VXp4JKOQMv3jdMgo5l0ZsmQuiTo630zefM3zk767ga7uPsOXP/hbPOFw6Xuz8GzsPTXHpeLGz74+IyPlioZanFxY8TtQjLih4uKbZMnIu0ApFSa/u+W09jPEcqEZW89sByxmnsyrUNU5qC14Armso5T2+eNtaSoXmqmzPOKl+iKLou9x363UsGskxXWvgpfj9PV3nkaKvAn8W+PPGclqL7SILUf6KDAeN5WzSeesvFRWl76LIUm/dcGm3xckZh9Am+MYhsEnn16JGTEn7zEhK1BoWm8Dv3baWsYLHdK2B7xru+fBEazWNw/ioy8vTAV/deZgbrr6ELY89w323XsfEb/4F+7bcwK1ffrJnT8Z1y8f5/9m79yi5qvvA99+9z6lTj66Wmm5JGPSg9aIuA4gGIRzFcmYmnjVc38wiGYiMFAMxnsEeJh7km8TxjUkmyowzLCybsZhkYSzHCTKJ5DA4mEkg8jh2xmAUEELNK3ZZrzYIZD26LXV3Pc6pc/a5f5yqUlWrhXm16pzS77OWVneXWq1ddfau3mf/9v79Xh0r49bTojW+Hsg7UmNJCHHOaE15ClEwxtIw7vn0Zey2uYHUUBRx5fvmtPltI6Ao89vO8aMylm0CgBCcDrTnZ6nUAp7ce4zVS+cAUXqm//OjY6xZPpfeGAYWTXj6KdwgDNFhPBdqym7AqsH+0+bjZTdo/g4S8WSY/kSBFI0QSSD9V4juIGM5meS6zbyO36UUCoXlhULhg4VCYUGhUIjnnYh4W3zf4Hk+xkQ1ZkquT7qe8rShXF+MadSZ0brjXVKIplzKImNrakGUzvREuUY6FdVFyjkWJys1fvPrw3zy68PcsHJhW5pTgJLn84UPXdGWHmrT2hXkMxb3/cO+5td9uRQpraS2ixDinGBMeFrKU7sl5alnaNZQTGslAUURS4064a0p/TXRiUSZ33aWrcDzDaOTHmEIo5Menm+wY3qn6WjFyov6uf3B57j4zse5/cHnWHlRf2x3U1sKwhBOlGttH614NhetYNPaFafNx2P68ooWjcxGQf0eKTAhngk7v4glxJsg/VeI7iBjOZnkus28jm7NKxQKnwD+LdAPPAAsAz7RyTaJd66xyALg1gev5wY4LacTNacfQ87ISQQRM1orejMpqn4AIWRsG6Wi/lrzDb2ZVPPUYs6xuHXNYp7ce4zP/u0PWL1kAMfWGBPyJx++ir5cirIbUKn5pHR02rHsBqCiX3Zf/t4B1r93ET2OTTqlqdQMuZQladKEEF2lcUIx5FTK076M3Tzd1ZryNGMpbKk/J2KmMc9tzHEbgZ/GHFfmt/GQszVWPqp3PZB32jY1xk0I06Y/jetWsyAE2zpVT7y/x0Hr6PE4yjgWn//rIhuvu5Rl8/LsOzrJ53cUuefGoU43TbwJkrpMJJn0XyG6g4zlZJLrNrM6fYe7DvhXwIlisfhF4L0dbo94h1oXWhppn3rSNlrBhBft5DZEwUY7FS0UmiCkN5OSBRcRS7peAymXtslnbLRSVEvj1ExILh2dWtz94zFeHauQcyx+fulcfvTZD/Klm1fyj/uP84f/6584NuFighBDyEA+jdYKrxbwmb9+kaE//BbplMW1l13AHduGOVmp8ZOTLl994gCjJU9OLwohukYjoJhrmRtYOpofZOv151Q9Z6ECbFs2Voh4aZ3nNua4IVEwpZHSvzG/9WuBzG87xE5Z/GSi2vbYTyaqzWsTNylbUwsMpp5S1IQhtcCQinHfqdYCxkrRSdCxkke1FnS6SWdUdgOOjLtc+8XvsfQzj3HtF7/HkXE32twnYu1MKcokdZlIAum/QnQHGcvJJNdt5nX6TqXx/zdWzd1ONUS8c75vqPhB20JLyfUpuT66ntbsRNXHb0lr5khaM5FAx48ejeofhmBbml+4eB7n9Tgcn/SiHeauz1P7jnHphX0cm3D5pXuf4OavPsOJUo0//vu9jE56/HiswqPPv86qwX72HZ1k2bw8u0bGOH92ht9+6Pl6kHEP5Rgv0gghxFtR9nx8EzZTnuqWlKc1E50mMWFIrV5/TgKKIk6MCdvmuY05bkgUBJqa8lRuWDun5Pp8+uGXuHzjt1jyu49x+cZv8emHX2rWvoybshfwwFMjHBl3CUM4Mu7ywFMjlD2ZA74btD5D+lO5BU2E6VKXCZEU0n+F6A4ylpNJrtvM6nRl8r8EvgdcVCgUHgMe6XB7xNvQmu60Jx11qcZNeyPVUEhUYwZbN0932Vphyd2cSIjGCZusY3HRkuVMVn1yaQsNTFZ9Hvj+QW5YuZCbvvI0H//ni3nfsrn0OFaUyipts/foJI/sOcT1KxeQTVl88W/+idVLBrj7hhU8sucQXHYBqwb7KbsBu0bGmkHGnBPPXfVCCPFW+H5UXxmg6gXYSsncQCRGY67bOs9tzHH9M9yb2tKPOyatFZvXDbFh+zC7RsZYNdjP5nVDsU2BmtaKddcsSkx7GzVw4VTQ09Y6tjUrM7ZFb9rmrusvZ2F/jlfHyvSmbTKSXjv2zvQuKu+uIgmk/wrRHWQsJ5Nct5nX0aBisVj840Kh8B3gUuCHxWLxxU62R7x1U+vKuPVgoqOjBGaNGkkKqaEoksuYkNGSy7anX2H9NYtwA8OnHnqBXSNjfPs3/zmPDr/Gjdcs4uvPvML/+LUr6e9x8GoB5VpAT9qi5PksPz/P/L4lNNaH7vnQUDPQ+CtXLuCRPYfYtHYFJyte8/TiqsF+yl5APt3p/R9CCPH2NTIZKF/hm2he0JgfyNxAxJ3vG6p+QMipeW4j2GOIAiyhkn4cN30Zmy/fsrJ5qjSuATqI+tHsKe116iUj4sgA2Sk1K+Pc3kaNdMvSKAVzetNStzxBpB6SSDLpv0J0BxnLySTXbWZ19G63UCjcBtxWLBYfAr5QKBRu7mR7xFszXbpTRyvSWhGE0Q1nrl4jyTNRfRMFECI1ZkSilL2AO7YNc+1lF1DyAj710AvsPDCKb0IW9ue49zv7GOhxuPayCzgv5+DWgqjmomNR9oLmApGloRYYvvLEAfYenWT5vDwfWbOY+edlWHv1QtKW5uHdh/j82ivY8dJh7l1/JbmY1v8RQog3ozFX6EnbnKx4qPo8Pmfr0+rPZSUQI2Km0X9zU+a5jdOJmqhOeErqhIt3wLY0tSnpmWomxLbi2Y+S1l6IAov5dFQbPZ+2JaAohBBCCCHEO9Dpmf/twO/WP/8l4D92sC3iLWjUlZlaO9EPwQtDbAWKaKEl41iEhJgglBpJIhGMCZms+gTGUHajNKeNlKQL+3PsGhlrfm/jROH+YyU2PvoySz/zGJ9++EUCE6KUoloLcGsBllIEBvIZm1vXLGb5+XnK9RSAED3en3e4dc1i3jM7zUffv4SBHkfGixAisVoDiiXX5+Hdh/BqhpJ/+nkWrbUEYkSstPbfRh3QoGWeG0JbfUUJisfHmVLSnunxTqvWDE/sPdb22BN7j1GtxfPsX9LaK5IraWNZiFbSf4XoDjKWk0mu28zr9J1vUCwWqwDFYrEGyKVNAGNC/JZFwkaKnnQ95akfhLw+7mLbFqOTHuOVmiy0iMRopDr96pMH+MlJl6MTLuOVWjMl6atjZVYN9je//0++u4/N64bY8dJh7r5hBauXDPDYi4fZ+tQI45Uarm/46J8/y4o//BZfffIAo5Mef/bkQQ6NVbht67N85q9f5NWxCj1pm4pn6HFsLK1lF7UQItGmBhQbNcO2PfMKR8ddLNsiDKMTinKyS8RNI+Vpo/9qFaU8tZTMc5PAVlEJhtFJjzCE0UmPsm9iW/NPK7h8QR+3P/gcF9/5OLc/+ByXL+gjrtPApLVXJFfSxrIQraT/CtEdZCwnk1y3mdfpQl3fLBQKTwDPAFcBj3a4PeJNKHt+s65Mo3aiH0Y3mLYCa0qNDVloEUlSrkWpTjdedym//dDzPPjv30sYhtxz4xU8tOtV1l+ziE1rVzRrKh6bcMmkNLeuWUzOsZr1cMquj60VjuWw5ZaryaUtSq5PSis+umYJWUe31c6JTvJ2+i1ZCCHeuakBxUatrb76Se3G4xlLobXMD0T8TA2Iw6k64TmZ5ybC1OsU55qKWkE+bXPX9ZezsD/Hq2PleqrOTrdseklrL0SbBsu1oFmaQGoqJkeSxrIQU0n/FaI7yFhOJrluM6ujK9jFYvGzhULhb4ACsLVYLD7fyfaIN+b7BmMMuXTUbWq1gBAIQk5LA+XVgyS9mVRH2yzEW5VzTqU63TUyxr6jk6RtzaPDr/FrP3cR5+VSuDXTDBQeOVnlP3/zZZbM6eHfvX8JKa0ouT49aZuqF5z281OWxgsCvvXyT/hP24ZZNdjPprUrCNIheWxZmBRCJNrUE14QcrIaMHuaTROS8lTEzYXz5+N5fjPlqaNVWzCxMc91ZZ4r3kUpW+P6hr5cCqWIPtYfj6OktbeRheSObcPsGhlj1WA/964fYqAnLYFFIYQQQggh3oaOzPwLhcK/r3+8C/gQcAVwY6FQ+G+daI/42ZYuXY4xBteEzboyBjAhWCoKJqZSFiCpzETyGBMy6fr4gaHk+s1Up6sG+/mT7+6jx7G4fuUC/tNf7uG3/up5qrWg+e/yGZt7bhzi1jWLUYCTsnj9RJVPbh/mn/3BDv7dA89yfNJl75FJPrZ1N/uOlfj413azZG4vvgnZeWCUTz30AifKNSp+gDGSBVoIkUyNE4q5ekDRNyEVz5B1NJ4JsWWeIGLM9w3ZTA7XhM2UpxOeT9bWUc1wQzMTQS4lpxPjzHB6TY2w/ngclb2AB54a4ci4SxjCkXGXB54aoTzN5rQ4SGJ779g2zM4Do8259x3bhmPbXnHKmcZsXMdt0tP8AAAgAElEQVSyEK2k/wrRHWQsJ5Nct5nXqZOKr9Y/7gVkNh9zvh8FE4Hm6StbKfwQTBjiBSGzsinGKzVsLanMRLIEgWG07LF7ZIyVF/Wz/ZlXmqlOP7/2Cn77oef5o8d+wO/+P5e0nU78L3/zTxwZd9m8fohvPHeIv3vpCPeuH+Izf/0ijwy/3vz5u0bGWNifa37eOAG5bF7+tO9RKlr4yKclDaoQIllaU56W3YC0VgQmJJ3SBAZmZe3mPMG2rU43V4g2jf4L0VzXr28esrXmRNWnx7HJpS0mq1FA0bJkrhtnGvBMSFC/fwlMSA1wYnoqLWtbrLtmERu2nzpJt3ndENmYvlcmrb25dJSFpNWukTFy6Xi2V5wy3Vj2iO9YFqKV9F8huoOM5WSS6zbzOrJyXSwWd9Q/XVcsFv91J9ogfrZGutNGqieAkutjKcW45zPLsQmVau4EtrQiI3VlRIIYE1LyAjZsG+a+m67i9gefY+eBUW5YuYC1Vy9k3qx0S43EAK3aTydOVn1qQcBNPzfILw/Np+T6HBl32/6PVYP9vDpWxvVN2wnIfUcnT/uevlyKWVlJpSaESJaLFi9uS3lqKcXRkse8Hqe+ASn6Plsrco4t6eZEbLzRXBdVr8OhVbMucsZSMs9NAD+ElG6/R0npaEOk09GWTa/iB7x2osz9N68kn7GZrPrsPzZB1rHojWF/S1p7y27AqsF+dh4YbT62arCfshtIPfOY88No8a91LDsxHstCtJL+K0R3kLGcTHLdZl6nZ/0nCoXCLxcKhf+rUChcXCgULu5we0Td1EWWkutTcn3SWmGpaOf26+Mutm0xOukxXqmRlYCiSJhyLVpM2DUyxqxsqrmL+T2zs7z/c99l6WceJzAhf/z3e3ntRIV0yuLwySqBCfnwlqe56r/+bz7xl8OMTrpsfWqETTuKbFq7gtVLBrC1YvWSATatXUGPY7HjpcPcfcMKdrx0mM3rhtjx0uG27+nLpdi5/7ikYhJCJIYxIZ7nE2A1U57aWmEryKdtXh93Sacsjk+6jFdqZGxLAooiNs4017UUaAWeb3h93CXn2LwyWiYwoWTjSAhbQcU3jE56hCGMTnpUfIMd07eflFbM78vx8a/t5uI7H+fjX9vN/L4cqZi+XyatvVoz7fxchnP82QrKU8ZyOcZjWYhW0n+F6A4ylpNJrtvM69jWvEKhMAtYDHyy5eEQ+MXOtEg0TE0B1QgmQjQgc7aOdm7nHZSCgbwjAUWRSDnHau5eHq/UmruYG6cJdx4Y5ZE9r52W4mnLLSv50s0ro0XzExXSKc3aqxdy/uwMJ0pec+d22Q1QCjIpzUfWLKbHsfjI+xYDIR9ds5hPfGB58wRk8cg4Vw8OkEtJKiYhRPwZEzJRraG1akt56ofghaHME0SsTTfXdbRCASeqPvm0JX04wUI47fqlW3Yqx40mmpPed9NV7SUlOt2wM0haezO2RW/a5q7rL2dhf45Xx8r0pm0yMU3XKtpNN5aFSArpv0J0BxnLySTXbWZ1JKhYKBQ+AfwWUT3F3y8Wi3/3Fv7te4G7i8XivygUCkPA/6j/HBe4pVgsHikUCrcBHwd84LPFYvFv3vUn0cUaNZEgSgEFIYZo4OVs3UxlFi0iRnVm5OSBSKKyF1DyfDatXcHO/cfZvG6IDduHue8f9rFp7Qo+9dALfPZvf8AVC2c306COV2o8sfcYV1/Uz+uVGvPPy3L4RAUTQhiGaK3IORbjlRq9aZuSF6BUtFD5xI+Osfz8XmZnU+RaUqqmU5rl588il5JTPEKIZCh7Pj8t11g0kDuVLpJoR2CoVNvpLwnGiLiZOtdt3GD6IfRlbFwTknEsXNfHBCG9GUlNniSK6FqG9ShiGEZfx3VnsiFKD92ansnWCtPJRr2BpLVXa0VvJoVlaZSCOb1pmXMLIYQQQgjxDnTqpOKvAQVgFvA14E0FFQuFwu8ANwOl+kObgf9ULBaHC4XCx4FPFwqFzwF3AFcDGeDJQqHwv4vFojvtDxVNxoT4LTWRANJacaIagANprdsWCU0QkpdFFpFguZRFEBgsDZdcMJv+nNMMHla9gC23rGym9LOUouT69GZSLJnby3/92x9wbMLlvpuu4n13f5fVSwba6jI2rF4ywF3XX47rGz7y5882H2vs7tb1hfh8WhbchRDJ4PuGXNpmoRO9P6bqJ7wa2Qw8CSiKmAoCQxCY0+a6nglJ1VP3SkC8O9gKgnrMSKn4BhQBHNui7PkE9QK0gQlRQM6JZ72/pLUXosBivr6RoPFRCCGEEEII8fZ06i65WiwWvWKxeJy3Vh9zP3B9y9frisXicP1zG6gC1wDfLxaLbrFYPAnsA1a8G43uZr5v8OtpoBo7ttNaUfYNfRkbUNj1tIx+LaDHsWWRRSReY+dyLmUzJ59GW9GKkwlCaibkib3HODRW4c+ePMik66OAm77yNL907xMcm3DZvG6Ibw6/xuolA2xeN4RSp9ds+cKHrqAvl2qrobh5/ZDUTxRCJJLvG6p+QNkNeHWsjFNPeVczUcpTCciIuPL9KKDombCZ7rSRsjdVP3Ul/bd7TE11GtfUpw2BCTlRrhGGcKJcawbs4ipp7RVCCCGEEEK8e1QYnv0bgEKh8J1isfiLUz9/k/92ENheLBZ/ruWxnwf+FPgF4Frg8mKx+On6320FthaLxW+3/pzdu3eHuVzuZ/5/1WqVTCbzZps3I2a6DXPmzSPbM6t5s926Y7uRPsiEkEtblF2fnx4/wuTExIy150ySdC0uueSSGd8P/Wb78LshDq/92WpHvreXWefNoTeXZtL16XEsSl7A9/ce4+iEyy8PzWdWNhWdXtSKtG2x7+gkB45NsHrpHFzf0OPYzfFiAEcrfBONocmqz/f3HeOqRefhTYy+o7E0k6/HTPfhJL0Hz7Ruf46deH5xeg/uput74fz5aCdLT9rmcL2ebK9jE9TTCrYGZNJasX//3k43+V0hfTj5fXjhRRcR6ii7Rk/axq0FhCFoFe2wDKHthK3xKrz+2msdbfPZ0K3ziKVLlwOnvycBsXxfunDRYv7DXwyfluniSx8e4vVXDgLxGodvpr1vJE7P5Uw6/R4cl9eo0+2I41ju9GvS6o3a0sn34KS8RjMtjv0X4nN9Otl/IVnzYGlDZ9vwdsayvAdH5D34dEm4Pm+2/3Yq98elhULhL4lKXjQ+B6BYLP7aW/lBhULhRuBO4JeKxeKxQqEwDvS2fEsvcGK6f3vJJZf8zJ//gx/84E1930ya6TZMVGvkWtLAHD5RYU6Pc9oCS60WkM+kyC9YMGNteSPnwrV4q85WW+LyvM9WOyZdnw9veZqdB0b5/qf/JeflHN6/fF4zUFh2A57ce4wVC/qYnXVYfn6e+X0Z/ufuQ6xeOoe5vWn2Hplk5/7jrF46h2Xz8oyerAAp8hk7+lmOhZ79zsZSXK7L25WU9+CZ1u3PsZuf37nUh33fNOvQld2Ah3cfYv01izhR9TmvXoNu6gmvbnje0D3XcDrnQh82JqTk+c0aimU34KtPHuBjv7AExakbTc/1KVcq9OZykEkxe9aszjb8LEj6tT1T28uuP226Uz88e3Pnt8KEIbtGxtoe2zUyRm8u3WxvnK7Vm2nvG4nTc+m0M70OcXmNOt2OOI7lTr8mrTrdlrj3X+hsW+LYfyE+1ycO7UjK7yxpQ2fbENexLO/Bbyyu162brk+ngoofavn8S2/3hxQKhZuAjwP/olgsNu5sngH+qFAoZIA0cAnw0tv9P7qd75vmAmFYP6vYWCgseQEL+3O8MlqmL5ciFeM6GUK8W4wJyTlWc7HkPbOz7Ds6yY6XDrPuvYvYsG2Y82el+eS/upgL+rK89tMKX33yENdedgEb/9c/Neslbnz05WlrKzLpMac3jdYxLu4jhBAtfN9QrgXkM6dqzF6/cgHbnnmFay+7gDn5NMb18WoBvVJrWcRMuR5QbNRQbPTfL3/vANdedgHL5uWZqPqkLcXBgz+OzU2eeGfGPZ/JakDOsRmd9MhnLHKpeN7LlN2AVYP9bfPGVYP9lN3ofTduktZekWxJGstCTCX9V4juIGM5meS6zayOvJLFYvH/vNOfUSgULOBe4BXgG4VCAeD/FIvFPygUCvcCTxBlNLqzWCxW3+n/142CIKqLFPrRAoutoiDHumsWNRcKAfp7HDKWkiCI6DrGhJRrAdmUpuwF5ByL0ZJHEITNxZJGQHHtqoW89tMy99+8knzG5pXRMr/59WGOjLt84UNX8Lm/+yGrlwywae0Kvjn8Gl/40BX81l89z66RMVYN9rNp7QoyKU1Ka3L1+qRCCBF3QXDqhGLJ9UnVayjm0zbXDc1nYX+OV8eizUe2lvc2ES++b8hN6bsg/bfb2QpsrYFTtattrafdrRwHWkc1uT/10Att80Yd05KeSWuvSK6kjWUhWkn/FaI7yFhOJrluMy9x4dlisTgCNOop9p/he7YAW85Wm5LE9w3GGKAl3VMtQANl35CzNX0Zm1vXLG4uIOZSFnv3FmXntoiVIDC4vmnW+yy5PtmURaV2avG79euqF2DCkEz9sUYAcfvTr/ArVy7g0w+/wOd+dQW/8z9f4PNrV3Dv+iHu2DbMff+wj9++tsBDu17lxmsWkXMsql7AnHyae24couT6aKWan1tKcfPqQapewJZbVpKrnwTWClCQsS0J0AshEqE15eneI5Nc1J9FE6VGz9kaK++gFAzknWbKUyE6zZgQ349uHl0TonyFU/+965kQRyvpv+eAqdc4HeO5V9rS5NM2d11/eTPQnU/bpK149smktRfaf5+1pukW8ZeksSzEVNJ/hegOMpaTSa7bzJKZ9DmkNaAINNOewqkFQteE2PVTVH49jZnccIm4CQLDhOszVva4beuzXHzn4/zZkwcZK3l8bOvu077+za8PM1b2eGLvseZjr5+osmHbMNdedgGffvgFdh4YZf55WXaNjPGe2Vk833DX9ZfzhQ8N0eNEgfa5vWkqtShAmHU0ZTfAUopJ1+c3vz7Mx7bupuT5EEIubZPPpNBKkc/Y5NI2OceWgKIQIhF8P8pm0FiA3fHSYUx4KigzteC5zBVEHLQGFCGa62oV7U8NQpp9tzHXNUEoc13RcZVawNanRnD9+sZP37D1qREqteBn/MvOSFp7fd8wVj51j/CxrbsZK3v4vvnZ/1gIIYQQQghxmsSdVBRvX8Vvv9Fz66eqJj2fvGO3LRA6WmHbkgZKxFO5FnCiXON3v/Fis57LtZddwIbtw9N+veOTv8CnHnqB+266itsffK4tgLhsXr5ZP7FRI6aR8vTGaxZx01eeZtfIGHf84jI+8r7F5DM2Jys1XD+kNxudgOxxLO65cYiyG52AlMChECLJWlOelt2AlFasu2YRX3niAP/u/Yvb5gtZW7IZiPgoe6dqhEM0101pRdU3OJaWYPg5wgBTZ2Jh/U8c5dI2935nH/d8e2/zMVsrPvGB5R1s1Zklrb0VP2i7R9h5YJQN24f58i0r6ZX3gFhL2lgWopX0XyG6g4zlZJLrNvNkFn2OMPVFlNY/Ka2aOYZPVn1UfbiFIVhaS2BExFZP2mZhf64ZDATagoNTv258PiubmjaAuGowyqR8suKxae0Kdrx0mBtWLuS5H4/xpZtWUvzsB7n2sgv48+8fZLxSIwxp1lWsBSY6gVg/kSjjRgiRZEFgKNdOBRSViiaLOcfilp8fJOvYBCakLOnjRAzl0lbbXNep11G0tcILDD1pm/FKDQVoKQDXtTRQMyGBiZYNAhNSM2Fsb3wbc9JWqwb7mxll4iZp7e1J2233CAC7RsboScv+6rhL2lgWopX0XyG6g4zlZJLrNvPktTwHNFJBlVy/7U8jjVnO1uQcq1mXLmPJzm0RbyXX59WxctuCRmtwcOrXjc/HK7VpA4h337CC1UsG2LSjSCalWXv1Qt4zO837ls0ln7Eoez7Lz89z65rF5GyNY2mUgjn5NL2ZlAQShRBdwZiwWYd2vFJDKwgJKfsGRyus+nudpRUZCSiKmPF9Q9ltn+8C+PW0p63915FTil3NMP01j2uyS61g09poLmprFc1J164grtPLpLW35PrTBkEb7xEi3qYby0IkhfRfIbqDjOVkkus2s+Ru+hxQ9nzceg2kdMsfLzDoKXWRUpL2VCRALmXRl0u1LWjseOkwm9cNTfv1ff+wj01rV7Bz//HmY40A4nVD87mwL8N9N13FPTcOkUvZ9GZSACgFSimUUhBCbyaF49i8enCvnEwUQnSdsueTq59Q3Ln/OLYCPwixpswV5ISiiBvfj1L2akXbXDcIowDI1LmunFLsbppo42TrzmQvxjuTHUuTT9vcdf3lFD/7Qe66/nLyaRvHimeLk9berG213SOsXjLA5nVDZOWeNxGmbgaI6+YAIaYj/VeI7iBjOZnkus0syfnRpXzfYEw0XHL11C6Vep0ZR0VBkJyt8UOaaU8V4NhSD07En2VpeuuLF1tuubp5yjabsvjyLStPLXy3fF3xAt6/fC6ZlseqXkCm3uctrTBBiIFmXcTeTLQ4kpf0SEKILtbIaNAIKELI5Qv6+PviUT5QmCcBRRFLrXNdr95Hq17AuOczy4l+b9vq9LoZttbSh7tc43Rq49o3dib7ITgdbdn0qn7AweOTLJ3bi1LQ3+Ow/9gEy+f1ko9hX01ae7VW5NM299+8knzGZrLqY2sl97wJ4IfR+3grXX88jmNZiFbSf4XoDjKWk0mu28yTlfIu1LrI4poQz42CifuOTrB4Tp7jZY+F/TleHSvTl0uRb9aDS3W45UK8eZalMb7hq08e4NY1i+lJRzUOv/jtH3Fk3GXT2hXsHhnjn104m49t3c2ukTFWDfazed0Qu388xvuWzQVgxR9+C4DVSwa4/+aV/Pn3D7L+vRcx0OPIYoMQousZE+L5AbX6fEGrqPZAPm1zyQWzsWyL0bEygQnpTdtYMT2JIs4tU+e6bRk3tOb1cbdtrpu1NVqpZiYC0f3GPZ/JakDOsRmd9MhnLHKpeN76aqWY25vh4187NV+N0onGcx6atPaWvYDbtj7LzgOjzcdWLxlgyy1Xk8/Es0+IiKWg7BtOlGvNsdx4Txci7qT/CtEdZCwnk1y3mSez6C5U8YPm541d27ZSzO/Lte0qHcg7cuJAJFouZbH+vYt4cu8xVi+dA8A9Hxpi0vXxgoD7v3eQj//zxdx/y0ry9RphO/cfZ8WC8+hJW1Fa07pdI2PkMzbXXnYBd2zbw5Zfv1pOKAohupoxIWXPJySaL5RdH1spvDA63TWQd9rmCxJQFHExda5bdoMotb8JcSxNf4/TPEFla4UtffecYqvoRCqc6ie21qftVo6LjGPx+b8usvG6S1k2L8++o5N8fkeRe24c6nTTppW09ubSFrtGxtoe2zUyRi4t6U/jTsG07+kxHcpCtJH+K0R3kLGcTHLdZp6smHcZ3zf0tARCGru2y76hL2OTndfb3M2d1koCiiLRtFb0ONFpmrxjRwV4FdECorabqVGrXkDZ9ZmVTXHZ/D4e3v0qt/z8YNuO6lWD/ZTdgGXz8tFCgyMLDUKI7tU4odhIkV5y/eYGjZytJeWpiK3p5rqWUs20p4aoJjL1j46lJSB+jjFEZR6slo0Raa1iW0el5PocGXe59ovfaz62eskAJdeP5enapLW37AasGuxvO6nYmPfLScV4M0SbBIKW93RbSU0kkQzSf4XoDjKWk0mu28yTO+wuEgSGih9Qcv3mHwhRREGWcn0RZrxSQwFay+UXXUCBbSlu/uozfOO5Q0xUfdIpi9GSR8nzAThZqeGbkK/tHOF3/ucLrLtmEbZW7D82ga0Vq5cMsGntCkqez76jk6wa7K+PHyGE6E5lz6dmQspu0NxotPKifnbuP96cL8gGJBE3vn/6XDetVfNk2k+rPr6JTi9OViUgfq7SRHU2AxNVVQxMiGfC2N74prRi87ohVi8ZaM5LN68bIhXTNPxJa6/WsGntirb2blq7ArkVjr+kjWUhWkn/FaI7yFhOJrluM0+25nUJ3zdU/YCetI1fO5Xq50Q1AAfSWhPWH7O0IiOLLKJLZGyL3rTNveuHGMinKXsBYyWX+edlKbk+YRiSz9iktOLm1YNcf9UCUlphQjgvl6b42Q/y6liZTEoTGtjx0mHuvmFF86SiMSHlWkDOsSh7AbmURb63l0nXbz6WsTQV/9T3NBbjc45FpWbIpSypzyiEiAVjQvyWE4pVL2ge6+rL2KxZPrctoCgbkERcNAKKPWmbiueTqvfbxm7TnK2xtCKXtqLfwSmZ657LHK3a7n2cGM/DbK3JORb33XQVs7Ipxiu1etaNePbfpLW3ca9w1/WXN2ut9qZtMrZkJUmCJI1lIaaS/itEd5CxnExy3WZWPGf+4i1pBBRz9UXAn1b95qDpy9iAwk7VAyRBSG8mJYssomtorejNpMg6Nqa+6yRb7+8KhVszOPUgYrke6KuZkHTqVG7tOfk02ZRNf97hlp8f5JE9h6h4BmNCRksetz3wLBff+Ti3PfAsoyWX/Hlz2x4bK3s8ufcYr/20yse27ubiOx/nY1t389pPq3z1iQOMljyMCd/4iQghxAxrpDx1W04oTrg+Zc/Hn+YtSmst8wURC60BxZLr86dPHGz2WV3/Iyl7RcN072dv9HinVfyAoxPVKI0/0aLH0YlqW+3QOElaexv3CnN609G8vzdNbyYlG/4SIGljWYhW0n+F6A4ylpNJrtvMk7vtLlCpBxTLbkBaK9K2ZsLzeX3cxbItRic9Jio1ehxbFlhEV9JakU/b2JYml7bJZ1JopchnbDKOxaUbv8X/940XCUJQSjE66fFbf/U8H//abl4/UaHq+1RrAWOTHlufGuH6lQvQGsq1gDu27WHngVF8E7LzwCh3bBvmZMVve2zD9mFWL53Dpx9+oe3xTz/8AtdedgF3bNtDuRbPhRYhxLmjkfK0J22jVLQQnK7PC45OyJxBxFdrQNHRinXXLOIrTxzg4FgFy7aoBmF0slYp2TwnsBWUfcPopEcYwuikR9k32DGNIeUcC1tbbRvTbG3Ftr530toLp+4VtKp/lIBiIiRtLAvRSvqvEN1BxnIyyXWbeZL+NOFMfXGw7AZoBZXAkLU1QajJ2Hb9FJZDxpb0i+LcVHYDVg328+jzrwPw+790CbOyKe65cag5bgBCIJPS/NurFvD5HUXuuXEIgF0jY20/b9fIGAv7c6c9NiubmvZ7l83Ls2tkLNYLLUKI7uf7ppnytOT67Ds6weI5eRxL41jtc4acIwuuIj78lhqfKa2o+IbZGZtb1yxuPp6xFLakMhR1IZCxNQP5KCPFQN4h1ZL+KG7KXsAjew6x8bpLWTYvz76jkzyy5xC3rllMbyZ+AfKktVckV0g9tXXLWE7HeCwL0Ur6rxDdQcZyMsl1m3ky608w3zeUPZ+S66NVFIUPwygSH4Rhs6aM1E8U5zKtYdPaFaxeMsBjLx5m2zOvYGtFaEKCMCTjWDQyk/6/X3+e93/uuxwZdym5PpNVn1WD/W0/b9VgP6+OlU97bLxSm/Z79x2dZNVgP2VPTioKITqjkTqykfI0rRXz+3IcPD6Jb6L3wZAQvxZEJ70loChiotF3GycUFWBrRc2ERF9FtNbSb0WTAkwY3RdB9NGEENcekqqfvt346MsUfu9xNj76MuuuWUQqpn06ae2FaCPupOtjwvpHKUuQCIooTVnrWPZjPJaFaCX9V4juIGM5meS6zTw5qZhQvm8wJjp1UKsFKKJgYs7WUlNGiBYZ26I3bXPX9ZezsD8XLUxaikrN0JuJxokC/vSJgzz24mFWLxlg87ohyl7A1595hc3rh9iwbZhdI2OsGuzn82uvwLEUq5cMNB/bvG6InfuPc/cNK/j0wy80H7/7hhU8sucQm9cPkUvJCQohxNllTIhfr6HYk7Y5fKLCeT0OIVHN5ey83uZ8Ia0VWst8QcRHax1FrxYQEgWGHK3qfdqSua6YltYabQyqvmqgFGhFrN/jco7FfTddxaxsivFKDTvGATrb0tO217bi+fo2aqTfsW1Pc45+7/orGehxZDNCAtgKgpaxLGnLRJJI/xWiO8hYTia5bjNLgooJ07pACOC5AUpBSHhaQDGtlSyyiHOe1lF9JcvSKFX/RWJpaiY6OaiUImtrPrpmCZ/4wHImqz5//v2D/MYvLufe7+zjN35xWTO900S1xtanRth3rMR9N11FbybFRLXGweOTrF46h96MzZdvWUlP2ma8UiOftvnI+xbT40j6YSHE2WVMSNnzCaE5L3h49yHWX7OInrR92oRaay1zBhEbxoRtdRT/7MmDfPwXlmArZPOc+JkqfoAfBNjWqQ1dlZqPbVn0xrC/pGyNW/XbHgtMSDamqfMrtYAn9x5j9dI5zcee2HuMNcvn0hvDwGJrjXSgXiN9D1t+/WryaVkOiTM/nH4B0A/BOfvNEeItkf4rRHeQsZxMct1mXvxm/WJaxoR4no/vB3j1xZSetI2uBxT9IOT1cZecY/PKaJnAhLHejSvE2aS1Ip+20SoKMNqWpjeTQqvocau+APLhLU+Tz9jc+519zbSlE1WfjY++zNLPPMZ//ubL3LByIccmXDY++jKHT1bY+tQIAz0Zbn/wOQq/93f82ZMHmaz6zMqmqPqm7ecLIcTZUvZ8/Jbgi1NPV7ftmVd49acVLNuKUoDUguh9MYYL7eLc5PsGvyWgmK733fu/d4CDYxVyjs1kVTbPiTNztKIWwMe27ubiOx/nY1t3Uwuix+Oo4hkeeGqEI+MuYQhHxl0eeGqEimc63bRp5RyLSy/s4/YHn+PiOx/n9gef49IL+2JbPzznWNPWPY9re8UptoqyMY1OeoQhjE56lH0jJw1EIkj/FaI7yFhOJrluM0+25iVAvre3GUxsPXEQCQkMWFox0FJ8VHZuC/HmGBNS9QNy6WjBoVEb8U++u4/Pr8pKFY0AACAASURBVL2CnfuPs3ndEBu2D/PYi4dZNreH+29eST5jU/UCbl2zmGzqVAqoV0bL2Fo1A5ZCCHG2+X6UHh2g5Pocm6jynllZZmVsbl2z+FSg0ZKUpyJefN9Q9aNUp249GG5A+q54SxSQT9vN+dpk1cfWKrY1VLSC61cu4FMPnUqhv2ntCmIaA6XsBTyy51Azk8e+o5M8sucQt65ZTG8mfuOy7AWsGuxvnlQEmvXOZa4efxlbt61zxLl2pxBTSf8VojvIWE4muW4zS2bRCXDenPObqZ4Aym5Auj4QTlQDsk508yapoIQ4M2NCyrWAjK2p1E7VaBp3fYIg5Kjvsmqwn0f2vNYMIm7a8UPu/KVLOC/nNNOallyfnGMxXqmhFPzBN1/myLjL3TesYOtTI6y7ZhFpGX9CiA5p1KFTvsI3Ua3lfDrFT8YrzJ+dbfteW1KeiphppDyF6BQtQBCCNeX+T/queCMh09dQCTvaqjOzVRQEbdT/fnWsTH6aNNVx0Tg9vGH7cFt98XRMF2pyKYt71195Wk1FqXeeDFPf6eWdXySJ9F8huoOM5WSS6zazJKgYU75vMCZKeZNrCSaGhFhK4YUhKaXoy9hSW0aIFo3gYc6xKHsBWVvj+oaS5/PsyBgrL+pnw/Zhzp+V5r/88mVs2DbMX9z2Xn7z68PNYKJStO1uJ4x2vVe9AEVUh7FxGvGeG4eagcZb1ywml7Ik3akQoiMaAcWedHSSWtVTfvRlbLKORSpl4bk+fi2gx7Gl1quIjca8tydtN+e7jlbN4JDUDBdvRRCCISSsRxHDELwwRMf0rKIfgjNlJ7WlVWxrvjROD7duuEvVTxXHkdaKgR6HLb9+dfP+IJeSeudCCCGEEEK8XYm7Iy8UCu8tFAr/MOWx/14oFP5Dy9e3FQqFZwuFwj8WCoV/c9Yb+Q74vsHz/GZA0TUhZTeg5PpoFe0MtRX4QYhnQgkoCtHCmJDRksdtDzzLxXc+zlefOMBo2ePohMsd24ZZvXQOG7YPs/PAKLf/i2XkMza7RsYouwFHxl0ee/EwX75lJTevHkQrRcn1CUPQlsKEUDwyTrkW8NOSx21bd7PiD7/Fh7c8TaUWEBrozaQkoCiE6IjWgGLJ9aNTOWF0MscPoZH4TwG2LYupIh5a572uCdvmuzUTRYRa57opreT3rPiZGvdKY6WohspYycMPwtie/NMKvCk1XzzfxDb9qQnBDQxBfYwGJsQNDCauR0Fpr6+eT8ummiSZGqyOa/BaiOlI/xWiO8hYTia5bjMrUXflhULhd4CvAJn613MLhcLjwHUt3/Me4A7gfcC1wF2FQiHdgea+ZY1d2m49WNhYRGkNJpb9+ulFW1KeCjFVuRZwx7Y97Dwwim9Crr3sAjZsG2Zhf45dI2PMyqbYNTIGwLJ5ecpuVGPlZMVj09oV7Hj5CLt/PEbVC9AqWnzvzUZjrCdtsXRuL4+/eJi/+Mcfc//NK/nRH32Qz/3qCrY//QpjZY8gkF9RQoizb2pA0VLRYmnO1thakXEsQkL8WkBGAooiJqbOe3vSdtt815mmn6YsLUFF8abkppz8y8X4Psm2ovfqvlwKpaAvl8LWCjumfd2xNGEIJ8q1to9OTNsrkk1Sl4kkk/4rRHeQsZxMct1mVtJez/3A9S1f54GNwNdaHrsG+H6xWHSLxeJJYB+w4qy18G1qLAg2FlUaf6LFwfZgomtC7HoNCBOE9GZSElAUAsg5VjNoCFHgcNfIGPuOTrJqsJ/xSo1Vg/0A7Ds6Scnz2bxuiId3HyJtae66/nLev3wevmkEBxXGhKS0wq0ZtFLcvHqQj65ZjB8YDp+o8P7PfZd7vr2XDduHKdfrPwkhxNkyNaCY0goTRtkMptJSh07ExHTz3pLrc+hkhZBT811nynxXAoqiG1VqAU/sPdb22BN7j1GJ6byy4gccPD5Jf08UtO3vcTh4fJKKH8/2CiGEEEIIId5dKgxjnKdkGoVCYRDYXiwWf67lsY3AT4rF4pcKhcJNwOXFYvHT9b/bCmwtFovfbv05u3fvDnO53M/8/6rVKplM5l18Bqe7aPFiAix66rUTS67f/DtHK4IwSotTm5L+ya2Wef2112a0bQ1n43XopjZccsklM34M5M324XdDHF77N9OO9ywc5D/+5fPsPDAKwI5P/gIbH32Zub1pfvtfF3j59RNtNRV/799cQsrSKBQ9aYuJqk9vJsWrY2Xm5B2CEPJpm5+crDA7myLr2FS8gM/89Ys89uJhip/9IEs/8xgAtlb86I8+SPGHPzwrrwXM7HWZ6T4cp/fgTuv259iJ5xen9+CZfP6t84fxSo2MrdGAZ0K0UgRhex26/fv3zkg7pA+/+7q5Dy9durwZTIRT8960Vpyo+ky6Neb2Zs5K352q2/vyVN06j1i6dDmG0++dNJy1vvRWLF66nPGqz4btw+waGWPVYD+b1w0xK2NzsN7eOPXNN9PeN9KJ55Lv7SXfN8DsXIaT5SqTJ0aZnJg44/d3+j04Lte70+2I41ju9GvS6o3a0sn34KS8RjMtjv0X4nN9Otl/IR73cm+WtKGzbXg7Y1negyPyHny6JFyfN9t/7Xe9RZ03DvS2fN0LnJjuGy+55JKf+cN+8IMfvKnve7saqZ8yKattUaWh7Buy05wqsLUmM2sWs2fNmrG2tZrp10Ha8PacrbbE5Xn/rHYYE7J5/RAbtkWLHDteOszmdUNs2D7MPf+7yCf/1cX09zh8+ZaV9KRtqt6pHdVuzWBr3UyTBfD7j7zEo8+/zuolA2y87lI2PvoyG6+7tPnYvqOTzX+/arCfkuuf1dcpLtfl7YrDe3AcdPtz7Obn18k+PPWE4s79x/lAYR6eCXG0mrbm8kxdh26+xtDdz+9s9+Gp/RbAUmArhWdC+jI2WcdqCyha1sz13am6+VpPJ+nP90xt9zyfqXfCja/j+HxdzyfnWNx301XMyqYYr9SwdVQJt9HeOF2rN9PeN3K2n0uj5vp//Ms9zSDoveuvZP6F8zueDvxMr0Ncrnen2+F5/hlTl3WqXZ1+TVp1ui1x77/Q2bbEsf9CfK5PHNoRx99Z0ob4tSGuY1neg99YXK9bN12fbgwqPgP8UaFQyABp4BLgpc426XStdWQA3PrCCYAfRgssiij9kx+CCaP6iWXXp8eR4vLi3JTv7aXs+VAfE1lH49aiVKWN07wDPQ4br7uU5efnGa/U2Ln/OJ/71RXMPy9LyfVRCiylKLs+mZRFpRbUx1ZUR7HqBdhaseV7B3jsxcOsXjLA3Tes4JE9h9i0dgWf31Fk9ZIBNq8bYvszr2Br1dyhnaunaRNCiJk0NTCT1oqVF/Xz98WjfKAwb9qAohCdYkyIX0+L2No3nXoQ4kTVJ5+2cLRiamViS2ooirfpTEHFOAoBrRSN27voc0Vc8wklrb2tNdcBdh4Y5Y5te9jy61eTT3fjcogQQgghhBAzq+tm0cVi8SeFQuFe4AmiIPSdxWKx2uFmtWkEFIFm6ie/FjRPF9gqullrLLy49UVBrRT5TKqDLReic4wJyZ83l7LnU60ZvrH7EB/+uYsICUlZUXBxw/ZhPverK5onCne8dJgbr1nEJ+vpmf7H+qFm+tPGTuUtt6xksuqTz9gcOVnFhCHnz8pw65rFfOIDyym50W7sW9csxlKKe24cYrLqk0tZ7d+TsmThUwgx43zfUG0JKFoqCsT0ZWzWLJ+LnbJwXR+/FkhAUXScMSE1P0DRHlBMa9XMxtGXsXFNSMaxmoFwrRS9MucV54iUrZms+s2gnAlDakFIPhPPW/WktXdqzXWAXSNj5BzZDCiEEEIIIcTbEc+Z/xsoFosjwM9NeWzjlK+3AFvOXqvemtYi9m499dOxiSoXzs625fv1XB8ThBw6uC82R2OF6JSyF3CyEo2X3/3Gi2y87lImqtHXfTnNhu3D7Dwwilawef0Q259+hV+5cgHP/XiML920knzGZt/RSV47Ueb+W1aST9tMVn20UpyseExUa8zOOuTqtRV//5HogPNv/MtlLJuXJzAhd37zVDrULb9+dXPBUxY+hRBnQxC0n1BMaYVvQkwIqSkZDLTWElAUHVf2TgUeWvutZ0KytiaYko1DAuHi3TL11KuB01IgxUXZC3jgqRGuvewCejMpjoy77HjpMLeuWUxvJn6tTmJ7Vw32N08qQlS2oOwFclJRCCGEEEKIt0Fm0WeZqQcMG/xaFGDMp1O8frLC3N6MpCwT5zxjQsq1gJxjUfYCsrYml7ZY6ESFiHeNjLFsXr75/UrR3IH8ntlZQhPykfctpidtMTs3l3zaouz5LD8/z2s/rfDnTx7k+pULyKdtTAgP7z7Evd/ZF6UxXT+EVnBswmXXyBjHJtxmqtNGOtQv3niFpDoVQpxVrSlPy240d2jMEHS9Hp3MH0Tc5FrmvCXXxw8C0jp6LAghCKXfCpFNWay7ZlFbJo3N64bIxnSumbT25lIW966/kju2tddUlLl8MiRpg4AQU0n/FaI7yFhOJrluM0uCimdZ645tAN+E5Oqpn7KO1ZYWShZWxLkgCAzlWkC2Xt8w51iMljw2bDu1UHH/zSsZK3nNf7NqsJ99RydJ18dIXy7V3IHcePzR4de4YeUCZmcdlFLNOorzz8vy0TVL0ArcwOD6AdcNzec3fnE5k67PU/uOcfVgP1tuuZpc+lQqto++fwmf+MByyl7AT4/9BD17QadeMiHEOWZqDUVLKcq1AJWK6tBJDUURR1GqXkNYn/mmtKLiQQmfnpQt/VbMmOkWDDSnLyzERaUWsPvHY9x301XMyqaaNcHXLJ9LbwxT6yetvVorBnoctvz61c0Ni7mUhdZxrrQpIHljWYhW0n+F6A4ylpNJrtvMi9+sv4v5viGXtnG0Il3/o4BqYCj7hp60zXilhgJsW3ZOiu7n+4bRkseTe48xVvL42Nbd7DtaYsO2KJWpb0J2HhilJ23zxW//iB7HIp+x2LR2BTteOkxvxiafsVAKNq8bYvWSAe77h33kMxbXr1zAbz/0AkP/5Vt8eMvT1AJDYELGSi4nKh5feeIAExWfv/jHV9BKcdNXnuYPvvkSQwvPYyCfBqBaC+hxbGxbk0/bUV3TtM3kxESHXzkhxLmiNeVp2Q3wTYitwNaakhvgmSh15GRVAjMiPhqBcK2iYGJaKzRRbTOlNHbKIjChpDwVM0IDngkJTBTQDkyIZ8LY3vjmHItLL+zj9gef4+I7H+f2B5/j0gv7YlvzL2nthSiw2DqXl4BiMiRtLAvRSvqvEN1BxnIyyXWbeXJScYb5vsGYKA7umhDlKxr3MLaCnK3x6/VkAGytyDlyoyO6RyOVacbSVPzoJKJbM1gqeoPfsH2Y+266itsffI6dB0ZZNi/fTGXasO/oJEfGXf7r3/6A//ZvLyOXsvnomiVkHU21ZlBAOqP58i0r6UnbVL2AXIrmacOyGzQXOqp+9HeNf3/rmsXkHKv5b8tuACHkM/L2KITorNNTnoYExlAJovmDpVXzRHUuJYEZ0VlT57w9aRu3FlD1DRlbowFHq2bGDksrMhJQFDPAcHpfc7SK7c7kshfwyJ5DbLzuUpbNy7Pv6CSP7DkU6xqFSWovnF5aQU4qJkPSxrIQraT/CtEdZCwnk1y3mRfPWX+XaF1cgegkgVZQMwYThpR9g52y8AIDhIQmJJ9JyQ2O6BrGhIyWPI6OVxgre/zZkwcZm/Q4UanhBtGC466RMWZlU81A4r6jk6wa7G/7OTteOszm9UMcm3D5vUde4kSlxlefPMDrJ6pkHQsTRrWZcikLrRS5tE0ubZPP1HckZ6JAva4H7Rt/Z2lNbybV/Nj6vUII0UlR6shTKU8hJAhDbB1tppATiiJOppvzllyfH/5kHFsrqvU5b9mPNgKZIKQ3k5J+K2aECaFSz1AB0c7kSmCamzjjJudY/MqVC9j46MsUfu9xNj76Mr9y5YLYnvxLWnsb9yO3PfAsF9/5OLc98CyjJQ8T1w4hmhTTnzKQOzWRBNJ/hegOMpaTSa7bzJM7+RlU8QNcEzb/RHWQIAyhZkKseuCiES23YliDQoh3olwLuGPbHub2ZtiwfZhrL7uAkhfwW3/1PPlMlO531WB/8yPAn3x3H3ffsILVSwawtWL1kgHWXbOIY+NV7r95JV/40BBhGLL+vYuYf16WshulV8umLBlDQoiuYEwYneyun1BM1ecLYQgh0YKunFAUcTLdnDetFfP7cuw9OoFW7XNe6bNiJtn1+60T5VrbRzumqwitJ/+Kn/0gG6+7lEf2HKLsBZ1u2rQqnpm2vRUvnnu/G/cjraUV7ti2h3Itnq+vOEUBWqnm75DG5zEdykK0kf4rRHeQsZxMct1mnuT3m0E96faX168F+CFkbE2tnhaq5PqktEJrWVwR3SfnWOwaGWueSFw2Lw/ArpExJqs+O/cfZ/O6oebHDduHeezFwyyb28OXblpJb8Zm0vUJw5DP/u0P+b8vO59fuXIBF/RlKbk+Xj2NkZwsFEJ0C2NCyp7fTHmqFM2Jr2NpgvDU/EFOKIo4MPU5bataLcAAszI22Xm9MucVZ13G1gzkHZSCgbzT3JwRR9mUxbprFrFh+zC7RsZYNdjP5nVDZFPxPPmnFVy/cgGfeuiFZns3rV1BXF/ixv1Iq10jY7E9WSnaaQX19UCUIrb9TIjpSP8VojvIWE4muW4zS4KKM6RRB6nVsYkqF87OnhYVt7WWRUGRaFPrlDTqJwKsGuyn5PqsGuxn39FJ0rZm1WA/z/14jJUX9bP7x2OsXjqHfNpu1jUsuT45x2K05OL5hrv/rshd11/OooFclAYwhN5MqsPPWggh3l3GhFRr0QnF8UoNx9IYQip+SNbWeEYCiiJ+yp7P1CSCjlaYEKwpk14N0m/FjDtTUsu4Jrus1AJ2/3iM+266ilnZFOOVGjv3H2fN8rn0xjQLRyaluev6y1nYn+PVsTKZVDzbCdFJ0FWD/ew8MNp8bNVgP2UvIJ+W5ZC4m9qz4tvThDid9F8huoOM5WSS6zaz5PWcAY2AYlqrtj/5dIrXT1ZkUVB0jcaJmtGS26xT8sSPjjJW9vjY1t1kUxZfXDfEsYkqm9cNseOlw/Q4Fl/40BXc/72DHJuosmb5XGZlU5RrUYq/MITXT1T5k+/sw/UNm3YUOTbhRgHL+piRk4lCiG5U9nx8E1J2A3buP46twA+idOkydxBx5PuGXNrGmTLnrZkQrWjrtylJ9S/OEkVUVzGsRxHDMPo6rrPHrG2x8qJ+bn/wOS6+83Fuf/A5Vl7UT9aO50k6x9LYU04c21rjxHR851IW966/sq20wr3rryQX05Ogot3UpLrxTLIrxPSk/wrRHWQsJ5Nct5klW/PeZY06SD1pm4oXpS1rvMh9GZusY8mioOgKxoSMljxKrs/vfuPF5u7f1UvncPuDz7HzwCj7j5U4cGyCn186lx7H4tY1i8k5Fm7NsOWWleTSNlUvoOT65Ouflz2f5efnmd+3GK0U99w41FyMdKtl7MysDj9zIYR4dxkT4tdrKAJUvIDLF/Tx98WjfKAwD1cCiiKGgiDaRPf/s3f/YXJU953v33Wqqrunp0fII5DtIGFJSLS1GHlACKxEJHmevc9luZuH5IrIljaAY3ZxNvtD+Nkb1uvYd63di5clOFxgk0tsspuFeK/Iw2Jjkhss7yb2+pcShJCMRdhGP1AQGCOhsdDM9HRVV526f1R3q3s0Er/UmqrW5/VPTzcj5nTXOadPne853+NEDpBGbAqt/DIF45x00+a7RkFFOSui1vmJcVe6I89JXy/MbdFmNR2dZqdiBvv76Shd+LL24vNxHJhf9jNdXmMcFgwXePDjV3ayqpR9LVLMg2iWs1AN2W3LIt1Uf0UGg9pyPum69Z+CimdY+xykqSBi3+EJlp5f4XC92UkNM7/sY+NEqRsl9+rNmM1bd/GVf3R1zzkl84b8zvPf/9Y+/s9fWslDP3iRaz/0fpYvrDAZRDy+62W+sec17rphFY/vepn1qxdRD9NgfLttVLraSPu1F/e/wnnzFFQUkcHR3vGdAGEQY5OE/UfS8cPK95+H67kcHa8T24RKwVNAUTKj3ky/txthTNMmJBZer4c9Y96RoodxHI175axyHahHlmP1JuWCx9HJkPlln6GM9p/DRY9/vnU3kT2RoNUzDi984bo5LNWp5a28kAYW26lOlfI0P/LWlkW6qf6KDAa15XzSdes/fZJnSBRZwjCi3AooFozDhfPLvPj6JKPDBRwHFlQKlD2dnyiDoVxw2XFwnH2HJ1mzZLTz+vHpZuf5Ez/8MWFkuX7sQpYvrDAVRMSx5aa1S3jgxiv4mfklrh+7kJJvKHpGnbuInFPaAcWotRPROGAMs44fFFCUrGiPeduL6FwnTS+ZkNbV7jGvdibKXHBIU3S2+9DR4QIF12Q2/Wn77PFu7TPJsyhv5ZX8yltbFumm+isyGNSW80nXrf90p38GRJHFWkvQOgfJNw5xAvNKHssXjlApnThLxhh95DIY6mHMmiWj/P639nHvxrHOOSXb97/OfV3PH9v5MuWCy41/+Nf866/v4XgjIknSM8KMcTi/UsTgEESW6UgZrkXk3NAOKJaLHvOGfKaCiOONkChOGCq4PeMHpTyVrOge87YX0TVtQskzeMbR+YmSCVECOGnaU2g9ttKfZtGQ7/aMndcuW8B9G8cYyuiZf3krr+SbmdGWlbVW8kT1V2QwqC3nk65bfyn3x7sURel5MkAnBZQD2CTBOL211TPapSiDwdoEA9y/aYzNW3fzjT2v8gc3rWak6DEZROw/MtE5FyZdtZyw5fpLWbGwwmQYQQKxTUiShA9t2YZnHGp3XIejDl5EzhHtHYr1ICaylrJnmHYMjWbEcNHvBGeKxtHYQTKje8wbNtOfjeMwM1bjGe1SlLnjnSLdUTmjfWmjaWc9U/GaFQupZLAd5a28km8zbw91uyh5ovorMhjUlvNJ162/FFR8F9oBxeHWuQztFdvTkWXIM4StdGaaFJRBYW1CM4p5I4i4betufuMXlvLlm1d3Aur1MKLspzts2nV/KmjyxnTM8oUVJhoRP9h/hEt/Zj6P73qZX/+5pUCaMunQeJ3zR4o650REBpq1CVEUU271dY0wxmlNgM8veQQnjR2080OyIYrsSWPepk0oGGeWeqsxr8wdC2n63a50vEXjkNV8GMaByxbN5ze/8gw7Do6zZskod29YldnV1Hkrr+SbJgQlz1R/RQaD2nI+6br1l2bv34E4tsSx7ZlAASi00p6WZgQUlfZUsiqOLfVmTLngUg9PPLZ3INgEbALVD36QRmtXjU3gtq272X7gKA/ceAXlgkc9iHl9MgDgM1/9EdsPHOW5f3Nt65wwn4XzhpgKIipFl2UXjPD4rpfZeNVFPPPSOGuXLeDuDasYKXqUlTZJRAZYO+VpAoRdOxTD1nl0UQJOa6jrAJ7nYjRLKxnQyczROjKtaByiBLwZAUWNeSULDBDahNime2hjmxCS3qtlVck33Ln+MhaPljk0XqfkZ7sd5a28kl8zFwNYdIaP5Ifqr8hgUFvOJ123/lJQ8W2aPaCYUDSGemuH4kxKeypZFMeWo1Mhjzz1Er9y+SIe3/Uyv3L5Ij792LP8vQ+9l18eu5DJIOL2R5/lvfOK/Jtf/hBJkjBS8tlxcByAeUM+e1+bZH7ZZ37ZJ7KWuzes4vZHn2XHwaP8nfefxz95ZDc7Do7z6D/+CMsXjrDivRV+Zv5SCsbh5y9ZyJUfWIAxUNLkucyxJf/q/3vb/+bgv//7fSiJDKp2ytN5Q35nhyKkO2oCm1AquEwFEVEzVp8omXHxxSs6mTmiVspTS5picra0pxrzShYUzIm0vK5xMh1QFJFTm/mNom8YyRPVX5HBoLacT7pu/aWg4tsw8/zEdoqnY40YCumkYNTa2TVc9KgHEcMFT5OCMidm7kJspyiFtI4mJNz2yG62XH8pn37s2c5jewfisXqzs+tw26d+nkrRw3Fg72uTrFkyyvYDRzk+3WTbnle56WeX4Dgw5HuUfXjw5ispF13CZtxJjzoVRJRbE+YF43A8iBj1DJWSuiGRN/NOAp6goGeWRJHtpDydCiKOTDQYHS4yFVmGZwRhjAIzkhFR1LuQznUcjHPihqw7M8eQ56reSiacahVyVtOfSv9Zm/RmZ/G1cEdERERE5J3SbP5bFEUWa3vPkmmfzTGv5NG0CZ7vErRSP9k4oVLy57bQcs6auQvx04+luw0/90sraTQttz/6LP/l1qvZcXCc5QsrPY+Q7kDs3pG4fGGFfYcnee+8Itv2vMoXN3yY33r0h3x99ytsvOoi/mr/61xzycKT8lOHNoEk4VOP7ObIRMCW6y/l2nu/A8DaZQt48ONXUilqAlJO7bqHDgAH3va/y3IwbfYA4dt/j5If7UVJTuR0Up5Wij7jUwEXjJQ644eoGTOisYNkRPfZ4e1xbz2yFDxDsxVMDIKIsBlrEZ1kSt7Snxon3eULcec1z5jMnlGYt/Jam3B0KmTz1l2dMyDv33Q5C4YL6rdyQKnLJM9Uf0UGg9pyPum69ZeCim9B9w7FoHV+YtE4hDbBN85JgRSlfpK5Vm/GPbsQ27sNJxtxZ/fh8ekma5aMsu/wZM9j+78dqzc7z/cdnmTbnlf5xLqlbLzqIh556iXu3TjGBSNFwmbMuhUXMOSbzo7IehDTCGMSm/D5J57jyETAfRvHeOSpl/CM07mZ1xmKknfvdAdhlikN7JnVnTqyO+Xp/JLHUMHtCdjoLDrJktkCiu2sHN1nf/qu0cS8ZI4/I/2pn/E66hmH+WUfx4H5ZR8vw+W1CZ1ydj/amfmQM6LejNm8dRfbDxwFYPuBo2zeuqu1uFHTIVmn1GWSZ6q/IoNBbTmfdN36S6PoN9E9GQgQNmMMdCZWLEr9JNkzXPRO2n24fGEFoPP88V2vdAJ9d92wisd3w48q+gAAIABJREFUvcxdN6zi0489y9d3v8Ivj13YOR/xgW/v47eurfK9vUf4hUsW8ol1S9PgYZi2BwcHpzVTniQJCQkFzyVOEu752Bj1MGbIM9xyzTL+2d9dobRD0neDGOyT/JmZOrJoHMIEpTyVzIsi21tvbdKT5r9cdKkHESXPxXVVbyVbjDFY27s22Wm9Lu+ecSBJ4Fi9yUjJ51i9yfyyn9mdiuWC27n/adtxcJxyQYsbRURERETeCQUVT2PmZCCkq15nTqzo/ETJmqkgOmn34b7DkxQ903m+5U//BoCP/9xSKkWXT6xbSrngpmcgFjx+Wg+YXy50zkdshDHXrLiAYmtHYlupKzjYTts3UkonbUZaE43tVcCVGc9FRAbVzNSRBeNwrBExv+QRdKVMV8pTyaLpKIYoHfd2L6SLEy2kk+xLM8wk0JVPJrAWbMJIBuusTdK21S1OEkyS3fvKPO2srIdx5/6nbc2SUephrHuSjOttxb2vi2Sd6q/IYFBbziddt/7L3l3Vm6hWq1dXq9Vvt35eXq1Wv1etVr9brVYfqFarpvX656vV6lPVavUH1Wr1qnfyd2Y7R6ZoHCKbYByHRpxQKrjYJKERxgxp15VkSNl3uW/jGNv2vMpdN6xi7bIFPPDtfVRKLndvSJ97xmHbc68xFUQETct0GHPjHz7FV595mYkg4j3DRUhguhlhbULRdxn7t/8NcPjkwzuptwLtIiLSK45PHkMkpAsqGnEalJlsRLiOUp5KNg0XvTQlL2nwILQJkUUBRcmFonGYDi2ffHgnl3z2ST758E6mQ0sxo/dqBdd0dv51PxYyugvYO8X31qlen2tl3+X+TWOd+5+1yxZw/6YxHcOQAw4QJenOWEgf0xTcItmn+ptv1iZMBhHV6geZDNI5MTk3qS3nk65b/+VqaV61Wv2XwE3AVOule4DP1Wq1b1er1T8Afrlarf4t8AvA1cBi4DFgzdv5O1FkacyYDGyfn1gwDhY6ZyI5DhQ9o9RPkimua1gwXOjdfdg6z6vs09l9WA8iTKsyv3KszpduXk2l6DHRiKgHEf9158tse+417lx/GUFkO7sfdxwcp1z0+L2/2Mumqz/AguGCguoi57A3Tzd74KRXBvkcxnqzdwzR3qFoHIi7xg8FVylPJZu6g+EF47Qyd7id11VvJevml7zO+Lddb7OqEcW8+PokF18wguPA6HCB/UcmWLFwhEoG21ojitl7eIKLLxgBwDgOew9nt7xJkuC7hjvXX8bi0TKHxuv4riFJTrWGXbLEmzF28nTJJEdUf/PJ2oSjUyGbt+5ix8Fx1iwZ5f5Nl2ve6xymtpxPum79laugIrAfWA/8cev5auB/tH5+EvhfgRrwzVqtlgAvVatVr1qtXlCr1Y681T8yM11ZlKTpnxJOnJ/YDCJsnChlmWSW65pO+tF2OtKS76bnGRZdjk83GSl61Jsx5YLLioXzWmekpMs4HnsmDSjevWEVRdfwxO5XuOuGVXzxmzXWLBnl+HSTaz/0fjZv3cWDH79S6YNEMkhnS86N9k7EgpuOWtspT4eLXiflqXZ6SZYVu9KezjwX1PO0u0fkTCoXPTb8wV8Rde2C8IzDC1+4bg5LdWp5K2+9GfObX3mmJ/3p2mUL+PLNqzv3SiIiIm31Zszmrbs63xvbDxzVvJeIyAy56g1rtdpj1Wp1SddLTit4CDABnAfMA452/U779ZOCis8///ysf6f6wQ9SD+LOhMpQa9Kv2TWp4tgme/fue9fv6a1oNBqnLOvZojK8vTKsXLnyLJTm1HX4zZy/cCHF8jwc4+A6DvUwbp0NGjMdxhgHblq7hBuuWIxxoOgbrh+7kHv+W40jEwH3bxqjUvQYWeinuxZ996xcmyzUgXOlHGejDmfhM5S508/rP9d98KKly9l/ZIK/8755hDahMMuK1r17a/0u3lmTlT6xX+bi/c11Hb744hWd88Od1k6edi2u1f7nWSnbXBj0ujzToI4jVqyoYq096XVjTCav7+KlK2Y/8y+IOfTiXiBbdfOtlPd0zvZ7qX7wg+w4ON7z2o6D4wwXvVOWY6774Kxc77kux8UXrzjlf5urcs31Z9LtdGWZyz44L59Rv2Wx/kJ2rs9c1184zZxwdfbvjbM17zVTFq7ZuVyGd9KW1Qen1AefLA/X563W31wFFWfRfbc4AhwDjrd+nvn6SU71IU00mriOw/EwYl7BI0rAJrSCLhFl38V1/bP6RXe2/pbKkP0ydHs3ZbE2SXctFtI0qNOtHYxTQYTfmgD/aT3ka8+8zM0/u4Qh3+V3PzrGRKNJEFle/ul0JyVqvRmftS/NLHz+KseZ8dbKfnLaTBkM1z30zq5tltKmnqoON8KIC+eX+ZufHOfS983r2enV3qGY57Y7U977ojczyO/vdHXYAHHSu0vRnubfDIJBvtazyfv7PVXZJ4MIQ+/ZR1GSYGObyfdbDyLu3rCK2x99tpNm7e4NqzDOifeYpWv1Vsp7Omf7vUw0mrMGQaeCaM4/01P9/axc77kuR/u7aKa5/C6a68+k21yXJev1F+a2LFmsv5Cd65OFcpxuHDHr4pmzNO81UxY+q3O5DFlty+qDTy+r122Qrk/e833sqlarv9j6+Trgu8D3gWur1aqpVqsXAaZWq73+dv6nQ56L56SHzf+0EWETKBddJhsRJc/V+YkyEIxxqBQ9jONQLnjUw5jf+4u9/HSqybdqhzk+3eTC9wzx6+uWsvvQT/nUn+zm1TemiazFNTBccNm251Xu33Q5ZV+p0ERE2jxjKBdclp5fwfNdYptQ7wooimSdZwyhTYhb6Q1jmxDaBM+o/kr2lX2XqdDyyYd3cslnn+STD+9kKrSZHa8WXEOl6HHn+suo3XEdd66/jErRo5DRe868lbfsu9y3cYy1yxbgGYe1yxZw38axzNYHOUHfRZJnqr/5VfZd7t90ec/3hua9zl1qy/mk69Z/ed+p+H8AD1ar1QLwPPBfa7VaXK1WvwtsJw2a/tO3+z/1PEMUQdkD1zid3VtlX5OBMpiMcVgwXOCWa5Yx5BveM3xBZ2eC5zj8/CULufIDC+jO4Ff0Dbdcs4yy7+qwahGRLp5nKJGe0QzpWKKkgKLkiOqw5Fl7XPvgx6+k7Lvp+eEZHq96nqGCh2scHAcWVAqZXoSSt/K6rmHBcIEv37y6c3+TZh7KZnnlBH0XSZ6p/uZX3sYR0l9qy/mk69Z/uQsq1mq1g8BHWj+/APzCLL+zBdjybv5OWskM+1tbQUdK/rv534lkXnvnIsBIybQe03p/qi3RlaI6YxGR2XieYcQzmUpvIfJ2qA5LnrXHtXmpv+32BuTivjNv5XVdw4ibn/LKCfoukjxT/c2vvI0jpL/UlvNJ162/FBEQERERERERERERERERkdNSUFFERERERERERERERERETktBRRERERERERERERERERE5LQUVRUREREREREREREREROS0FFQUERERERERERERERERkdNykiSZ6zLMiZ07d56bb1zOmtWrVzv9/P+rDku/9bMOq/5Kv6kPlrxTHZa80zhC8kx9sOSd+mDJM/XBknfqgyXP3kr9PWeDiiIiIiIiIiIiIiIiIiLy1ij9qYiIiIiIiIiIiIiIiIicloKKIiIiIiIiIiIiIiIiInJaCiqKiIiIiIiIiIiIiIiIyGkpqCgiIiIiIiIiIiIiIiIip6WgooiIiIiIiIiIiIiIiIicloKKIiIiIiIiIiIiIiIiInJaCiqKiIiIiIiIiIiIiIiIyGkpqCgiIiIiIiIiIiIiIiIip6WgooiIiIiIiIiIiIiIiIicloKKIiIiIiIiIiIiIiIiInJaCiqKiIiIiIiIiIiIiIiIyGkpqCgiIiIiIiIiIiIiIiIip6WgooiIiIiIiIiIiIiIiIicloKKIiIiIiIiIiIiIiIiInJa3lwX4O2qVqtXA3fVarVfrFarVwB/Cuxt/ecHarXan1Sr1c8Dfx+IgE/VarWn5qi4IiIiIiIiIiIiIiIiIrmXq6BitVr9l8BNwFTrpSuAe2q12u92/c4VwC8AVwOLgceANWe5qCIiIiIiIiIiIiIiIiIDI2/pT/cD67uerwb+frVa/U61Wv2P1Wp1BFgHfLNWqyW1Wu0lwKtWqxfMRWFFREREREREREREREREBkGugoq1Wu0xoNn10lPA7bVa7eeBA8DngXnAG12/MwGcd9YKKSIiIiIiIiIiIiIiIjJgcpX+dBZfq9Vqx9o/A/8B+Dow0vU7I8Cxmf9w586dSblcftM/EAQBxWLxDBT1nVMZ8leGlStXOv0uy1utw2dCFj57lePslqPfdThPfXC/Dfp7nIv3l6U+eNCvLwz+e1QdHuzr2+1ceq+gcUSeDMr7gHy8l7nug7PyGWWlHJCdsmSlHHD6ssxlH5yXz+hcLAdkpyxzWX8hX+MIlSF/ZVAfnMpKWbJSDshHWd5q/c17UHFbtVr957Va7Sng7wI7ge8Dv1OtVr8ILAJMrVZ7fbZ/vHLlyjf9A88///xb+r1+UhlUhlM5W2XJyvtWObJZjncqL31wvw36exzk96c6nBr09zjI7091uNe59F4h/+/3XKq/g/I+YLDey7t1qs8hK59RVsoB2SlLVsoBc1+WrNdfyE5ZslIOyE5ZslCOvIwjVAaVYTbqg/NXDhissuQ9qPibwO9Vq9UQ+AnwyVqtdrxarX4X2E6a3vWfzmUBRURERERERERERERERPIud0HFWq12EPhI6+dngJ+d5Xe2AFvOZrlEREREREREREREREREBpWZ6wKIiIiIiIiIiIiIiIiISLYpqCgiIiIiIiIiIiIiIiIip6WgooiIiIiIiIiIiIiIiIicloKKIm9BFFkmGk2qH/wgE40mUWTnukiSM3Gc1iGbJEw2IupBhLXJXBdLJBfi2FIPIiYbUasNNdV+RETOkjz2we1xV3vsHsfZHrtbmzAZtD5fjRFFOnQfLnmm+isyGNSW80nXrb+8uS6ASNZFkWW8HnLbI7vZcXCcNUtGuW/jGKPlAp6nuLy8uTi2HK2H3Lb1RB26e8MqRooewwWP6ShmuOhRD2KMA0XP4LqqWyKQ9sGTYcRkEHH7o8922tD9m8ZYMFzEGGeuiygiMrDy2AfHseXo1Mlj9wXDhUyOr6xNODoVsnnrrq7P93IWDBcy+flCWuZ6M6ZccKmHMWXfzWxZJb90Hy55pvorMhjUlvNJ163/9CmKvInpKOa2R3az/cBRIpuw/cBRbntkN9NRPNdFk5yoN2Nu29pbh25/9Fl+Wm9Sb8Z88uGdXPLZJ7n14acZr4dMBBFxbLVqXc55UWSZjmKO1Zvc/uizPW1o89bd1Jvqh0VE+sXaJJd9cL05+9g9y+XdvHXXjM93V2bL2w6C3vrQ0+n49aGnOToVapwqZ5zuwyXPVH9FBoPacj7puvWfgooipxHHluGix46D4z2v7zg4znBRG33lrTlVHVo8Wma46J0UbDzWCja+PhXMmLAJNGEj54x2QHG46LF4tDxrGyoX3DkqnYjI4KuHUS774LyN3csFN1efb96CoJJfeWvLIt1Uf0UGg9pyPum69Z+CiiKnUW/GTAURa5aM9ry+ZskoU0E0R6WSvDlVHTo0Xmff4cme17uDjTN3N27eupt6qAkbGXxRZKk304DiVBBxaLw+axtSexAR6Y8ospRz2gfnbexeD+LZP98gm59v3oKgkl95a8si3VR/RQaD2nI+6br1n4KKIqcQRekuxYJxuG/jGGuXLcAzDmuXLeC+jWMUdG6IvEVl3+W+Tb116O4Nq5hf9tm259We320HG6eCaPYJm6ImbGSwtXcoVkrpZHZkE+aXfe7esKqnDd2/aYyyr/YgInKmtfvhehDjGSd3fbB/irG7n9Gxu3E46fO9e8MqMlpcTdLIWaP7cMkz1V+RwaC2nE+6bv2nPZ8ipzAdxRDBkYkG75s3xJduWk2l5DHZiPCMg2sUk5e3xnUNC8oFvnzzaoaLHvUgxjjgOrDx6ovYfmC8c3Dw3RtWUSl6+MZhzZJRth842vn/tFetV0rqumUwdac8be/QcADHgflDPg/efCXlostUEFH2XYwGhCIiZ1T7HMXhokcjjImTJA0szuiDh7zs9sEO6W66B268gnlDPsenm3jGIZulhVLB5Ytfq7Hl+ktZvrDCvsOTfHFbjXs+NjbXRZtVueBy1w2r+PRjz3bGr3fdsCrTOxWtTag3Y8oFl3oYawyREw5QKXon3YfrykkeqP6KDAa15XzSdes/zUyLzKK9SzFsxlSKPj85Ps0FIyUgndz2HPA8BRXlrXNdw4ib1pl2UNAmCedBT7ARJz3LcyqMuHvDKm5/9NmegKNxYKLRpFxwWbR0ObG11MOYIc+lEVtNkkhudQcUp4KIehjjGij5Lg4OSUJPQNF11QeLiJxJUWSJre30w5FNcAC3Na4YbvXBReNkehycAMZxOjv90p8dsnoqdT2Iee14wLX3fqfz2tplCzK7kGw6tDy+6+WeIOjju17mlnXLqJSyVy+sTTg6FbB56+7OmPr+TWMsGC5qzJxxlnQnr9O6TI6TPrdzWiqRt0b1V2QwqC3nk65b/2Vv1C8yx9oT21NB1FnpPDpcZLjocXy6qVUNcsZMBRHHGhE2SZhoRJQLLnGc8NAPDvJ//dnzlHzDnesvo3bHddy5/jJKvuG3v/YjPvnwTn7yRsAffe9FXvlpgz/63ouM10P2vnac16cCGmGEtVmdOhM52cyAIkCxNWE9FcSdgOJkQwFFEZF+iCJLI4oJbcJUEOG3VvI6DsQ26RkHe152d6S12STBJslJP2dR3tKfGgfWr17Elieeo/q5J9nyxHOsX70os+WthxGbZz2nXOlas84AkU2IW/c1sU2IbKJJLMkF1V+RwaC2nE+6bv2XvaWPInMojk9MbDebMU2bpnxqT0O4xklTn2pCW84A3zgUPUMztsQWXMehUnL5xLqlDBc9psOYkud2Vtb82z99nid++GMAfuvRH7Ll+kv59GPPsuX6S7ntkd186abV/MYf7+QPblpNI2oyUvKYbmr3omRbd787FUS4jkMYWzzXwXe9nh2KwwUFFEVEzrTufhggbMZENqHgGhKgHY9zjUMpw2lP205VuqyWuugbim66kGzxaJlD43WKrqHoZ/f7rr3wrV3eUobLWi56pzinXFMheTDbvbhIXqj+igwGteV80nXrr+yO/kXmQL15YmI7tMmsqZIMaFJbzoiC5+K1JuiGCx7lost0GOM6Do0w5j9+9wC00j7+L/f8j05AEdLJkOULKz2PlVI6aVIpehyrN/nxsQa3PvQ0r08F1IN0R+RkI6KunYySEVFke/rdyCaEsaXgGYxSnoqI9F37rLl2GvapIOL5nxzHOA6Ok+7y6z5HMctpT7u1U57O/DmLpkPL1qdeIojShExBlD6fDrOZoKlUcLnjz57vKe8df/Y8pYyeqVgPYtYsGe15rX1OuWRbwsmLAZzW6yJZp/orMhjUlvNJ163/8nFXKHIWtM9RbJ8VE9sES0IzTlM+TTbSHTR5SPkk+WBaAcWENHDSntywScL/eOEwH11zEZBwaLw+62TIvsOTPY+TjajzfPFomQvfM8T2A0e5betuDk8EXPLZJ7n14acZnwqZaDQVWJQ5NfPsrmJXqj1rE6wCiiIifVUZGSHq2ilunDSLwoXzy9ReO94ZA+ctoJi3nYp5Syc6FUSdMyAv/u0/59p7v8Nrx4NO+vKsyVt6WTnBAeLkxG7pJEmf69JJHqj+igwGteV80nXrv3zcGYr0mbVJ5xzFgnGIEhhq7ZQ5scoZbBxmPuWT5IvnGYa8VuCkmAYYS77LlUtGcR347t4jzC/7J02GfHHDh9m251XuumEV2/a8yn0bx9h/ZIJ7N46xbc+rHBqvd4KUOw6Os3i03DlH5vZHn+Wn9Sb1plZoy9xon6HYPruraBxCmzDkGXxjAKcVaE8nshVQFBE5895z/nsJWv2w6zi4DjQiy7ySx/KFI1RK+QsothmHTvp4xyHTAaTu9Kftc7SznP7UNw73bRzrGZfet3EMP6MfcsEzVIpez+dbKXoUclanz1XejLbsZbOaicxK9VdkMKgt55OuW3/pIAERoB5GDBc9wmbMdGQZat1kxknvCu29e/excuXKOS6tDBrPM4x4BmsTHMdJdzD6LuWCyzWXLGTIMxRcw4M3X3li51YhPXux/TjkuRQ9lx/sP8L61Yso+YY3pkPgxK7GtnaQMcOZwGSAtQOK7bO7GmFMPbKUPYPl5H43bxPZIiJ5EEW2c6Zc2IxpRGnq6bJnCGy++2FjDNaenDrUmGy+j3b602s/9H4gTSf6xO5XuGXdMiql7JW54Ls8+fQhHrjxCuYN+RyfbvL13a9w09olc120WTUiy/b9r7P24vNxHJhf9tm+/3WuuWQhFS1ayrTZUpe1XxfJOtVfkcGgtpxPum79p6CinNPi2BLH6aTKVBDhtw5ubdq0+2lPqBSMk7sJFckPaxPqYUS56GFI00oNFz0aYYwhnVyaCiM2b93Ne+cV+Te//CEcx8F1HA6NT3PRaJmpMKJScrlmxUKmwjT91N3bap0UT7/zjVrn761ZMsqh8TrnjxSpFPU1IGdPd0CxnSbte3uPcM2KCwhn9Lt5nMgWEcm6KLJYawlsghM5JCRpen/jYG1COADj3+koZt/hCS6+YARI0x09/5PjLF84wkgG3087/entjz7LjoPjrFkymun0nFNBxDf2vMbnn/ibzmtrly1g/RWLGCn5c1iy2Q15htUfGOU3v/JM5/O9b+NYZxGpZFfCyanLoiTbO49F2lR/RQaD2nI+6br1n2aT5ZzVDigGNiEMYorGob2mObIJ84Y8jk838YyDm9GVzZJ/1iYcnQo6AcPfurbK7Y8+y3vnFfncL60kjBLCyPKZr/6I7QeOsu1TP0+l6FEPYqbCdMfir/3hX/P3PvRe/vfLF1EpedgkYboZc89Hx5gMIpqx5chEgGeczkTVSNGj7Ot8UDl7ZgYU26n2Vn9glO/uPcLai89n3pACiiIi/dIdUGwvXnKd9mK6k8e/Xk53cRVb50L+xh/v7AkiFTM6i2AcOuk5F4+WOTRep1L0MjvpMeS53LdxjNse2T0jSJfNceV00/LIUy+x5fpLWb6wwr7Dkzzy1EvpTtCc1vFzhQGiJMG2ZgRtkp657SndiuSA6q/IYFBbziddt/5TUFHOWe3z5NqTKmGS4DsOBeN0tkO7xqGkyW3po3ozZvPW3Z2A4e2PPtv5ebIR85mv/oiv/KOr2XFwHKAzGTK/7FP0DI4DX7ppNZVSWo8bYYxnHIYLHjjguw6ecXnw5tWUW8FIY6DkuTofVM6a7oBiPYjxjdNJtTe/5LFuxQXaoSgi0kftfhjo9LdHJhqMDhcZ8gwJ9Ix/h/z8nmebAPNKHl++eXXnvfpd4/ussQmdtJzdjzajBZ6OYl45Vu+MPycbEfuPTDBUcDO5E7RcdLn/L/dxz3/f23nNMw7/7O+umMNSyVs18968oPsXyRHVX5HBoLacT7pu/ZW9Ub/IWRBFluGi17VjBqI4IbRJzzkyxZymfZL8KBfcnoBh98+LR8vsODjOvsOTrFkyCsC+w5Ns2/MqhVZA0TUGzzjUg5hSwSUBJoKIoYLLRCPCAcpFj0rJxzgOlZJHueApoChnzfkLF/bsUHScdMVYwTUkCYQWBRRFRPqoe2FHd2rTStFnfCogtAmFVvaCqBkzUvJzG1CENNVRlCQz0h0lxBkN0gE0Y8uxepMkgWP1Js345DMhs8Lv2gl6yWef5Df+eCcXzi/jZ3RsWQ/izji6bc2SUepBPEclkrdjZkvIbssQOZnqr8hgUFvOJ123/srv3aLIO2RtwnQUMxVEncBh0yaUWhPZ3Sua8zyhIvkwFUQ9AcPunw+N11mzZJTf/9Y+vrjhw6xdtoAHvr2P9asX8Vf7X8d1DIZ0JXu56DIVRATNmPMrRQ6N1yFJKGQ0FZWcO0rD83r6VYd0EUfcSkXRrrsKKIqInHkzU0+3A4pNmzCv5HHBSGngxr7txYLjUyFJAuNTIVGc4GYz5pU7NoGib3jgxit44QvX8cCNV1D0TWZ3VhoH7t6wirXLFuAZp3PeeEZjoCIiIiIimZe7u8ZqtXp1tVr99ozX/kG1Wt3e9fzWarX6dLVa/atqtfpLZ72Qkmn1MGK46OEbp3OOojfLXaVnzEBMrMjZZ23CZBBhk4TJRpNGGDHZSJ9PNJpEsWWi0SS2lnLB5b5NY52AYXvS44Fv76NScvndj36YIxMBd2/7n9zz0Q9zz8fGGC0XWLfiAoYKhrgVlGmnlCx4Lo4D51eKjJR87UiUORNFlqDV37YXcEStGceZizgUUBQROfPaC+m6z7ItGoc4GeyxrwMUXMPocAHHgdHhAgXXkNURkeukn303z5jMBkFdh86Oyu7HrJYXB0q+4c71l1G74zruXH8ZJd+Q2QohPWb2SPnvoeRcovorMhjUlvNJ162/cvV5VqvVfwn8IVDqem0M+Ie0bguq1er7gM3AzwHXAndWq9Xi2S+tZFEUWcqtiZXpZkRoEwxpQ2h2pT3VBLe8E9YmNMKI16cCbn3oaS757JP8p++9yPFGxK0Pp8//6HsvMj4V8smHd/LjYw2mQ8vOg+N86abVnYDhl29Ofy77HvOHfB5sPR8p+TTCmIJrGCn5vFCrpYHDVlrTUsGjUvI6zxVQlLkSRZZGFBPESWdXTGgTCsbBOOpvRUT6LY4tUc8OxSZhbIkAz0lvnAa5L/ac9JxCSB+9DA+J4gQ81+kJgnquk9l0rXkrb8l3uePPnieI0qRXQWS548+ep+Qrm4eIiIiIyDuRtzvH/cD69pNqtboA+PfAp7p+5yrg+7VaLajVam8A+4BVZ7WUkknt9E/1IE7TPsXQjGMCm+DNOEdmkCZV5OywNt2FGMQJt23dzfbOUJ3TAAAgAElEQVQDR4lswrUfej+3PTL78wvfM8Qb0yGXLZrPf/7+i7zy02mKvumcAdROI9W9m6DkD9aknwym6Sgmak1W+600e15rZ/ggT2KLiMw1axPCMGK6mY5x2zsUjWNoNCNonWXr+266IjNh4Ma+UQLRzNdar2dRwTOzpmstZPiaNJpxT3kbzeyeTzgVRLx2PODae7/Dxb/951x773d47XjAVDCzloiIiIiIyFvhJElG765OoVqtLgEeId2J+BjwGWAaeKRWq32kWq3eCFxWq9U+3fr9h4GHa7Xaf+/+/+zcuTMpl8tv+vcajQalUulNf6+fVIZ3X4bFH/gAGJ9y0aMRxlgSPMfpmdz2jUPQqPPjV15512VYuXJl39dDv9U6fCZk4fpnvRzvW7yENxqWxaNlqp97spPmcf+/+99O+XzPlmv5T987wKarLiKyCe89r8TEdBNjHIaLHvUgxjiQAFFwct3s5+fR7zqcpz643wbtPV588YrOQo29r02y+D1D2CTBOA5xkvSkQ92/f29fypClPnjQru9sBv09zsX7Ux2eG3l/r5WRERYufB9ha3wL0GzGTEeWgmeIZ4x7f/zKIYJGoy9lmctxxNKLV9CILMfqTRaPljk0Xmd+2afkGV7s0/fOu7F46Qq+u/cway8+n3lDPsenm2zf/zrXrFjIoRfT8mapbl5SrTI+GTIVxp3Pd7jgMlop8EKt9qb//my/l0suqfLKsQaffuxZdhwcZ82SUe66YRUXzi/xwguzl3eu++CsXO+5LsfFF684aUGabxwM9G0M+Wbm+jPpdrqyzGUfnJfPqN+yWH8hO9dnLusv5GscrDLMbRneSVtWH5xSH3yyPFyft1p/vTNeorNnNbACeIA0HerfqVar9wJ/CYx0/d4IcGy2/8HKlSvf9I88//zzb+n3+kllePdlmGg0ezqRMEpIZiz+NcB58+Zx3rx5fSlDP5ytsmTlfWe5HDZJmFeGfYcnWbNklO0HjgKnf/7GdMj61YvY+tRLXPuh93PBSIJjHIY8l8lGRKWU1tmy7+IWT66bWfk83qm89MH9NkjvMY4t9WZMEETENmHbnlfZdNVFDJe8kyazPc/N/ftWHU4N+nsc5PenOtwr7+91stHsBBTrQUxCQmQTim6aBcHpOkTOAYJGI9fv91RlrwcRjgPzy37Po03O3tj57agHEZctms9vfuWZTtDr7g2rMM6J8mapbk40mp2xK6TpRJ/Y/QqfWLc0k33KZBDx+K6X2XL9pSxfWGHf4Uke3/Uyt1yzbM4/01P9/axc77kuRyOcfTepZe7a8lx/Jt3muixZr78wt2XJYv2F7FyfLJQji99ZKkP2ypDVtqw++PSyet0G6fpkN6fKm6jVak/VarVLa7XaLwIbgb+p1WqfAp4CrqlWq6VqtXoesBLYM4dFlQxoT64UTDqd4hmnM8F9fLqJAxiT2+YgGVAPYw6N19m251Xu3TjG2mUL8IzDtj2vct8pnt+9rUbJN1w/diHLF1Y4MhFgcHCMg3EckiRhpOTjuqqbkn3tgOJw0aNoHDzjsPGqi9j61Ev8dCrsTGY7QMFzdeaniMgZVi56PZkO2uPeprU0Y0u56HbGvb43uOfJeQ4kCRyrN3ses3yuYsk33Ln+Mmp3XMed6y+j5Gd37Oe3vt+3PPEc1c89yZYnnmPjVRfhZ/R7vey7bLr6Az3l3XT1ByjrTMXMM0BkE+JWxpfYpgslsts6RE5Q/RUZDGrL+aTr1n953qk4q1qt9pNqtXo/8F3SOvTZWq3Wn7w+kgvtsxRdxyEhXaVcMOnPAK5xKOlcL3mXyr7Le8o+61cv4pm/HecPblxNpeTx+mRApejx4M1XUi6mOxDLBZcv3ZT+90YYU/TSc42GCi6//bUfcWQi4M71l3H+SJFKUfVSsi+KLJNhxLwhn6kgIopjhn0Pr+TxiXVLOzsUbZxQKflzXVwRkYETx5bppiUhaZ2hCNORZcgzxEnvOc3lgjfwCztKnmFBpYDjwIJKIbMBrzyyCRR9wwM3XtFJ19reCZpFxjiMln2+fPPqznik7GtxU17MvG8v6LpJjqj+igwGteV80nXrr9wFFWu12kHgI6d7rVarPQg8eFYLJpnUDigWWx1HPbKUPEPQlYZvSAFFeRfadWy46OG7htFygWtWLGSoYKiHEReMFKkHEcY58eX1/3xrH/f/5b7OmS6P73qZX71yMb/zjf/JkYmA//tjYwz5RiuoJRfabeBYvdkZqE2HMEWE57rqa0VE+iyKLI0oxjhOZ7zRaI15w64xrxZ2yJnSjC2TjZiRks+xepNKycXPaNYXaxPG6002b93VSS97/6bLWTBcUGBRREREROQdyObIX+QM6A72WNK8yWXP9BzSWjSOJrnlbbE24X2Ll2CThCCMGJ8O+eTDO7nks0/yh989wGQQcevDT1P93DeIbcKvPfjX2AT+4UNPs+wzf0654PLrP7eUF75wHV++eTUXvqfEJ9YtZf6Qzz0fG+PBm1dTcB1812iiQzKvu59dPFomjGLeaEScV/J6Aorqa0VE+qMdUCwXPYyTBhPh5DHvubSww/NdImt7XousxdNirTOi6BuS3o+XxKavZ1G9GbN56y62HzhKZBO2HzjK5q27qDfjuS6avAn7Nl8XyRLVX5HBoLacT7pu/ZfNkb/Iu9Q90T0VRLzRiAhiSz2ynXMUbZIw+7Gtci6zNmGyEXWChhONtK7Ug4h6EHF0KuCf/L8/5JLPPkkQJ9y2dXdnkuLaD72f2x458XzekM+Og+NUSh47Do4D0GhafuOPd/KpR3ZjE3AcBweHiSDiX/zJbm59eGc6yaF4omRcdz97fLrJofE6/+WvXqLoGaa7+loH8Ab47C4RkbkQx5YwjJhuBRTrQUxkE5xWYNHzXWKbMNFo4jrn1sKOqSDi1oef4bIt32TZZ/6cy7Z8k1sffoapIJsj/9wF6cKYrU+9RNAKYAeRZetTL1EPsxmkKxfczji8bcfBccoFjU2yziYwHdue85CmY5vZVLsi3VR/RQaD2nI+6br1XzbvVETehZkBRd84FD1DM7YcqzdJEjhWb0ICJU10S4u1CY0w4vWpgFsffprvvHCYNxoRn3x4J//iT3YzXg85PBGwuSuI2B0sBFi+sNLz/Ph0kzVLRplsRKxZMgrAG9Mhd29YxZGJgM9/fQ/jUwGNKGI6jPndj45x5/rLGCl6qpuSaTP72e37X2d+60zRh35wkNeOByQJGMdheuq4dt2KiJxBcWyJY9tJ518PYowDcZJ0xrndj8VzKKAI4BuH+zaOsXbZAjzjsHbZAu7bOJbZcxXzGKT7lcsXseWJ56h+7km2PPEcv3L5oswG6aaCE+PwtjVLRjMbZJYTXIdZ+zQ3m01ZpIfqr8hgUFvOJ123/ju37jBl4MXxyQFFB/CMQ8lzOb9SxHFgQaXAcMHTRLcAaUBxotHs2Xl4xUWjnV2Hv/mLy7n90WdZPFruCRp2BwsB9h2e7Hn++K5XuG/jGPuPTHQmt+7eVqPkG+5cfxm/+9ExYgtDvtepm+dXioyUfNVNySxrk55+tmgcVn9gNA0sDvncsm4ZK95bYTqMqBQ9Xj98eK6LLCIyUOrNuOd8cOOcuHFOSMe57fFupeDhuufWLZ8hDXw9cOMVvPCF63jgxisoF9zM3vjmLUg3HVoe3/UyW66/lNod17Hl+kt5fNfLTIfZTChVLrjcdcOqniDzXTesyuznKyc4QME1jA6nfdrocIGCa5TQRXJB9VdkMKgt55OuW/95c10AkTOp3uwNKBogtAkF47QmX9xz7lwZOcHahEYUYy0MFQz1sFVfwoif1ps9QcPuXYjtHYjtoOH2A0cBeOZvx7lv0xi3bd3NjoPjbNvzKvdtHOO2R1rPn3uNX129iGUXjDDsu3z55tUMFz0aYUzJc3EcGC54DPluJ4hYKalbluyauUOxaBzqkWV+yWPdigsot16PmjFlLdwQEemL4WI6Vuge79Yjy5BnCM/RcxRn8o1DO7uRa5zM7lKEdKdiO0i3fGGFfYcneXzXy3xi3VJGStm7fsaB9asXcfujz7Lj4Dhrloxy94ZVZPUj7g6Cdn++t6xbRiWDn6/08hyIW3XLcdLnInmh+isyGNSW80nXrb80ey0DI2qd4dWe6E6YGVDUBMu5JI4tUWwJbcKQ5xJZSyOyTAYRX935Mr9y+SI+/Vg6GfLCHddRHvV6gobtXYjbDxztvP7739rHXTes6vy7L33nRf7o16/sBAvrQYxv6DyfaEQ89szLfGPPa/zuRz9MwXOwNunZiaggouRFFFkmw4h5Q35PQLHsGaIEnNaaLwdwXaOAoojIGdad9hQgimMKxiO0CWXPaLzbZeY3UJa/kXzjsPGqizqL0tYsGc10ulbjQKXocef6y1g8WubQeJ1K0ctsUNGYUwRBz93mISIiIiLyrmg2W3IviizWpul2pqMESAgtFIyjgOKAszahHkaUu84Tap8bFLQCiJNBk9HhIo7jcKze5DNf/RFbrr+UTz/2bGfH4fFGk2P1Jtv2vMoXN3yY33r0hzzz0nhn1+ED397H3RtWcfujz3LPf6tx5/rLuGhBmXoQUfBcCkA9iCkXXepBjOs4hM308aa1S7jhikUYxwEnPcdTwRbJm/YOxWP1Jp4xJwUUbUKr/kcM+e45l2pPRKTf2uPdwCad3YnTIdSJGPY9jXdzzCZQ9A0P3HgF84Z8jk83cZz09SyySbrae37Z73nManlLnsvIjCCozi8XEREREXnndLcpudY9wdKeZJkOLQkJFnomWMq+JljyzNqE9y1egk0SJhsRjTDi6FTArQ/v5JLPPsmtDz/NeD1kIoioN2Mim3DbI7u5YKTEsXqTStHrpDdtpzNtqxQ9hgsu61cv4rGdh/idX13Fz1+ykPNKHl++eTX3fGyM0XLhxM/DBRKbUGntODTGoVLyME76WC56lApe12s+5aKndJCSS90pTxePlnljOuR4GCmgKCJylrT74c64NowIbcL8kofnunh+GhyJmjEjJf+cH++e6mS/bJ74B6WCy+e//hyvHQ9IEnjteMDnv/4cpYye+Ze38kp+5a0ti3RT/RUZDGrL+aTr1n/aqSi5FcfpBAucOFumEcYUfUNsYbjo0phuMtFo4hujie4cszbh6FTI5q0/7KQt+oObVrN56+7ObsPtB45y+6PPdnYRAuw4OM5wK5i37/AkRc+wZsnoSWcj7j8yxbY9r3LLuqXcsm4Z5aLLZCPiP3//Re7/y32sWTLK/ZsuZ8FwAeM4vHJwHytXrpyzz0PkbJl5huLRyZAndr/Cpqsu4qeNiOGC12kvwwUFFEVEzrTufhjScxT/y1+9xMd/dgl1m3R2tnnGwdPOKyBd7BJYS9LaORfbhOkkwc9ovst6EPPa8YBr7/1O57W1yxZQD+JMpsnPXXmbMf/4K890xv2QlvfBj19JpZi98soJeWvLIt1Uf0UGg9pyPum69Z8+ScmtejOdYGlPdk8FEccbIUkCx+rNnseCJrpzrd6M2bx1F9sPHCWyCdsPHKVS9Hp2G0IaRFw8WmYqiDpnIk4FEYfG62zb8yrDBZe7N6xi255XueuGVaxdtgDPOGzb8yobr7qI//S9FxmfCvm1B/+af/31PVw/diEvfOE6Hrz5yjSgqF2Gcg6ZGVB0HYf5ZZ/1qxex9amXOFZvMlRQQFFEpF9m9sPt82w3XnURD/3gYGenmHHSlP8ap6Rch1nvB9yMfjzGgbs3nBiXrl22ID3zT+U9I8oFd9Z7hrJ2Vmaed4q27GW0rol0U/0VGQxqy/mk69Z/WponudNOedqeYEklFI1h2jE0mhELKgUcBxZUCjpXZgDMNhkwc7chwJoloxwar/O+eUVsAvdtHOPIRIPR4SK/euVitj71EjesXsQt65YxVDB8+ebVDBc96mHMkGe45ZplDPm9r5OQyVXXIv00cyK7fYZiwTOMuoXOjt6pQAFFEZEzrTu9f7sfbp+jaIHzSh6fWLf0RB/tOhituu1wSBcUjg6n9wOjwwU845DVOQTjpKn4u8/8qxS9zAbp8lbeehjPes9QD2PtVMyBIc/gdt3bF7Ja0URmoforMhjUlvNJ162/dPcpudI9yTIVRBSMQ7F1jmJgLfNLHsNFvzPJooBi/lmbdHYddtu251Xu3zR20irp+WWf/UcmsUnCvJLHBSMlKgWP+UM+t6xbyvvnDwEwHcY4pClzh7w0PW6l6OEaw0jJT89CLOoMRDn3nCqgWPYMzDhDsawzFEVEzqjTBRRDm2DgpOCYa4zGuzN4DjitD8pxsr0q2QE8k2YDcByYX/YzHQTNW3nLvsv9my7vuWe4f9PllH3tVMyDmfUqq/VMZDaqvyKDQW05n3Td+ktL8yQ3fubCC3vOUAybMQkQJzC/5BHYBM93CYIIGyeMlPy5LbCcEfVmzHQz5v5NY2zeurtzpuL61Ys4fLxxYldhEOM48J0XDvPPt+7mP2wa4+eWX0C54BJGFpvAUKG1s6roMRlEfO2Zl/nGnte4b+MYC4YLCo7IOW+2gGJoE8qeIZoRUCx5CiiKiJxJ7T4YOGlhR8kzFIzTCTZqvHt6dpbnWf3GihPASdPYQuvRab2eQXkrrzEOC4YLPPjxKykXXOphTNl3tXBQREREROQdyuq9lUgPaxNMYajnDMXpZkRkE1yHntXc2p04WMoFl/MrRcLI8sCNV/DCHdfxpZtW47uGD77/PKLWrtVyMV1tfMUHRnnhjutYtyINKO4/MsW/+uqPGPu33wQcLtvyTX7twb9mfDLkI8vOZ/uBo9z2yG7qzZg4njkFJXLumBlQjGyCJd2NYIE4STopT0vqZ0VEzhhrE8Iw6vTB7X640FrYMeQZbAKhpbWQSuPdQVL0DdNBzPhUejb8+FTIdBBT9LN5ffNWXkgDi2mKVmUiERERERF5t7I78hdpsTYh6proTs9RTGjG0IxjQgUUB1o9jDk0XuexnS9jk4QfvzHNf/7+ixRcg+OAbwyu42DjBJskXDBS5KXxOvUwZvlnn+Tae7/DEz/8MWuWjLLv8CQAOw6Os3i0zPKFlc7z4aLH0XqowKKck2bboegAQWxxgKb6WRGRvmiPc7sXyLX74aZN8IzTysyhhR2Dajq0bH3qJYIoHYMGUfp8OszmmDRv5RURERERkTNLd6OSefUwmvUMxaGCwXNdTXQPuLLv8p6yz/rVi/jK9r9luOhxy7plnFf2aYQxkFAquEw1YxISfu8v9uK7BtfQc3bKvRvH+P1v7QNgzZJRDo3XO0HGNUtGOT7d5Lat6Y7FiUZTwUU5Z8TxqVOe+sbQ1M4YEZG+aY9zu89PbPfDfms3lRZ2vH0zP6Esf2LGgfWrF7Hlieeofu5JtjzxHOtXLyKrm+nyVl4RERERETmzdKaiZFocW8rFtJo2m+kZM1HXGYqaYBl8xjiMlHx8z3DLumWd89waYZpmqR6m9cI4UC54fGLdUsoFlzfqTX7nV1fxM/OHmAoivr/vCH/+o1dZu2wBd29YRck33PtnL7B22QLu2zjG47te6exY/L2/2MvGqy9iQVnnLMpgO9UZioWulKfqZ0VE+iOKToxz2wFFm6Tn/7X74e6AYtnXWbaDquQb7lx/GYtHyxwar1PKcCrRom8our3lLbom0+lPrU2oN2OdqSgiIiIicgZkd+QvAtSbMfUgZiqIeOWNaeIEPJ2heM4xxqFc8Dj04t70LJSST7no4RrDSMnHOGng0SFN2QjguoYL3zPERKNJ2XdZt+ICXvjCdTx485W8p1yg7Hvc87ExHrjxCipFjy1/+jedHYvXfuj9nV2LIoMqiiyNroCi6/QGFLUzRkSkf9qLOtrjXN84NCKLceicF17w0/OibZwwUvIVUHyLkrf5urw99TCeNf1pe6Ff1libcHQq5NaHnuaSzz7JrQ89zdGpEGtVI0RERERE3gndmUpmRZFluOhhHCgah0rR5yfHpxVQlFMyJg04JjbduZgkCcZxMMbBOA7Hp5uUiy5HJgJ++2s/4tce/GvCyPLozkPpjsVNY3x99yssX1jp7FoUGUTtlKdRK7V00TjYJJ1cixIFFEVE+snapLNL3DjprsTIJhRcQ5zQSTutPvidcUi/y1pfayRJ+jyr+9KMA57pvcaeMZlNJzrkuWy86qKe9Kcbr7qIIc+d66LNqt6M2bx1F9sPHCWyCdsPHGXz1l1aPJgTMw+k0AEVkieqvyKDQW05n3Td+mtOZsyr1epWTrFYtFar/YOzXBzJoPbqbaJ0oqUeWeaXPIYKbk+aPk2yyGw8zzBsHOrNmEopPQsuIZ2gsTZhQaXAPR8b6+wMuGntEtZfsYidB8f5xp7X+Miy81mzZJSpIGKk5GNtQiOKsTahXPRYtHQ5sbVp+qSCy3SY7izAgZKndEqSbd0pTwHCZqwdiiIiZ0kcW6b/f/buP0qO6jr0/bdOVVf31PSIYUYSYCQY/aIeBokBIbCwcBJn3ehycxdxRGQkG+RAjInvc8DXscOynZcoeThcIkwskjwwOLaBJMIhJFi+17ZsBzuAUYyQJWPJpJAQsn4gJDGDND+6u6pPVb0/qrvVPRrxc4aubu3PWqyZKXpGp6fOqTl1dp29y8d2iR8eLtHTmaXDUsRIutOJEJME6ozKdMwwKg+bNbVVJ5axFL6O6HYyGAbJx8rxNCrqkP1HCnz52oXkcxYjJc0Lh4fpsE26UthmxzbZtHuw4dim3YM4djqDoKJRK9VHFWIs6b9CtAcZy61JztvkatY2nHua9O+KFhCGx1LyBeWQchSTs1TDDsWMMmSRRbwmpQzyWYsojtl/pMTq9dtZet5p/PaFM+jqOJbuMWMp9gwU+NIPnufgkM/tVy3g0S37WLuyP6ltFMUMl8qMBiF/+E8/Y9PuQRb19dRed9XCmTyyeS/LFs4gl1GUdZSkZJXAokghrSOCMKpdS8MoZnDUZ3pXDh1LDUUhhJhMYRjV6oWP+hq7koljcNRnWleOzqxF2dfockhXLtPs5ra0aMxOxShO0sqmUSEIuf+p3Sw9/wy6chkODvls2HaA65bMoiuXvr/Djm3S25njxgc3N8yL0xqkG/U1i/p62LhroHas/uFBkW7j7TJI36gQYnzSf4VoDzKWW5Oct8nVlN+l53n/7nnevwM/B94FnA30AZe93ve6rnup67o/qnz+btd1n3Rd98eu6/5/ruualeM3uK77jOu6/+G67n+ftDciJkWhHNYWW6rGlrxQIEFF8YYUgpAN2w6wdkU/G7YfZOGt32fDtgMUg5Dfu/8Z/vCffkbWUtx5dT/3rlrImafm+Mh7Z/Gdnx/AzpgUAs2rhTJ/+E8/a0ibdMsjz7L0/DP49MM/Y+n5Z/CZh59lpBTyaqGc2poyQtSnPM0oA6uyoH1ouCQBRSGEmERRFFMoh/hRTMEPySiDchQzJWfVAory4NzJybFNPnDhjIZ0oh+4cEZqg3TFIOLRLftYfeV5eLdeweorz+PRLfsoBulMKuXYJrdftYDFs3uxlMHi2b2pDoIKIYQQQgiRds0uGPbPwPPAfKAEFF7rxa7r/hFwLTBaOfQXwOc8z3vcdd2vA1e6rrsRuAm4GMgBT7qu+33P8/zJeQtiokRRjK7sUCz4IbYyKOqInKUaUkHZysBKac0OkT5OxmTlpWfzzO6BWpqmatDk3lUL6cxaDBc1G7YdYPa0LpZ+6XEAFs/uZdlFM+jMWsy0rXHTJlVrL1Y/zuxxgCTNVsHX5GyTgh+ilKRFFc2ldUQURQ0pT3WU1BztGpNaWgKKQggxscZeg0tBiK7UfR6bktNSSoKKJ5n6IN3c6Xl2Hhrh0S37uH7JbPIp3KmoDFi2cAafefjZ2k7FNcsXpLYGZKv9fkWjsd0qpd1MiHFJ/xWiPchYbk1y3iZXs4OKeJ73+67rfhX4KPD467z8BWAZ8GDl66s8zwtd17WB04GDwCXAjytBRN913Z3AAmDTpLwBMSGqAUU/ivEraSlDwDYVYQxG3dA3lZLgjHjDlDLo7bS5/JzpdGQUo76uBU90FPOpb2zl4JDP2hX9PPT0HixlsKivh7UrkvSnBT/klRF/3LRJOw+NNHzcO5g8F9HtZCgGIQv+7Hu1hZZ81iJnKWwJLop3WDXlaRgn19c4hkJQJp9NUn5pqaEohBCTRuskrX8M+JUsHKN+mVzGwlRAjFyDJ9iJaiemtaZiqwXpAHIZxW3L5jOzx2HvYIFcJr39VqkT/H7T22RRZ+y4jZFFQdE6pP8K0R5kLLcmOW+Ty4jj5t1eua77GPDfgPuBFcAWz/P6X+d7+oCHPM97T+Xrs4EfAEeBpcAVwHzP826p/P8HgAc8z/tB/c/ZvHlz7DjO67axVCqRy+Xe5DubWCdDG2bOmksMtTqKCijoqBJUPLbgnVUGL7ywY9La8Xre6O/h3HPPnfTr1BvtwxMhDX1wotuR7+rilJ5p5DtsCn6IqY4FV0ZKGr8wRO+pPRTLIcWyJtDxG6qpGEdwaqeNUgazP/ttINn1eNuy+ZzaaRNFESOvHmZkePhtv4fJPC+T3Ydb6Ro82Sb7Pc6YNZc4hnzOQpdDdAwjviaKIzqzmUm/vjbjHKbpGix9uPVJH27v81tvot/rrNlzKMdGwy5xBRwpvXPX4NfSrvOIOXPmEUQxOoqZ0pFhqFjGUgZ2k+8jTuQc12VwJGA0CGtBuk7bpCdv87znAekah2+kva/lnX4vU6dPJ9PRxZFCudbebidDuTjMK4cOjfs9zb4Gp+V8N7sdc+bMIwaCMVmLDGjaWG7276Tea7WlmdfgVvkdTbY09l9Iz/lpZv+F1poHSxua24a3MpblGpyQa/DxWuH8vNH+2+ydin8L/E/ge8Be4Mk3+wM8z/slMM913Y8CdwKPAF11L+kCjoz3veeee+7r/vznnnvuDb1uMrV7G7SOUGbSX6u1ZIIoxrEUftQYUGb+rZMAACAASURBVLRtq6m/izSci3rvVFvS8r4nqx35XOOlcEpHBjp6GfE1Ow4OMWtqnlBF3LdqYa3ep2ObXLdkFo5tcv2S2SgDXi0EPLJ5H1f2n8nUfLb28+pTo+4dLDB12unMnDHjbbc7LeflrWqVa/BkeyevrwBZZXBKzmqYXE3m9bWdz6H04US7v8d2fn/ShxtN5HsNw4hC+Vha/5i4NsftzlmpmOO2+rk9Udv9IFk0qD46a1YCivFrfE8zDZfKrHt6D0vPPwMAX0es37qf65bMqrU3TefqjbT3tbzT72XE13z1iV0N7X3gqd1cf/lszu3tfcfaMZ4T/R7Scr6b3Q4/0OOmLmvmWG7276Res9uS9v4LzW1LGvsvpOf8pKEdafybJW1IXxvSOpblGvza0nre2un8NDWo6HneI9XPXdd92PO8oTfz/a7rrgf+0PO8HcAwEAFPA19wXTcHZIFzgW0T12ox0Yo6xNAGMTG2MghjUIZBKYzJ55JdY5YyKJYK2PaUZjdXnEScjMmZpzq8+MoIc6Z11QKKewZGufX//CdrV/Tz5I7DzJ/RzR0bPA4O+axZvoCOjMnRYlD7OdXUqL6OmDs9jyH77cU7IAwjijoEDXEMloIgjAkMiCIarq9Sp1YIISZWNaA4WknrbxoG5Uot27FzXKmhOLEMQMfJ3z5IPuoYrJTOvzLKYMUlZ3HzQ1trGTGqafjTqNXa69gmdz22kzt/cOypdEsZfOLX5zWxVeKNaLWxLEQ96b9CtAcZy61Jztvka2pQ0XXd/0KyUzFX+RrP897/Jn7E/wK+7rpuABSAj3qe97LruncBTwAK+LzneaUJbrqYIFpHdGYtSkGIZRgUdERHpZZMWBnohpHUVvzl/v2cMkWCiuKdo5RBT4dNzjIbFv/Ofdcp3LtqIR0Zk/fOnYapDO68up+CHxJGETHwyOZ9tfqMa5YvIGsq1m/dT7b/TKZ2Zclnm71RXLQzrZMdMmNTnuazJmDUEskrA3IZqfMphBATqTq/rWbgMIBiZY4bQ+3hIsOArKUkqDgJTKPxXsJM8Z85gyTwdfc1FzWka01xk8dtb1oVgnDc2uiFIJT5eAuwxoxlWQwUrUT6rxDtQcZya5LzNrmaPYv+K+CTJKlP3xDP83YD76l8/hTw3nFecx9w38Q0UUwWrSOiKKKok3RQBR3hWAodQxRTSRel6bQtWfAWTRFFMa8Wy+x7dZRzTpuCMgxytsnRQpndAyPMnd5FPpekNSv4mo6MSaEc02ElqVE/8evzKPghR4sB657ew+9cPBPHNnEysitMTJ76gGJ1QdsyqEt5ajLqa3Q5JJ/LNLu5QgjRVurnt7YyKOqInKUa0vqXfU0UxnTJNXhS6Dh5aKZeDIQx2E1p0WszlSKMo1qblWGgDANTpTPYbCmFjsJxj6eRkzG5a+WF3LRuS21n5V0rL5T5uBBCCCGEEG9Rs4OKezzP+0GT2yCaIIriJC0fNCy41NeXKZdDHAkoiiYqlENuWrel4cnmxbN7WX3leTh2hq89+SIrLj2Lm9cdS/90z7UXMRqE5HMmpSDp42d0d3D9klkYhkHOUtKnxaTROkl5Wq3hBVCqXF/LYwpUS8pTIYSYeNX5bUYl6U5zliKqpNupXoM7LBPLSmcAph1YBhR0xJFCGce2GBgJ6HYyOCn9nRd1yNeefJGl55/B3GyeA0dLbNh2gOuWzKIrhW0u6pAndxxm8ZyptWNP7DjMknnTUtlepQx6O23u+8jFOLZJIQhxJEtDy4jH+VrOnGgV0n+FaA8ylluTnLfJ1eyg4iHXde8BtlA5157n3dvcJonJpnVEqbLoDRCUQ2xTEcYwNtGP3OyJZnJsk027BxuObdo9yNzpeQB+87GdfOx9s7nn2oXksxavjPhYStFhmxT8kECHZCtPQe8/UmLu9E78cgQ6Ild5jZLUZ2KC1AcUdxwcodvJYKokvenY66tlSnBbCCEmUnWHYv38FpLsG2F87KGOrDIkoDjJIiBnKXrzNoYBvXmbjDKImt2wE+jMWi1V868za/EH67aio2NLNZYyeP4LVzSxVaIdjTdmY45fJBQijaT/CtEeZCy3Jjlvk6/Zd7QvAgeA04EzKh9FG6suuDiVhZVRX1PUEVEcUw4jnKzJULGMgQx00XwFP6nBUm9RXw87D42w89AIi/p6GBgNiOOYvYMFpuazjPiakZLGyZqYpmLE1+w4OMLq9dsZLmkGCwGFsuZT39jKDQ88w2AhYNjXhGFal7pEK6gPKI76mg3bDtT+wI/6IXEMTtZM+mbGlCC2EEJMoOr81o/ihvktQBAmgcbq/Fb+2r8zdBQTVoJeYRQ3BMDSZtTX4843R33dpBa9tlZrbxTFDIwG3HD/M5zz+e9ww/3PMDAaEKW4T4hjWmksCzGW9F8h2oOM5dYk521yNXtV8Ydj/vu+67ozmtskMVmqi95+FFPwQ7LKIKuSvTNhfPzAtiU1n2gypWDtin4Wz+7FUgaLZ/eyZvkC7v7RTjZsO8DaFf08snkfljLo6Uyehu+0LYrlkMFRn3IYoqD22ke37OczDz/LSCnk4786l427BvjMw89ypFCmUD6+No0Qb8TYgGJWGay45CzWPb0HvxzRaVs4WZOCr8lnLQkoCiHEBArDY/Pbzqwl89sUONFfubT+9euwzOPmm2tX9NOR0r5iK2Pc9topzYBQX85ARzEbdw1w07otMvduAa02loWoJ/1XiPYgY7k1yXmbfM1Of3orye7EzcCFQADkXNe9z/O8NU1tmZhQ1RqK1ZRQpSAkiGMyhoFjKXScpIeCJH2O1FIUaZDLmNim4t5VC2sBG2UY3Hl1PwePljAVXL9kNh22wtcRo76u9fFq981mFB+5bBb/umUfq7/1CyxlMLPHqf0bm3YPMrPHwZDuLt6CsQFFHcUYQHfO4rols44dL4d0SP0gIYSYcIXysfntqK85PFziXad0yPy2iWKSwFc1pGsqo+HrtCnpiBG/3DDfPDxcwrEt8ilMlRtWsh98+dqF5HMWIyWNUsnxNDpROQPHTmfQVjQabywL0Sqk/wrRHmQstyY5b5Or2XcpBWCB53krgQuAPcD5wFVNbZWYUFpHFAJdu0ke9TWmATqMCaIYP4rJ2SYxMbocks9lZMFFpEIhCNn3apFCkOw8jOKYOI4pBSFduQyndmaJ4pgHN/6S3/v6M7x0pMSH7/sJOop4959uIIrhmq88zQV//j1Wf+sXQJIeau9ggZ2HRhq+TmvKKJFeWke1xez6gGIYx+gxC3tKSd1OIYSYaFpHDfNbWxnksxleOlqU+W0ThTEEcUx1o2hc+TqtQS9lJDtYP/bAZs75/Hf42AObsS2TNHeXUjlkcDQgjmFwNKCU4l1/JypnUPDT22aRiDk+ZXSElEkRrUH6rxDtQcZya5LzNvmavcI4zfO8EoDneT4w1fO8gOa3S7xNWkcEgSYIdEMNRdOAbOVJAdtUxDF0ZpMnXE3DQCk59SI9nIzJqU6GaiymVI4Ag5xtAjFHRgP+5Jvb2LD9IHcsv6AhzSnAaKD54gcvOC59aj5ncvePdta+7nYyZJQhdRXFG1bdoZjPHUt5agCGAaZhEFWuraN+UkPRSuFOByGEaFXVeW5Rh7VgYvU6nM9aTM3nZH7bRFbl4cX6oJcOY6yUBulsU5HPWty2bD7erVdw27L55LMWdkofBjINsMb0aUspzJT+fpUBa5YvOG4+nuagrUgYJLu96x8QiOLkuBBpJ/1XiPYgY7k1yXmbfM1Of/qo67pPAk8Di4D1rut+HNjW3GaJt0PriChKgiN+JedTUKmheKSkyWdNLMNAGRBWRrNhJDfUsvAt0kQpg65chpIOofIHyMmajPqajDLAMrnz6v4kcGObXLdkFk/uOMyt/+c5Fs/uxbYUURRz5wcv4LRTchT8sLaAcefV/ckT0kbyFMW9j+9ixSVnMSVnkbEUxXKEI+kqxTjqU54W/BBbGRR01JBqr1pD0cmYskNRCCEmUHWeW62hGJRDwjgJXCiSgJbMb5tLKYVjgZlP6l335m2yKr3B3aJOMmJM68rV2nt4uISpDLpS2HfCGCzzWD3xnk471elPc7bJHf/qsfrK85g7Pc/OQyPcscHjzqv7m9008QaMvaam9eEAIcYj/VeI9iBjuTXJeZtcTb1L8Tzv/wX+B/AT4OOe5/0F8M/A7zWzXeKtC8NksduvpDXtzFp0Zi2UAcUw4pScldyIZkz8KE7yG0cxXbmMLLiIVFKVGkhO1iKfsyAGHUa8POTTYZvsGSgQRTGHhnwc2+SyOdN4/tYruOfahfzHC6/wZ9/6BUMlTRwnOxfLlXRoQ8Uyn/vXn9P/Z98jmzFZev4Z3PzQVko64uWjPl99YhcDowFRlNIVGtE09TUURwNNKYzIjQkojvqanCUBRSGEmEj189zqdTh5Cjb5W+1HMVYmqdOmy6HMb5ukpCP2HS02HNt3tEhJpzMjRKaSNrc+/Wk+m2SxSKtWS396cMhn6ZceZ87nvs3SLz3OwSFf0p+2gJjj05SNd0yINJL+K0R7kLHcmuS8Tb6m3OW6rvvRysfbgBUk9RQ/5LruX3ied9jzPDnHLai+vlf1v2qNmTCOiGMojLmZN6XOl2gxShmMvHqYqV3Z2tPk+ZyFUgbFckRXzmLY1zy18zDnvaubw8M+v3nXE1zzlZ9QDiPKYcjRYpk/+eZ21v/sJRb19bDz0Ahzp+fZtHuQKR0ZPv3wz1h6/hnctG4LhRQv0oh3VjXdXvXaaiuDrKUohxFFHRHGcS2g2GFJylMhhJhIY+e5tawFgDIMgjCWlKcp0Yo1Ch3b5O5rLuL5L1zB3ddchGObzW7SCbVc+lN1gvSnMkRTL6kV3pi6LJTUZaJFSP8Voj3IWG5Nct4mX7PSn+6tfPzPJv37YgKFYVSrBVddZKnKVu7ej5RCOmwFGLXXyKK3aCVRFFMIkn7cO+10qhsITcNg1A/55ENbWXreaSy7aAadtsl7506jM2ty76qFtTSV1cWsf3/+EN/++QEWz+7l9qsW8OiWfXD+GSzq62GoWGbT7sFakDHNi0rinVOfbs+v1FAs6IgOSxHGSlKeCiHEJKpeg+vnuXalhmJQybwhKU/TwzKo1Sic2eOwd7BAPmulNuXRiZqV0uYCSR+vT39qpThim7NMusb0h66sRc6SOXYrkNRlopVJ/xWiPchYbk1y3iZXU+52Pc/b4LruBZ7n3Q+sA/JABniwGe0Rb53WSUCxmu50tLLYXf0vqEReunMWElAUrSqKYgZGfb765C4GRwIGCwE3PPAM53z+Oxwa9vn6j1/kSyv62bD9ID/dM0ixHJLPWRSDENNI/mrFxJgG2JZiybwkRerqK8/j0S37+MCFM9iw7QBrV/Tz6Jb9td2Li/p6KASyU/FkV62hWE23V722OpYiHFNDUVKeCiHExKq/BtfPcw1Ax0lwsT4dqsxx08GxFL11NRWdlJ8TZRgowzju8zQyT7DF70THm61aI72aZWRqV5auXEbqlgshhBBCCPEWNSv96aeAe13XtYA1wH8B5gN/1Yz2iLdmbF2ZzqxFprJ7pspWBhE0LLY4GVlsEa2lEITctG4rS88/g9Eg5DMPP8vGXQPoKGZmj8Ndj+2kt9Nm9ZXncfm86RgGycJiZZdhwU/SpQVRDHGyu7EQhMw7Lc91S2Zx5qk5Vl3Wx3e2HWDD9oPcsfwCNmw7wF0rL8TJyFPUJ7PqdbZ6jR0qltn+8lDt2lqf8jQnC9lCCDGhqgHFE81zLQMJKKbQiSonprOiIliWqtXlrIriOLV9qaQjvINDDce8g0OprVkJSWAxn7VQRuWjBBRbwolq4kitHNEKpP8K0R5kLLcmOW+Tr1l3KlcAl5Hc230IuM7zvJuBRU1qj3gLxtaVGfU1MWBVdtEEEVgZk3IlLZQykqdEZReNSLsoihkpacIoStJJZs1aStKZPQ6bdg/WXlvdUfjC4VFWr9/OnM99m/P/9Hu8dKTE3sEiv3f/M5y/egOzP/ttXjpS4tqvPs3eV4t89cldHDhS4mtPvsjLR0tYSnHt4j7uXbWQ00/Jcv3ls+nttGXR4ySmdcSwrxuusRtfeIUzux22vzxUq98lC9lCCDHx6gOK1WswHD/PBSiXQ7pyGbkOp0QUQzGMCCsZU8IophhGtdT1aVMMIr765IscOFoijuHA0RJfffJFikE6g3TKgGldOW58MKlZeeODm5nWlUt1zUrRmmKSHeH19ZB0LAuCojVI/xWiPchYbk1y3iZfs+58I8/zQqAf2OV53quV43Ir0gKiKCYI9JhFlpisMmqDVUfJ7pmhYhmD9KbDEWKs+lSnLx/1OTTsM1Qs11KS7h0ssKivp/b6v/3hTtau6GfDtgPcftUCFs/uxVIGG7YdoNvJsGZ547Hqaz9w4Qwe2byX375oBmd0dwBQCkI6bQtTKXmK+iRXXcw+Uigz6mvsSrq9hWf3sPmXg8yamiefk4CiEEJMhrEBxfqUpyDz3LSzjGTh4Eih3PAxrXVUlAHLFs5g9frtuH/8HVav386yhTNSHaTLZRS3LZuPd+sV3LZsPrmMjAEx8RTJrt3qTt7q59LbRCuQ/itEe5Cx3JrkvE0+q1n/sOu65wDXAesrX58HSPGwlAvDuhqKviajDBRwpBSCDVmliA2jFvk3lSEp+URLKZSTVKerrzyPTz/8M/7+o5cSxzFrV/Tz0NN7WHnJWaxZvoDPPPwsm3YPcnjYJ5dRXLdkFo5tcu+qhXRmLQq+xlIGtmlz36qLaykqM8rg+iWz6bCT75GdZmKs+sVsx7YIdUgQxVjKoDtnsWTeNOk3QggxScYLKFb3iymS1P4yz00/x1KYdTUVsymO0CkD8lmL25bNZ2aPw97BQiVVZ7NbNj5lgKUU9bfullKpbS8kDw0WyiGObVIIQpyMKQ/vtYix11xbzptoIdJ/hWgPMpZbk5y3ydWsO+A/Bh4EpgNrXdf9FeC7wKeb1B7xBmgdUSwfq6GYqTyxHUQx3TkLMLAyJkEU02GZtXSnstAiWoljH0t1umn3IDsPjbDv1SKbfznI7753Fj15mx4nCRQ+/4UruGtlP3/yze187ckXKZUjMspIaodmLXSU5HguRxE7Do7wsQc288vBIjc88Ax7B4tc+Off58P3/YSjxTIjgUanuBaNeGeMXczeO1gAqE1+6mt3ZZUh11chhJhAM88++7iAYhAlT7QqkmtwNeVpFMYyzxUTImMpDKDbyWAYlY+V42nUau2tZiG54f5nOOfz3+GG+59hYNQnSms+XCGEEEIIIVKuKTN/z/M2eZ53qed5V3ueNwL8BzDb87z/AHBd97ea0S4xPq0j5syZR0mHOHU1FA2o1UuUhW7RqqIophRohktldBgx6utaqtNFfT387Q930mmbzJ/Rzdd//CKvjATkbJOYmCiMyWVM7ry6n+uWzMIA7IzJS0dKfPKhrZy/egP9f/Y9puQytSBl9ePMHgcdxWzcNcBnHn6WI4UyRR3KAsdJbGxA0TQMup0MQ0FSx6t83HXWbHKLhRCiPVRT+8cqU7vOZioBxUxlp2L9XFd2iaff2NlUmmdXhSDk/qd2c3DIJ47h4JDP/U/tphCkM4lPK7b3pnVb2bhroDb3vmnd1tS2VwghhBBCiLRrWvrTep7n+WMO3Qx8sxltEY20joiiqLaQUvBDYmJMI1ngtsYEFDPKwDRlkUW0hiiKKQSaQhCy+ZeDLDy7h4ee3sOdV1/Aw5v2csfyC/j0wz/jC99+js/+t3O5fslsnKxJMQgxAGUaxBoe3Lib7247yJdW9POVJ3Zx5w921P6NRX097B0s4OuoIVi589BI7TXVIKNhJAsf+WwqLs3iHVS91o7dHWMpA0uZ6Biq1bwMwLIkbZcQQkyEKIrROmyYz9p19RPDGMJYAoqtZrygYlr/anZYJisuOYubH9rKpt2DLOrrYe2KfjpS+vBQq7XXySZZSOpt2j2Ik01ne0WjsXlcIpqXbkuIN0v6rxDtQcZya5LzNrnSunKd1nu+k0p11wxQCygqAyzD4EhJkx/nRixjKgkqipZRKIfoKObmh7Zy9zUX8fG//ykbdw1w1cIZLL94JtOnZOtqJIYYBsRxTByDMgyOFssEOuLaxX38xrtP57vbDrBs4Qw27hqsLbKsWb6ArKlYv3U/t1+1gEe37GPN8gX85Xe9WjuqgcduJ8OUjkwTfyOiWarXWr8uoGhXdseUo5icndTkjMKYfE76iBBCTAStI0o6JIaGB+QMQMccl41DAopiMhR1yP4jBb587ULyOYuRkuaFw8N02CZdKexvrdbegh+yqK+HjbsGascW9fVQ8EPyubQuh4iqsT0qfT1MiBOT/itEe5Cx3JrkvE2utM6i05yh5qRQv2sGqKXiswwo6IjunIVfWeguVxa6u2ShW7QYxzaB5OnlKR2Z2lPMp5/SgfvH30FHMb/4s6UcPFritFNyFPyQl4+WcLIWRwtlZvY4DJfKbNh2gMVzpnLNe/ooBpq7VvbTm89S8EMgSZG66rI+unIW1y2ZRaAjDg/7WMqoBR7zWYuNL7zC5edMl52KJ5k5c+bVanSVy8nidn1AURazhRBi4lXnuk7dXDejDBTUHuyQgGJrGu8pZMXxTyunha0Mzux2uPHBzQ07/+yUZiTInKC9mZS2VylYs3wBn3n42YaH/pQMZyGEEEIIId4SWbkWx6nfoej7SS2vahqogo5wLCWLLKItFIIQHSZpSYeK5dpTzNUUpRt3DfBqISAGPnzfT2oLEX/9oX4c2+Sar/yE06Zk+fRSlwee2s0HLpzBo1v28YELZ/A3/7aDlZecxWgQMrPHoVip27LxhVd43znTuW/VQpy6HZCPP3+Ii/t6cTKSiulkonWSXrp6rc0qAx2DZYxXQ1Gus0IIMRHq57pBJbW/BBTbSxDFhJU61WEUEwBWSoNeAPms1bDzL81tNUgezLv7mouY0pFhqFjGqksZnDY5y6Qra3HbsvnM7HHYO1igK2uRS2m6ViGEEEIIIdIurUHFE96TuK57KXC753m/6rpuP/DXQAj4wCrP8w66rnsDcCOggVs9z/vf70Sj20VRh7UdiuVyUjsuJkkDJQFF0U6cjEkhjlm7op+NL7zC2hX9SSrUH+2sPdG8ZoPH//Pf392wEAGQtRR/+TsLOPPUDg4cKfLbF83gXd05Vl3WRz5rJTsTsxbZTBI0zOcsNu8eZPa0LnKZpC5jUA7BgA7b5PJzpuNkpE7eySSK4tr1tnqtHe/BjSSgKAtfQggxUernuqUgxDKSv70SUGwPJzpbaT2LJ0rRk+bUPcowqE5Zk8/TO39VyqArl8E0FYYBU7uyMucWQgghhBDibWh6UNF13XnAXODnwH7P82LgzhO89o+Aa4HRyqG1wB94nrfVdd0bgVtc1/1L4CbgYiAHPOm67vc9z/Mn+a20vCiK0ZVFltHKrhmzcoNoGcl/ssgi2olSBh0ZE1MZLJk3jY6MWauhWArC2m7CUhBiW5WFiHyWo8WAP//ucxwe9rn7mot47+0/ZPHs3oa6jFWLZ/dy27L5+Drid7/+TO3Y3ddchJPNkKuMMUl5enLROmIk0EzpyDDqaw4Plzh9SgeOpdAxVJ/3NwDLkoUvIYSYCGEYEYZRw1zXVkbtgQ4JKLaHiOS8VoNypjJqacXTyLZMCoEmipMWR3FMFEMuk865YcYyCcvhuMfTSimjNteWObcQQgghhBBvT1Pvkl3X/QRwD/AXwO+Q7DrE87xvneBbXgCW1X29wvO8rZXPLaAEXAL82PM83/O8o8BOYMEkNL+thGGErqSBqu6MySqDIIygEkys1vwKyiGdtiWLLKItmKYia5kYGLXATRzHlKOYJ3YcZt9gka88sYtiEFLwNTc88Ay/suZHHB72Wbuin29u3c/i2b2sXdGPYSQ1WxbP7sVSBotn9/LFD15At5Nhw7YDtWNrVyY7IwvB8Qsyov1pHVEohxwplGvX23w2w8tDxVqt2piYKIzJ5zISUBRCiAmgdRJQDKKYUV9jV+a6YQy5yg7x+rmuBBRbVzWNbUP60yhO7U5FSNp4pFAmjuFIoVxre1qVw4jB0YA4hsHRgHKY1pCtaHVje5b0NNFKpP8K0R5kLLcmOW+Ty4jj5t2wuK77JHA58Jjneb/muu4mz/MWvc739AEPeZ73nrpjlwF/B7wPWArM9zzvlsr/ewB4wPO8H9T/nM2bN8eO47xuG0ulErlc7s29sQk22W3Id3Vx6tTTak/zZpVBECW1ZQyStKdRDE7WpOBrXn3lICPDw5PWnhNppXNx7rnnTnoU4I324YmQht/9O9WOfFcXU06dSpeTZcTXdNomo0HIj3cc5tCwz2/1n1nbXWYqg6xlsvPQCLsOD7N4zlR8HdFpW7XxUn1aXkfJGBopaX688zAXnXUqwfDA2xpLk/n7mOw+3ErX4Ik0Z848/CjGsZOn5LUOOVrSdOes41KevvDCjia3dmI04xym6Rrcbn14PO3+HqUPt/75nTp9OrnOKQB0Zi10OUTHoIwkABWTBKGq1+AoKPLS/v1NbfM7oV3nEXPmzAM47u8qkMq/re86axa//w9bj8t0cc+H+3lpz4tAusbhG2nva0nTezmRZl+D0/I7anY70jiWm/07qfdabWnmNbhVfkeTLY39F9JzfprZf6G15sHShua24a2MZbkGJ+QafLxWOD9vtP82O/dH9YHRajzrTacodV33auDzwG96nnfYdd0hoKvuJV3AkfG+99xzz33dn//cc8+9oddNpsluw0ipjFOXBqbga6xKyqD6BZZyOSSfy5CfMWPS2vJaToZz8Wa9U21Jy/t+p9ox4ms+fN9P2LhrgB/f8muc6thcPm86TtZk/6tFHnhqNysvOQsMiCKYd1qed3XneGTzPhbPmcq0riw7Do6w8YVXWDxnKnOn5xk4WgQy5HNW8rNsfRPkyQAAIABJREFUE3XK2xtLaTkvb1WrXIMnitZRrY7XjoMjZC3F+q37+f33zR63hmK7vO92OodjnWx9+ETa/T228/s7WfrwcKlcq6FY8ENGA01XzsLg2I1mUJnrduUykMtwypQpzW30O6DVz+2J2l7wNdY4t8I6fufmzm9GFMds2j3YcGzT7kG6nGytvWk6V2+kva8lTe+l2U70e0jL76jZ7UjjWG7276Res9uS9v4LzW1LGvsvpOf8pKEdrfI3S9rQ3DakdSzLNfi1pfW8tdP5aXYWmH8EHgfmuq77beDRN/PNruteA3wC+FXP83ZVDj8NXO66bs513VOAc4FtE9jmthJFMU7WShZYfM2or3lix2FKOuLlIR/HttgzUCCMYiyz2d1FiMkXRTGObdYWS04/pYO9rxZ5YschRkqaM7s7+Mhls1j39B4W3/YYNzzwDC8dKTJULLP6W79g9frtyefrt7P6W79g6ZceZ87nvs2nH36WV0YC9gwUwEBSWp5k6gOKo75mw7YDdNomyxbO4J7Hd/HSkRJxDHGcpOSV/iGEEBND62M1FEd9jTLAVFAINAfGzHUPHXq52c0VE0AZUNARAyNJes6BkYCCjkjrn9aCH7Kor6fh2KK+Hgp+OtPkt1p7RetqtbEsRD3pv0K0BxnLrUnO2+RrapTI87y/AW4E/hC4xfO8O97o97quawJ3kexE/BfXdX/kuu6feZ73cuX4E8BjwOc9zytNfOtbm9YRQaDROqTghyiDWh3FhWf3sPGFV+h2MhgG9OZtHEthSlBRpEwUxYz4miiOGS6V0WHEcKk87teFQDNS0g3HSoFmuFQmjKLax1dGfQ4eLdUWS3YeGmHDtgP0n3UqLxweZsTX5HMmqy7rw7v1Cm5bNp+OjMmaDR6LZ/eyZvkCvrl1P1/84AUNtRXXLF9APmdyqpPBqdRsEicHrSNGAt2wE3HFJWex7uk9GMD1S2Yz77Q8xUCTz1pyrRVCiAkQhslct6iTB+cylXmuZYClFGEEU/NZDAN6Om3yttWU9P5i4inAUkbtXqbbyWApo+lP056IUsfX5F6zfAEqpQ1utfZC4z3DiK+JUl6zUiRabSwLUU/6rxDtQcZya5LzNvmamv7Udd0bgHd7nvc/Xdf9nuu6D3qe9+BrfY/nebuBaj3FnhO85j7gvgltbJsIw4gwTEqTBlFMDJiGgVmJ4DuWojtnsWTetNoCeIdlsmOHl5rtuUJAEqgZLAbcvG4rm3YPctP757LikrO4+aHjvz5tSpZPL3X5+b4jLDy7h5sf2sp/Pf80rjj/DB56eg8fuHAGtzzyLH/5Owv4o39+ljuWL2Dtin5ufmgrd/9oJ59e6vLwpr1cfclZOLaJX46wlKoF3ZVhcOfV/UmdRcPg2sV9lIKQ+1YtrO0EVgZgQM4yZRfaSaS6Q/FIoZzU4FQGRyo1FK9bMqt2ndWV9NJCCCHePq0joig6ltq0HGKQzH1tZSQPyykDJ2sy6mucjIllyS1mO7ErpRwATGVgp3juZStFPmtx27L5zOxx2DtYIJ+1sFMapWu19kZRzMCoz02Ve4ZFfT3ctbKf3s6szMlbQCuNZSHGkv4rRHuQsdya5LxNrmbP/D8OfLby+W8C/6OJbWl71YCiH8X4lbSnnVkLy4CijuiwFH4UY1V2UelKXRlZZBFpE4YRhXLIzeu2snHXADqKWXr+Gdz80Phff/xX5/KZh59l8ZyptWO/1X8mNz+0laXnn8EtjzzLxl0DnHlqB5t2D3L6KR30dNqsvvI8vvjBfrodm9997yymdWUplpMAYYetKPghQ8Uyf/fELvYNFvnaky8yGmiIwcla5HMZlGGQz1k4WQvHtmTx4iRSn/J0Zo+DrQwKOqI7Z41bQ1EIIcTbV7321l9njxQDypWAYv1cNwpjmeu2qbH70NK8L62oQx54aje+Th789HXEA0/tpqjTmU601dpbCDQ31d0zbNw1wE3rtlIIdLObJoQQQgghREtq6k5FIKymJvU8r+y6bprv91peoZzc6HVmk9Ne8ENiYp7ccZj3u9MJ6hZfbGVICj6RWoVyEqip1j0EmDs9f8Kvq59P6cjUjlU/r39dtUbMzkMjZC3F6vXb2bhrgCsveBef/g2XGx/czKbdg/z1yn7ed850AM7o7uC6JbNwbJPrl8zGsWUnoji+huLASMBzB47ya+50dAwGx/pIsVTglClTmthaIYRoD/XXXqCW9lQZihG/TGc2M+aBDpnrtqMIGG8mFr3TDXmDOrMWdz22kzt/sKN2zFIGn/j1eU1s1Ym1WnudMfcMAJt2D+Jkm70UIl7PeGM5Jt0PCQhRJf1XiPYgY7k1yXmbfM2+k/6m67pPuK77Rdd1fwisb3J72pbWEZ2VnYmjvmbU17U6igvP7uEx7xBhXW0JU0kNRZFenVmLnYdGanUPgdf8uvr5ULFcO1b9vP51R4sBa5YvYMO2A3TlrFpdxG///ACPbtnHPdcu5PkvXMF7504jayleGfEZKpbptC1MpcjnZCeiSK63pbqAYraSx33+jG5+6B0iCKNayr0Oy+Sl/fub3WQhhGh5Y6+9tYAi4NgmuUwyDx4qljEAldJUjeLtU0A5imv3NmEUU47ipt/4nsiorxvmsACL+noY9dO5k67V2lt9aLDeor4eCn46d1aKY1ptLAtRT/qvEO1BxnJrkvM2+Zr6u/Q871bgD4CngU96nve/mtmedlbUYW2BJVup62VV6ihWayhO6cjUFrnlyW2RZqO+ZsO2A9x+1QIWz+7FUgYbth1g7Yr+cb+++0c7WbN8ARtfeKV27Jtb97N2RX/Dz1mzwSOXUSy/eCbdToZTOjLctyoJJF6/ZDYZZbD7lREOHC1hGAY9nTZdWQkkimPCMNklo6O4dr2t1qvtcWwunzedKR0ZClLDSwghJlRRhziVgGKmMtdVHKujaFb+VpvKICdz3bY39pynuYZKRhkNc9jFs3tZu6KfTErb3GrtVQasWb6gob1rli8gpc0VY7TSWBZiLOm/QrQHGcutSc7b5GpKzg/XdT/qed5XXNe9jWM7Ty9wXfdqz/M+14w2tZsoitF1dS06sxZBOawtrmRUknzPqdRRrD7VLQFF0QqcjMmKS87ioaf3sPrK85g3Pc9ooOnImNy7auGx/lz39eFhn/fOnYZTd6wUhHzkvbPIZxuPRVZyWYriZGwUghDHTuovTZ/SgZMxKZRD8hJQFHXGpt3T5RAdJ9dZHUMUg5M1KfianGXKbnAhhHibtI6IoiSpZWfWquw8ijEwasHEah1FmeuKtLJMhWOb3H3NRUzpyDBULGMpAyul84RWa2/WUuSzFrctm8/MHoe9gwXyWYusXAeEEEIIIYR4S5o1k95b+bgD8Mb8J96msQFFv7JjJoqhGEbYyiCuHLcySaAkjmK6chlZZBEtwTQVvZ021y2ZxbzTKgFFy6RUDjENg4KfBHaK5ZAoionjZEHBsU32HSliAEE52U3WlbMYLmkMYLhY5itP7KJYjjAw6MplUIZRCx4qlXzuef8pAUXRYGzavaFimXse34VlJE/OhHFcS3kqO2SEEOLtqw8oBpW5rjLgaFETRFEtmFid60ahzHVPFjo+vl5KXDmeRqVyyBM7Djcce2LHYUrldKbnbLX2QlLzsdvJYBjQ7WSwZA7fEk40ZtM6loWoJ/1XiPYgY7k1yXmbfE3Zqeh53obKpys8z/uNZrShnRUC3XAj3Zm10OWQCIhjeGnIZ2aPw8uDBcIoJm9bsmNGtBzTVJhhxEtHivzL5n0sPf8M5k7PM1LSPPXCYRae3cP+IwXO7Hb4/a/8hE27B1nU18PaFf1EcYxO1iGZ/dlvAyRpUq+5iKXnn8FN67Zw30cuJp9tyiVStJhqytPqLpmsMgiAFZecxT2P72rom5LyVAgh3r7qzvCqzqxFuRxiAPmsxcBImZk9DgN1c1259p48qiUejhTKOLbFwEhAt5PBSWkfUIbB/BndfPzvf1qbrybpOdMZ+Gq19hbKIR97YDMbdw3Uji2e3cu9qxbSJffAqdZqY1mIetJ/hWgPMpZbk5y3ydfsFfMjruv+FskOxQjA87znm9uk1ueMCYSM+pqdh4Z59+lTcCyFmbcxDOjN25ICSrS0nGXSlbVYeelZ9OazDBXL5LMWF/f10JW1cKZPIZdRDSlRoyjmT765nTuv7m/4WZt2DzKlI0NXLsOm3YO1dKdCvJ5COWxIu1cMYzpMhZWzuG7JrFrfk4CiEEJMjPpU0wAFP8RSEFZSTtfPdbPKkGvvSSZm/H6Q1geTc7bJHf/qsfrK85g7Pc/OQyPcscE7bq6aFq3W3s6sxabdgw3HNu0ebLiGiHRqtbEsRD3pv0K0BxnLrUnO2+Rr2kzadd0pwCzgk3WHY+D9zWlRe0hS8EXEdcPEVgZndjv84uUh5kzrIp9LFrhlkUW0OqUMMqbi1UKZUztizEqK0qxl8kPvEH+wbmvt6Wlfh+Qskwv+/Pssnt3LULHc8ET1or4ehoplDg75LOrroRCEslNRvKZqqulq0NA0DMqVdLujOsJShtTwEkKICaZ1VLu2VpmGgR9GZJSiFMbkcxYjJY2lDMnGcZLScZKhBZKPOgYznRvpGPU1B4d8ln7p8dqxxbN7GfU1XblME1s2vlZs76K+noadiov6elLbXtGolcayEGNJ/xWiPchYbk1y3iZXU+6yXdf9BPAz4FTgds/zfq3ynwQU34ZqKihlQFYZtf8gSQVVDSiOlJLFb6VkkUW0vmqtxGu/+jT/8tN9DJc0jm1y2ZxpPP+FK7hv1cXJDjGleOSn+1g8u5e1K/qxlMELh4exlFE7ZgAbth1g7Yp+OiQAJF6D1hGFQNdq1maVkdRPrNRxkoCiEEJMvOpcd9TXZOrmutXrrx9GVJ8XMgywTSVBxZPQidYK0rqGkFUGa1f0s3h2b8O8NJvSun+t1l4nY47bXicjWUnSrtXGshD1pP8K0R5kLLcmOW+Tr1nbcD4EuMAU4EHgu01qR9vQOiKKolr9xIKOanmCDZJcwuGYRRZZ5BbtwDQVvZ12LcVpKQgplkO6OiopJ22TmJiMMrh2cR/LLppBRhlYSjF3ehfPf+GK2uJkxlJcv2Q2X31yF9dfPpu8qYiimEI5xLFNCkGIkzHJd3UxUvnZhSCkw1IUdURHRlEIju1cc2yTYjnCyZiolC60iDcv2REeoqOYKR0ZSkFIEMXYysCxFH4US0BRCCEmWPXa25m1CMohJR2Rs1TtCUm5/op6Y+99rBRPw6yMiVEqN6TrLwUaK6VBr1Zr79h7hWpKenngoDW00lgWYizpv0K0BxnLrUnO2+RqVlCx5HleALziuq7dpDa0jTBMntoG8H2NjmI6xiysZJRBRhkow5A0L6LtmKaiq7Iw4GQtoigmKCdjwjAMohi+8cxejhbKfOSyWdi2yXBJ869b9rFh+0FuWza/9rN8HXHXYzv5xK/PI4piBkYDblq3hU27B1nU18NdK/vJnzqNG+5/pnZs7Yp+Nv9ykPPe1c0tjzxbO377VQt4dMs+Vl56Nr2dtgQW20B1l0y1Ds+or3lyx2EunzcNHUMYy4K2EEJMtPprb/W6+yvnTCespLFxsmbtuitzXRG9wWNpMeprbnroZw3pORfP7uXeVQtT2Zdbrb3QeK+Q1jaK47XaWBainvRfIdqDjOXWJOdt8qVhtVNW2d+mQjlZZOnMWtjKwCBJ/xRGSeLgMIrRUYxtpfPpUSEmmlIGOduiK5chjmNePlrimvf0cd2SWeRzJnsGC/zp+m1s2H6QNcsXkM+ZdOUsOm2Tv/3hzlqdlUI55KZ1W9i4awAdxWzcNcBN67ZytKgbjt380FYWz5nKLY8823D8lkeeZen5Z3DTui0UKkFO0brqF7ULfshQscyoX2bh2T08seMwQRhJQFEIISZB/bU3qwwWnt3Dvz9/iHIY1QKKUitcVBmAjuLj7oXSetPp2Ca3X7WgIT3n7VctwLHTee/Wau0VrUsx/liWK71oBdJ/hWgPMpZbk5y3ydesnYrnua77jyT3fNXPAfA870NNalNL0vrYIjbAzkPDnHv6FKIYKuMGUxnkLEm/KE5OhSBk9frtbNw1wIZPvo8N2w7wofeczZ1X91PwkxqkAMO+5rZvP8fhYb+2MGIYBpt2Dzb8vE27B5nZ4xx3bEpHZtzXzp2eZ9PuQVloaXFaRw1BQ9MwMAxQhiKKI5bMmyYBRSGEmAT1c13TMCiGEafkrIbrrq0MSWUoGijDqM3xks/Tex9UCEIe3bKP1Veex9zpeXYeGuHRLfu4bsksunLp69et1l7RumIgowwqyxqYlexL8Wt9kxApIf1XiPYgY7k1yXmbfM0KKn6w7vN7mtSGllfdNYOmtkPxzG6H514eYs60LvI5WeAWwsmYrF3Rz80PbeXuH+3k00td/uAft3DalCy3/Nf/i9NOyVEKQjpsky9+sL9hYSSOYVFfT0N6p0V9PewdLDT8G4v6ehgqlsd97c5DIyzq66EQhOSzzbrkircjimKKOiSOqS1eG0AQQ8ZSWMqUgKIQQkyC+rluthIhCmIo6Air7mE5UykJKoqaE4UP0xpWtJXBikvO4uaHtjak1rdT+kBoh2WO296OFGfFGa9Gujxwm34GSYrruLICGMcQxlITSbQG6b9CtAcZy61Jztvka8oKt+d5/96Mf7edaB0RRcmT29XacTqG7pxFx/QuWeAWosI0Fb2dNveuWkhn1qIUhLXPC35IKUjGz40PbG5YGCkEId94eg93reznpnXHFk3uWH4Btpmkeqp//cYXXuH2qxaMW1PxrpX9OJn0LrSI11YIdK2GYrkcEpNMRpwxtWvleiuEEBOnPuW0LocEUUxGGXLtFa9LKYUZRYSVRQPDANNIjqeRZSkc2+TL1y4kn7MYKWmUQWr7dUlH7D9SaGjvC4eHcWyLfArbPH6N9Aul3nmLsAwaxrIsBopWIv1XiPYgY7k1yXmbXLJtpgXVntoG/EoqqHIU0WE2LrJIbRkhEqap6DIVURQTQRJQDJKnlZUyiKKY+1ZdjJM1GSlpvv7jF/m/3z+Pux7byUcvn81ty+Yzs8dhuFTmgad2s/PwKHdfcxFduQwjvgZizj3jFN7VnePuay5iSkeG4aKmM2tyZf+ZdGYtWbRoUVpHOJVrahxDsRzSmTXJGIZcb4UQYhJVA4qjvqYQhJySs4iBoO7aa8u1V4yjqEN0GGKZxx7oKpQ1lmnSlcL+UghCvvbkiyw9/wzmZvMcOFpiw7YDqU0nqgyY1pXjxgePPZC3ZvkC0jrVra+RDlRqpG/hvo9cLFlEUk6fYEeBjsF+55sjxJsi/VeI9iBjuTXJeZt86btLEeOKopgg0ASBru1Q7Mxa2CqpFxLH8NKQj2Nb7BkoEEZxap/GFaJZlDLIZy2UUflYWf2ofvzwfT8hn7O467GdtbSlrxYCLNPgmq/8hNXrt/M7F8/k8LDP6vXbOXC0yP0/fpGgHAFgGAaGYfA3/7aDhbd+n2v/7mk6sxa5FKeDEidWfYCj4IdklIGlDLKWolQOOVB3vY2iGEvOsRBCTAitI4LKDvHqQxtZSzESaF4ec+3NyLVXjCOrDMohfOyBzZzz+e/wsQc2Uw6PpdBNG8c2+cCFM1i9fjvuH3+H1eu384ELZ6S2Hnc2o8iaituWzce79QpuWzafrKnIZtJ57+nY5rh1z9P6+xXHWEaS7npgJCCOYWAkSNJfp3MoC9FA+q8Q7UHGcmuS8zb55NG8FvCuM89EV3cmRkkyYN/XAJhGMho6LIWZtzEM6M3bsmtGiBOor6lSKocoIIrBySYLDtXaiH/7w53csfwCHtm8l5WXnFXbrVgMNPetWohTSaV63ZJZdGRMMpbGMKBUTo594tfnSc2WFlVNL13diVgKQnQcozDIWYooVuQsC8OAqXkbx5adqEIIMRHqr7++r8kogyCKcSyFHnPtzVny91Wc2Ck5q5buvrqrNa0KQcijW/ax+srzmDs931DfO407FQtByLqn97D0/DMA8HXE+q37U93e8eqeS73z1uCMs84hRKuQ/itEe5Cx3JrkvE2u9M36RYMwjDDtjmRxpbLA3Zm1kqe2lUEQRmA0poLKKEN2zQgxRhTFFALNwKjPDfc/w6e+sZVyGDHka44Wy+wZKLCor4dHt+xn7Yp+Dg/7rNnwn6y89Cx68ja9lT9EYQyP/HQfH77vJ4z4mn/56T6u/bunGSpq/ubfdmBAEkgcsxtStAatI3RdQHHU11gG6DAmjGPKUUzONomJicKYfC4j51gIISZAdXd49fqbVUbtRkXHEMYxTtZk1NfkpI6ieA1KKeIxx2LSW1MxqwxWXHJWw07FFZecldqFj1Zrr5MxuWvlhSye3Yulkrrod628UOqdt4jodb4WIs2k/wrRHmQstyY5b5NLHs1LqbE7ZapGKzsUdx4a5t2nT6k8uQ0GyU2cAdjy5LY4idXvRCwEIR2WwtcRo4FGhzGf+qefsXHXABs++T7iGG5et5V/uOFSPvWNraxd2c/N67ZiGPDlaxeSz1mMlDRxErsnKIcoA65d3Meyi2aQUUbtc8c2uW7JLJyMiWmmc9FKvL5qvdpqQBHgSEnTnbOkhqIQQkySakCxOuetPiQHYCupYSvenKIO2XlomDnTuoCkTMRzLw8xd3pXKmsq6himjNlZmVFGamu+RIzf3rQu1Chl0Ntpc99HLq7dH0gmkdYQc/xT8KpyXIi0k/4rRHuQsdya5LxNvpYLKrqueylwu+d5v1p37K8Az/O8eypf3wDcCGjgVs/z/ncz2vpWVIOJVZ1Zi4IfEle6vWmAZRic2e3wi5eHmDOti3wuuZmr7poR4mQVRTEDowE3rdvCpt2D3PT+uay49CwKfshn/+Xn/MMNl9ZqqsydnscwkpoqBT/k4JDPL/Yf5cvXJgskOw+NUDhcZs60LpRpEJWTBakzT3UIdMQn/jH5Nxb19bB2ZT8dlkmXjL+WpnXUsKCdVQYFHeFkTUphXAsyW7IbXAghJkT9vLf+YY5sJaACSTaO+utvWnebifTIquRe6cYHNx+bq63oT+1OOoCRQDNSCnFsi4GRgHzOxMmk81Y9iqEcRcSVMRpGMVEck0nx2KzWVQck5WkLMUiC7tW+FsfJ11IPSbQC6b9CtAcZy61Jztvka6kZteu6fwRcC4xWvp4GPACcA6ypHDsduAm4GMgBT7qu+33P8/ymNPpNqN+dWOX7GtMwsCq1E4+UNPmsSXfOouP/Z+/+o+Qo7zvfv+upqu6enh4hz4CwjASSQIy1gBgYZEexnM1d54blJpckEGzpLuCYxM71TRb5ZM16E5MT3bv4sATbB3Gyi23uSQzxXskhOIRNwiq/7PUvrRFCAkNIg5BkSRgjaQahmenpqq4f94/qbnWPRoOQpmeqWp/XOTqjbs1onup6nuqn6/t8v8+ivuYNmB6VgRKhUgu5c8uu5p4p11+5mI1bdvO133h/M3jY2FNlz+FxLlyQZ82yft6a9Ln/ltXc9djz3P0LeS4e6GXlhSUmvIBiLim11pu3uWxRH9949hBvVWrNTMbX3pxk6w8OsP59FzPQm1OWYkY1smRI7mefCCjWs8HryeAYC/KO0ep2EZGzNHXe69UXc8CJDPEYCOuXW8uCnG0035XTsnBKJl2aA4q2BY4xQNh8zjEGO6VNztkGP4w4VqnRV3A5VqmxsOiS0xxYOsCx2t8HdDNQskT9V6Q7aCxnk85bZ2Vt5v8qcFPL4xKwCfjTlufeB3yvXC575XL5LWAPsHrOWniGpu4j0/jjGgvHgkqQrOJeWHAIY3Dqe0BEYUxfwdUNFhGgmLObmYiQZCPu2D/KnsPjbcHDtSsGeOhbe7As2LxhiMd3HiJvG+696Sreu/g84jjGryU3dqx6QL8WRFgk5U7vWLecIIx4/dgkH/zDb/LFv3+FjVt3U6mF07ZL0q217F7eWLjG4lg1aAYUoxiKeZuKF1DMOQoci4icpenmvfl6+cQYmiWnXc135QycKps1rVmuYQyObdHfm+zf3d+bw7EtwpTWZ5oMQvYdHW9r776j480S8mkURTHjXkAU179GKX1xRUREREQywIrjbE2oBwcHlwFby+XyT7U8twn4Sblc/tLg4OCtwFXlcvkz9X97FHi0XC7/fev/s3PnzrhYLL7t76tWqxQKhVk8gpNdeunKtr0TG6WfgGQ/jSiedj+ZV199paPtajUXr0M3tWHVqlUdX/9wun14NqThtT+ddrx76TL+r//vuWam4rZP/QybnnyRC/ryfPrnB3li1yH+zU9dwlg1YGl/kaPjHgsKDkEUN/dY6c07jHsBOWMRRNCTs/nJW5Oc1+PSk3OY9EN+7y9+yN/88HXK99zApb/3NwA4xuLlz91A+Z//eU5eC+jseel0H07LNbj1+tu49uZMskvtXF1z0zK+OmU+ji9N1+BuP7/Q/ceoPjy7x3+qea9bv/bO5fV3qm7vy1N16zxiyfLLsK0kWNfoR43Hh/bt6WSzzsglK1ZSqSXlT5f2Fzk4WmmWP/3R3qTvp6lvLr90JcerARu37m4rL7ug4LDvNMbqXB9Lqa+PXN8An/r6c832PvCRq/HHRhgfG5v2Z+b7GpyW8z3f7Vhx6cpp3xNiYO8c3gtpNd+vSauZ2jKf1+CsvEadlsb+C+k5P/PZfyFbn+XUhvltw5mMZV2DE7oGnywL5+d0+2+myp+epuNAX8vjPuDYdN+4atWqt/3PXnrppdP6vjPVmiHTuo9Mgx/FGMs6aT8v2zYdbddUnX4d1IYzM1dtSctxv107oihm84YhNm5JbnJse+H15uMv/l2ZT/3c5Ul5JsdgWdCbczheDbj3b17ijeMem9cPEccxUQzffOUIKy7o4/oHvs3aFQNsuvEKNj35IptuvIInn/sxa1cMsOfwePN3r1nWz4QXnHPj8mzM9zV46vW3UfKLw1MkAAAgAElEQVS0ZkEUcdIeip1qR9bP49vp5uOb7z6cFt1+jN18fHPdh2ea9zb2UAym2UPxXJvvzJWsH++p2u77AcemCXotLDipPF7PD05Z/rTR3jSdK89Ptgd46NZrWdDjcnyyhlNfFJDG98VxL+DjjzzTXHS4fe8In/r6czz80etYumTJnLVjOqd6HdJyvue7Hb4fnHI/pPlq13y/Jq3muy1p778wv21JY/+F9JyfNLQjje9ZakP62pDWsaxr8MzSet666fx0Y1DxaeBzg4ODBSAPrAJemN8mnSwMI8IwOiliDhDVv8eQZMxEJLV/qX/NO0bl9+ScFUUx1SAkiqAnZ/BqyYgxFtSimIHeHJtuvIKVF5aoeCGPP3uQP/zV1Vz0rp7mDUzbsqh4AQXHJsbmix8ZYsILcE1Saup7Lx/mqiUL+fy2MmtXDHDfzat5Ytch7r9ldfO5zeuH2Pr0ARxjNW9WFetl2iT9ThVQ1B6KIiKzr3X/xKnz3sa117HQHooya7K0p2JM0tfbyp/WV1KnUQwYy8I050oWxkpve6dujwCwY/8oxZzm7Vmg/ZAky9R/RbqDxnI26bx1VtcFFcvl8k8GBwcfBL5DEpf7bLlcrs5zs9o0AopwoiRPzlgEMdjWiY0uW2+89Dg2xrLoK7jz13CReXb+okUcr9YY9wK+sTMpZRoT49pJcHHj1t384a+ubmYU5h3Df3/hDf7gyX8CYNP//i/4365a3LZy/eHbhxmvBvTmbca9kL6CwwdXXoCxrGawsZiz+di65dj158arAUU3ee63P7Qy+R7XVrA/I6YGFN0pAcXWPRR7dF5FRM7KdAHFnLHwoxjXWCdde2teADGa88o5I4qhFkXNldRRHFOLYtyU7gGZtfZW/JA1y/qbmYqQVBip+CGlfNfdDhERERER6bh0zvxnUC6X97fup1h/blO5XP5Sy+OHy+XymnK5PFwulx+f+1bOrFIL8aIYL4qbN1YaYpJgolPPeIrCmEP79miVtpzzwjAiX1zAsUqNux57nuuvXMxYNdl/Jo5h49bdbN87grFg8/ohtr3wOr05my98+GrWrhjAMRbbXnyDvGv4yu3DvPy5G/jK7cMcHqsyVq3xk7eq2PWU4DCG//CNH/Lo9/cTRjGWZRHH8GfPHGTF7/4Nv/mnO6mGEX0FtxnsV+ApG8Lw5AzFahBRUEBRRGTWNa65rQHFxt52jUwsL4op5GxiYqIwplRwlR0uZy16m8dpUwsjjlVqxDEcq9Soheltcd41+LX29vq1iLybzjlT0bV5cMM1zc8Da1cM8OCGa1RhRERERETkDGlp3hyL6jdVGoJaSCWI6KmXfZqanahgokgybib8JBDUm3fYsX+UyxaVmv9uWTTLGr37vB7iOOZXrl1CfymHV4t4+PZhinmHihc2SzVVvIDvvnKE4Uv62fr0AR78xz1JGdMNQxgLjox53PPXL7HtxTeapU4f/Mc9rF0xwAMfuVo3IjIoDCMmaycCikEUY1snZ8k0SuMqoCgicnYq9Wsu0MwMP14NKOVtLJJsRc17pROm9qQ096y8a5jw2p+LI1IbpJv0I7Y8fYDrr1wMgBdEPLn7Ne5Yt4JSIX1tNsZioDfHwx+9jmLOpuKHFF1bixdERERERM6QgopzrOIHJ+03UXAMYf2Gdmv2jG6syLkgimIqtZCCY5oBn6ofEsVxMxAIyU3HPYfHyTuGNcv6m38HWFh0m2WNGs//7jd+2Fbm6Fuf/lkAenI2k37IxQNFVi0+D9vAjUMX8Vv/aiXjXsDeI2OsXLSAh2+/jmLe5o23qhRzNnesW8Fvf2glFT/kzSM/wZy3ZB5eLTlTjZKnYT1DPIhiLJLyXcY2hLFubIuIzKYgiJrXVQC3nhm+oOBQq2cn+l5ArRbSm3N0g19mzXQ5funN+0vKc04XpPvYuuX0pTFIZ8FNw0u467Hnm9sJ3H/LatI8hI2xmqVOVfI0O6bbpzOte3eKTKX+K9IdNJazSeet89L3KaWLBUFEMe/gGot8/U8YxQRxTBDFFPM249UA27JwHGVBSfcLgoijEx7fefkwoxM+n3h0J7/z9d2MVnw+/uhOLv/sU3z80Wco1gOKjZKm99+ymm0vvE5fwaFUsLHqJU/XrhjgoW/toVRIvqe1zNG7ii7vKrrYBhzb4o/+4RWMZfFf/+cBjGVx6//7A/7gL1/g3Qt66MkZ4vrbTV/BpZhzKBUcjJXckBgfG5vnV07eiSCIqNZLni7occkbC4skw9W2LILoxIKOoquAoojI2WqUPZ3wAia8GnljYUhKniaLOk5EH2xjFFCUWWWAIIoJo2QuF0bJZ620vrsXcza/fM0SNj35IoN3P8WmJ1/kl69ZQjGXzs+DedeQtw333nQV5Xtu4N6briJvm9RmVkp2WSTlshv7d8Zx8ljvGJIF6r8i3UFjOZt03jpPy/Q6LAwjwvqeGF4UYwUWtgE/ismZE2X3Gr3aWFBQORbpIs1MRNswGYQUczZeLcK2wAtjNm7ZzUO3Xssnv/Ys2/eOsO1TP8Ndjz3fzDLcvneEAyMVtr3wOr98zRK2PH2Am4eXcMe6FfTkDNVahAXkC8leiY1Mx6JLM9uw4oXNGzPVIPm3xs9/bN1yijm7+bMVL8Qi2ScRoFTQZTLLpmYohlHM9leP8qHBRSfvoaiSpyIiZyyKYoIgBE6U8/drIcYyjE769PfkyBmr/m+2MsOlYyIgV9+zE8A2FjljpTZbseKHPLHrEJtuvILLFpXYc3icJ3YdSm2mYtYyK+HE5xGVP82WCHAsCOunyrKSx2kdyyKt1H9FuoPGcjbpvHWe7pZ3UGtAEWgGO8J6mLwSRCzocalM1nCMRRTGlOqBDJFuEEUxIxM+Y1WfUt5l69MH2PC+i6lFMaV8kv23Y/8oC3rc5p6Ily0qNf/e8MDfv8zv/cIqtv7gAL9y7RIWL+xhZNwDHHpydjOLccP7L6Y351CcUtaoNTBYzLX/W+PmR+OrgojdoxFQbOznVfVDLAPDl/TzD+XDrL30fBb0uLqxLSJylloDinAi+/vIWJVFfQWCyOC4Nsdb5rx9mvNKB/lTMhV9kkzZNGpkKn7m8RPlRO+7eXVqMxWz1t7G55E7t+xqtvfBDdcw0JtTYDHlDNOP5ZzOm2SA+q9Id9BYziadt87THdQOqtRCvChu/pnwAowFQZgUVrTrHbmxelY3tKXbVGohd27ZxQV9BTZu3c31Vy5mwg/5d3/2HKVCkhW4Zlk/xydrrFnWD8Cew+PNvze8cdyj4Bh+7QPLec/CHl4/NglAT85Q8QNWXljijnUrGOjN6+aAAMkNpEZAccILOD5Z43+8fBhI9tJZt/ICBRRFRGZJxQ9OmvO6xqKUdzk8VtWcV2QGk37UzFQs33MDm268gid2HWLST+da6qy1t/F5ZPveEYIoZvveEe7csotKLXz7H5Z5FZEsBmh9D3FSnHUs0kr9V6Q7aCxnk85b5+kTfQf15p22P7n6Pl5OfS/F3rzD8ckaFmCMToV0n2LOZsf+UXrzSUbiZYtKLO0vsmP/KOPVgAk/4P5bVrP91aNteyJO3Q9x8/ohvvq9/Tx7YJQJP2Dxwh5c2/C3L/6Eai2COMkwVEBRoF7iyg+aAcV8ffIwfEk/33nlCH4YNf9NAUURkbMTRTHFKXNet76HYjFn09+b15xX5tSpelhae56x4Kbh9j0VbxpeQlqntVlrb+PzSKsd+0dTm1kpJ2Rtf1SRVuq/It1BYzmbdN46T3X+OqRRdq+VbSWftKbb40M3taWbhGHUXP27Zlk/E17AmmX97Dk8Tt4xrFnWz7M/GmXo4ndhG1i1+Dz6i7m2PREfvn2YYt5hrBrwF88e4sahi7h4oEjVD6l4IQt6XD54+SLtiSInqfgBQUumTGMPW6eQZCgqoCgiMnsqfgBYxM3ZbTLXbVx7NeeVuZa1PRUBCq7h3puuYml/kYOjFQpuusdJltpb8ZPKKI392iH5fFLxQ0p53Q5Ju+nGskhWqP+KdAeN5WzSeeus9M7+M6wRUHSNRb7ljx9GYIFXz1Js3PB2HK2SlGyKophxLyCMIsaqNaI4puoHjEz4fOLRnfS4Ng9uGOLIWJXN64fY9sLr9OZsvvDhq/nyt/fx2psViq7D+aU8xraohTG/8/Xd/Pojz3BsssbohMcf/OULbHvxDYo5m4oXkLNNkpVoWZTyyk6UE8IwwvcDinmHBT0u+XqmDEAQQ63l2quAoojI2QuCiGLewVjJh7bGnDeMk8ocU+e8ylKUuTDtHiopXpmcsw3OlLHhGEPOTmeLs9beomvz4IZr2qqgPLjhGoquPoNnwdTFAGleHCAylfqvSHfQWM4mnbfO0tK8WRaGEdX6Pl5+LWyu0gYoOoYghqQIKlhAzlGWlWRTFMWMTPhs+cGPuHl4KZ9+7Dl27B/lmbt/jo1bd7N97wivHplgYdGlx3XoL+b42LrlFHM2Xi1qZiJW/ZCYmDiOcW2LL35kiIoXNksoffEjQ82bkV61glNYML8HLqkUhhFhGOFFMb4XEkQRMdDrGHJTbmznlSkjInLWGovorMDCNjAZRPQ4Jin1b9GSt5hwjNG1V+ZE1jIVJ4OQ7a8eZe2l52NZsLDosv3Vo6xbeQF9KRwz1SCatr0fXLmIUgrba4zFQG+Ohz96XbJI0Q9V6SQjIk5eBW/QTUHJBvVfke6gsZxNOm+dp6DiLKvUwuaN6yNjVRb1FagEEQt6XI5P1nCMRcGxkyyrgjvfzRU5Y5VayJ1bdrHpxiv49GPPNUsKLehxm/uW/Odv7uE//tIVjHkB/+Vbe7j+ysWsXFQiiGN6XZuxyYDvv3qEq5YspOInYycZG+2Xpr76WNn36muct0BBRTlZo9xub95h0g+xLCCGyTAijmm7Bis7XETk7E3WF9FV/ZAwjnGMxeSUOW9Pfc7bpzmvzKFpMxUhtSWPevMO/3bLboLoRCjeMRYvf+6GeWzVqRXzdqbaC0lgsVHqVCVPsyNrY1mklfqvSHfQWM4mnbfOS99SwowKgqTsXm/eoeKF5IxFKe9yeKyKXe+w2ktGukkxZ7Nj/yiXLSo1g4gAxydrrFnWD8CTz/2YcS/AtQ13rFvBygtLjHsBvTmbMS+gN2+zavF5FFxD3jH0aGzIGQiCiN6801zQ8fIbx4njJEvGNSdKdDnGophTyVwRkbPROued8AKMBUGY7KioOa+kQUzynt/aH52WzMW0aew93qqxJ3kaVbxw2vZWvHCeWiTdKmtjWaSV+q9Id9BYziadt87TJ/1ZEAQRUZSU3WvcXAlJVkGeXyrQm3cYrwbYlvaSke5R8ZMbCnsOj7fdWHhi12tsXj/U3Lfk8Z2HsICPP/oMv/P13c0bJJZlYYzF+aU8BdchJimdJvJONMrvTXhBs0zuRQuL7Ds6jm1ZFHI2MTFBLaRUcBVQFBE5C1PnvK6xiOJkj7U4RnNeSYUYiGKI63cN4rj+eF5bdWo9rt02d167YoDN64foSemef8aC+29Z3dbe+29ZjaZYMtssph/L6mqSBeq/It1BYzmbdN46T7U/zlLjhjbQ3EfRAJUgImebpAQfYFn1Te21Ylu6QBTFGODBDUNs+cEBPn/L1c09Fbe9+Aa/cu1FfOnWYfp6nHoQMWbTjVewclGJcT8gjk5cyF87NslD39rDFz481BwvIqejcf2deu1dUHDoWdTXzKLJqeSpiMisaJ3z1mohFhDUS59qzitpYUj6ZVS/ixDFMVEMTkonmtVaxM4fjfLQrdc2ywc39yi00zeO8q4hbxvuvekqlvYXOThaIW8b8m762irZZ1sQtry/2OkcxiLTUv8V6Q4ay9mk89ZZmvmfhdYb2o2b15DU7C06hjCOm8/nVQJKukQQRByd8Pj1R57hxR+/xa99YDnvPi/PV24f5uXP3cDDtw/jGtMMKLrGwsKw8sISrx2b5Kvf3ceP36ry1e/tY7wacP0D3+aN4x4HRytUfJVNktPTev2d8AImg6h57U1WHyWzBQtwHVsZiiIiZ2lqqekYCOJkX4papDmvpEejX04txxukNFXRWHDVkoV88mvPcvlnn+KTX3uWq5YsTG3m36QfseXpA3j1CiNekDye9FVxRGZXxMkZBVb9eZG0U/8V6Q4ay9mk89Z5ylQ8A1EUEwQhXssNFIC8sZqdsxJEzZWmjlEJKEmnMIyo1EKKOZuKf+JrI/MrqqeHD773vVS8ANsCL4zZuGU32/eO8NCt1zI64WOsPCPjPiPjPr/7jR9yQV+eu39xFVt/cIDrr1zMpRf0MuEFXLSwh+uvXMwTuw6x/n0X8+yB0WbJpL68QzGlZZ4kXaYGFO16yekwjqkEcfPaW/Fi7aEoIjILmpU56lu8Nea8URxTCWPNeSVVHCv5LHasUqOYcxgZ91lYdCmmONhdcNsz/wopzvozFtw0vIS7HnueHftHWbOsX+VPpSMMyYLtMEpWBIRRjE+yaEAk7dR/RbqDxnI26bx1noKK79B0AcWcSXJi/CjGra+EbSyEtY1FwbG1YltSJwwjRiZ8tj59gF++ZglP7DrEL1+zhM88/jz/+soL+aWhixj3Au567HkuXJAECXOOTW/eYcf+UQAW9Lj0FVx+8tYkC4suQRRx/y2rueux5zlyvMqvfWA5vXmHPYfHOa8nCRiuvLDEexYuJ2csfubyRVx3yQDGQEHZZHIapgYU88biWDWglLeBZG8vSDZkVkBRROTsXXrpyuZ1t1HyNCZZ6ak5r6RV0THYpRyWBQOlHHnNB2aNsaCUd9qCoKW8o6CidMTU9xndDJQsUf8V6Q4ay9mk89ZZCiq+A0EQUQ1CYmgLKE4GET2OIVdfte23BByLro2dwr0wpPtNzULszTtU6+VFoxhiYjZu3c2mG6/gM48/3/zayEA8Vqnxu9/4Idv3jrDtUz/DeDXk4oE8r7wxzppl/WzfO8LxyRrHKjWe3P0aH/3pZfS4DkUXHr79Oop5m0k/oOIHrLywxIQX0OPaTHgBvXmH8WqAbceUCroMyemZGlCEJBNhYcGpL/RI+ldQCxVQlNS44ZG9wN539DP7/9MvvOPfs+w//PU7/pkz/V1n4kzaN1dtk1MLguikhXRBnGSCAW3/1qOAoqRExPR7fKjc0eyI4mRfmoVFt+1rlNLyspAsDG6rzuJqMaOIiIiIyJnS3fzTFAQRURRRzCcvWePGCkDONgQxxDEU8zY1LyAKY/oK7nw2Wc5hU7MQP/P4iWzDai3irsee579+/P3s2D/KZYtKbV/hRAZi4/Fli0oAHJ+sse2F1/n8LVfz6cee4y93v8YvDV3Er163lEe+v5+bh5cw0JsjjJO7ClGcrGb+1NbdHBnz2HTjFVz/wLcBWLtigIc/eh0lBd3lNExX8tQPYxzbotayhyKAbRvdKBI5TWcajDzZOwucSvpNlxnuRzGOsZrBRM8L8GuhFtFJqmSt3JGxwDGGpJh7wjEmtZl/xko+9x6r1OgruByr1FhYdFPb3iiKGZnwuXPLrma51gc3XMNAb07zxQyYuhjgVIsGRNJI/VekO2gsZ5POW2fptXwb5y9ahO8HTNZLnla8sHljJYyT8k+OlewpU6xnyWiltsy3Si1k49bdXH/l4mb24Sd/9jLGqyF3PfZ8M8twzbJ+9hweb/sKSfDw4Gil+XjP4XEOjlbY/upR1r/vYh7feZAH1g9x29plFBzDwh6XO9YtZ/HCHoIIbMui6odEUcxn/+IFjox5bF4/xLYXXscxFmtXDPDghmu0h6K8rfdcdFHzGty4se0ai3EvJGdbGKzmgo6KF9Cbc3RjW0RkFkwXUJwuKOMYo+uupI5rLOx6f7WNhZvi4FHWMv+y1t5KLeTOLbvYvneEIIrZvneEO7fsolIL3/6HZd5NfXfRu41kifqvSHfQWM4mnbfOUqbiDMIw4ry+85qrsQGqfohjnbixEqPST5I+jX0PW7MPG9mGjcdP7HqNzeuH2Pr0Ae67eTVP7DrEfTev5jOPP9/MQGzsj/jQt/Zw9y+u4uql72Lnj0a5/aeXsaDHZdIPW/LDGn9LdlrKOYYwjvniR4ao+CE9juGOD67gtz+0UmWH5LQEQURPodi8xo5XAwp2sofigoJDbUrJ05Kyw6VLzF724Lkn7WVgsyIIoraAYhDTLPNf07xXUs4YQxS1r0226s+nUdYy/7LW3mLObn7+adixf5RiTosbRURERETOROaCioODg+8H7iuXyz87ODh4GfBVkijGC8BvlcvlaHBw8A+AXwAC4FPlcvnpM/ldjdWLrft35YxFJYgoOuakGysq/SRpMeEFbdmH2/eOsOfwOHnHNB9v+m//xLKBIr+2bjm9OZtf+0Dy9Su3D9Obc3iz4rGwmGvuj1j1Q4oufHDlBRTzDhUvxBgoOO3BwdbATl99PJTqQfnSlMciM5kM2q/Brx4ZY/n5pZY9FE/c8HYc3RgSEZktk0EIQZLt1bqQTgFFyYJk/pAscmvwogiimL6U9lnHWG2Zf05aI3R1WWpvxQ+bn38a1izrp+KH+kwiIiIiInIGMjWLHhwc/PfAbcBE/akvAneXy+VvDQ4Ofgn4pcHBwR8B/xJ4P7AUeBxY805/V2OFNpzYP9Ei2Z+j4JjmDe2a9pKRFCq6dlsW4mceP5Ft2Mg+3LF/lC9/ex9/tGQhFaBUcDgwUmH/yDjXXNzPu3rzVLyQyVpAwTXkXZvBu5+ifM8NHB336C/mqAZTK1SLzI6p1+C8sbhoYZF9R8e5/MIFzT0ULcBxlPUqImfn7TMcT94zspuzG3vzDkFLacAghjBWQFGyIW8sjlWTrQAae+htXj/EwkI6P/o6xhBEJ5fidFKaWZm19hZdmwc3DHHnlt0teyoOaRuGjNB+SJJl6r/ZFUUxlVrI4OB7Ga8nkeiew7lLYzmbdN46K52frE7tVeAm4E/rj4eB/1H/+1PAzwNl4G/L5XIMHBgcHHQGBwcvKJfLR073lwRBRBRFTAbJxhCNsk/GOlH6qZVray8ZSRfbNgz05vjYuuUUG9mHeaeZbdjIPqx4AcZKJkbPHXyTSxf1cfHAIsaqAePVGmPVgE8/9jz33nQVXhA1sx83PfkiX75tmK9+bx8b3n8JA705TbBk1gRBRKUWYiUJ4s0M8YUFh55FffTkTpQ8LeYc9T2RLqUysPOnsZgjIrkGn5wdrnmvpNvCgtOc/zb6bVpVg5BXDo9x6QV9ABjL4pXDY6xc1EcppWPNWFaz3Gny9/S+vnEc49qGe2+6iqX9RQ6OVnBtQxy3Z7NKOmk/JMky9d9siqKYkQmfO7fsalmMco3ue53DNJazSeetszIVVCyXy48PDg4ua3nKqgcPAcaA84AFwEjL9zSeP+2gYqPknmssDPVItpV85GjNUIzCmD7t4SUpZdumWX60N2cl+xjWgzHFnM3xyRp9eYdKLXl+5aIF9T1SYipegGMsHt95iPtvWU3eNjy5+zXuu3k1n//bMjv2j1IqOFx/5WLu3LKLhz96ncoHyayZDEJKBYdaLdmzsxJE9DiGIKYtQ9G2jSb1IiIdkG8pezo1oKiFdCKzq5h3uOVL/5MgipvPOcbi5c/dMI+tOrXJIOQTj+5sKye6dsUAX7l9OJXlZSu1kE9+7dnp26vrmYiITFGphdy5ZVfzfWP73hHd9xIRmSLrV8PWpME+4BhwvP73qc+f5KWXXpr2Px1873sBqNXC5g0VoO2mihXVeOWVPWd9AKejWq2esq1zRW14Z21YtWrVHLTm1H347ZT6+jiv/wIsY2FbJwKOFT/EsixKBYdizuaOdSswFuQdw/VXLubzf1vmyed+zNoVA1S8kMsWldixf5Sia8/JuUlDHzhX2jEXfXima3DFC5sr4Iv1gGIU08ywffPoGxwcG+t4G+dCWvpTp8zH8aX9Gizd4UwyKZ/66IrT+r757sOXXrpy2uocAC+/XO5so+ZRt1+Pp+rWecSll658xz8zn5YuXzn9nn9eyMF9rwDp6puD730vO/aPtj23Y/8ovXnntNo418dyJu2d72twWs73fLcjjWN5vl+TVjO1ZT6vwVl5jTotjf0X0nN+5rv/wgz3Iwanf9+Yq/teU6XhnJ3LbTiTsaxrcELX4JNl4fycbv/NelBx1+Dg4M+Wy+VvATcA3wT2AH84ODj4eWAJYMrl8tHpfvhUL9JYtQbAd185wv8yuKgZTPTa9k905/SNbq5+l9qQ/ja0mo22FPMOFT/g8HGPC88rUPWTTF3Lsniz4vPCa8cYvqSfTU++yI79o6xdMcDm9UNM+AGvHZtMbnrUwjl700zD6692zI6ZrsEVP8Q2UMw5bQs6/HrJ09KSJXPc2s7J+nl8O918fKd3XCfvxSfnrrSNhVO1p+on9adrLddftx5kTNsxzKZuvl5NJ+vHe6q2V+r9t1XjmTQeb8UL2vY8X7Osn/tvWY2xTrQ3TedqrFqbNgg64QWn1ca5PpazbW8nner3p+V8z3c7qtOM5cZil/lq13y/Jq3muy1p778wv21JY/+F9JyfNLTjVL9/3AumX+wzR/e9pkrDa3UutyGtY1nX4Jml9bx10/nJer2Pfwf834ODg9uBHPDn5XJ5J/AdYDvwOPBb7/Q/7XFs8sZi+JJ+vlk+TNhWikb7J0r3KTg2jm34o394hQkvwAtCDoxUeM/CHlYtPo+Ca/jih6/m5c/dwJdvGybvGgyw7YXXeXDDNRRde74PQbpIj2OTr5fPGqsGzZKncZzsYauSpyIineUYQxDFzTlwGMUEUYxjNAeW9Cs4NrUgYmTcJ45hZNynFkQUnHTOV3O2oZR3uPemqyjfcwP33nQVpbxDLqWfOXscm83rh1i7YgDHWM0Fhz0pfX2L7vTt1eeX9NN7kWSZ+m92FV2bBzdc0/a+ofte5y6N5WzSeeu8zGUqlsvl/cBP1f/+MvAvp/meTcCmM/0djmMIAlhYcFi38oLmCu0ex9ySHgQAACAASURBVMZJ4T4RImfLGIuB3hx3fHAFPa7Bq0UUHAfLgoFSjmLOxliGqh/iGAuwKJUc7vjgCoqurSCPzCrHMZRw8MOoreRpKe+or4mIzAHHMRQ4sc+4baxkAZLmwZIBxlj0FVxs22AB5/flUz1fbcx7bGM1595p/tzpOIb+Yo6v3D6cic/Jtm0Y6G1vb1J5KJ3tlRP0XiRZpv6bXY37Yw9/9DqKrk2lXrEurfMI6SyN5WzSees8vZKn4DiGXM7h0L49GCv5YKqOJ93MGItS3sE2hmLeoVRwmn3/5XI52Wcxf+KPbYyCPNIxjpP0w4P7XsFYFqWCq74mIjKHHMfQV3Ap//M/ax4smdOY15bL/5yJ+WpjvGXlc2fW2mvb7e1VQDE79F4kWab+m11Zm0dIZ2ksZ5POW2fp1RQRERERERERERERERGRGSmoKCIiIiIiIiIiIiIiIiIzUlBRRERERERERERERERERGakoKKIiIiIiIiIiIiIiIiIzEhBRRERERERERERERERERGZkRXH8Xy3YV7s3Lnz3DxwmTPDw8NWJ/9/9WHptE72YfVf6TRdgyXr1Icl6zSPkCzTNViyTtdgyTJdgyXrdA2WLDud/nvOBhVFRERERERERERERERE5PSo/KmIiIiIiIiIiIiIiIiIzEhBRRERERERERERERERERGZkYKKIiIiIiIiIiIiIiIiIjIjBRVFREREREREREREREREZEYKKoqIiIiIiIiIiIiIiIjIjBRUFBEREREREREREREREZEZKagoIiIiIiIiIiIiIiIiIjNSUFFEREREREREREREREREZqSgooiIiIiIiIiIiIiIiIjMSEFFEREREREREREREREREZmRgooiIiIiIiIiIiIiIiIiMiMFFUVERERERERERERERERkRgoqioiIiIiIiIiIiIiIiMiMFFQUERERERERERERERERkRkpqCgiIiIiIiIiIiIiIiIiM1JQUURERERERERERERERERmpKCiiIiIiIiIiIiIiIiIiMxIQUURERERERERERERERERmdE5G1TcuXNnDLztn/3795/W93Xyj9qQyTZ03On24dn4k4bXXu2Y83Z0VJauwZ3+0+3HOE/H13Hqw+fOMaoPd/f5PVePdQ6Ot6POtf7bLceRoWPpuJn6cFpeo7S0I01tSUs7TqMtHZWF/pumtqSlHWlqy3z2X8jWPEJtyGQbOkrX4Gy2I0NtOS3nbFDxdE1OTs53E9QGtWHepeW41Y52aWlHJ+kYs6/bj+/tnAvH3+3H2O3H93bOpeM/l44Vzo3j7ZZj7JbjgO46lk5Jy2uUlnZAetqSlnZAutrSKk3tSktb0tIOSE9b0tKOt5OGdqoNasM7kaY2pqUtaWkHdFdbFFQUERERERERERERERERkRkpqCgiIiIiIiIiIiIiIiIiM1JQUURERERERERERERERERmpKCiiIiIiIiIiIiIiIiIiMxIQUURERERERERERERERERmZGCiiKnIQgixqo1Bt/7XsaqNYIgmu8mScaEYdKHojhmvBpQ8QKiKCaKYsa9IHm+/pyItAuCiIoXMF6tj5VqTWNFMiOKYjw/aL4HaB4h0nmNeVdj7h6G6R5zWZsPZq29kl36HC5Zpv4r0h00lrNJ562znPlugEjaBUHEaMVn49bd7Ng/yppl/WxeP0R/MYfjKC4vby8MI0YqPhu3nOhD99+ymr58cgn+P7/27Im+tWGI/h71LZGGIIgY9wPGvYC7Hnu+OVYe3DDEQG8eY6z5bqLIKQVBhB9GjHuB5hEicyQMI0YmTp67D/TmsO30jbkoihmZ8Llzy66W97hrGOjNpfI9LmvtlezS53DJMvVfke6gsZxNOm+dp1dRZAZRFDMZhGzcupvte0cIopjte0fYuHU3k0E4382TjKjUQjZuae9Ddz32PG9WarxZqbX3rS27qdRCgiCiOiWzJe2r7EVmUxBE+H7AZBByrFLjrseebxsrd9bHikhaBUHEZBASRLHmESJzqFKbfu6e1veMSi3kzi27przH7VJ75Zynz+GSZeq/It1BYzmbdN46T5mKIjOo+AG9eYcd+0fbnt+xf5TevIaPnJ5T9aGl/cWTvrfRtyb8gKofZmaVvchsCoKIahASk4yfYm76MVTM2fPTQJG30QgoNuYKmkeIzJ2szd2LOTtT73FZa69kV9bGskgr9V+R7qCxnE06b52nO9MipxAEEcW8w4QXsGZZf9u/rVnWz4QXzFPLJGtO1YcOjlY4OFo56fk9h8cp5Z1MrbIXmQ1RFDezE4MopjfvMF4NODhamXYMVXyNB0mXMDyRYdubd6h4IeNVzSNE5lLW5u5qr8j01Ncky9R/RbqDxnI26bx1noKKItNolD2teCE5Y7F5/RBrVwzgGIu1KwbYvH6IvPYMkdNUdG02b2jvQ/ffspp3FV0WFt225++7eTXbXnidCS/Qqho5p0RRTLUW4tWDiQt6XCa8gFePjLGw6HL/LavbxsqDG4YousqKkPQIwwgviJp9OPnAEmMM084jehz1X5FOcE8xd3dTOncv5mzuu3n1SfPBtGb+Za29kFyftaVA9uT1OVwyTP1XpDtoLGeTzlvn6e60yDQaZU+rfkgtjllQcPjK7cPNm4SusTBGMXk5PbZtGCjmmn2o4oUYC3KOwQ8ivnxb8vyew+M8sesQ6993Ma6xWLOsn+17R5r/T+uqmmLOZsnyywijiIofUnRtlUWVTKv4AVEMpUJynQ2jmNEJj4sWFtl3dJzLL1zAw7dfRzFvU/ECijkHowmhpEilFhK39OEginGNRRDG9OTstnlEj2Nrg3iRDjEk86SHbr2WBT0uxydrOMZK7WraST/iiV2H2HTjFVy2qNScD96xbgWlQvpanbX2hmHEyISvLQUyarrP4SJZof4r0h00lrNJ562zNIsWmaK17KljQRDG1KK47XsM6GagvCO2begruBjLolRwKOYdJmshXhjh2hYVP2DlhSU+tm45rx2r8PVnDk67quYbzx7iE4/u5CdvefzJd/fx2ptV/uS7+xiZ8Kn6ARUvSIIzU/qsSJo1rruNYAyAYyxKeZdxr8Zli/roydnExERhTKngKqAoqRIEEb0tffjIWBULCOOYXP2mtQKKInMjJnkPsevvE7axcIxFWmdGxoKbhpew6ckXGbz7KTY9+SI3DS8hrW9zWWtvpRZqSwERERERkVmkTEWRFmEYMRmEWIFFzlj4UUyPY/BbSpnljKVVrTIrXGMRRjETfkAYgYVFMWdz2aI+rl76Lrxa2FxVc3yyxhO7XmPTf/snAD792HNsuvEKPvP482y68Qo2bt3Nl24bTvqoY+EHEX0Fh0k/xDEWQRRTbGRJGig4toIykgpBcOK6G8UxjrHwwwjHtugrOPTkbAVjJNUafZgA4hgqfo1S3mV0wuPdC3qIYupZ6gG9yrAVmRNRnIxHSL5GMdgpHXp515C3DffedBVL+4scHK2Qtw15N73vdwW3vb2FFLe1N+9oS4EMmzpsUzqMRaal/ivSHTSWs0nnrbPSO/sXmQeVWkhv3sFYEALGspi644ZtjIKKMityjo1jLAqOTW/OoZi3mfRDbMtiwgt4+Nt7geRm2HX3/H0zoAjJzZDLFpXavvYVHP7dnz3HeDXkWKXGj49V+fijOzleDfjj7+7j8s8+xccffYbRCT/ZV0bZjDLPGsGYxnXXGPDDiJxjMFiE0YnsrqKrgKKkT2sfduvZUMYyRHHEBX0FCsqwFZlzpxplaR19k37ElqcP4AXJpw4vSB5P+unc96+Qs7nnr15qa+89f/UShZTuqTjhBaxZ1t/2XOuWAiIiIiIi8s7o7pxIXaN0WaPsqV//oBy0ZCnmjaWb2jJrjLHocZMbMMk+cSHGsth3dJxPPLqT9e+/GD8IOThamfZmyJ7D421fJ7yAHftHWdpfZGl/kYve1dMs8XT9lYubJZ/ueux53qzUVPZJ5lVrMGbCCzD1ctO2saCeVdLYP7E352gxh6RKFMX4ftDWh49N+kT1fZh7864ybEXmSUSSlWjVo4iWlTxOZ4gue+VEJ7yAN457XP/At7n09/6G6x/4Nm8c91IbpHONNe2WAtpXR0RERETkzKjmhwjtpctmKnv61thbXDAwMN/NlS5i24aiZeHXQoyVBFJWvec8vnzbMH+x6xBvVWrc/tPLuP+W1dz12PPs2D/KmmX9fP6Wq3l850Huu3k1T+w6xOb1Q/hByJpl/RwcrQBwfikPnMhqbGgEHi3dS5F5EEUxQRDiTVmwUQkiCo6hFsUUcjYTXkCtFlJUuUhJmSCICKOoOUcYrwYUbItJyzDu1doCilqMJDI/alFMWK/IEEYxNZJ9FtMoa+VPe1ybzeuH2Lh1d3Neunn9UHOhXNq4jiHvGB669VoW9Lgcn6xh1Z8XEREREZF3TkFFOec19lHszTv4tZAwTm46TC0MaRvD0cOHFVSUWWeMRSGXXI6jKKZaSzIWb1u7jAkvwDUWOTvHw7dfRzGfBFuKOZtf+8ByevM2t//0Mizgke/v5wsfvpqck9w0e2vSB05kNTY0Ao/n9+UpaT8ZmUNBEBFEEbWWgKJtWQQx9DiGME72FoWkTJ1tjAKKkirNRUicKM376pExVi7qY2HBOSlYrgxbkbl3qlGX1tFY8UO2PH2A669cDCTlRJ/c/RofW7ecvkL6Wj1ZC9n5o9G2IN32V4+ybuUF9KXwmjfpRzzy/f1cf+Vi+goubxz32PbC69yxbgWlFL6+0k77IUmWqf+KdAeN5WzSeeuszN1NHhwcfD9wX7lc/tmW5/4P4N+Wy+W19ccfB34TCIB7yuXyX81HWyUbGvsoTngBQRji2jbGstpueqt0mXRSFMVUaiE9rmFkwmfjlt1cuCDP3b+4Cj+I+fNnDnLz8FI+/dhzbLrxCvKOodjfg2WBZVnYxqKYs7lj3XKMZTHmBdgG7t9WbpZ42vr0ARxjsWZZP/ffspq+vEMxpSvKpTs1FnAAbQHFKE6WcBjLIox13ZX0ai3ZCzTnDRctLPLK4THe++4Fbd9v29qDWWQ+BFMWCNr1/U6DGHLz2rLpucZi/fsuPinzL63lOV1jMXxJP5/82rOZaK8xSXnZ1oof99+yGqPLcyZMXegbo5uCkh3qvyLdQWM5m3TeOitTQcXBwcF/D9wGTLQ8NwT8OvV+MTg4+G7gTuA6oAB8d3Bw8O/K5bI39y2WtGvdRzFvLJLErpAYW6XLZE5EUczIhM+dW3ax6cYr2PTki2zfO8K2T/0M49WQ3/3GD9l04xV8+rHn2L53pFnGdNIPqfghk37Ixq27+ddXXsivXLOEYt4miGImayFf+PAQoxMefXmHO9Yt57c/tDLZt9FAwbGVASZzqrGAA2gGFP0wIucYDGghh6ReI6BY8UJiYia8GsYyuDZctqiPvGsTeAFRGNNXcOe7uSLnLNuCySDiWKVGMecwMu6zsOjSk9L3lShOSqC2leesl8RPo6y1t+DafH5bmU03XsFli0rsOTzO57eV+eJHhua7aXIalGUgWab+K9IdNJazSeetszIVVAReBW4C/hRgcHBwAPhPwKeAh+vf8z7ge/Ugojc4OLgHWA3smPvmSppN3UcxiOG8gnPSPopGy1ilgyq1kDu37GoGDHfsHwVoBg8b+yE2nt9zeJy8Y+jJ2TjGwrEtvnzbMKWCQ9UPqfohjrHozTlYFuQdG9c2FHJJPy4VsnbZl27RGoxxjUU1SAKKxElWSeO6W3RtZXdJ6kRTSvYay8JYhiiOcGxXAXGRFLGAnG3o781hWdDfm8MxVqpvJNTCiPFqSF/B5VilRqlg46b4M0iW2lvxQt447nH9A99uPrd2xQAVL9S8OAOUZSBZpv4r0h00lrNJ562zrDhO6ZLCUxgcHFwGbAU+ADwO/C4wCWwtl8s/NTg4eCtwVblc/kz9+x8FHi2Xy3/f+v/s3LkzLhaLb/v7qtUqhUJhdg/iHVIbZr8Npb4+Fp5/YXMfRUhW1xqrPVsmZ2Dvq3vecRtWrVrV8evU6fbh2ZCG89+t7RgcfC+X3/0UQRSz7VM/05apmHdMM1Ox8fyNV7+H3/+FVRhjERNjsCi4NlEMxbxN1Q+J4phi3mG8GuBVjnP08OF33K5O9+EsXYM7rduPsVqtcsUVV+FFMbZlgQV+EFFwDFFMs+9WvIDJiTPrr1Ol6Rrc7ecXuv8Yq9UqK1ddSQzNwES13odrU/ZQfPXVV2bld6oPz49z6Vihs8c7n/OIS1asBAvC1sUAxoIYfrR3dsbobFp+6Uqq9czKpf1FDo5WWFh0KTiGffVrSpr65um0dyZzfSxLlq3grWp4UvnT8wo2h/bvnfZn5vsanJbzPd/tuPTSlQAn7VcMzNr77Ts1369Jq5naMp/X4Ky8Rp2Wxv4L6Tk/89l/IVvzYLVhfttwJmNZ1+CErsEny8L5Od3+m+WlecPASuAhkjKn/2JwcPAB4B+Bvpbv6wOOTfcfrFq16m1/yUsvvXRa39dJasPst2G8WqM4ZR9F11htWYqNbIPW35mG16HVXLUlLcfdje0Yr9ZYs6yf7XtH+M/f3MN9N6/mM48/z0Pf2sPdv7iKL3z4av78mYN8/par+fRjz/E3P3ydyy7o5Y4PrsCQBGQKOZsJL6BWC+sBmiQjrJR3WNAzwAUDA7PS1tmWlWtwp3XzMUZRTBCEeFHc3GupGkTk7JMDisWcQ6mQ3v46HfXhRDcfYxhGhGGE49rUaiFhDGEc0+OYt50zZIH6cLtz6Vgh+8d7qrZX/aAZ9Gotf1pI6Rit+gGOsVhYdLEsWFh0cervmY32pulcBWGEE8UntdexT+/1netjieKY3//L3dOWP53v1/RUvz8t53u+2+H7wSn/bb7aNd+vSav5bkva+y/Mb1vS2H8hPecnDe1I43uW2pC+NqR1LOsaPLO0nrduOj+ZDSqWy+WngSvgRPZiuVz+VH1Pxc8NDg4WgDywCnhh3hoqqRMEUTOgmNM+itIBURRTqYUUczYVL8QxEERJ8GTCC+hxbSZrIT2ujWVZbN4wxMYtu5sBwy/dNkxfweHImIdrW9yxbjk9OZuv3D7cLCFpgJEjP2HpkiUAzf278vU2qJyTzLcgiBj3k+yQ3rxDUAvxo5ODMUEtpKT95ySFgiCiGoTEgO+F1KtI40xZhKQ5g0i6GJg2SJfWUeo6Bq/afuMjjGJ6cvY8tWhm1VrEd145wtpLz28+951XjvDBlYsopbB8+YQXTFv+dMILtP+tiIiIiMgZSN+s/yyVy+WfAA8C3yHJWvxsuVyuzm+rJC3CMNlHseKF5I3FZBBxXsHBsacGFNP5IV7SLYpiqn7A0QmPjz/yDJd/9in++Lt7OV4N+PijyeM/+e4+Rid8PvHoTsa9gJ6cTcExfPm2Ycr33MD1Vy7mke/to1oPSg6U8sRALYgo5hwOjFQwJslGHB8bm+9DFplWEERUaiHHKrXmtXV00ic3TTBG+9ZKGjX2XQ7q/dVYEADOlDLp6sMi6RMDrrGSkqeAbSxcY520r0paVPyQR76/nzeOe8QxvHHc45Hv76fih/PdtGkZC65aspBPfu1ZLv/sU3zya89y1ZKFmJRuUlPM2dx382rWrhjAMRZrVwxw382rKaY0aCsiIiIiknaZS2Upl8v7gZ+a6blyufww8PCcNkwyoVIL6c07VP2QACg4hjAGq2WrVmMMJq2fiiW1oihmrFoDy2Ljlt1s3zsCwPVXLmbj1ukfL+hxqXghX/3efj7608sY9wJWXljiooUrIAbbsjgy5mEb+P2/eok3jns8uOEaCgp6S8pNBiGlgtMMvLjGwliG0Umf3nx7VoAyvCSNJoNkvgBJlsuEV6PgOjAlC8cYoz4skjIxSXntuB5FjGMI63unp5FrLNa/72I2bt3d3PNv8/qhZtnwNCq4hntvuqq5p2LBTe91sOKHPLHrUFv50yd2HeJj65bTV0hvuyUxdTFADKR3ZIi0U/8V6Q4ay9mk89ZZmQsqipypIIjabnA39vUKY5Uwk7NXqYW8WamxtL/Ijv2jzecvW1Q65ePjkzW8IOKm4SU88v39XH/lYvryJYyV7P9SzDtEcYxlWXzxI0NUvCR7UUFvSbPGtbbihRwd91i8IM9kELGg4LRleOWUFS4p1ejDxydrQLIAyViGai3ANq7mDCIpF8VQi6JmUDGKY2pRjJvSrOIohrxreOjWa1nQ43J8soZlJc+nkbHAMQY4kUnpGJPaoG0xZ/PL1yzhM48/3wzaKlNRREREROTMpfOTlcgsa5Qxa9wErAZRPUtRN7hldhRzNkv7i+w5PM6aZf3N52d6/MSu18g7hoJruOW6pay8sMSB0Qr7jo63rKip59HGyT6JCihKmkVR3LzWTvgBpYJNLY4pOIZoSla4raxwSZkoivH8oNmHt796FKc+Z1hQcOjNu5oziGSAbSXZiccqtbavdorfcmph1NbeWhjNd5NOyXUMFrTtWWnVn0+jyVrUzFQs33MDm268gid2HWKylt7XWEREREQkzdI58xeZZY0yZq6xiEA3uGXWVfyQg6MVtr3wOg+sH2ru27LthdfZfIrH9/z1S2x/9Sg9rkNfwSWOYwZKOVa95zwA/FpSQrKYVzBR0i0IIjw/oFovMZ03Fvn6zcUJL8QCwjimmLeZ8AJ6HFsZXpIqQRBR8YPmnp95YzF8ST/feeUIObt9zpDcPFfWuEhaWUDONvT35rAs6O/NkbONyh3NkqztAVl0bTa8/xI2Pfkig3c/xaYnX2TD+y+h6GphiIiIiIjImVD5U+l6rWVPgzDEtW1cY7VlKeoGt5ypKIqp+CE9OcPCostNw0t49kejfOnWYfoKDuNeQBjHPHz7dScCKq7Nl28bplRISkTGccwff3cf11+5mOsf+DZrVwyw6cYrWHlhab4PT+RtBUFENQibZdoaWVw9jiGMk2CM69rUvICgFtJXcGf+D0XmWBBEVGohURyzoMdtzhcWFhzWrbyAQs5uVjqIwpiS+rBIqsUkJTqtehTRspLHKa0mSt41THjtz8VR8nwa9bj2tHtA9qQ0SGeMRX/R5Su3Dzc/+xVdLQzJiqlnSWdNskT9V6Q7aCxnk85bZ6Xzk4rILJla9rQWQi0Mm5kI2hNJzkYUxYxMeHz80WcYvPu/s/3Vo7yrmOODKxdRKthM+AG9eRtjWRTzNhUvxFgW/+Wbe7j2P/4d/+bhHzA64fPH393Hr163lIe+tYe1KwbYvGGIbS+8ntoV3yINjWtsUL+mlgpJhtdkkJQUa81OVLlISaNGHy4VHBb0uFS8sDlfmKgFJ32/5gsi6WeR7EfY2FMxjqlnG6fTpB+x5ekDePX3Ti9IHk/66SzPWa1F7PzRKA/dei0vf+4GHrr1Wnb+aJRqSsuJRlHMaKXGJx7dyeWffYpPPLqT0UqNKK2bVoqIiIiIpJwyFaVrNW4U9uYdarUkkHhewWkLKOaMhW3rBqGcmYofcOeW3WzfOwLAigv6+I1Hnmk+fmHTz3NwdJKLB4q88sY4pbzN4zsP8SvXLuG3P7QyWSmds9nw/ovxg4gvfHiICS/g1SNjrH//xSrLJKkWhieusQCvvDHO4vMK5Gyrvmdte4lpQFkBkiqt84SKFxJEEY6xCLCmnS8Yo/mCSBbEJPsnhi2ZinaKMxWNBTcNL+Gux55vZv7df8tq0vqWaSy4aslCPvm1ZzPR3kot5M4tu5rz8+17R7hzyy4e/uh1lPK6HZJ2U8dtTHoXCIhMpf4r0h00lrNJ562zNIuWrtR6o3DCC5jwaiwo5Ji6ftY2RkFFOaXWflT1wyTrKmdz0bLLiOKYYt5hx/7R5vdftqjU9riYd/i5/+fvePb3/1c2PfkiF/TlufsXV7FxS1Iu6s5/dRm/8cEVFFybgVK+GWS89II+lWWS1KvUTlxjwyhm2wuvc8e65VSDqB5UbA/IKEtR0qZ1nlDxQwr1UoN+EJGbMjewjVGWokhGhDFExG2ZirU4Jq27KuYcQynvcO9NV7G0v8jB0QqlvEMupdecrLW3mLPb5ucAO/aPUsxpXiIiIiIicibSOfMXOQtTA4oQYyzD8arfLNGnfRRlOsn+iAHj1RpBEDFa8fnEozv5na/vZrTi8yff3cdrb1b5zT9NyidVvJA1y/qbP7/n8Hjb4+OTNdYs6+fZH42yef0QR8Y8/unHb/Hl24Z5+Z4b+OgHlpN3DRYWk35IMWf//+zdf3hc1Xno++9e+8eMRiMjJGwg2I5sbHZdwIgYQ1xMm5O2D4fbe2gO1MFuwSk0tOWcFHra0tyU9F4/PSFcHhMKtGkayM1NSO61W0pCaU+ok5ykDQm+wTE2YEK3sY1jmzj+IWFb0szsPWuvff/YM9uSLIMxtmeP9H6eh0eakYTXaNYs7Vnvet+Xaj2m5MrcFPk2uldtQVk4ymL5lbP54vdfR1nNMnPp5m2SJLiOBMlFvoyfwwVHUY8NdZMcExSvjRyRNVmINuJYoOOEwZGIJIHBkQgdJzg5/TNUrces336Q7pKLZUF3yWX99oNU6/ksg99u4x0J9Zjrc4DFfT2N94lCCCGEEEKId0p2SMSkYkwyJqBYUBbVyNDhKToLrvRRnOKOBg01sTEM1eqYJGE41GhtOFKrc6hS5/bHN1Kpx9y1Ni1tescH5nH3Ey9x7SXn8/EnX2L9jgG0SYCEh5f3s2RuL46yWLdl75jb67cf5OHl/Xz+e6/z471pMPEXL5qBZ1uMRJquokNYN0BCh2dTrRs6PUfmpsgtrQ2VUGe9aj1loRNwlcW0osOtS+dQLrrESRqYUZbFGzu3S0BR5IbWhjAaO4cjk1ByFCXXwVUKz7XTnmxxQlfR5eD+/a0ethDiHUiAkqPoLXtYFvSWPUqOym3505Jnc/F70nKiF93zDHd89QUufk93bjPp2nG899+4MLs+XzK3l/tvXJjb8Yqxxl9BcMckGgAAIABJREFUyhWlaCcyf4WYHOS13J7keTu9pPypmDSaAaPRgcPIJHQXHcJRGYoF6aM4ZcSxoVKP6XBstDHUtGE41Hxt4x4+dPlMPv5k2rvmr1b0c/W86Ryq1PnE115m/Y4BysWjpU2bZU3Hlzf9h417+I1FM/n8LYsoF9OeXAkJj65cRGfBYaim2TM4wudufh/TOlyGaprD1TquregqukBaIrVJ+rqIPNPaMBxpLAu6ii7RqIyEBKhLJrjIOa0NNR1jEigXHXQ9RifgKAsDY7ITZQ4L0b4sQCeMKX+qE3KbqViJYp7atIdV11/MvBlltu0f5qlNe7h16Ry6ivlbh2S8QgghhBBCTG2ygy0mBa0NxhhK4wKKbmOjcDQlfRSnhGb50uGwTk9nAcuysqDhqusvzjIOAZZceA6dBYfOUT0Sh2tpqaT1OwaysqbNj82fW/VPP+bcaQV+6aIZVMKYUsFmJNS4jazFudO7+Lnzz2I41KzbspdLZ3bTVXAouXIyWrSXZlnpQ5U63SV3zDrrKeuYgxsSjBF505zDsUmzD5tzVVlpACKSOSzEpGFIA4hxI4hoWent8e8J8qLDtVl+5WzuWpv23F7c18PDy/vpyOn1YruNt+TZYw4TLu7rkUxFIYQQQggh3gUJKoq218w8SIAojMeU45PsmcnNmIRKPe1FWInSXoRKWcRxunl819rNPLpyEQPDEbN6SpQbQcPxGYfTOlxe2zdMwVFZ0LDZB/GutZv53L9uY/WyhXxt4x7uv3HhmE2JK/p6KTb+XWMSbGVhErhm/owsyFgu2FwzfwZKQVF6y4k2M7qsdMlzsCzQ9fi4AUU5tCHypvk3obORDf7avmHm9HRQ0YaSoyYIistGsxDtTJEeFIhNmqoYm4QI8HJ6/VWrGzb+ZDCrbHGkWmf99oNcM38G5Rz+TW238VbrZsJMxduumUu5kL/xCiGEEEIIkXcSVBRtbfRmN0AtimkW5JOA4uRmTMLASMSdazYdPSW9op+zCk6WcbJh52AWCNm2/2jQcHzG4ZFqnXVb9rLiytl85sOX8cd//yIffXwjT/z++7NSprUo5talcyi5draJUgnTgGYzSKiURckbu6w2y5yWpbySaFOjy0oPDEd0l1xqdU13hyeZ4KItVOpHey3HJmHdlr189Jq5dDgKnYDV6K5gkc5hOfghRHszpAHEZg9FW1l4E1QvyQtlwaUz0x6FzWva1csWktelqN3G2+GoiTMr5X2hEEIIIYQQJ0WCiqKtNTe7m73sICGOwbOVBBQnGWMSzpvVh0kSKqEmAe5csykLDK7fMcBdazZn/Q1HwrR8aTMQ0gwaTpRxuH77QZZfOZs1z+/ixkUzeWzlIkqNeQUJxiRok+AoC0tZJCaGxKVclCVUTG5xfLSstG1ZdJdcLAuUpThUjegsuLLOilzT2mRzdCSsUy64LL9yNl94dge/c80cTILMYSEmmXbLVAQouor7briUWT0ldg9WKLr5XovaabxVbVj7/K4xmYprn9+VZirKQajcSya4nd9XshBjyfwVYnKQ13J7kuft9JIdcdG2tB672e1YFodqMR2eIk4koDiZHM1KfDE7Yfz/3H7VmBKmQJaZOBJqtEl4eHk/B4Zq9HQW+I0rZmVBw9uWzqXDU1kWYiWKKdqKW5fOyX7emISEJPt6ueBk2Ss/272TsxcsaMWvQogzptmDzsKioCwq2uA5ChIoFMce3Ci5tmQoitxpzmE0FJRF1VIMh3W6OzxuXTqHDi+dv0mjz6IQYvJwx2UqujkOKCoLHKUgq7eS3s7xkNtKybN55DvbePDbr2X3OcriY788v4WjEidq/MtAXhaincj8FWJykNdye5Ln7fSSHUDRlpobhZUwxlUWjgUVbeguOoAlAcVJphLFWVaiNgnrdwywa6DC4r6eMd/XLG3qqrSYXcFV9JaLlD2H7g6X25bO4fzuDgCGa2kZvMQklAsOjqPoKrooy6Kr6OLYR2+PDigKMRVobYjiNMOrOfVLjYCiScBzbSzAxGkwRgKKIm+a1wmdBScLJnQXHToLLp6b9kzU9ZgORwLiQkxG7bSJYBKwLLJqAM2PZvzx6pw4GgQ9Ks9B0EoUT/ieoRLFx/kJIYQQQgghxFuRXRTRdkZvFCor3SSITELJUYRS8nTSMSahVLCPyUp86NtbeXhFP0vm9uIoiyVze7n/xoWs27IXk6QnkB2lsC0LS0GcJFlma9FNe2aVPUc2k4UYp7nGapMwEurs0AY0X0c2I6HGU5assSKXRl8njIQ6K4U4EZnDQkw+CROXO8ppjA5lQZLAoUp9zMe8BunaLQhacm0eWXH5mPcMj6y4nFLjgIkQQgghhBDinZHyp6KtxPHYjUIdx1iWokMCipNWpR6jY8Pivp6sfyLAviMhXQWHz9+SljDdtn+YpzbtYfmVs3li425mdBW4et50Sp5NJTo6Z1xlEWkj5RqFOI7mGgsQ1WMMHHNoo6AslJLXj8in0dcJBWURmQRPWcfMYfkbIMTkFSdpoA7Sj3ECtgTpTgnPUUSh4VClTlfR5VClTnfJTUuk55BSFr2dHo995IrsfUHJtaUKiRBCCCGEECcpV1f+vu8XWj0GkW+V+tiNwnoMSWKIxm0USkBx8ih5NuWCw0PLx2Ylrl62kE987WUODteoRJr555YbPbJsbnl/H0vnpwHF7QdGuOfrW/itx37ITw/VuPVLP2KwEjEUamJjGKrViWPT6ocpRC5obbK1dLimqdbT/qTj9zWVUrLOilwaPYdty8KQZq6PX+WVUhJUFGKSOl6oKM8hpHpsxmQq1nN8bVqtx6zffnBMEHT99oNU6/ktJ6pUo52BtDUQQgghhBDiXWtJpqLv+/8J+GugDtwTBMHfNb70DPDBVoxJ5N+FF87Hce0xmQfdRUcyDya5ShRzcCjk1b2H+fwtiygXHQ5V6hQdxYM39Wcbx9/bup++3jKze0u88WaV888qMu+eZ7L/j6Ms5s0os37HAHc/8RL33XAp+46ErHr6FR5e3k9vpydzR0xpzUxwNBSUhU6gVgeISbAlE1zkXrPsaXMORybBJKQZ6lLNQIgpxbYgbsSNLCu/WYoARc/mz77+Mnd8YB4AoTY89M9befCm/haPbGIlz+bi93Rzx1dfYMPOQRb39XD/jQspeVJOVAghhBBCiKmgVeVP7wEuJz0w+oTv+8UgCL5Mvg+QihbS2hCahHBUQNGVzIMpoeTanF1yuXRmN9sPDHHRudPwbEXBVYyEOitj9IsXzWAk1Dz+3E7WvbKP+264dMz/Z3FfD9v2DwOwYecgs3pKAKzfMcBdazfz6MpFlEDmj5iS4thQj9MMr3qj5Kmy4KyiI8EY0RZG91HU9RjdCCYmIHNYiClo/JvKPL/JrIQx+46EXPvQ97L7lsztpRLGlIv561ZSjQxPbdrDqusvZt6MctaC4LalcykXZX0VQgghhBBismvVu5QoCIJBAN/3fx34ju/7u+CYCmtCYEySbRRG4zYK67JROOkpZdFVdHEdRXeHR8FRVOsxlpVuD9Ubpe6Ga5qvb9rDulf28cCyyyi4aZnU5gnqh5b3c+//eBVIA4y7ByuEOg1Lb9g5SGfB4eBwSE+HJ/NITDmVRsmyeuPgRrP3lJSWFu1ifB/FZmW7usxhIaachImDiHl9o6ksWL1sIXc/8VJ23bp62ULyWqFTWXDDopltM14hhBBCCCHEqdWqoOJO3/cfBP48CIIh3/dvANYB3S0aj8ixSqSzDUEdx7i2jbIsCShOIUpZlDyHV199lQULFtBlK4xJsCwLz7WphBpHWdyypI//fPlMOj2bqjY8tLyfc8oFRkLND7Yd4Bsv7836MRZsxYPf2gqkQcYj1Tp3rUkzFu3YUHAk61VMfsYk6EYwBqDeOLgxPqDoKQul5PUg8ieODXFsxszVZjWD8XNY1nQhpgYL0AkkjShikqS3nZwGvQquomAr7rvhUmb1lNg9WKHQqMqRR+02XtHexh8GON6hASHySOavEJODvJbbkzxvp1errvxvA16i8fwGQbAb+A/A3wP4vl843g/6vn+V7/v/2vj8533f/77v+z/wff9vfN+3G/ff7vv+j3zf//983/9fT/NjEaeR1obSqAyDegz1OJbMA4FSFuWCg7IsykWXomtnZaKq9RgSmN5VYKhWp+TaLJ0/na33XsdjK6/g7JLHmud3ZUHGh5f389SmN7KMxf1DIQOViDgeX2BXiMlDa0Ml0oQmYSTUjISaN6sRcOzFl62UrLMid7ROy/Y257DTyLJ1GtUMRrOlPLoQU4qy0l6KkH7McxZdNTKseX5XVkEj1OntapTP69B2Gy+kh6iGQ41JGh9NXvNWxXjtVMpYiPFk/goxOchruT3J83Z6tSRTMQgCDXxp3H37gD9s3HwG+OD4n/N9/0+BW4CRxl2fBv4sCILv+b7/JeB63/fXA3cCVwBF4Pu+738rCILwNDwUcRo1+yNZ2sr6KI7v7yWZB6JJKYty0SGODZUo5q61mzl3WoE//JWLmNbh4hqL4ZqmXHSoRTEfuXoOH/vl+YyEml0DI6z6px+zZG4vR6p1ZvWUuPkLP+TRlYvoaswvYxIq9ZiSZ3PerD6MSVB53qES4i0019fYJEzrcIka5U+VpThSi+gsuJIJLnKtOYeBrBdonIBJEqlmIIRoq02Edisn2m7jNSZhYCTkzjWbs/E+sqKf3s6CXMu3AckyEO1M5q8Qk4O8ltuTPG+nV/46v6eO9xxvB24AvtK4fWMQBLHv+x5wHrAPuBL4QSOIGPq+vw1YCGw4zWMWp1Acm6w/Ui2K0UjmgTgxtq3o7fR4dOWibEM5rMf8a7CfudO7uNDtJE4SuooOw6HmB68d4A/WbE4zFlf0s377QeZO78qyFqG5GRFx55pNYzYjOj2HgquoRibdSLGg6NiyQSFyrRmMac7vZsb3RAc3JBNc5NFEc9htrLuOsqSagRBTnJ5gxyAGSMBrwXjejrKgXHDGlBNNq3G0emQTa7fxVqKYO9dsZv2OAQDW7xjgzjWbeWzlFZSLed0OEU3tdEBAiPFk/goxOchruT3J83Z6WUmSv9Ifvu9/JwiCYzIVG1/rA9YGQfD+xu33At8GDgPXAtcBlwZB8PHG1x8HHg+C4Nuj/z8bN25MSqXS246lVqtRLBbfxaN596biGGbOmZdtCLrKoqYNnq2Ik7Ebhdu3v3bGxgQn/ntYsGDBaV+rTnQOnwp5mIMnOw7f/zn2Hq7iOYrecoF9h2uYJOHcaUUibTAJlAo2I6Fm2/4hejuLPPDNgANDIY+uXMShg/s4+5xzuf3xjdlmBMCSub3cd8OluLbiyY27uWHRTIquwrYsht88wPDQ0Kl++Mc4nc/L6Z7D7bQGn25n8jHOeu97SVSahVgJY7QxFB2FPk4PuiNDhzm4f/+7+jdb8RzmaQ2WOXxqXXjhfMJR8xTgwFCNns4CRUeNCSh6ymL//p+96/VY5vDkn8NNU+mxwuS9jph74Xyq2nCoUs+CXt0llw5HseMMv3c4ERf5PsM1TQJM63A5Uq1jAeWiw9YgAPI1N09kvG/lTD8W/+d+jovueQY9quSpoyy23nsdwb//+4Q/0+o1OC/Pd6vHceGF80k4ts+3BWd8H6Cp1b+T0d5qLK1cg9vld3S65XH+Qn6en1bOX2iv62AZQ2vHcDKvZVmDU7IGH6sdnp8Tnb9tfzQvCIKfAPN93/8o8CDwJNA16lu6gEMT/eyCBQve9v//6quvntD3nU5TbQxaG5RtZYHDijYTbhQ6jn3Gfy95eC5GO1NjycvjPplxDIeaJzfuYflVs1m3ZS+/cOF0ujrSeWRbFh2uYiTUlDybs0sFHvxWGlB8eHk/Ha6NO+M8PNdmw87BMf/fDTsHszKpq66/mLufeIn7brgUgHPOOY9ZM2eessd9PHl5Xk5Wu6zBp9uZfIxDtXq2jtqWhWWBSUBZFuM7IdlKMb23l+m9ve/q35zMz6HM4dSZeoyjMxSbPRQtoFxwGRwJOW9aB1bj/KEFuI59Stbiyfwcyhweayo9Vmj/x3u8sUeRxrMVPZ0elgU9nV62XuTx8Q7XNF9+bifXXnI+XUWXfUdC1m3Zy21L52bjzdNzdSLjfStn+rEM1zSL+3rGHA5c3NdDJYxb/js93r+fl+e71eOIIn3cr7VqXK3+nYzW6rHkff5Ca8eSx/kL+Xl+8jCOPP7NkjHkbwx5fS3LGvzW8vq8TabnJ69BxROKiPq+/zTwx0EQvAYMAQZ4HrjX9/0iUAAWAFtO10DFqZX1SNLgKQudQIejiBPGbBTaSkmJSXFCSq7Niqvey543R7h63nTKRYddAxV2DgzTP+tsip6NZVmMRDHnlAs8eFM/QzXNc9sOsHT+dAB+NlCZcDNi2/5hNuwcZN6MchZkBNJAjfRcFDkSx4Y4NlmGYrNUZJJAGBtKjhpzgkt60Im8GR1QHK5pPNvCJBAnadneDs+m6KVZ5yZOKBfdVg9ZCNEiCeBYEDcuwywrvZ2/+jypdutR2I7jXb1sYduMV4wlpctEO5P5K8TkIK/l9iTP2+mV16Dij0/w+/5P4Eu+70dABfhoEAQ/833/EeBZQAH3BEFQO03jFKfQ6A3DqB5nb/wTGFP2VDa7xTuhlEVvp5duODuKWiN4OLu3xEio+cr6nfzLln08vLyftc/v4pHvbGNxX0+WqaiUxZ8/tYWHlvfzh2s3Z5sR99+4kAe+GWTBxcV9PewerADQXXKxlZUFcKTfomilODaE2hAnCWGos+MZ2iR0NIKJrmsTNYIxXRKMETmjtSFqBMVHQs32A0P4504D0hJ2EhAXQoynk/TgDKQfdQJ2ji/Biq4a06Ow6OZ3HSu4ioI9drwFW1HI6ZjbbbxCCCGEEELkXUuCir7vr+E4h0WDIPjNIAj+6/F+NgiCncD7G58/B1w9wfc8Bjx2SgYrzog4HlvSTMcxrm0f0+NLNgvFyVDKolxIlzvHTuePMQkWcMuSPm583ywcBbcuncPHfnl+Wg7VtalqQ5Ik7DsS8szLe/n8LYuyTMdmmdQHll3Gkxt3s3rZQoquIjFQLjgoy+Kie57JTkMXXUWkDV0FB9uWOSzOnEo9JknSXke6HhOZhFqjrLSsr6IdVHU6h5tl0S/oLhHsO8KC86aNKY0uc1gIAcc/hZzjmGJbqUaGNc/v4tpLzgcg1IanN7/BbUvnUi7mbw1ut/EKIYQQQgiRd63KVPzbFv27Iqcq9aMBxYKyqEYAMQn2mPtls1CcKkpZWXm8cjFdCpvtaZuZWiXLItIxDy/v5661m7EsuHHRrKxMarMX421L56IseLMS8eTGPVzffwHdJRdtEtbvGBjVbzFGWRblgiUZi+KMaJY8BbIDGx2ug6MsCcaI3BtdthegXo/RCXQXHTpmdOG5NvVQo+uxzGEhRCYhzUocXf7UznH503bTduVP1XHGK38yhBBCCCGEOCktCSoGQfBvAL7v9wDXAi7p4dH3AP/WijGJ1tHajAkcRiahu+gQjtrwLiiLw0OHmd7b2+rhiilEqbRn11lFh0dXLqKz4FCLYsLYkCQ2SQIv7TnE9K4iD6wL2HckZPWyhXS4dpYZCYzptwhpEH3014U41bQ2xMaQAPV6QpJA0W4e2NA4thzYEPmmtaGm01LoYahJErCsBNtSmHHfq5SSOSyEyFgcW/40TtK+inlUcBUj4dj7EkOuy3O2U7nWomvzwLqAVddfzLwZZbbtH+aBdQEP3tTf6qEJIYQQQgjRllq9q/0PwFbgUqBG2hdRTCHNPoposoCiq6wJNwwP7t8vQUVxxnm2YjjSaGPQJsFRFmeVXIYbJVJnnl2i03N48KZ+KmEMFnzx2R1ZiSVgTL/FUBvmn1tu1cMRU4DWhuFIo5SFBemamkBFmwkPbDiO3eohCzFG89ogNgnTOlzq9Zg4geEwpsODOLEky1YIcVxKKWxjjslUVDlNTatE8YTlOW9dOocuKc/5rlWimH1HQq596HvZfUvm9lKJ5JCfEEIIIYQQJ6Pl71KCIPh9IAB+FTi7xcMRZ1Bz07Cz4GSBREdZaWaNlOUTOWBMwpvViNcPDtPhOrhKZfPSmARlW3S4Dm9WIv76f77G4EjEF5/dwfIrZ7Nuy14cZbFkbi+rly2kXLQ5q+SybsteKlHc6ocmJiGtDWGkqeqYQ5U65YJDZ8FBASZJKDoKnYDV6CplAY5jSylekRtaG6LGHO4sOEzrcBkJddYHbVrRASzJshVCvKWqjnkzTc3PvFmN0oOMOeQpi+VXzmbV06/gf/IZVj39CsuvnI2X07/PygJnXIDWUSq35U9Lrs0jKy5nydze7Nr8kRWXU3LlUJUQQgghhBAno+VH83zfLwKdpG0uJH1nCjAmQet4TLbMSFinXHBxG9mKElAUeVCJYu5cs5n1Oway+5bM7WXV9RcDsH77Qa6eN53zz+pg5S/00VV0uHXpHDocm1uXzuFjvzyfShijLDAJPPvafpZfNVs2McQpp7UhitMc786CQ8lzOFKtYyuLkbBOT4c3Zs3V9ZiiBBRFjowud9pZSOcvpNniulG2cHyWbV6zjoQQreUqC2UpfvfxjVkPvYeX9+Pm9G+e4yhKns3nb1lEuegwXNNp4C6n74EcW+GYhO6Si2VBd8nFURaOnc/xKmXR2+nx2EeuoOTZVKKYkivXQEIIIYQQQpysVl/5fxb4b8A3gd3Av7d2OOJ0myigWGi88R8O62MCipKBIFqtVLDZsHNwzH0bdg4yb0aZeTPK/MGazZRcm+FQM63oMhzGbNs/xHCkKXk2I6GmVLCpxwlFV3H1vOmcVXCo1WNMkjBc01RCTRyPL/grxDtT1THaJGiTMBJqdg9WWL/9YLaxOjguY0N60Im8ac7h5jXA+u0HcZSFSZL0v3HfL3NYCHE8Cih5Np+7+X1svfc6Pnfz+yh5dsvf+B5PJYr54vdfZ+/hGkkCew/X+OL3X89tZYtqPebZ1w6Mue/Z1w5QredzvKK9JW9zW4g8k/krxOQgr+X2JM/b6dXSTMUgCJ5sfu77/hNBEBxp5XjE6WVMQiXSWRbCSKjxGpmJE/X5snN62lVMHZUwZnFfz5hMxcV9PWzbP5x9vv3gCGd12FgWlAs282Z00VlwqIQxtmVRjWK6ig7DoWb7gSGmdxUpuoo/+/rL7DsSpqVRCw5dBUfmvDgpprF2Nul6THfJ5dKZ3Xw32M8H/RmSAS5yy5iEeqPcKZBdAyx6bw/PvnaAX7poBsoaWxa95NqyXgoh3pLXaKkAYCsrt6VEIc2sXH7lbO5au7ktMivdxhp9x1dfaIvxGpMwMBJx55pN2XgfWXE5vZ2eZCu2gfHPkDxjop3I/BVicpDXcnuS5+30amlQ0ff9XyXNVCw2bhMEwQdbOSZxemhtMMZQGrdpWNGGDkdNmIEgG4ai1ZSCh5f3j9nkWb1sIQ+sC5h7TicPL+9n7fO7+NDlM9l7eIgLZ3RRbmx6u8rCJFB0FcOh5oWfDPLbX/oRS+b2ct8Nl3LHB+Zx7UPf4+4nXuK+Gy7FVhZdMufFO9BcVyEtC5k0dk8dBSVH4dke18yfgeva1EONiRO6im4LRyzEWM2SpwBRqIlNQqnR+7O76LB0/nSKjazvgrJkDgshTtj49xaG1pfoeSvNzMppHS5HqnWcnAe72mm8lXrMnWs2ZYcE1+8Y4M41m3jsI1dQLrS8G4wQQgghhBBtp9VX0X8J/CFp6VMxCTXLnUYmIQGiMCYhwbagok22eWgSGtldkoEg8qPo2Bgv4fMrF1EupD1udGx48Kb+LHB429K5dHiKsztdOj2HXQMVZnQV+Mlglfnnlnlt3zCf/e42nn7xp0BaPnVWTyn7N5q3rfzuxYgcagYUa3GCZaUZGXEjqDgcasoFmzhBshNFbjUDitokTOtw0fWYCIhMgjsqw6hJyp0KISYrk0CcjF314iRBJfm8OGy38Za8idsZlDzpcS6EEEIIIcTJaHVQcVcQBN9u8RjEadLc9A5HlearRTGOZXGolm56NwOKpYKdBhQ9R8rQiNxQyqLkOdR0TFSPKdgWljV2UzvNRIx5atMe/mXLPh5e3s/f/2g3q/7px2xZdS2rnn7lmPKpuwcrhNqMud1b9iQDR5wQYxKqjeyucjFdW3Wjj5Gy4KyiI+VORa5pbaiOKnlaCWM8RRZMTJByp0KId2f8ipH3FaQeG4ZrMV1Fl0OVOuWijavyO+p2Gu9IqCdsZzASarn2FkIIIYQQ4iS0Oqi43/f9vwU20eiXGQTBo60dkjgVmhkIzf6JlUaGIiREMaN6KKZlzUycUJY3dSKHmoHFpiTSVKIYCwvPtbOMxVuW9PGhy2fy9Rf2sOqffgzASKT5zIcv44///sUx5VOLruKhf97Kkrm9WU9FV1kYk0hQXbytSqTHBGMSEgrKwrHIDnFEoUbX4/R+CSiKnGkGFCthjDYGz1YkpD0OmgHxemMOdzgSUBRCvDM6AXvc5VQCxAl4LRnRW7MtcJQC4uw+R6ljHkNeqOOMN6+XsCXP5v4bF/LxJ1/Krsfvv3GhZCoKIYQQQghxklodVHy98fG8xsfx1a5EGxqfgTASamzLamQoxnR4Ktv4liwa0W5cW3FkJMr6LN75wXksv3I2X3h2Bx+6fCbrXtmHoywW9/XgKAtHWTz44cs496wilTDONlwevKmfSphuxhRdxd98dxsrrppNp+dQcBXVuqHk2hJkFMcoNdZOgEoU0110snLS4zmObJiJfDGj/v7bloVlpRvq1UaP5dGk5KkQ4mQ4jTYLhyp1Sp7DwHBEd8md8O9kHiSAZyt6Oj0sC3o6PZwJykDniaMsuksulgXdJTffPRWjtKLIqusvZt6MMtv2D/PUpj3cunQOXcV8zgkhhBBCCCHyrNVBxe+Ou133fX9mEAR7WjIa8a6NDiiOzqCB9M390QxFCSiK9mTbCqukRf7CAAAgAElEQVQ+wqMrF42Zxx+5eg7lgp3dPzAcYkzCmud3ce0l5zNjGmCBThLKBYc33qyyel3AgaGQ+264lGsvOZ8712zmwQ9fhqnAkxt3s+Kq99Lb6UlgUWTSLHCTrauxoxiKNF2eg07AIr3fIg0oytwReTK6ikFzDkdJen3Q6ciBIyHEqZEARUfRW06DdL1lb8JerXlhASZJMI0+hennYOe04fbxVua8rtgl12b5lbOzA4GL+3p4eHk/JVcOXgkhhBBCCHEyWn3t/yngC8AdwKPA54Hv+L5/d0tHJU7K6IDiSKhRVrppGJm08GlJNgzFJHFw/366ii7Ksuj0HCr1mN//ykb+29+9CECSJBRdm56yx61L5zD/3DLVKEYBjmWxbste/sMD/8qBoZD7b1zIQ9/eyrwZZTbsHOTcs4r8yRMvNoKMm6jU47cejJgytDZU6kezXQ3pulpyHeoGip4NJJBAuehKQFHkSnP+apPgNeZm89rAURZOY3PXxAldRVeuD4QQJy0N0kEjRkfS6OGe17+KCaAsC9UIIjY/z2sQ1JBmKtqNtdxuVOYwrR3Wcdm2orfT49GVi9h673U8unIRvZ2elNYWQgghhBDiJLX6SroCLAyCYAVwGbALuAS4saWjEu/Y+ICi2+jvVdEGr3EyeHRAseRKQFG0r3JXF8OhxiQJI5HmSz94nYeW93NgKOTPn9rCcKixgGp0NGtXWWkPGs9RLJ0/na2fuo5V11/MA98M2HckZNv+YRb39VAJYzbsHMyCjNLvRcDRNbZcdLK1VZGuq0XPJiFB12MJJorcas7faR0uFjQya8deG0gPUCHEqeJY0Ez0s6z0dp4dm6mY15BiSpuE2KRjjE2CNvker22r7EBgV9GVgKIQQgghhBDvQquvpqcHQVADCIIgBM4JgiCi9eMS78D4gGJBpQX4IpNk2YneuAwEeSMn2o0xCcO1Ojo2FM46h9u//CMuuucZSp7DI9/ZRm+nx6rrL+YzH+7HUSrNwGlm5XoKkyTECdTqMYerdX7rCz/k1x55NstWXLdlL6uXLeRwNWJxX8/RIGMkmYpT3fiy0nBs5ndBAokix7Q22fw9Uq0D6Qa/zGEhxOkyPsSV55CXSSAeF0SMGyVQ86jdxiuEEEIIIYQ4tVrdU/Ep3/e/DzwPLAae9n3/DmBLa4clTtT4gKI3qvSNpywpdyomhTg2DFYi1vxwFx/5hTnctWYz63cMAGTBv+0HRlj19Cus3zHA9Ze9h7/49YsBqMcJdW1QloVJoMOzUZbFYyuvoFSwGappygWbZVfMwlEWa57fxQPLLuPJjbt5ZMXl0u9liovjsWtsJYpxi86EJdyUkvVV5E/zOgENlSim6CoME58ekzkshDhVxv+dzPuxhXpsGK7FdBVdDlXqlIs2bo7XxHYbrxBCCCGEEOLUaemVfxAE/x34L8APgTuCIPg08A/A77RyXOLETJShmHC0Z4kEFEW7SrMSNbExVELNSBRz55rNXHvJ+ZSLDht2Dmbf+9nvbuORFf2s27KX+29cyJK5vXzj5b08/txOjlTrVCLNo9/bwe43q5Q8m5EwJth3JCsZ1UzOKRedrAfjeWcVuO2aufR2elLKcgrT2jAU6jFrbMFRDEX6mIwLpZSssSJ3Rl8nNOdvPTZU9bGdt2QOCyFOpXbKVCy4imTcspiY9P48arfxCiGEEEIIIU6tllz5+77/0cbH+4DlpP0Uf9P3/U8HQXAgCII8v+8TTJyhGJkERVrSLJKAomhTxiQMjIR88fs7+NnhkP1DYRZInDejnGUmNj394k8xCXzk6jlccHaRR1cuYuu913Hb0jk4yuLsksdtS+cy/9wyAyMh9Thm/oxplItplmLJtak0ei9W64ZOz8FWinLBkYDiFNZcYw9V6lmf2oS07GnJdagbGuUkZY0V+TT+OgGOzl9XKRzXTnsr1tNMF5nDQohTqZ0yFStRzJrndxE2DlyE2rDm+V25LYFfjcyE461Gxx4YEUIIIYQQQkw+rdrB2d34+O9AMO4/kWPGJESRPiZDsaoNbqP0qWQoinZWqR/NSvyTJ15kVk+JShhnfQ5HZyQ6ymLJ3F48R6Fjw3CoiU3CvsM1SgWHdAsrwZCQJAlF1+bszgIJCWHd0FV0qNTjNGBkEgkkCmBsMGZWT4mCshr9i9Kvx0lCqWAzEmqKssaKHJqokkHUyM4ePX89ZUmPZSHElNfh2iy/cjarnn4F/5PPsOrpV1h+5Ww6cloCX1lww6KZY8Z7w6KZ5PkS1piE4VBjksZHaQAphBBCCCHESWtJT8UgCNb5vn9ZEARf9n3fA24HQuCLrRiPODFaG4wxY4KGnrKoaEPJUegkLX3azJ4pubZsFoq2U/LsLCtxw85Btu0fprvk8pc39fP3G3bxoctn8tSmPay6/mLmzSgzHGqe2rSHw5U6v3PNXGwL7MauirLSQFC54HCkWufx53Zyff8FlDybtc/v4pHvbGNxXw+rly2kXHAoe44EiKa48cGYgeGI90wrYDc26kavvwVlyXwRuTN6Dg/XNAU7PXA0uudyk1JKrhOEEKfFROVP8xrzqtUNG38yyOdufh/TOlyOVOus336Qa+bPoJzTNbLoKu674VJm9ZTYPVihmOPSp80qJHeu2cyGnYMs7uvhkRX99HYW5DCfEEIIIYQQJ6FV5U//CHjU930HWA38KnAp8JetGI94e++dM4eajo/Z0K5qQ8eogGKpYKfl+CSgKNpI8/Syjg0joc6yEhf39fDZ725Ly/racPOSPi44u8itS+cw/9wy1SgtS3nLkj5+++o5fG/rfi5Z9U1+9/GN7Bms8r997WUu/4tvkSTQVXR55DvbmNVT4q61aSakNgnrdwxw9xMvcahSp6pjOTk9xY0OKNqWRXfJRZNuhEbj1l+lZI0V+TI+KL79wFDWazkB6lLJQAhxhrRT+VNlwaUzu7njqy9w0T3PcMdXX+DSmd25zvxrJ5VGb/T1Owaya+8712zObXlZIYQQQggh8q4lmYrAdcAvkO4x/SZwURAEb/q+/9zb/aDv+1cB9wdB8AHf9/uBvwJi0kzHlUEQ7PN9/3bg9wANfCoIgn8+XQ9kKtDaEGPTWUiny+hSZqUJAopFRwKKon3EsWGgErFx5yCL3tvD2ud38eBNl/HEht08sOwy/uSJF7n3G6/yif9lAUVv/Ly2sCw4MBTS2+lx9fzpbP3Udby2f5gHvhnw9Is/ZcncXnYPVgi1yYKVzUzIpg07B5nVU8Ky0o2PcqFVS7NoJa3NMeUiHWWlgeZxO4tKKQnIiNwZX/L0gu4Sr/7sCD9/3jTptSyEOGMmOp6V5yNbnp320h6d+VcuOHg5fT/l2YooVqRvwVOOUrkdb6mQViEZbcPOQUqFfJaXFUIIIYQQIu9adeVvgiCIgX5gRxAEbzbuf8vzmL7v/ynwBaDYuOth4A+CIPgA8DXg477vnwfcCVwNXAvc5/t+4dQ/hKlhdNZBJYwZCTWQUNEmK2Um/b1EuzImYSSKuWvNZpZceA53rd3Mg99+DWMSll0xi/POKvDoykU8eFM/nZ6TxXUsLGpRjGVBNYqZ3lXgwFDI11/Yw08PV1n19Ct84+W9LJnby+plC+n07KwX42e/uy0LLjYt7uth92CFI9U6JU82OKai5lrbDMboJC0X6SiLBHAafZVMnNBVdGWdFbkzUVC8u+gwb0YXbmP+6npMyZXrBCHE6WWRlp9PGpHEpNGXOK+Jf1Ud8/rBYXo6PSwLejo9Xj84TFXnM5Ou3cbb7I0+2uK+HiphPscrhBBCCCFE3rUsHcb3/YuAW4GnG7cvZvRxx4ltB24AvtK4vTwIgr2Nzx2gBlwJ/CAIghAIfd/fBiwENpzaRzD5jS9jZlsWjmVxqBbT4R3bQ7HTc6QvhWgrlXpMueiwYecg0zrc7BTzeWd14H/yGbRJ2P7p63jjzSoXnN1BLYoZDmO6immPxHLBoR4b1m3Zy5ILz+Hm9/dRjXTap6VcSDcrLOhwFdf3X8CD3wo4MBTy8PJ+1j6/C0dZY3oqrt9+kGsumiGZilPMey64IFtr6/X0z6BtSblI0T7eO2dOupmswbbSQLj0UBRCtEoCOBbEzcNgVno7r9mKXiOz+/e+sjHr+ffw8n68nL6vco8zXjen41UKVi9byN1PvJSNd/WyhUgVeSGEEEIIIU5Oq3auP0kaGNwJfML3/V8Cvgose6sfCoLgSd/3+0bd3gvg+/4vAB8DfpE0O/HwqB8bAs46hWOfEoxJxgQUXWWhgIo2dBcdQpNQ9NLsRBMnlItuq4csxDtW8uzs9PKRap3FfT2s3zGQ9VNcv2OAoZrmT//hJdbvGMh+7o9+ZT7Lr5rNLf/X85w7rcCfXOvz+HM7+dDlM3lq0x4+dPlM/vp/vsaKK2czEsXMPLuDszs9Hrypn4HhkHLB4balc/jYL8+nEqYZj9/bup8r+nopuZKpONUor2NMhpdO0s3P8T1sJaAo8qpZIl3X47SSgaNwkKC4EKI1Eo7NVNTHVhLPjQQoFxw+f8siykWH4ZrOKhXkkUV6Df25m9/HtA6XI9U6jrJymwladGy6xpWX7So4FB255hZCCCGEEOJkWEnS+rcrjfKkJgiCeuP2rwdB8I/H+d4+YG0QBO9v3L4JuAf4UBAEO3zfvx74j0EQ/JfG178O3BsEwY9G/382btyYlEqltx1brVajWCy+7fedTq0Yw6w58yg1NgK9xpvEyCR4yjpmo3v79tfOyJja6blYsGDBaX9ffaJz+FTIw+/+dIzjvFl9RMaiHhte3nOIRe/t4a61m7NA4d1PvMR/vORcrrvkfO5au3nMaeySZzNU05x7VpG9h6ooy2LGtAJDNU254DAcaroKDiNRnG0QvfCTQc7vLjFvRplKpDFRFaNczioVOVypMXxogOGhoZb9PkY73XO4ndbg0+mcGTPo7ekZUzJyonX28NBhDu7f3+rhnpRWPId5WoMn8xwud3Vx7ozzcFw7m6vAMb2WvTN4rXA6yByevHN4vKn0WGHyXkdceOF8IpOgTTIm6JXXtWjOhfPRE4zXURavN8abp7k558L5mAS0ScYEQZVFNt630orHUu7qotzde8LX3K1eg/PyfLd6HBdeOB849qAd0LLXcqt/J6O91VhauQa3y+/odMvj/IX8PD+tnL/QXtfBMobWjuFkXsuyBqdkDT5WOzw/Jzp/c1Fjr1GqdLS7gAmDiqP5vn8z8HvAB4IgaHZffx641/f9IlAAFgBbJvr5BQsWvO3YXn311RP6vtPpTI9Ba4OyrSyg2DztO36ju5l1cKbGNhWfi7czlX73p2McxiQcqdWxFSw4/yx6Sh6PrlxEZ8GhGsXZ57Uozk6Pj4SaSMf82de38I2X97L13uu4+v7v4iiLrfdexxWf+jbaHD2s4SiL4FPX0Vlw+O0v/Si7b+u911GxSpzVKHV6drmDs8szW/r7ONPaZQ0+HbQ2RLEhTpJsrTUcv2Tk9N5epvf2tmKo79pkfQ5B5vBwpAlNQtiYw80s2zgZe+Gu1Jm7VjgdJutzCFN7Dk9kKj1WaP/He7yxR1FaZaV5NWYrKyvNmcfHW4k08biDvnGSoLCy8ebpuapEmroxWSaoSRLqJsG1T2ytb/VjOZlr7tPleL+HVv+O8jKOKNLH/VqrxtXq38lorR5L3ucvtHYseZy/kJ/nJw/jaIe/WTKG1o8hr69lWYPfWl6ft8n0/OQiqDiBt42I+r5vA48Au4Cv+b4P8G9BEPwfvu8/AjwLKOCeIAhqp3Owk0mzj6Klj775Nkna32uigKIQ7Uwpi66CQ00bio6Dsi2s2GK4prMAYi2Ks1K/L+5+k//8N+uzn18yt5cj1TrAMSVUmxb39bB7sEKozZj7KmFMqSBll6aiZjBGG0NPZ4F6PSYhXWstS0pGivzT2lCpxxyq1JndW0LXYyKTTFiuTyklc1gIId5C0bGpa8OhSp2uosuhSp2zS25uy3O223iFEEIIIYQQp1Zeg4rHrckaBMFO4P2Nmz3H+Z7HgMdO/bAmt2ZAsZmZZZFubh8vQ1GIycC2FR2WRSWKAUiShM6CnfUSdR3FkWqdN96scEF3iSVze8eUQf3HzW+wZG4vj6zoxwJWL1vI3U+8lH3PZz58GSXP5vHnduIoK/u5kUiDlfbQEVNLVafBGICCk2ZyxY3DG5H0URRtoKrTss6j52ozK0jmsBBCTG5KWZQLDkpZWBb0lj1Kro3Ka9NKIYQQQgghxCklu9kCGBtQHAk1Oo6xLEWHoySgKCY9pSzKxXQ57Cq6GJNQqxsGwjRd/hNfe5n1OwZY9Z9+ns/d/D6mdbgMh5rYJNz8/j7eP/ccIm1Y88Nd3LhoJo+tvCLrJWZZFt/bup9rLzmf//rB+QyHGmWlpVdLrpzonmq0NnQWHEpeOt/qOsaQlowcX+tdKVlrRf4053AljDk4HPKeaQUq2lBy1AQBRVnjhBCtMT68ledwV6Ue8/tffWFMpYslc3t57CNX5PLwmTEJg5WIO9cc7Tf+yIp+ejsLElgUQgghhBBiCsjrjqW8GzmDxgcUC8qiHkOSGMk4EFNSpR5z55pNPPitrZxVclm9bCFL5vbyqf/xKnd89QXeHIkwJu2Fd/MXfsivPfIsT27cw/IrZ/MnT7xE/198k9967IdUo5gkSVg6fzrzzy1TjWJcZWFbFl1FVzZephCtDVGkqeqYkVCze7DC7sEK1bpGm0RKRorcGz+HRyJNuWijgQ5HoROwGpdvFukcljVOCCHeXsmz2bBzcMx9G3YOUvLyeTCjEsXcuWYz63cMoE3C+h0D3Llmc1b1QwghhBBCCDG5tfzoo+/784F5wMvAG0EQJMCDrR3V1DE+oOgpi8gkdBedY7JmbFs2uMXkYkxCpR7T4SoqUfo6iOpxtrmjTcKDH76Mgq3GZB+CxbOv7WfhzO7s/sGRiA2vD/C3Ny+iq+gwFGq+/IPXeeQ721jc18PqZQspugpXKQkoTjHNHoq2sugsOOh6THfJRRvDSGTo9CDBloxwkUvGJGgdU9FmzByOHYU2hqGa5uyiQ5xIVQMhhDgZI6GesCf3SKjpKrotHNnESoXjBEGlV7gQQgghhBBTQkt3fHzf/xjwt8Cngd8A/gogCIJ/auW4poqJMhSr2uAqCzPue6u1igQVRe4ZkzBc05gkYahWR8eGoVodkyRUIs1wTWf3xcZwcCTki8/u4I03a/zu4xv5yvqdHKlpjlTrLO5LW7ZuPzDC/qGQ2x//EY8/txOTQIenWDp/Oud3d5CQENZjejo9rp43nS8/9zoXffIZvvyD1/ntq+ew9d7reGzlFfSUPEqeIwHFKaa5zh6q1LO1FqDkKEquQ0/Jw7WdRjlJTafnSDBG5IYxCZGOCU1y3Dnc6Tk4ro0F6HpMV9GVOSyEEO9AybO5/8a0KoajLJbM7eX+GxfmN1MxjLPr5KbFfT1UwvxmKhqTMBym7xGGQ40x42tECCGEEEIIIU5Uq3d9lgO/AhwKguAh4KoWj2dKMCbJSpiNDihGJqHkKOIEtCHb5O5wbH76xhutHrYQY8SxoRLqLIhYCTUDI2nw76J7nuH//v7rDI5E/O7jG/mjv9vM4EjEs6/tz+776aEad63ZzLWXnM/Hn3yJ9TsG+PX+C7hr7WbKBYdHVvSzZG4vn/vXbZSLNn95Uz/rXtnH//6PW9g9WKWz4DBc02zbP8SRmqYSajzb4talaSDx1qVz8GwLEigXHUqNPnoSUJxamuvsrJ5Sttbqxj5WnCQUPZuEBF2PKTq2zA+RK5VIU29ULRg9hys6PXoUJwmlgp1VOpAeikII8c5VopinNu1h1fUXE3zqOlZdfzFPbdqT23KiyiJrDdAMgq5etpC8XsIYkzAwEnH7l9P3CLd/+UcMNFoZCCGEEEIIId65Vpc/bQY1m1f0YasGMlU0y5iNL20amSTLUJQSZiLv4tgwFGqGQ83dT7zEhp2DfPuPfolPfO3lrHTUtZecz11r034v6/7wF7n7iZf43M3v446vvsD6HQNccHYHG3YOMm9GOSvhNK3DZcPOQbYfGKG75HLfDZcyq6dEtR5jufDYykWUCg6VMKYSxvxg2wEundmNraAaxax5fhcrrppNZyMjUYjmWjowHHHetAKGdDNOeiiKdlAqpJeJo+dw8wCS9FAUQohTo+TZfOjymXz8yfSadnFfT64zFQuuomCr7Dp592CFgq0ouPm8jmn2Sm++R0h7QG7isY9cQbnQ6u0QIYQQQggh2k+rr/z/X+B7wDzf978BPNXi8Ux6lUgfE1DUCbjKIoEsI0ECiiLPKvW0nOTdT6QZhtokzOopjenvMjpY2Py8GTSEo6Wbtu0fzko4Ncuefva723CUhecobv7CD/nk11/mzUrEF7//OgPDIZBm51wzf0Za1tR16Cl73LZ0Lr2dBdlYF1lGeHOd7S656CTBJGkAJhq11noKWWtF7mhtqITxmDk8HGmcUQeQmlmKcVSVOSyEyJXxh3fynJNWjcyEmYrVaHxDinyoNA7ShY2s9VAb1jy/K7eZlc1e6aNt2DmY26CtEEIIIYQQedfSHaAgCP4a+D3gj4GPB0HwQCvHM9lpbSgVnFEb2WlA0W7EPySgKNpFsxTf6A2C0cHB8bebn4/ulXi4GrF62ULWbdmb9bH5x81v8PDyfg4Mhfz3f/4xnZ7NYysX8eBN/fSUPG5dOofecgEsi0qoKRVstEkoOApbKcpFKW8q0oBi8wBHoXFgo+goFBa2NTag2OHY7Ni+rdVDFmIMrQ01HaMssBtBxGYPRTOuRHqn50iJdCFE7oy/Gsvz1Zmy4IZFM1n19Cv4n3yGVU+/wg2LZua2nGgzs3L0eD90+czcBulGQj1hD8hmj2AhhBBCCCHEO9PSqJHv+7cDtwdB8ATwGd/3b2nleCYzrQ1VHWdZB7YFVW2ygOL4TW4JKIo8Gwk1uwcrYzYIPvvdbXzmw5dl/V3WbdnLw8uP9kVcvWwh67cfzO5bvS6g6Cqu77+A93QX+dzN7+OWJX1MKzo82ggkKmXhKItKGFP07DTDrB5DQlYGtVxwsG15vYiU1oZKpNGNNRXS7AhFmtnluumGm67HdBVdWWtFrmhtsp7L2iQ4FkTaYCboA2rihHLRlYMUQghxChTdtJxo8KnruO+GSynmtJQotF8PyJJnZwcImz0g81xeVgghhBBCiLxrdROBO4BfaHz+a6SlUL/SuuFMTs2AYmfBoRbFOJbFoZqmXLCJEzDJ2IwD2SAUeVdybeKSy+plC7OeigeGQlxl8bmb38e0DjcNkLs2n1+5iHLB4XClTv+ss+np9Hh05aJszscuWJbFoUodz1aUCg7Fxr8zvi9iuXH71VdfZcGCBZSLrV5CRZ5obYhiM6YPnW2BY1nHlJ1WKr+bhWJqas7fZl9lSIPfJUcRmoSi5xCGGl2PKShLAuJCCDFFucpi+ZWzuWvt5qwH5MPL+3Fz+h5ydBB03owy2/YP89SmPdy6dA5dRflbJoQQQgghxDvV6h3xOAiCGkAQBHXf9/Pc7qItjQ4opiVeEqIYuotOY5M77YfUzDgQoh3YtqKr4ODZisdWXkGpYDNc03QWbKqRSbMJIQ2QJ/CV9Tv5ly37uP/GhfzNd7dx29I5HBwKj9kM8WzFcKgpubYE18U7YkxCVcckSdqvUxtDyVHZAY7xJCAj8qY5f8tFh+GaxiQJJZmnQog2NNEbSnmTeeq4jqLgqOwg35FqHatxfx51OPaEQdAORzIVhRBCCCGEOBmtDir+o+/7zwLPA+8Dnm7xeCaV8QFFT1kcrsV0eOqYrBnZ4BbtxrYVBQuGa5qhWkJXwaFSj4EEz3U48GaV7792gKvnTeeWJX38ev8FlAsOH7l6DnWT0NUoc9pZcDhSrbN++0GunjedL/3gdVZc9V56Oz0JLIoTVol0lt1Vi2IsC3Qy+gCHZCmKfOsclWG7/cAQ82d0UdFmwsCiIxuxQogcs0j/BieNSGKSQJyAk9PLuoKrGAnH3peY9P48qkaGLz+3k2svOZ+uosu+IyHrtuzltqVzKecw868WGzb+ZHBMEHT99oNcc9EMyvIeWAghhBBCiHespUHFIAg+5fv+PwM+8HgQBC+2cjyTyfiAYkFZVLThrKIzpn9iGlCUzUHRnqr1dFPjtmvmUoliSgWbqJ72Db3g7A6mdbjYCnYNVJjVU2L3YIVy0cbCwnMUBcti7ie+AYCjLLbeex3XXnI+d67ZxGMfuYJyodXnLkS7KDXW1CSBom0RJRDGBnvcZpVSSg5xiFwaPX8v6C7x2v4hfu68aegELNKdeIs0oCgHLoQQeWdbEDeWKssi6yOfR9XIsOb5XVx7yfkAhNrw9OY3chukUxbcsGhm1oJgcV8Pq5ctJK9/GkqezR+s2Yw2R/NVm9f9QgghhBBCiHeuJe9SfN//aOPjfcCHgcuAm3zf/3QrxjPZTBRQjExaxiwetzmolJLNQdG2Sq7N8qtm88Vnd1D9/9m79zA5qvPe99+69GV6egYxQoMxAnSlUbh4QMhYjog5dhxCkoNtMEHKg03MiZN4x5E4uflk23tHO8d5vIkdDtKzc7BDji/YieQ4ZGN2EoKzYzsBWzGyLIFh40ZCiJtlJM0gaWZ6uqvrcv6o7p7unu6enpFaXT36fZ5HT2tqqrtWrXprTXW9tdZyXF4ezRGzLVw/IO94WIZBMmaxOB3HMOC8dIIggL/695cYz7tM5N3KZ61bNkSu4LFqOM3uQ2Ok4kq2S3tc1ydXKM0zV3qAI2Wb2KZBLBbGkVv06I/bSihK5Hiej+O4lfh1/IBFSZtVwwMkYhZeEBA3IfDDYdJ1zSAivaC+pYpyy1VO0m195Fkyn3iUrY88yy1rl0Y2SQeQjJl86pYryX7yJj51y5UkI9qrEsJh6dctG6pZVr7uFxERERGRuetWN5xXSq/7AV3Nn0aN5mu/siQAACAASURBVFDMuWFC0Qe8YLqXYp9t6Qa39DTTNFjcH+d91yxlKB0nWRp2Mla6C5NKWOQKHoZhMJ4v8kdff5bXTxbYtnEE2zTYf2Qc2zQqT1hPOi6vHZ8KbzQ4nnoqSkue5+N5PgU/wDLCmLMM6LNN9e6SnuC6Po7n4wVBODSvAZZh4NetZ1kmlqXrBRGRTikn6coja0Q5SddrTBM+fdtVM3tWqopFREREROalK3fMs9nsY6X/bsxmsz/XjTIsRL4f1CQULQMmCj598fAGtx+EcyblCi79cVs3uGVBmCr6/MHfPs39d1zDg989xO1vvZi7d+7j/MEEd//spVy8OMVkwSVmmtx7+0jp/wZ+AOemEmQ/eVPl5k3gw2PPHGbbxhH6lHCXFjzPZ6roERC2q27Rq/RQrJ5D0S16pJOxbhdXZIbyQ0hBAOlkGMMmVOK3WIrfhGkooSgiPSdo8HNUv/mYBtimSfWztrZpRranYq+VNxmz+MxjWbbefDmrhtMcODLBZx7Lcu/tI90umoiIiIhIT+p2N5zjmUzmPUAWwgfjs9ns890tUu/KOW7lRnbcNDiRd0knLLwAknFLN7hlQUrFLLZvuppdLxxj43UXs+fQGJ+9Yy3ppM2BIxP8t3/ZzwfWLyPve/hBQCpuhfMvxi3O7Z8eFtU0IBEz+eDbl/FgaZ7GtGXi+wG5ojf9vpiGRRXIFT08P2CwL0au4BE3mZFQTET17pqc9apHNQAUryKyoAQ0TipGlW2Z2H7AolQMw4BFqRi2aWBH9IEOP6BSzupXP6KVnHM8Xj9Z4Mb7/q2ybP2KxRqVRERERERknrr2TSWTyQwCy4G7gfuBzwGf7VZ5ep3r+qSqbmRPuT7nJG28Uu/E8nLbVkJEFpbyEKjXXzrMUCrOhtVLSCctco7L6vPTfGjDcrzAZ/OOfYz88T9zx18+yckpl//zq0/xm1/ew8ujOY5NFDgyXuDAkUkGkjG2f/MAqbiF7weMTjp8+Evf59KPP8qHv/R9RicdzhseZqLg4gcBEwUX1/UZzxfx/PDVD4LKzxN5Fz+qd1lkznw/wCk9wDHYF2Oy4GIY4DZZ39TYWhIhvh+Qd9yaUQ3Kc8s6Tdop9VIUkV7kBxCUmrUgiG7CC2Cq6PH4/qM1yx7ff5SpYnRnCSl6PsdzRYIAjueKFL36gbOjo/wA4voVi7FNg/UrFrN909V6UFBEREREZJ668mheJpP5KPC7hGOm/KdsNvtP3SjHQlHucWC4RjisI5C0TbyqOb0gvLmtIU9lITJNo/Kk8UCpd2HMNJgsuKTiFqZh8MAHryWVsHj9RJ57/ulHHB0v8Ge//BbidmkuPNPky989BFdcwLplQ2GyCIPNO/ay6+AoALsOjrJ5x14+94G1fPhL36/My7Jt4wh7Xhrj8jcv4mMPTc/Xcs+tV/Hw3lfZdN3FLO5P6PzrYb4f4LrhcKeOH1AouHh+QNI28QNwXB/qki+maWreWokM1/XJux62aVQNk26AAY7nY1vGjEmuTVNzKYpI72l2tRXVq7BU3OLyNy/iI1/5Qc01ZCoezaRXImYyWahdFvjh8igqP4D4wJ3X1ow8ouvy3tBLQxmL1FP8iiwMOpd7k45bZ3Xryv9XgAzwNmBLl8rQ8zzPx6nqcVD+XuT6AQbgBQGpRDjsaZ9t6ea2nDVM0yAZtxlIxigUfY6OF+iLW+QKHgNJm3tvH+GBD65lUV+MVMwmadv8+wvHeO/VS3nsmcOVGzmphMXuQ2M1n7370Bj9CZtdB0dx/YBdB0fZsnMf61eex8ceerpm+cceepobr7iAzTv2kYvw0+bSWjmhWPADnNLwpjHTwDYN3FLXh/BBjumhT9XmSpSUE4quH1D0AyYLLkfH8/hBgB+EyXETA8+vnXtZMSwivco0wiE6IXyNcv4o53g8vPdVtt58OdlP3sTWmy/n4b2vknOiee2Yczx2PPkyBTfsnVhwfXY8+XJkyyu9rf7UjfCpLDKD4ldkYdC53Jt03DqrW5MI5LPZrAMcy2Qy8S6Voae5ro/v+zXzd0GA44U3tx1fN7dFADDAtgzu+MvvsfvQGJvfuYr/4/oVwPRco6m4xYbVS+iLWdx4xQU8vPdVPrRhOaMTDuuWDVV6KgKsWzbEgSMTNZvYfWiMwb5YwwTkquE0uw+NRfZpc2mtnIwJoGb+OQgwMDANA9OAYlWbm4pZ6t0lkVB/rVBZXvRIJ2IcGc/z5nP6auI38APNvSwiPS1g5pOzJtGdVzFmGmx868Vs2bmvZhSMWEQzob1W3vJ0Bpt37K2Ud/umq1ncH1dvRRERERGReYjCzOS6kp+D6h4zUDtf4vG8R1/crLk5GM6jqJvbcvZK2hYDCZtP3XIlFw2lyDkulgFuEDY9BlAo+nzhiRfZ/s0DlRsjfTGL+/7n82zfNMLmHdM3Te7bOMJXn3y5Zhvrlg1xcqrYNAG5btkQOcerDNEqvcF1fVw/nK8WIFfwCAiImwYnSu2tF0AyblMsuLhFjwElYyQi6hPiuYKH6/tYpoHreSxK2vTFLeIxqxK/fbYS4iLS+wzArZtT0Q3Ajui3Tj8Ihw69/45rGOyLcXKqiGFEdx7IXitvrug1nM7ggTuv1bW5iIiIiMg8dOsq+vJMJvPXhN/5yv8HIJvN/kqXyhR5jXoclBOHjh+wKGnX9FxMmIZuDspZzzQNBpIxLMvEMMAywiErU6Wb7KZpkLBMPrRhOb/1ztVMFly++J0XufGKC3j9ZIG+mFVJSI7ni+wqDZO66+BYzdPZu144xj23XtVwTsXtm0ZIxdRTsddMueEwXm4pmWgQPp0/5fqck7RreoSHD3DoGEt0TLkenh8w2BerzJ9oGKUYdmASF9uajlnNASoiC0VA4+FPI5rzIm6bOAWf47kiA8kYx3NFFqVixCPaJvdaeVPxxtMZaBQREREREZH56VZS8Zer/v/Zubwxk8lcB9yTzWZvqFr2/wDZbDb72dLPHwZ+A3CBT2az2b8/5RJ3WX2Pg3D4PSoJxZhp4Ne9xzRNJRVFCBOL5SeRU1VPJKeTNr4fkCuG85Je+vFHef5PbmL7Nw9w4Ogkn7ntLTy+/yhrLxnijr/8HucPJviDn7+Mv/3+K/zp+6/iwnP7eHk0x9HxPD+9agn9CYu/+ODa6WEw4xZ3bVhBKm5peKUe47p+5eGNvONhGQZFPyDv+qX5E8FgurerbesYS3R4nl83XG/YQ8cJYMr1ZzyEpGHSRWQhCeeWr+2p6Ee4p+JU0WPXC8dYv/I8DAMWpWLseuEYG1YvYSCC3+V6rbw5x2s4mohGERERERERmZ+uXEVns9l/nc/7MpnMHwAfACZLPy8BHgQuBT5dWvYmYDNwLZAEnshkMv+czWYLp6HoXbFy5WqmXK/mBmHMNDCBnOuTsk18auf00g1CkVrl5GHSNpkqJRGdosfJgsueQ2P89KolNcOYPvLUjwH4+C+sYag/XkkW5h2PuzYsJ1X6/1B/nIuHUoznXb7x7E9Ye8kQqZhVGQYzndR52EtqhpgOczEkTIOc69Nnm9imofnnJNLKw/YWiwGeH5CyTXKuj2NAyjYp+AF2zKJQcPG9QEP2isiCExAmEL2qnop2lHsqmgZrLxniI1/5Qc0oGPGIPqzUa+VNxSy2b7p6xpyKGkVERERERGR+eu3RvBeAW4Avl35OA1uBm6rWeSvwnVISsZDJZA4AVwG7z2A5T4v64U6r5/MyAKd0s9AtPX0bruPSH7fVY0bOWuXkYSpukXM8+myTgusz6bh8/9AYay8ZYsvOfZw/mOCP33MFW3bs4/47ruGL33mxMozpto0jbNm5j3/84WGOjhfYvnEEyzRwTA8vmE4oxUyDdDL8fzppsWH1ElIxzUnWq6oTiv0Jm2Ix7B3uBtPJmP6ErfnnJLJc168M25swDRzAh8q1guNPXyvo4SMRWah6bU5FgHTC5nMfWEs6aTORd7Ej/l2ul8prmgaL++M8cOe1le8HqZhGmBARERERma+eSipms9mHMpnMsqqfXwRezGQy1UnFQeBE1c/jwDlnpoSnT31CsTwfkm0YuEE4L0jcNGp+73vqMSNnN98PGJ10Kk8ib37nKjZedzG5gscf/t0Puf+Oa/jIV37AroOjPHb3z5BO2uw+NMZgX4zt3zzAYF+MW9cupS82cxjTnBPeqA8IePC7h7ghM8zFi1PkCl4lkT+gXok9Lee4NUNMJ0wDLwCrQe8GzT8nUVQ9qoFb9Gpu8lY/EKGEoogsdI3mVIyqZj0oo9qz0gvAryudTwBBdCu5eioEDXkqIiIiInJqFuIV9UlgoOrnAeB4oxWfe+65WT8sn8+3td7ptHLl6nDoPWpvbsP0cKcB1CYUnSn2v/hax8rUjXro5TKsWbPmDJSmvRg+HaJQ9+2U400XLWPzjqcqc6bceMUFbNmxj6/82nWV5OHuQ2MArBpOkyt4NUOebv0f/4tli1O8dfliDCAoPeJuGAYGBgXX548eeZbXTxb4hasu4L/9y37u2rCCiYJLIXeSY0eOdLwOqnXyuJyJGI5aG5y57DKASpt7PO/WzD3nlHoovvrigdO63aicX53Sjf2LUht8pvZ/5crVM+ZcNpm+ViiU4jdhGuzfnz2t21YMn35nYwxHwdm0r7BwryNWrlxN/WMT5Z+jeHwvWbGaou9Xelb6QUDRD4iZZqW8UYrN5StX47gBx3NF+hM2Y5MOi1IxkraxYNqUbrfBUamjbpdj5crVTX/XrXJ1u06qtSpLN9vgXqmjToti/EJ0jk+34xd65zpYZehuGeZzLqsNDqkNnqkXjk+78bsQk4pPAn+SyWSSQAJYAzzTaMV2Kum55547Y3/QYHrosur5ExOmgV/6ffUQfE71fEjJGOcMDnasXGe6HlSG9pzJi60o7Pds5fCDoJI0hDBxuPvQGAeOTNQkD3cdHOXAkQkWpWIzhjz9tQf38LXffBuZ8weZcnz6YhZO0QufcDdN7r19hMmCyxP7j/L+ay/iEw//kNdPFti2cYRLL82c0eEwo3Jc5itKbbDr+pUhpo+O57nwnL6ahGK5LTZN87SXp9eP42wW8v5FJYZd1ydX9DD8cFhmaD7Un2J47hby/kUlhqPibNpX6P39bVZ2x3Hn/J5uyhVcip7PRN5jIBnjeK5IOmkRq2qvo3SscgUXw4BFqVjNqx+oTZmrZvUQlTrqdjmieC53u06qdbssUY9f6G5Zohi/EJ3jE4Vy9MrfLJWhu2WI6rmsNri1qB63hXR8FtzYV9ls9ifAduBx4JvAx7PZbL67pWpPdUJxsuCWehsEuEE4N0h1jwMNXyYyU84Jex6WlZOJf/6tA9xz61WV5OH6FYu5/9sHsExIxEx+etUShvrjfO4Da3n+T25i+Xnp0pCXAaZpUPQDDANSCSs892IWay44hyAIeHjfj9l1cJQtO/eRK3pd3HuZL98PmHLDxHHCNEgnYrx2YmrGehryVKJqyvVIJ23ipd6Jrh9o2F4RkR5hGmCbtW2zbZqRHbLVNMJ5Ko/nijWvUS2viIiIiIicXj3XUzGbzR4C3la3bGvdzw8AD5y5Up26+oRi3DQwgON5j744WIaphKLILFIxi+2brq7MqfjYM4fZtmmELTv2ce8/Z7n7Zy9lqD9emS8x70wnAR3XxyxNvmOZBhOOy6JUghV/+I/YpkH2kzdx6ccfJfvJm1j5H6eXle0+NFbpYSy9w/cD3FLb6xY9cq7PoqRNX9zCjlmVISMHNF+tRJTr+vQnbHIFj7gZ9lCsnnPZUQyLiESabZrYZlDT8882jRmJxqjotfJCeL2XK3qVedJTMQtTWVARERERkXnRHfAIqE8oloc79QIqw+/FYlbtcKciMoNpGgylYnzuA2tJJ2wmCi7fOXCU+24fYclggsnScE2mYZAruPTFLQpFHz8IeyHmCi5TjocB/NW/v8yNV1wAwLplQ5VejweOTNQsK1u3bIjJgqvzs8fkHDeco7bU9lYPMV09n61IFJWvH3DDntrxpI1t0HDYXhGRs0l9T+2AcOSXKMq7PvuPjLNyyQAQXqfuPzLO6uFB0hF8iLTXyuv7AaOTTuWhw3XLhti+6WoW98eVWBQRERERmYfoXfWfZRr1UCzPn1h/Y1C9E0VmN+X6/MaX97D/yAT9CZvf3rGP6z71L9y9cx8GBoEfzr2YSthMOeHZVuqgSADkiy6ff+JFblm7lPu/fYD1KxZzz61X8dgzh/n0bVdVlm3bOMJjzxzGNo3Kz6mY1b0dlzlxXR/HcUklbPoTNgnTIOf6Dde1bR1XiZ7q64eEaZCwTU42mDdAQ56KyNmoPlUU5dSRacCSgSS/8eU9XPrxR/mNL+9hyUAyssOJ9lp5c0WPzTv2suvgKK4fsOvgKJt37NW0BSIiIiIi86Seil3UqIdizvXps00MlFAUmQvP88kVw/Np96ExVg2nK70Ldx0c5ZGnfswfv+dyPvD577Pr4Gjlfd/7j+8iYZskfZMggHNTCX7lbZfQF7O49/YRJgsuqbjFhzYsxzIM7r19hInSAwAf2rCcj75rdbhOzMKydI72Atf1cTwfLwhwCh4BARCQss3SHLbhXTGDMCGjp9glahpdP4Txa+L4lIZDDZfr2kFEJPqSMZNP3XIlFw2leGUsRzIW7ba7l8qbilvsPjRWs2z3oTFScT00JiIiIiIyH9G9+l/gGt0QdPzwprYXUHNT0HemdFNQpAHfD8gVXAqOy+ikw68/uIfX3piqDE362DOH+cxtb2H9isXYpsGuF46xbeNI5ef1KxaTKCXxD5/M88XvvMj+IxOcm4pjGjBZcMPz0PHoi1n4AeQdj/GpIjHbZCAZwzQMBpIxJRR7yJTr4ZYe2jCNcP65Kcen4IeJxlTCYrLgktTDHBJR1dcPQGWEg+r4jWvYUxE5izUa/lTOTjnHY92yoZpl65YNkXPUU1FEREREZD7UU7FL6oc8dQOIVeZSrO2huP/F1zhncLDbRRbpuvTAADnHrdwZKno+Rd8nblts2bmPXQdHMQ3YtmmEnd97mfdevZSH9rzCn77/Ki48t49cwcM2CedcTIbn2NHxPAnbwgDu2rCCVMJiPO/ynx5+BoDf+t9WsWo4zXi+yH/++rM88tSPWb9iMQ/ceS3phG7Y96L+RPinr7qH+DlJG6duHjolFCWK/Lo4zbk+hgExo7ZHrYY9FRGRTkjETCYLtcsCP1weRamYxfZNV8+YU1HTFoiIiIiIzI+Sil3gun7NDUE3oDIHRVFDnoqEPRCLHqm4Rc7xSMUsgiBgYGiYnOOSL/q43vQz5xcvTlSGNXrTOX0EfsCdb19OOmHxqxuWk07Y5ApeeOPdNnF9n1zB44n9R1l7yRA7n3yZ7d88wLplQ2zbNIJpwNHxArsPjXF0vMC2jSPsfPJl/vGHh1m/YjH33f4W3YjoQZ7n43k+BT8gCMIHOOKlYSMLdYka9fCSqCnHr1uKXcswCKAybG+xaoQDXT+IyNmuUU/FyA5m3qxgES1wzvHY8eTL3HjFBQAUXJ9H9r3GhzYsZyAZvb89pmmwuD/OA3deW/PdQsPbi4iIiIjMj5KKZ1h52FPccMg9nzChaEBNLxndEJSzge8HOK5H0Q/oi1lMlRKJo5MOW3bsqzxN/Nk7rsEwDI7nigD84d/9kK/82nWVzzk5VazMnXjgyAQJ2+SRfa9x4xUXsGo4zWtvTHFuKkZfzGai4GKaBqmYxdtXLuHgsXHufPtyPvrO1YwXXA4eHWf18CAPfPBaUgmL10/kScUt7tqwgo++azU5x+ONoz/BPGdpt6pN5sF1fVzfx/ECEpaBF4DvBeQ9n766oWvVw0uipnoe0CCApBUOme4H4bVE/QgHil8ROdvVt4JRbhWTMYv/+Hc/5CM3rALCJN19f/88994+0uWSNZaKW7z36qV87KGnK9fq99x6VaTnKDRNg3RppIryq4iIiIiIzI+uqM+g6nkUi0WPAPADsAwlFOXs4/sBOccl53jseWmMtZcMsWXnPrbefDlbH3mWXQdHAdh1cJQ3ckUuGkpVhq3cfWiskjwEeO7wCbZtHGHLzn3c/+0DfOKX1nDL2qX8/teerklMjk4W2PG9l9l03cUQQDppsWp4gFTM4mS+yEDCZtXwAH1xszLPykAyRio+/TRzOmHzyvh4F2pM5qvyMAeQTtq4xfD/SdvEr5vDtj9u68l1iZRy/AZBGL8AbtEjZoY9Fet72er6QUSkt0wWXF4/WeDG+/6tsmz9isVMFlwGkrEulqyxnOPx8N5X2Xrz5awaTnPgyAQP7301sj0VofEoKLreExERERGZHyUVz5DqhOJkwWWyUGQwGVdCUc5Kvh8w6bh4fhAmAu+4ho985QfsOjjKquF0ZSjTsouGUjVJxHXLhvjzbx3gj/73nyIg4Mqli9jz0hj333ENg30x8o5HKkalt2Gu4FWenr7r+hWk4hb5oseU41duLgz2xcg5XiWpVL4pUr6JL72puu0FyBU84ibYRm0yxi16xE1DN5gkUhrFrx8ExC0DE2bMAyoiIs2HOq0fEjUqUnGLe269qmd6/vVaT0XfDxiddGbMqbi4P67rPhERERGReVD26gyoTygmTAPTMDmZd2bcEFRCURYqz/MZzxdxPZ9jkwX6EzaDfTF2HxqrvAIcODLBumVDNe99ZSzHY88cpj9ukU5afPq2qzg6XuD//vv/hYnBUCrO9auHGeyLheeSbZJK2KSTNqZhhK+lhFE6ES5LxcPfW6bJQDIWrpdQL7WFxPOm296TU8XwgQ7HxaXxXEuaR1GipvraYSIfRq5pQt718evWDQDbjuYNXRGRM8kA3ACC0h/7IAh/juoV3pTjV3r+ZT95E1tvvpyH977KlFPf0kdDr5U3V/TYvGMvuw6O4voBuw6OsnnHXnKlkSsk2hpds4v0CsWvyMKgc7k36bh1lu6gdlijhKLjB5yTtOlPxCrL46aBZelwyMLj+wF5x2V00uELT7zIZMFjy4595ApeZS7E8ivAn3/rAPfcehXrVyzGNg3Wr1jMolSMX153MTuefJkggKFUnAc+eC333j5CvJSINwwI/ICBZEznkgDhTaRyG7vrhWPETIOEbZJzXLy6qwlL8yhKBJXjN2Ya2KUHHlwvwDIN/ACM0i1yA4jZGspNRKTMMsJrQwhfrQg3j6YBt6xdytZHniXziUfZ+siz3LJ2KVFt0nutvKm4NWMUlN2HxiLbs1JEREREJOo0rl8HNUoougGVeZCqWaapRIgsOOFwQwUStlWZLzGdtEtf7AMMA7ZtHGHXC8cqcyL+4w8Ps2pJP5+9Yy0DSZuJgksQBPzN7pe5/a0XszidIO94BJWzyAAD+nRDXap4nl9pey0D1l4yxLeyR3hnZhgvCOdS1DyKElW+H+C6HgU/wDLCoU7dIMAuJReLfkAybjFZcAn8gHQE59wSEZH2mEY4Z/enbrmSi4ZSvDKWK42s0e2SNdZr5c05HuuWDVXma4dwKoWc45FO6HZI1NWHVUTDTKQhxa/IwqBzuTfpuHWWrqI7pHrYvXJPRDeYfkq2qHkUZQHzPJ9c0cMANu/Yx199+Dp2Hxpj1XC6Mrzp3+55lfdefSEx22TD6iX0xSz+4oNrK+dFKm4x4bj8972vciJX5Fd/ejnpZJgESlUlgTTnodRzXZ+86xEACdPgeN4lnbDYsHoJsZiFUxmG2lAyRiLHdX1c38fxApJWOLqBE0DcNCrzgBYLLr4X9swWEZGZGg13FNUbCT5hb8pFqVjNazQHE+298qZiFts3XT1jTsVUTD0VRURERETmQ3fjO8DzfKaKtT0Uc65PXylx6CihKAuE7wfkih59MZOcE8a8U/Q4mXfZsnM6mThZcFm3bIgDRyZ47JnD3LdxhLt37mPZeSmuuWSI/oTN+JSLYYS3gAwM8kUfyzD4wPplleH/clNTpFOpLu+1RFV17y7PD0jaJgGwKGlXkjGVeW01f6JEUHmEAwgfmHCLHnHTwIcZMaxrBxGR5upbyCi3mHHTxHF9jueKDCRjHM8VWZSKEY/otUrCalzeRERH3TFNg8X9cR6481pScYuc45GKaYQTEREREZH5iuaVfw9z3TChmKqbQzFlm3gBFP3pIfeUUJReFg5t6vD5xw/ykxMFfv3BPVz68UfJuz5bdu5j18FRcoVwuCHLMNi2cYTHnjnMe69eyg9eGuOzd6zlZy4dxjIMXj+RJ520CTBwih4QkIyZ+MF0kjFuW7zy0kvd3WmJLNf1KwnF/oTNYF8Mk7BXeCNqeyVKXNfHcdzKCAfhdYJX+X2xLqEoIiKtNeqpGFVTrseD3z1EwQ37+hVcnwe/e6jykEnUTBX9xuUtRrWvYphYDIdoLb3qb6mIiIiIyLypp+JpVB5yL1W6GRgvJRRjpV4GXqAeirJw5Ioem3fsZevNl/N7X3uqMk/JYF+sNGcinJhy2LZxhH99/gjXr17CB9++jIGkzaLUEvoTVuVcSCdtDCOco8U2TZLx8NwYSIavGuJUWqnu3VVuY73SwxzVQ0YqISNRVD1cbzmZGBCQczzMpN3wQk09bUVEWuulOVT6Ezbbv3mAe//n/soy2zT46LtWd7FUzaUSVk+VV0RERERETi/dqT9Nyje1yzcETSN8ItY0woSiqyFPZYFJxa3KPInlJCLAyaki65YNsevgKPf8U5Y/ed8VvH3VEpK2xZTrYRgGhgETeZcvffcQ77/2IlJxi8eeOcz1q4d1bsicVLe9AJMFF8swMEwqD3VUCwA7osNzydlpyvXw/IDBvhiTBRcDsEyDhG2Sc1xSsdpLNdM01U7KGXXTlw4CB+f0nkP/9Rc7UxiRNvXSnIrlaQLKD+gBrFs2xGTBjeTcueWRSOrLmyt4ehBQTrteOpdF6il+RRYGncu9Scets3RX6jRolFC0DMi7PqahhKIsTDnHq8yTuG7ZUGX5w3tfY9vGEdavWMw//vAwALP9WwAAIABJREFUT+w/im0a5F0/PEccDwMY6Itx14blDCZj7HrhGNcuG0Kdb2QuPK+27S3PvVkeNtc0jBkXEbZlYimpKBHgeeGQp+XhesvxC+C4PnHLJBWz8YPpYdP747auIURE2tBLPRX7Ylbl2tk2DdavWMy2jSP0xaxuF60h04BP33ZVTXk/fdtVaDAI6YReOpdF6il+RRYGncu9Scets/Qo4SmqTiiWe8jYBuRcnz7bxFFCURYg3w8wge2bRtjxvZf5zG1v4fe+9hS7D43x2LOv875rLuSzd6xloC+MfT/w+fHxAquW9BNUDQNsGQbJuMXIRefiuD6L09G8eSLR47o+ru/XxJJlGEy5PslSO1v0A5Jxm2LBxfeCSD7tL2cnz/NxPZ+iH1CoGq43V4pf2zRq5lH0vYC04lcWuGX/1z/M+T3qESnN1M/u5xPdp2nzRZ89L41x/x3XMNgX4+RUkV0vHOP61cOkI/ogVDJm8qlbruSioRSvjOVIxqJZThEREREROf2UVJwnz/PxPL9mrq6YaWASJhRTtlnzOyUUpRf5fkCu6JHJXEbOcSEIe+GeKLhs2bGP33jHcj60YTmpuMVffHBtpTeNWUoWThZcJgtFTkx5rBpOM5F3+e4LR7ly6SLSCZs9r4zxuX99kXtuvYqH977KXdevIJ1QsyStVc+hWCzNk+gDU6WHObyAGb27TD0+LxFRHb/lZKLD9LWDWxe/qZil3rUiEaCkZ2+pbzWj3IqaBly5dBEf+coP2H1ojHXLhtTzT0REREREIkt37+fBdX18vzahmDDDYfac0g1CJRSlF3ieT67okYpb5Jzp1/6ETbHoVZKH5w8m+MQvrSFumbgYbNmxj10HR7n/jmtIxW0MA1Jxm/2vT7D1kWfZdXCUp//o3cQsk/5EjOHBPiYLLumkxfWrhzGN8AbKz1w6zMolA/z3H7zKpusuIRXRYZ4kOurnUHSLHm4p2V3f9qp3l0SN6/rkq+IXwhiOmwa2aVQSiqmEFSYUlRAXEVnw4rZJOmHX9PxLJ2zi+v4oIiIiIiIRpKTiHFX3MCjfuI6XbgRaBsRNQwlFiZRyb8NU3CLvhLHrB+GwRWOTDjuffJn3Xr2Uh/e+ynuvXsrHHnqan7/ifN539dJK8vCxu3+GibzHopTJQNJm96ExAAb7Yux/fYLzBxMczxV57JnD3HPrVXzsoaf5z19/lk++74qasgQ+BIRDUuYKLr7jceG5fdx1/QpSMUs3z6Wl+uGmARJmOOR0ADMe9FDbK1FSjl/PDyrx6/kBlgkJ06wZ7tQteiRttYkinTB7j8ODZ6QcImVTRY9dLxxj/crzMAxYlArnG9+wegkD6ql+WlR/H8o5nr53iIiIiIicAiUV21TfOxGo3Lh2AyrD0yihKFHheT4F12fScdlc1dswX/T5/a89zf13XMOWnfvYevPlfOyhpyuv5R6I/Ynp5OGq4TQAhgH7X59g3bIhdh0c5eRUmEj81Z9exqJUjFvWLuXv9rzK1psvZ9Vwmqmih2VA3vEwMDAtA8MNf54qegz1xzENQ0OeSku+H+C63ozhpgHcAGyDmvlrE6aBaartleio76HoFD0MoAjkHA/iUD1tuGmaun6QnjafoUKjvB2RToqZBmsvGaoZ/nTbxpHKtY6cGt8PGJ102Lxjb6V+t2+6msX9cSUWRURERETmoefu5GcymeuAe7LZ7A2ZTGYV8EXCTirPAL+VzWb9TCbzR8AvAi5wdzabfXK+21u+YiWOE/YoqL6hHQpw/LB3YnnoUyUUJQo8z2d00iHnePzh3/2wprdh+efBvhi7D42xajhd8wrTPRDLycMDRyZI2CaLUjEee+Ywn7ntLfze157i6/teY+NbL+aL3znEnW9fxlAqzl0bVlSG7jMMA9f3+cTDz3J0vMDWmy/nxvv+DYD1KxbzwJ3Xkk7oPJHmVq5cPSOhGDcNDMI2N1Zqf6spISNR4Xk+K1eurulhW5lH0Q/CYU+Tdk0vRc2hKCJydvEDSMRM7r/jGgb7YpycKmIY4fIoMg2wTRPwKsts04zsHJC5osfmHXvZdXAUgF0HR9m8Y2/pe0jP3Q4REREREem6nrqKzmQyfwB8AJgsLboX+EQ2m/12JpP5LPCeTCbzEvAO4DrgIuAhYN1ct1XumWga4RxdQE0PGRM4nvfoi5v4GLohKJGSK3ps2bmPr/zadTN6G5Z/PjlVZN2yIQ4cmah5re6BWB7K9P5vH+ATv7QG04CNb72YnU++zH0bR1gykMApenxow/KahE+u4JFK2Lx+Is89//Qjjo4X2LZxhJ1PvoxtGpUnhDWHojRTboMdPyAgbH9zBY9EVQ/F6uGmndIcigOaQ1Eion6Eg3L8OoBPbfwWS0Oe9tm6fhBZSM5UT8pD//UXz8h2pDNMA4IAjueKDCRjHM8VWZSKRTZJB2CbBotSscpwrXaEC5uKW5XvP2W7D42Riut7iIiINFYeNjuTuYyJ0n1e9W4XEZnWU0lF4AXgFuDLpZ/XAv9a+v+jwM8BWeAb2Ww2AF7OZDJ2JpNZks1mj7a7keobgUDNcKfVPWQWJW0KfkA8ZlHUDW2JkPLQpdWJwnJvw/LPD+99rZLou+fWq3h476uVJGK5B+LOJ1/mT99/FRee28fR8QKFwGcwaVeSiHnHwwtKN8wdj/54eK4Uix5BEJBO2tx7+wg5x6PPNrnr+hV89F2rNZeJtFQeKrKcTISw/Q2jxcAnHPJUw01LVDWaf9kywghuduNVPWxFZL7mk7xUIjJaeilJ12tyBbfy/ads3bIhcgWXtL67i4hIHQ2bLSIyu55KKmaz2YcymcyyqkVGKXkIMA6cAwwCo1XrlJe3nVSsvhEIVIY7tYxwnFWvroeMbmhL1EyWvjz/+bcOzOht+OnbruL3v/Y0n/yH5zh/MMGHNiwnFbcqr3/xwbVhz6+ix69uWE66lDzsj1v0xW2mHI8vPPEiH3z7Ml4/WWDrI8/OGD6o/P+BpFnzc9qq/VmkkSnXw/MDBvti5AoeAUHYw8sPyLk+KdtU+yuRNlU1f2J5nk9gRvwW9ECSiHTJdCLy4Jze1yvJyPqRQwOqZ66NlmblUnlPD9MwKt9/yjeHP33bVZhGVEssIiLdpGGzRURmZwRBRCdraKKUVNyZzWbflslkXs1ms0tLy98DvBt4Hkhms9k/LS3fC7w7m80eq/6cPXv2BKlUqvE2LrsMmE4mlm8GHs+7pBMWtlGbUDT8Iq+89NLp39mSfD5PMpns2OerDKe/DGvWrOn4t9RWMXze8DBBrJ8tO/dx/mCCu3/2Ui5enGLK8TAI52gpz3tY/kKdff0kK4cH6I9b5Is+QWmdibzLdw4cZcWSAbY+8ixbb76cX9z+OM//yU0EAWQ+8SjPf/ImstkfdXqXIxEDZ0s5Oh3D7bbBlmFgG9M3A32oGW46bsLBFw50sqgdF5V46pRu7F+32+DMZZfVXENU38yuvn5ImAYvvLC/00XtOMXw6dftGK5205fmlnSShe3RO1e0tV43ryNWrlw9Y7778mgzUWxzL81kmHI8/ADSSZuJvItpQF/c4vlsFohWO9tOeVs50/uSuewyfuer+/jIDatYNZzmwJEJ7v/2Ae69fYTsjxp/f+l2GxyV493tcqxcuRqYee0E3TuXu10n1VqVpZttcK/UUadFMX4hOsenm/ELs3yXy1zGpZ94FLdqcmPbNM7Yfa96UThmZ3MZ5nMuqw0OqQ2eqReOT7vx2+uPWOzNZDI3ZLPZbwM3Ad8CDgB/mslkPgMsBcz6hGLZmjVrGn7oeL4ITCcTHT8gbhqV4U6Tcauud0Gs6WedDs8991xHP19l6K0yVGtVFs/zK70OJwsuTtEjGTPDYUoT4Q2AVMxiyvVIxS1WDw9W5m7xg4A+22L/6xM89sxh3nv10srwqJ/5RpZ1y4Y4OVXk9ZOFcPigondG6iUq9a9ynB6t2mDPD0iVeh+We3dBbUKx3EOxl+sAev84zmYh71+rGHb9gP5S3DZKKC6U+IWFfYxhYe9fe/ulpKJMi9K50KwsjuPO6DVX/jlK5S8bzxf5whMvcuMVF7AqkebwiTyPPXOYD21YXilvlNqhdsrbypnel/F8+J3lxvv+rbJs/YrFTBbcrtdps+1H5Xh3uxyO4zb9XbfK1e06qdbtskQ9fqG7ZYli/EJ0jk8UytFs+xPNhs0+Q/e96kWhrs7mMkT1XFYb3FpUj9tCOj69nlT8XeCBTCYTB54D/jabzXqZTOZxYBdgAr811w/tsy18368kE+OmMaN3TCpmYVkabk+iy7JMBkoxWj203kDSxPcDTANMy8DyjEqiMe94FIo+lmGQd31Wn5/mgnOW05+wuHnkQu795yxHxwts2zSCATz2zGG2b7qaVMzq0l7KQtRnW+Rdr5JM1HCR0mv6bIsJx2XK8+krtcMasldE5MywLBPP8xsuj6I+22LjWy9my859leE5t20coc+O5vV1r5U3FbPYtnFkRnn1/SX6TNPE92eey6YZzXNZpJrit3elYhbbN109Y05F/d04O+lc7k06bp3Xc0nFbDZ7CHhb6f/PA+9osM5WYOt8t2HbJq4LcfyaZGKx4BL4upktvc80DdKlOE6VxoT3/QAf6IuZFF0frzQ0smFA4MPidJx7bx9hsuASMw1itsld168gFbM0WbWcVrZtkgRc38cNwuF6+xM2uYJLf9xWvEnk2bZJGhvH83H8cChpp+BCgK4hREQ6rJI89L2aZVFNKtq2yVAqXjPCSJQfPum18lqWyeL+2vLqAeHeUL4vU30um6YZ2VgTqab47V2mabC4P84Dd15LKmaRK3q673UW07ncm3TcOk812YRtm8TjNi++sJ+BZAzTMBhIxvTlQxYs0zRIJ2ws0yQZt2vifv/+bM3PyXi4XjqhBI90hm2HcfjSwf2kkzamESbCFW/SK2zbJJWweeXF/YpfEZEzzLJMBpIxsj/6UU98h7Nts+ZaO+o3PHqtvOV40Hf63lOOtfK5HPVYE6mm+O1d5ftj2eyPdN9LdC73KB23zlJtioiIiIiIiIiIiIiIiEhLSiqKiIiIiIiIiIiIiIiISEtKKoqIiIiIiIiIiIiIiIhIS0oqioiIiIiIiIiIiIiIiEhLSiqKiIiIiIiIiIiIiIiISEtGEATdLkNX7Nmz5+zccTlj1q5da3Ty8xXD0mmdjGHFr3Sa2mDpdYph6XW6jpBepjZYep3aYOllaoOl16kNll7WTvyetUlFEREREREREREREREREWmPhj8VERERERERERERERERkZaUVBQRERERERERERERERGRlpRUFBEREREREREREREREZGWlFQUERERERERERERERERkZaUVBQRERERERERERERERGRlpRUFBEREREREREREREREZGWlFQUERERERERERERERERkZaUVBQRERERERERERERERGRlpRUFBEREREREREREREREZGWlFQUERERERERERERERERkZaUVBQRERERERERERERERGRlpRUFBEREREREREREREREZGWlFQUERERERERERERERERkZaUVBQRERERERERERERERGRlpRUFBEREREREREREREREZGWlFQUERERERERERERERERkZaUVBQRERERERERERERERGRlpRUFBEREREREREREREREZGWztqk4p49ewJg1n+HDh1qa71O/lMZerIMHdduDJ+Of1Goe5XjjJejo3qpDe70v4W+j13av45TDJ89+6gYXtjH92zd1zOwvx11tsXvQtmPHtqXjmsVw1Gpo6iUI0pliUo52ihLR/VC/EapLFEpR5TK0s34hd66jlAZerIMHaU2uDfL0UNlactZm1Rs19TUVLeLoDKoDF0Xlf1WOWpFpRydpH3sfQt9/2ZzNuz/Qt/Hhb5/szmb9v9s2lc4O/Z3oezjQtkPWFj70ilRqaOolAOiU5aolAOiVZZqUSpXVMoSlXJAdMoSlXLMJgrlVBlUhrmIUhmjUpaolAMWVlmUVBQRERERERERERERERGRlpRUFBEREREREREREREREZGWlFQUERERERERERERERERkZaUVBQRERERERERERERERGRlpRUFBEREREREREREREREZGWlFRswvcDco7LRctX4wcBE3kX3w/w/YCJghsuK4TL5vKZzd47389t5zM932c8X6ys47rhz/XL29lmuV4m8m5Nvczlfc22W70v1evmCuH/M5dd1nR79fXgeX7T7XmeX1MvjV5zBZe841beN54v4nl+W8ekF8wl3nw/4E0XLZuuB9+fc+yfrnKmBwZmXbf+eJbjNFdwcT2/5pi6rt+yHhrVU3V9VMdT/Trlc61QF0eu6884hzzPr/xcH4ut2oo3XbSsrXP+TByr080rHavMZZdVzr9OtJPt/H4u69QfW9edbsPCZcVZy91uO9sy5lvETaP2dbb2vNm50KpdL78nk7lsxnqN2uWcs7Da3foYnq29aeZMxW91mavrv3zNUN2GtVPedtqh+livicdZYri8brvtXSdjuPp3CzGGL81k5nW9eKpx2866jdo2Pwgqx+FMXOuW12/Vnp5qG9yoHppdzza7vm603tJlK6bPv1K55nrOi4h0UrlNqr6eEukVil+RhUHncm/ScessJRUb8P3wS/TYpMOHH/w+l378UT784PcZzxcZnSzw4S+Vln3p+4xOOm3foBiddBq+t9XvTvUzP//4QV57I8+vP7iHSz/+KI8/f4SxnMMXnnixZnk722xWL6OThbbf9/knDjbcruf5lX35na/uq6w7NuEwlmu9vfp6+PzjBxkvuA239/nHD9bUS7keql/HJhyKvs/JvFt5368/uIfRSYfzhodnPdZRN5d4K6/7H/76qUo9vPZGvlKPnUxWNSpnfGBxy3LWH9dKnD34fY5PFZko1B7TsVz4nkb10LieCozni5X6KL+n+jPK7cT+10/ieD4n8jO36QdBJaY//8RBRqtivFzHX3jiRX5yolBT1/Vl+g9//dSs5/xc2qmoKLcH1fU2XnDn1f7OFu/tnA/trlPfPj6+/wgTjlvXhu1p2Wa2287OGvNN/sbMtX1ttv/j+WLLdr367+Xv/M2+mvXqy1pus4te43a3F5My9TH8hSdeDOs6ovHbqMy//uAeCq7PWM6Z0YY1uxifSztUH+u/89V9tfHYIoZzpfOq2TXFmYzh6nNqIu8uuBie7/XiqcZtO5/VqG378IPf58u7DnEy786r7OmBgTld65bjODejrZ9+z6m2wY3qodn1bLPr60br/c5X93Ei702ff5MO+4+cnNM5LyLSSe4cr0NEokTxK7Iw6FzuTTpunaekYgO5oscbuSK//7Wn2XVwFNcP2HVwlDdyRTbv2FezbPOOveSKXlufuXnH3obvbfW7U/3MG6+4gI89NL0f61eex5ad+2Ysb2ebzepl8459bb+v1XbL+/KRG1ZV1p10vFm3V18PN15xAcebbO/GKy6o2f9Gr5OORxDAlp21x3rLzn0kUoOzHuuom0u8NVq3XE/txv7pLOfdX32qZTnrj2f1e3/3b57ieK4445jeeMUFDeuhcT3t441ZPqPcTqxcMoDrBw3jyPepjcm6dqW8D7/3tadq6no+5/xc2qmoyBW9GfV2fJ7t72zx3s750O469e3j+pXnVdqidtvMdtvZdmK+UdzMtX1ttv9v5Iot2/Xqv5fV22xU1nKb3azd7aXYLauP4fLfnqjGb6Myl18bHZMpt3n8ttsO1cd6OU7aieGJvDfrNcVs9Xi6Yrj6dwELL4bne714qnHbzmc1att2HRzlPSMXzrvs6UWL53StW47jckw2es+ptsGN6qHZ9Wyz6+tWsVv9/5VLBuZ0zouIdNKUO/PaRG2S9ArFr8jCoHO5N+m4dZ7d7QJEUSpucdFQit2HxmqWN1q2+9AYqbjV1me2eu98Predz1w1nK5ZZ7Av1nB5O9tsVi9zeV+z7fYn7Mry8jqrhtOV37faXn09VL+vfnvVn93sFcAwGm83nez9U2a2uGln3XJ9tRP7Z7Kc9cez/r0XDaVmLCsf8/rPb7b92T6jHOvlWJktjpqVtX5f2mkr5ntuR011e1A23/Z3tjhqJ87aXae+jIN9MQaSsTmVu912tt2Yr4+bubavzfa/fB4023b1PjRrb8tma3f7E73X7tbH8HzPyzMVv43KDJBOzlzW6pjUx+Vs5WoUJ83eU71e+ed267WTMVy9bCHG8HyvF081btv9rEbxcyrXuuekkgym2r8uL8dxdVnaKedc2uDydtq5nq3/rPrj2Ch2q/8/13NeRKSTGl2bqE2SXqH4FVkYdC73Jh23zlNPxQZyjscrYznWLRuqWd5o2bplQ+ScNnoqOl7T97b63al+5oEjEzXrnJwqNlzezjab1ctc3tdsu5MFt7K8vM6BIxNtba++HqrfV7+96s9u9vrKWK5ST/Xbnci7TfezV8wl3pqtW66vdmL/TJaz/njWv/eVsdyMZQeOTDT8/Gbbn+0zyrE3kQ/nJpotjpqVtX5fZmsrmp3zreotqqrbg7L5tr+zxVE7cdbuOvVlPDlVnHO5221n2435+riZa/vabP9fGcu1bNerP7tZe1s2W7s7Wei9drc+hud7Xp6p+G1UZqBpG9bsmMylHaqP9bnE8GzXFGcyhquXLcQYnu/14qnGbTuf1ahtg1O71j2Ry8+p3S7Hcav3nGob3KgeZmtXy59VfxwbxW71/+d6zouIdFKjaxO1SdIrFL8iC4PO5d6k49Z51tatW7tdhq44fPjw1je/+c0Nf2ebBqYB78gs4bnD4/zkRJ7rli/mtrVL+bnLz+eZ105Wlm3fdDXnJGMYhtFye7ZpcENmmGdeOzHjvTHLbPo7wzA4duwYS5YsmddnPrz3VX77nav50U/C/bjywkHu2rCcr+99rWb5bPty7NgxLhgeblgv2zeNtKyD6vr8+6d+3HC7g0mbGy4L9+W5wyfZevPl/P1TP+aai8/lnWuGW26vvh7O649z3YrF3NBge+f1x/n9GzOV/f+Hp3884/Wai8/Ftgze/VO1x3rbxhG8wgT9qVTD/azzX9pZ6VS0iuFWWsVN/TFstO49t17FPzz9Y/7g5y9rK/bnq9G277v9LSzqizctZzney8ezOs7+7JffwkDS5qlXTtQc06/vfY3dh96YUQ+N62mEdKL1Z5TbiZdGJxkeSPKuNcMz4igeM9n78vHpmPz5TM065Tq++2cv5X889Vqlrlu1Fc3O+bm0U3U6GsMt22DD4B2ZJTV18v61S7lxHu3vbPHezvnQ7jr17eOVFw6y+vwBbpilzaxu45v9/WnW7rWK+UZ/Y+bavjbb/9vWLqUvZjVt16v/XlZvs1FZy222YdCw3T0nGcM059zOdLUNro/h8t+eqMZvozJft3wx77v6woZt2GCi9piUY7g+Llu1Q/WxXo6T2nhsHMM/+1PDvPOy4abXFGcyhqt/N3LRogUXw3O9XoTTE7ftfFajtu25w+N4vs9vv3P1vMp+7MjrLBocbPtatxzHtmXwzssat6en2gY3qodm17PNrq8b/a2orrPy/199I8cvX3vRrOd8m7p2HVGt2feoXrNQ9gN6Zl+62gZHpY66XQ4Lgxvqrk1OoU06LbpdJ9VmKUvX2uAeqqOOimL8QnSOTzfjF3rrOkJl6G4Z5nkuqw1GbXAjPXJ82opfIwiC01uikkwmsxc4UfrxReBzwDbABb6RzWb/SyaTMYH/F3gLUAB+LZvNHshkMm/rxLrV5duzZ0+wdu3apuX3/YC86+H7kEpY5ApeZTiiXDH8f87xSMWstoPR94Om7231u+eee441a9bM+zP7YiY5x6M/YZNzPJKWyZQ7/Z7y8lb7Ui5Ds3qZrQ6q39cXNxtut3pf8sXpdQtFHz9ovb36euizTQqe33B7fbbJlOtX6qVSd1WvhaKPaUDRD+hP2EwWXFIxi+efzzY9FnU63kLNFsOttIqbRuueyOU5pz8Z1kPcYqrozyn256u+nG8c/QkXLV3act3649qfsMkVPEwD4rbJVNGrHNM+2yLv+U3roVE9AZX6qI6n+nVyxfBc83wfpyqO+mwLx/drzqG+mBnWacKq1HF5H+rrurpMJybznJNKznrOz/NYdfTgzha/nueTqzpWqZiFYRjzan9ni/d2zod216lvH5O2ieNVt2Euqbhd8976Nr7ddrZlzLf4GzPX9rXZ/gMt23Uo/b2MWTPWqy9ruc02mdnuWta8BlXoehtcH8OztTfNnKn4bVTmVMwiCML5CKr3w7Zrj0l1DM+lHaqP9bzjTcfjLDFMAH7Q/JqinXqE0xPD1edU0fUXXAzP5Xqx7HTEbTvrNmrbUgkLp+hR9IM5l/25554jk7lsTte65Tgux2Sj95xqG9yoHppdzza7vm603mTewTCs8PwrlStpm7Oe823q6nVEWavvUb1koewH9My+dLUNjkodRaEcruufrjbptIhCnZTNUpautcE9VEcdF7X4he7XSZvl6Pp1cFkU6ktl6H4Z5nEuqw2m+2VRG9xai7K0Fb8dGUg2k8kkAbLZ7A1Vy/YBtwIHgX/IZDLXAMuAZDabXV9KDv4Z8B7gsx1at22maZCK25UKrp4DLV0af7f8OpfPbPbeVr87HZ85kDRr1hkonUT1y9vZXipeVRdtzjFY/75G260ub/W6qUS4bqsTr1E9pKpu4tVvL23V7n/9a3mbycr7Y23tZ6+YS7yZpsFPXjnEuWvWVOohnTgzjXB9OV8ZH29r3frjWR2nA5VjX9oXu/k50KyeyvVRH0/V65T/b2OSKG+7tE27auTpctnSdeWajtnauq4uU7kcrepgru1UVFiWyYBlzjjvT3c72c7v57JOo/ax+qIl3UZb0m472zLmW/w9aNS+ttpO/furP3u2dj2dsGccw2ZlLbfZC6XdbRTDrdqbZs5U/FaXGWrrf/qaob08+AF6AAAgAElEQVT4bbcdqo/1VIM2tNHnVr+nne3Uv/90x3D1Z1hxc2HH8ByuF081bttZt1lcJON21XHo7LVu/fqN3nOqbXD9Z8x2Pdvs+rp+vVcPHawc25pzYQ7nvIhIJ9m2yYA98zuBSC9Q/IosDDqXe5OOW2d1KjPwFiCVyWS+kclkvpnJZH4GSGSz2Rey2WwAPAa8C9gA/BNANpv9d+DaTCYz2Il1O7SfIiIiIiIiIiIiIiIiIgteR4Y/zWQyVwJvA/4SWA08ChzPZrNrS7+/C1gBvAl4KJvNPlpa/jLw9tKy607zuiuy2WxlNs49e/YEqTbmxsvn8ySTyVnX6ySVoffKsGbNmjMyXEM7MXw6RKHuVY4zW45Ox3AvtcGdttD3sRv7F6U2eKEfX1j4+6gYXtjHt9rZtK+g64heslD2A3pjX7rdBkeljqJSDohOWaJSDmhdlm62wb1SR2djOSA6Zelm/EJvXUeoDL1XBrXBoaiUJSrlgN4oS7vx26lx8Z4HDpR6Dz6fyWROAENVvx8AjgOp0v/LTOBk3bLTsm51QrGsna6vUegiqzKoDM2cqbJEZb9VjmiWY756pQ3utIW+jwt5/xTDoYW+jwt5/xTDtc6mfYXe39+zKX4Xyn7AwtqXU9WsHqJSR1EpB0SnLFEpB3S/LFGPX4hOWaJSDohOWaJQjl65jlAZVIZG1Ab3XjlgYZWlU8Of3kU4jyGZTObNhEm+yUwmszKTyRjAjcDjwHeAXyit9zbgh9ls9iTgnO51O7SfIiIiIiIiIiIiIiIiIgtep3oq/n/AFzOZzBNAQJhk9IG/AizgG9ls9nuZTGY38O5MJvNdwAA+VHr/b3ZoXRERERERERERERERERGZo44kFbPZrAP8SoNfva1uPZ8wKVj//n/vxLoiIiIiIiIiIiIiIiIiMnedGv5URERERERERERERERERBYIJRVFREREREREREREREREpCUlFUVERERERERERERERESkJSUVRURERERERERERERERKQlJRVFREREREREREREREREpCUlFUVERERERERERERERESkJSUVRURERERERERERERERKQlJRVFREREREREREREREREpCUlFUVERERERERERERERESkJSUVRURERERERERERERERKQlJRVFREREREREREREREREpCUlFUVERERERERERERERESkJSUVRURERERERERERERERKQlJRVFREREREREREREREREpCUlFUVERERERERERERERESkJSUVRURERERERERERERERKQlJRVFREREREREREREREREpCUlFUVERERERERERERERESkJbtTH5zJZIaBPcC7ARf4IhAAzwC/lc1m/Uwm80fAL5Z+f3c2m30yk8ms6sS6ndpPERERERERERERERERkYWuIz0VM5lMDPgcMFVadC/wiWw2ez1gAO/JZDLXAO8ArgM2An/e4XVFRERERERERP5/9t4/SI7zvPP7dk/Pj93F8gdIgCEoUgRBsLGyLEGkFJl3cgRTVGhFOcsXhwqVytmJcmRZpZKgiMfId/LFvKqrinWyXCdVfLoq5UgRLh8p0cpZjlU8u3yJTUKHnEiYII5nqAkIJCWBpAHuEtgfszP9M390Pz1Pv9M9uwAx3J7F91O1NTPdb7/v933e7/u8707vzBJCCCGEEEIugHF9/envAPiXAF7JXt8G4C+z508AuBPABwD8med5ied5PwbguK67bYxlCSGEEEIIIYQQQgghhBBCCCEXgJUkyUWt0HXd/xHA2zzP+6eu6/4FgF8H8P94nrcjO38HgE8C+CGAec/zvp4dfzI7/uQ4ynqed0LrPHz4cDI9Pb1mf3q9HjqdzoUH5CJADZOnYW5uzhq3lvV6+GJQh9hTx1urY9wenqQcPG42ex83on91ysGbfXyBzd9Henhzj6/mUuorwH3EJLFZ+gFMRl82OgfXJUZ10QHUR0tddACjtWxkDp6UGF2KOoD6aNlI/wKTtY+ghsnTwBycUhctddEBTIaW9fp3HP9T8ZMAEtd17wSwF8ABANvV+VkAZwEsZs/N4/GYyg4xNze3ZmeOHTu2rnLjhBqooYq3Sktd+k0d9dRxoUxKDh43m72Pm7l/9HDKZu/jZu4fPVzkUuorMPn9vZT8u1n6AWyuvrxZquJQlxjVRQdQHy110QFsvJa6+xeoj5a66ADqo6UOOiZlH0EN1FAGc/Dk6QA2l5aL/vWnnuf9F57nfdDzvH0AjgD4VQBPuK67LyvyEQBPAfg+gLtc17Vd170BgO153usAnh1TWUIIIYQQQgghhBBCCCGEEELIBTCOTyqWcT+Ab7iu2wJwDMAfep4Xua77FIBDSG9ufnrMZQkhhBBCCCGEEEIIIYQQQgghF8BYbypmn1YUPlhy/kEADxrHXhhHWUIIIYQQQgghhBBCCCGEEELIhXHRv/6UEEIIIYQQQgghhBBCCCGEELK54E1FQgghhBBCCCGEEEIIIYQQQshIeFOREEIIIYQQQgghhBBCCCGEEDIS3lQkhBBCCCGEEEIIIYQQQgghhIyENxUJIYQQQgghhBBCCCGEEEIIISNxNlpAXYnjBEEY4W07b0acJFjph5hyGgjjOD2fALY1eAziBNOtBvpBXKwnAabbDfT8KD+my3f9aOR1QRBh567dWOoFmGo24IeD9juOjSiO4cdJfk406bbkdZwAUy0b/SAe0jDTdtALIiAZtN3tp9oA4O037ULPD/N6gzjBlNOAH8WplqaN1WDQFzmmNTUsIAFgAfCztoOsP0HWhzCrT67Rmm9ScVgNMs1+BNsa9E9j9nHKaWA1jAqx0n0J42LbQ55IAHfPHiz3Qky3GrClgpoSxwm62Zh0/QjTzYHmKIoL52baTl4mSdLrZtoOVvohmraFW1w373ccJ1gNoyH/xkmC6baDbj+CbQPtho3VME7LZcdaDTsfO5lTvTDO/WbbQMcZ6JQ+TDVTD1y/czfiJEG3nx5bDWN0nGKdTdtC07HzOSV+XumHudYoSfLyuh/yuOrHcOzheS11Xb/zZnT7IdpNG10/Qsu2Uh+VlO35Ud5et5/6teUM5ksQxgji4vl208aqn3nUSmPZj2LE8WBudhwb1904yE+5z9X8SH0/fO0k+DcMY/iRHvMQnXXkYDMGOnebedfMv7aV5qcExRxnW+lf4PQNP5TlmLJ2wjDN01qPHw/GZMcNOxFnSccPI9gAYgxy5UzbQRBEed7sBzEaavjkeBTGCJPB+rAaFmOg85/OrfI8yI4Lclz3LU6K3h61nsn4XL9zN6I4zvO9mWfNNdTUJm3la5ORz+pKGMZYDSO4e/aka1eFf83x8oMozwm5X6LBHqFsX6HrKKzNjg0/iuFYRf/q8nodCIMoLyfHgiBCVNgbhJhqNgp5RTycJAmiKEaMwbqv13u9H5E9DABE2fGGlT7X63NVHKQe8ajZhj4vcyYBSj1s7jdyjdk+5vqduxFGMfwwzjVqxMPm/sTUqNfauvsXGOThm3btLuwBq/Zb+braTPeO/bDoWz1WZfvejmMP7cUk10nMzX2tjJHWUVW/bt8cDwDohemeu++HuVfMdUbPUfGkaExUW4U9ptrflu2Zy/oix/Rc11rMGKyqPZ3O83JO/w6hx63sdwwdL52TJ9HDhJDJp2w/5Tj823gyGdC/hGwOOJcnE47beGEkS4jjBL0gwrleiPsOHMYtX3wCDx98Eb0wQhgn6IUxgjjOHxd7IR4++CIWln10gzD/Wej6uPfAM/j8t47kx3T5U2/0Rl735AunEcQJFnshDh4/g+X+4Pzx04vwoxjn1DnRpNuS1wtdHw8dPImFZX9Iw30HDqca/UHbt3zxCdx74Bks9QJ0/RBxYiGME4SZnhOnl7CclX/q+GksrPh5X+SY1hQjQRAniBPgXNb2ci/M6zt4/Ax6QVSIrdYcI8n7urDi55qDOM7HRMfQ7OOJ00tY6PqFWOm+9MJi27ouPSYSl/mVfn4ToI7EcYL5FR/3PpJpfuQZzK/4iOP0Dd/5bLxk/Adl+ljqD3x/34HDWOyFWO6FeOjgydwjpn/Prga4V+o58AzOdgMs9cNB+weewaof5WMnc2phtRjXhRUfS70AcZzkfXjoqZO5r6TsQwdPYn7Fx1MvnC7Ued+Bw1jsh1jpD4/bfQcO51p1eemHfnzo4MnclzI/ix44jLOrARaW01ic64V4qqTs5791BAvdgb57DzyDha6P5X42b3shFlW85fzCcub9ro8wirHUD7GwYsSq6+Ob33+x0A89P2754hN46KmTpdfW3b9hGOf5RXQfz+bpqBxcFoODx8+gF0ZDedfMv0H2RnZg5Lggu+lx1sjzZrtnlnql7az6w2vJsl8ck1//gyN5rgXSmzCSK+87cBhPvnA6z5uSD6MkfZNdjveDGN0sb55eWi347sxSr5D/dG6V58u9sJD75Ljum+Rl8fao9czM45LvzTxrrqGmNj2Pcg+rfFZXwqzvMgYnKvwr67mU/f1DL2FR+eXg8TNY9kfvK3QdZ5Z6+dw5vbSKZT+EbRX9q8vrdWB+qZeXk2NPvnAaq2rc0/z74lBe+fU/SPcQQZTeQJd1X6/3ej8ie5goAVaz4zESrGaxkfVZe1jHwfSo2Ya575E9SJmHzf2GXCv7GP1cNJbtN8z9iamxuNbW27/AIA9L7GQPWLXf0uvqahBhqV89VmX73uOnF4f2YpLrVlW+0D6ScSnLJaO8Yo7HUi/AUi9AEA3WgbJ1Rs9RWSNEY6Dioz2s97dle+ayvpTNda3FjMGC2tPpPC/n9O8Qety0RrNtc42YRA8TQiYfcz9134HD6e9Hxh9JEFJH6F9CNgecy5MJx2388KZiCd0gfeNv/2NHcOjkPMI4wV3vvDZ/Q+VsN0CSIH/c/9gR3PXOa7HiR1juDX4eePwoDp2cx6f23Zwf0+W/8J2jI6+79YatuY7bd12Ns90gP79r2+zQOdGk29LXSFumBq1R2g7jBIdOzuONbpD3W372P3YEu7bN4mw3wAOPH8Xtu64uxECOaU1xjML1d73zWiRAoQ9mbLXmOEZeTsblU/tuRpIgv07H0Ozjrm2zQ7HSfTHb1nWVxeWzjx5BN4jW9NJG0Q0ifPbRZw3Nz6IbROgG0dD4636d7QaFY/sfO4IEyOdAmX/v//ZzhWvu//ZzQ/Us9cKhObX/0SOFMg88fhRvdINc52cffbbgq8K1hh9yvY8eQZygdNzKtEo/zEepX+anWdf9334OK340suyn9t08dN0Djx/F2W6A23ddjQQojYHU+8DjRxGr+WCOi4yJ9MOMx13vvLb02rr7dzWMhnTLPB2Vg8tiILnF9K2ZfyUnmDkuyd4sNvO82e622U5pO3FWbq0xkVyr37yX6269YWuh/bJ8GiVJXu+22U6hTXkt+U/nVnmeoJj75Ljum9Yt+bdqPTPzuOR7M8+aa6iprWoeST6rK6thVBiDKv/Kei5lP7b3uiH/muNi7it0HdtmOwUfnO0GQ/7V5fU60Gk5Q8duvWHrkF+rPKz9K+u+Xu/L9jB6/Y5jDK3P2sPm2qw9OsrDes6UedicE3Ktni/yXDSW7TfM/YmpcZL8CwzysM43o/Zbpheq8knVvrdsL6bHrWxfq+fHWvtxM/+b+fcN5b2qdUbPUVkjyuKjPaz3t2V75rK+lM11rcWMgbkGmm2Zdes1r+x82RoxiR4mhEw+5n5KfgdaDZl/SP2hfwnZHHAuTyYct/HDrz8tQb7y8+mXFvJjN2/fAiv7lp/ZThOWNXh8+qUF3Lx9y1A9cr0+p8uvdd2WjpO/vmyqidlOM39ddk406bb0NdKWqUFr1H0GgOu3Tuf91vq2dBzMtJ28fV1/mSZdh5SVY1LejG2ZZmmrbEw0Zh+3dJwhXWYsy2Jojol+LT6pI9OtxkjN5vjrMtdvnR46puNW5t/11HP91umhOVV1nR6fsjbkWu2HMr1lfi4rr/ujH815V9XHqrLr7eN66q3SbfbbjFNVG3X270zbwXTLKeiWeQpU5+CyGEhuqRpnwcxRkuPKvCjldV0zbae0HSknnG+ulb6b+VCXkXYkZpKbdTxNL2kdcr3OfWV90z7UfauKp26rbP0042jGea15VHcPr8e/en0CUOpfc1wADM19qUPPHXleFmPtKalTNOtjeq0Xqjwsc033scxfet2VdoHUC+ac02WmW8Uta9lcK/Ow1C26TA+bc0Ku1fNFr4GiV6jan5gaTe119i+Agn80VfstTZlv19r3lu3FpG3tEe0j3c5a+3Ez/2tkzdV9LVtnpG9la4R5ndYox7VPqvymjwEoeNjMn2Z9Zb4tq1v3tartzeBhQsjkY+5BABT2poTUGfqXkM0B5/JkwnEbP4xkCV0/QhwneN+NW3Ho5DwA4MTpZVxzWRtA+hfCV0w388f33bgVJ04vo218L69cr8/p8mtdt9wLESepjsXVAGe7QX5+uRfmz+WcaBL0a92WqUFr1H0GgJ8sdHHFdPGNCGl/YcXP29f1l2naOtNCnCSwLSsvK/GU8mZsdZ1bZ1qFtkSzHhON2cflXjikS/clzj7lY8bQHBP9uutH2FLTZNT1o0rNSeYpPf66zE8WuoW6JG5/s9jHNZe1S/27nnp+stAdmlNV1109O/BGWRtyrfaDqVc8ZPq5rLzuj340512Z1n4YV5Yd1UftwfXUW6Xb7LcZp6rxqbN/V/oh5pf9gm6Zp0B1Di6LgeSWqnHWudm2rDznSo67YrqJhm2Vltd1rfRDRHEyVP+1l3fWNSbiiYZtIYoHuVLWAjMfCnJ8xxWdPGYr/bBQv7zWXtI6JJfq3FfWN+1DuWZUPHVbZeunGUetR8eoah7V3cPr8a9enw6dnC/1rzku5r5C16Hnjjy/aktrKK7aU1KnaNbH9Fq/locXV4Pcv7Lul/lL72EAYGHFBwBsnWnlc073VeI5v+wXYmx6r8rDMmdknTc9bM4JuVbPF3kuGjXiYXN/ov08af4FBjGX2AlV+y3TC1X5pGrfW7YXk1wnMTf3tbqdtfbjZv4386/UIetA2Tqj56jMDdFozm+tUY5rn1T5TWvWXtJazBiU7Vv0ObNu6euotjeDhwkhk4+5nwKQ73HK/hCYkDpB/xKyOeBcnkw4buOn8eCDD260hg3h1VdffXDHjh2l5xw7fUPhQ3Pb8fypRbx2roerZ1q47e1XwrYstBwblgV0mg1YFvDhd1yD7z57CrfecCXaTRstJ/25Y892HHt1CcdeXcSd79iOlmOjYVt5+c/csRvfO/pK5XXXXdnB266cxp1z1+AHL85j9zWzcBoW7tizHT99o4vtsx18aG57fk40OQ0rb0te37FnO/7kubQtp1HU8MPXBhql7dfO9fD+nVfh7tveBse2YFuDnzvnrsHLCyu49vIp7HO34fDLC/jkB3bmMbhjbjsOv7xQ0NRopNc2bAsfmtuO7z57CnuvvwKObeX923n1TCG2+9xtueZW087LffIDO/H8qUUce3URv7BnOxw77a/0uyzOp8528fH3Xl+IlbT98sIKtm1pF9rWdekxkbh87RN7cXmnCcv8E/UB/2Rs5s1Yy8P73O14/tQ5pfk9uLzTRNO28EF3W2H8db9m2g6e+8nguq/esxeObeE7h3+K295+Je6cG/bvne+4Bn/9ymJ+zVc+/m7Mdor1/N33XIe7fuY/K8ypB37RzV+/f+dV+PLd78LlU01saTtoNmzsc7fjj579ae4rGYOrZ1p44C634Idc7yf2otmw0Mh8r8ftY+/eMaT1S7/yLnzv6Ct5f+RR6r/xqhm0m8Me+MrH342OY+OPnj1VWfbYq4t48Jd+pnDdl+9+Fy6bauLQj17HDVun8eGfuWYoBlPNBv7o2VPYf+dudJo22tl80PV89Z69+O6zp/D0S2/k/firHy8U4nH1TAvvv+mqoWvX4V9gzB4e5d8GLNi2VdB95zu2Y9uW9sgc/Jk7dg/F4Gevuww7r54Z8q2Zfxu2haad1qtznGUBrUY6pjrPmzlmuR9gttMcnh/ZnFlrTCTXNu10TCRXPn9qEddd2cGv3n5j3n6raaOR5WPJp+99+1Y0HRv73G1Y6gX42N7r8jZ/5dbr8LG91+X5T+fWO+bStWHv9VcUcp+sGbpvrax+8fYv7NleuZ7J+iNtSb4386yOo9aj53zZPJJ8Vtcc3EDqXxmDKv/uc7fhp2+k69PzpxYRxTE+c8fugn9l7a/aV8ie4OPvvR5nuz6unGnlPrhypoW24d875gbl9Trw4bnt+MV3Xls4dt2VHdx49UzBr1Ue/uW9O3L/thwbjYaVzwftL72HsS0LzWz9bmbrrV6ftYevnGkV1mbt0e8drfawzBmJvelhc78hOVz2MbLP2X3NLBqN6v2GuT+RPZVoLK61a/oXqIGHbdvK92/yU9V/vY798t4dhXLmWJXte3/6RndoL9ZoWGgoj5j7WhmXslxi1q/bN8fj7tvehqlsPZF1oGyd0XNU1gjRaFkozO+y/W3Zntn0W9Vcl77r/CnXSX2yBmrffvIDOwu/Q+hx0xrNts01oo4eHuVfzfu+8gP88z8/fl4/n7vzlnFKvyBef/11bNu2baNlXBQmpC8bmoPrEqON1mHup+R3oMvaTdj2yPwzNjY6Jpo1tGxYDp6gGI2VOvoXqM/4bKR/gfXvI+oQL2rYWA0XOJeZg8EcXMaEjM+6/Gsl6q+PLyUOHz6c3HbbbZXn4zhBEEbw4wQzbQcr/RBTTgNhnP5DzzgBbGvwGMQJplsN9IPiP/yME2C63UDPH3xnry7f9aOR1wVBhARp+almA344aL/j2IjiGL46J5p0W/I6ToCplo1+EA9pmGk76AURkAza7vaj/KuNekEA2xr85XcQJ5hyGvCjONXStLEaDPoix7SmhgUkACwAftZ2kPVH+hdm9ck1WnPDQt7X1SDT7EeQXBAbVjb7OOU0sBpGhVjpvoRxse0hTxhxWSMJjT1DrcfD3WxMun6E6eZAcxTFhXMzbScvkyTpdeL7pp2+obfqx5huNRDHCVbDaMi/cZJguu2g249g20C7YWM1TK+RY62GnY+dzKleGOdxtW2g4wx0Sh+mmnbuKyk71Uzr7zjFOkWvzCm5ZqUf5lqjZDCvdT/kcdWP4djD83rQfgjbstBu2uj6EVq2lfqopGzPj/L2uv3Ury1nMF+CMEYQF8+3m2m8bQuAlcayH8WI40H/O46NbhBhS6fYDz0/Ut8PX7sO/wJj9vBa/g3DOM8vEvPOOnKwGQOdu828a+Zf20o7nefcLMfZVvoPiPuGH8pyTFk7YRgPrSV+PBiTpW4fs1PpJ/n8MIINIMYgV860HQRBlOdNyYeCHI/CGGEyWB9Ww2IMdP7TuVWeB9lxQY7rvsVJ0duj1jMzjwfh8NiZcdR69Jzv+dHAC0Y+q2DDc3AYxkNjUOZfc7z8IMpzQu6XaLBHKNtX6DoKa7Njw49iOFbRv7q8XgfCIMrLybEgiBAlxfw31WwU8op4OEkSRFGMGIN1X6/3ej8iexgAiLLjDSt9rtfnqjhIPeJRsw19XuZMApR62Nxv5BqzfYx+Lho14mFzf2Jq1GvtRudgYP15WGInVO238nW1me4d+2HRt3qsyva9Hcce2otJrpOYm/taGReto6p+3b45HgDQy/KvrANl64yeo+JJ0Ziotgp7TLW/Ldszl/VFjum5rrWYMVhVezqd5+Wc/h1Cj5vWaLZtrhF18/Ba/hVu/I3vnXfdL/32Ry9E0lg5duwY5ubmNlrGRWFC+rKhObguMaqDjrL9lGN8Iv2tpA4xEdbQsmE5eIJiNHbq5l9g42OyTh0bvg8W6hAvath4DRcwl5mDsfFamINHM0LLuvzL76ypwLYttFsOTmYBlo/GOig3Xyd7nG6Xn582vh5Iys927JHXtVtOYZCdRrGcAxtted5Y38SQtoY0GP+vSP/Po5dP/qhgNLlWT8bZxnBfqjSJ5karqKWq/HTbLsRh0NZoC5t9nM306nbytivGVlOnyb8Wtm3lX0tlfj1Vo2HnMZTYDMpY6lzqe91v27byOJb5V/tmS1ZP4f+JGXVvcYbLlPVBe0DKSv1mnaYmfU4fl2O5PyQWnaIvzbp+8uKJgRezsu2KstqjZXFotOy8nULsOkY9jeEYnzruFfJT3o9GcUzLrq07jmPDcfSYry8HmzHQuXuozIj8W5bj5EtHdXmzzrJ2Gq1Bni5bS1758Yu5nzpGHpbr2i2n0mM6n7bU8cE8bRZe6/yn65J8bKL7phFvr7WeyRhW1a/r0NcWn6u5MSFft+c4Nmad4to1ap2R8em0HBXTZl6XSdn6l4+xKi/Py/xr5vJWy8nL5bltaG+Q5dJGmYctNBrV/jRZa91dTxy01iqPrXdvVlbWaQzGcNQ+K9dasT8ZXmvrj5mHR2GOFVD0CPLzo/e969mLDV1Tsqerqn9ovVfjMW3suU2kbj1H1/qltGp/W7ZnLiuXllnbM+aeTtcj58rqHvU7hqlvEj1MCJl8yvZThEwK9C8hmwPO5cmE4zZeNvb2LCGEEEIIIYQQQgghhBBCCCGk9qzrT01d1/1V41AA4Cee5x28+JIIIYQQQgghhBBCCCGEEEIIIXVivd9fcw+AGQD/HsB/jvTbfELXdf/K87z/ZVziCCGEEEIIIYQQQgghhBBCCCEbz3q//rQJ4Bc8z/uHAD4MYMnzvA8CeP/YlBFCCCGEEEIIIYQQQgghhBBCasF6bypehfTGIrLHrdnz9kVXRAghhBBCCCGEEEIIIYQQQgipFev9+tPfA3DUdd3/BGAPgH/muu4/AvBvywq7rtsA8A0ALoAIwP8EwALwTQAJgOcBfNrzvNh13d8C8FEAIYDPeZ73A9d1bx5H2fWHhRBCCCGEEEIIIYQQQgghhBAirOuTip7n/SsAfwvAbwP4gOd53wTwJc/zvlhxyd/JrvvbAP43AKlbw7MAACAASURBVL+b/fym53k/j/QG48dc170VgHyN6j1Ib15ijGUJIYQQQgghhBBCCCGEEEIIIefJum4quq77s0g/lfjHAP6d67rv8Twvqirved4fAbgve/l2AH8D4DYAf5kdewLAnQA+AODPPM9LPM/7MQDHdd1tYyxLCCGEEEIIIYQQQgghhBBCCDlPrCRJ1izkuu7/i/QrRJ9zXXcvgN/LPoW41nWPAPi7AP5bAN/0PG9HdvwOAJ8E8EMA857nfT07/mR2/MlxlPU874RoO3z4cDI9Pb1m33u9Hjqdzprlxgk1TJ6Gubk5a9xa1uvhi0EdYk8db62OcXt4knLwuNnsfdyI/tUpB2/28QU2fx/p4c09vppLqa/ApbGP+MgjJ8+77id+7aYLkTRWNpM3J6EvG52D6xKjuugA6qOlLjqA0Vo2MgdPSowuRR1AfbRspH+BydoHU8PkaWAOTqmLlrroACZDy3r9u97/qWh7nvccAHied8R13XA9F3me92uu634BwH8AMKVOzQI4C2Axe24ej8dUtsDc3NyafTh27Ni6yo0TaqCGKt4qLXXpN3XUU8eFMik5eNxs9j5u5v7RwymbvY+buX/0cJFLqa/A5Pd3fdrP/6ZiHWMy6WOl2Ux9ebNUxaEuMaqLDqA+WuqiA9h4LXX3L1AfLXXRAdRHSx10TMo+mBqooQzm4MnTAWwuLev6+lMAgeu6/7Xrupe7rvt3APRHFXZd9++5rvsPs5ddpDf+nnFdd1927CMAngLwfQB3ua5ru657A9Kbl68DeHZMZQkhhBBCCCGEEEIIIYQQQggh58l6P6n4PwP4HQC/DeCvAfz9Ncr/XwAezr52tAngcwCOAfiG67qt7Pkfep4Xua77FIBDSG9wfjq7/v4xlSWEEEIIIYQQQgghhBBCCCGEnCfruqnoed7LAO6W167r/ncAfjyi/AqAj5ec+mBJ2QcBPGgce2EcZQkhhBBCCCGEEEIIIYQQQggh5896v/7U5P6LqoIQQgghhBBCCCGEEEIIIYQQUlsu9KaidVFVEEIIIYQQQgghhBBCCCGEEEJqy4XeVEwuqgpCCCGEEEIIIYQQQgghhBBCSG0Z+T8VXdd9FcM3EC0AW8emiBBCCCGEEEIIIYQQQgghhBBSK0beVPQ879pR513Xfb/nef/h4koihBBCCCGEEEIIIYQQQgghhNSJC/36U+F/vygqCCGEEEIIIYQQQgghhBBCCCG15c3eVLQuigpCCCGEEEIIIYQQQgghhBBCSG15szcVzf+3SAghhBBCCCGEEEIIIYQQQgjZZLzZm4qEEEIIIYQQQgghhBBCCCGEkE0Ov/6UEEIIIYQQQgghhBBCCCGEEDKSN3tT8V9fFBWEEEIIIYQQQgghhBBCCCGEkNrijDrpuu6rSP9vovmJxMTzvB2e531jbMoIIYQQQgghhBBCCCGEEEIIIbVg5E1Fz/OufauEEEIIIYQQQgghhBBCCCGEEELqyVqfVHwU6ScVh/A8778fiyJCCCGEEEIIIYQQQgghhBBCSK0YeVMRwL98S1QQQgghhBBCCCGEEEIIIYQQQmrLWl9/+pcA4LruLIAvALgWwPcAHB2/NEIIIYQQQgghhBBCCCGEEEJIHbDXWe4hACcB3ALgNQD/amyKCCGEEEIIIYQQQgghhBBCCCG1Yr03Fa/yPO8hAIHnef8egDVGTYQQQgghhBBCCCGEEEIIIYSQGrHW/1TMcV13T/b4NgDRiHJNpJ9svBFAG8A/BfDXAL4JIAHwPIBPe54Xu677WwA+CiAE8DnP837guu7N4yi73n4SQgghhBBCCCGEEEIIIYQQQoqs95OKnwXwMIDbAPwRgM+PKPs/AJj3PO/nAXwEwP8B4HcB/GZ2zALwMdd1bwXwQQDvB3APgN/Lrh9XWUIIIYQQQgghhBBCCCGEEELIBTDypqLrure6rvssAA/AlwH0AFwG4PoRlz0O4B+r1yHSm5F/mb1+AsCdAD4A4M88z0s8z/sxAMd13W1jLEsIIYQQQgghhBBCCCGEEEIIuQCsJEkqT7qu+wSAL3ied9R13b9G+inEEwCe8Dzvb4+q2HXdWQB/DOAbAH7H87wd2fE7AHwSwA+RfqLx69nxJ7PjT46jrOd5J7S+w4cPJ9PT02sGqNfrodPprFlunFDD5GmYm5sb+/8dXa+HLwZ1iD11vLU6xu3hScrB42az93Ej+lenHLzZxxfY/H2khzf3+Goupb4Cl8Y+4iOPnDzvup/4tZsuRNJY2UzenIS+bHQOrkuM6qIDqI+WuugARmvZyBw8KTG6FHUA9dGykf4FJmsfTA2Tp4E5OKUuWuqiA5gMLev171r/U9HObijuADDjed5fAYDruvGoi1zXvR7AvwHwLzzP+9eu6/4zdXoWwFkAi9lz83g8prJDzM3NjeoGAODYsWPrKjdOqIEaqnirtNSl39RRTx0XyqTk4HGz2fu4mftHD6ds9j5u5v7Rw0Uupb4Ck9/f9Wk//5uKdYzJpI+VZjP15c1SFYe6xKguOoD6aKmLDmDjtdTdv0B9tNRFB1AfLXXQMSn7YGqghjKYgydPB7C5tKz1PxXl/C8C+HMAcF23jeJNuwKu614D4M+QfsLxoezws67r7suefwTAUwC+D+Au13Vt13VvQHoD8/UxliWEEEIIIYQQQgghhBBCCCGEXABrfVLxz13X/T7S/6H4S67r7gLwdQDfGnHNPwJwJYB/7Lqu/G/F/QC+5rpuC8AxAH/oeV7kuu5TAA4hvXn56azs/QC+MYayhBBCCCGEEEIIIYQQQgghhJALYORNRc/zvuS67h8DOO153rzcVPQ879+MuGY/0puIJh8sKfsggAeNYy+Mo+yFEIYx3n7Tbiz3Qky3G+j5EezsW2XjBLCtwWMQJ5huNdAPit8MGyfAdLuBbj9Cx7HhR8Pnp1o2+kGMOAE6TRt+GOfXBUGEnbt2Y6kXYLrVQJCdixOg49gI43hIS36+aSOM0vNmW2Uae340pHm61QAAvP2mXej2QzQsIEHa3ymngdUwynXpGOi+iKaGBUTqEUAezyBOMNVsFPSa7Ny1G91+OBS7IIzz1xo9Ll0/yvVONRsFXVLWQqpLHzfj5O7Zk/qh1YBtj/1r3t8UcZygG0R5/6eb6VjKsZV+2o9+GAOJHvcQTduCHyeYaTtY6YfYcd11WO6HmGoO/GP6xLYtRFGMbpDGeDWI8uvltbQXx9m1foQpx8ZqGKtxGrwWjVq/EEVxWpfS7dgWwqzulawf+nVeV+bTKEn72O2nc7vl2FgNIrRtC33V/4ZloZPpaVgW3D170PNDBKqMrlPa0de3m3bhmBkjs82WbaHZbBTa17EGgB3XXYelXoCZtoOeHyFOEkxLf2yg0ywfezlWZw+HYQw/inH9zt2IkwTdfoiO04AfxXkOKZurknsK/nMaCOO4kA9MLwCDPJDnOJWTHAv5+PhBNJT7JceUtROGcWE+TTkN+PFgHuy4YSfirCN+GMFG+t3eFpBfFwQRfKOtKI6RYBAD0TjdaiAK44Kf1srXkkt1PPXa0MisEiXF42YMyuJzi+ui2w8L66fEW+Lsh3GhXb0uSlv5XJ8A/wKph1fDCO6ePVjqBbk/zLXGXPvL/Ct7B4mN6V3ZE6yGRR/KtY4FhEkxtg0LBU/NtB2EQZT7RnKKzDuda6eaDfSjcg+HYYQwGcwnaUPvX6ZaNkI15rIn0PsD0Wd6WPxi+qTKw7q/Ml9GedjMCXECXL9zN6I4Luw3zD1E2ZzaDB72oxg37dqNnl/cf5Uxas9b5V19vmxfK7nHV7lCzx097kM5WeWW9ex1e2G65+77YWGv60dxXrfkOH1O50e9PgEDPbIOVPXd9K8ZL+lPqHKBvk60iaf1edPPebybdmFvXfX7jNYy03Ymxr+EkM1B2X7Kcdb6wi1C6gH9S8jmgHN5MuG4jZc1I+l53jHP8+az5z8adUNxMxGGMZb9EAtdH/ceeAaf/9YRBHGMME7QC2MEcZw/LvZCPHzwRSws++gGYf4j197yxSfw1PHTWPbDofMPHTyJhWUfC10/LdMfXPfkC6cRxEle/3IvRC+MsdD1cfz0InphNKRFzj91/DR6QXrebKtM4+e/dWRI870HnsFSL0DXD+FHQIwk13Pi9BIWun6uS8dA90U0xUiwqh67QZjHc7EX4uDxMwW95o/UY8ZuuRfmY2KWF02n3ujleg8eP1PQJWXjBFhVMTTbN+Myv9LP30CtI3GcYH7Fx72PZJofScdyfqWfH7vvwGEsLPtY9SOjf4dxrp/GTsr10cLxv1nM/VMWjzCMMb+Sxnhhxcd9Bw4P2smOv3auj64f5tc+9NTJgk7z9X0HDuPUGz08fPBFzK/4uHr7dgDpDcWlvqnjMBZ7IR46eBK3fPEJPHzwRSz2Bm3puhaWfZxdDXKN9x54BgtdH8v9EGeWejjbC4v6uz4+/60j+fMnXziNxb5RJqtTPKfPdYMQr53rD8VEYlzW5rleiCdfOF1oX3svDGP00cJ9Bw7j8986ksVC9Wclu6Zk7O995BnMr/i19bCZf2/54hM4fnoJy36Y55CyuSq5R/vv4PEz6IVRIR/oR/G05IGgJCfZFvLx+f1DLw3l/lNv9HBmqVfazqof4Zwa24cPvpj2bWXQt1//gyN5rgXSN8/jBPl1T75wGueMtvwofRNZYoBM48MHX0Q/iAt+OrPUG5mvJZeaOVbWhhgJoixHmmui7m9VfBaW/cL6qXO05OSqdVHaKsz1mvsXSD280B32obnWmGt/mX9l7yCxMb0re4KFro8Tp5dyH55Z6mHZT73RzdqS2MZICp6678BhzKs8JDGXeafj/9DBF9P8W+LhIIzQzfonHjb3Lw8dPIlVP0KUIPdVNwgL+wPRZ3pY/GL6pMrDur8yX0Z52MwJWrPeb5h7iLI5tRk8LDk3iBOE2U/VPm3UnrfKu/p82b5Wcs85lSvKxqUsJ+vcsp697lIvQBAV14ETmf+lbslx+pzOj3p9CtX+XdaBqr6b/jXjJf3pBVE+Bvq6RTVvzfiYftZrpd53V/0+o7Xke6YJ8C8hZHNg7qfk9yL9h0mE1BX6l5DNAefyZMJxGz+8PVvBahjhbDfAA48fxaGT8/jUvpuRJEAYJzjbDZAkyB/3P3YEd73zWqz4EZZ7gx+5NowT3L7rapztBkPn5boHHj+al5Hrbr1hK8I4yetPgPz8rm2zpVrk/O27rs7Pm22VafzUvpuHNB86OY83ukFeTxwj17Nr22xBl46B7otoiuPi43IvyuO5/7EjQ3rNH6nHjF0ClF6nx+UL3zma6zV1aR3m8aqxPHRyHp999Ai6QbTBLq2mG0T47KPPDo3lZx89Uji24kdY6oVD/dv/aBq7/HU25uKfsnishlEe4/2PFduR4//g8eew3Ivyc3e989pCWfP1oZPz+MJ3jubH29OX5f3Tc0W3I7pH1bXiR7j/288Vzj3w+FGc7QbYNtsZuu6Bx4/iU/tuzp/fesNW7C+J5f3ffi73nD633IvwDx5/rlJrWZv7HzuCW2/YOtS+eE/iLfPXjIW+pmzsP/vos7X1sJl/wzjBrm2zhRxSNlcl9+hYSm7R+UA/iqclD5TlpCA7dujkPD6297qh3P+F7xzFttlOaTtxVk57vMy7kmv1m/dy3a03bC1tS+e+SLUdJUmhTfFXVb7W60vZ2iC5v2xN1Lqq4rPiF/OsztHm2miui1X+rrN/ARTmp/ahudaYa3+Zf8113PSu7AkkT4t3ts12cLYbIFJjJ9fF8fDYdVrOUE6ReafjP8rDvupf1f5F5oXpYb0/EH2mh3Ws1uNh3d/1eNjMCbotvd8w9xBlc2ozeFjv/czxGrVPqprXZoz1+bJ9rd53mvs3c9zNsTTnzlp73TeUb/VeV9ctOU6f097S65P2f5yM/l3B9K8ZL+mPHgN9nZ63ZnxMP+u1siwnmxq1lknyLyFkc2Dup+R3pNWQ+YfUH/qXkM0B5/JkwnEbP2v9T8VLlpm2g+mWg6dfWgAA3Lx9C6zsW35mO01Y1uDx6ZcWcPP2LUN1yLUAcNlUE7Od5tB5ue7plxbyMnLdlo5TKCdtPv3SQn7O1CLnL5tq5ufNtso0ah2a67dOF+qXMls6TkFXVV/0tTNtJ38EUKjP1Gsi9Zix02NilpcyWq+pS+sQfWUazLg8/dJC/nVZdWS61Sgdy7JjQHn/tF8khjJ2ZeVn2oMYl52X49ImgHx8ql5rLdr35vws0z2qrqo+iN/Xuk78pJH4lrVbFntdp8TOPG/mAHku3tPzd1T9Ve3X1cNl4yv+07mkLKea/pPcosdGPwqWNVwPUMzzUp+Z+8X/Ze2Yflor15r9kb6XtSX6RH9Vm+Kvqnyt1xezbZ1ntU/NukbFR8fX1GuujWVztMrfdfUvMDynxU9yzlyv9fOqvUOVd3VO0jlD5pFlIZ9PejzMsTPHV+f98/GwtKk16/5qT0m7okk/L/OwjtV6PFzmv1EeNnNCmeayPUSZHh2jSfWwHkuhap82as9bFWN9vmpfK+fN/Zs57uZYmnMHGO1dYHgd0OuOznHmOYmXXp90v9f6XcH0b9l6pXOI2X/T0+Yckb7p+s19d5XGqn1N3f1LCNkcVP2OpPfChNQV+peQzQHn8mTCcRs/jGQFK/0Q88s+3ndj+kmhE6eXcc1lbQDpX/peMd3MH99341acOL2MtvG9vHItACyuBjjbDYbOy3Xvu3FrXkauW+6FiJMkL3fNZe38vJwztcj5xdUg12q2VaZR6xDNAPCThW5e79aZVq5nuRcWdFX1RV+7sOLnjwBwxXQz12DqNZF6zNjpMTHLSxmt19QlZW3LwsKKP9RO2VjK664fYUtNk1HXj0rHsuwYUN6/E6eXC6+Xe2E+dmXlV/qDGJedl+PSJoB8fKSs+VprEQ2XTTWH5meZ7lF1lXldtF21pTWyXu2nsviWtVsWe12nxM48v9wLS9vv+hGSbC7K/B1Vf1X7dfVw2fiK/ySHlM3VMv9JbtFjox8lJ0oekBync5L2hM4huq6VfogoTobqv/byzpDHR+Xahm0hihPYllVYC8y2kgT5GgAg13ji9DJ2XFFsU/xVla/1+qJjKd669vIOAGBhZXhNND1fFp+2Y+f5XuddnZN1u2aMqvxdV/8Cw3Na/GSuNebaX+Zfcx03vatzkt43yDy6aksrn09y3daZ1tDYac065+pxB0Z7WNqS+VS2f9GeApCvK3p/IPpMD+tYrcfDur8yX0Z52MwJuq2yPaCUK9OzGTw8v+znsROq9mmj9rxVMdbny/a1W2da+Xlz/2aOu5mTzbmz1l4XGF4HxP9St+Q4fU40muuT7resA1V9N/1btl5JDpExMHO69rQ5R6Rvun5z3131+0zVvqbu/iWEbA6qfkda6YeVf+RCSF2gfwnZHHAuTyYct/HTePDBBzdaw4bw6quvPrhjx47K8w1YsG0L+9xtOPbqEo69uohf2LMdjm2h5diwLKDTbMCygA+/4xp899lTuPWGK9Fu2mg56c8de7bj2KtLeO1cDz973WXYfc0snIZVOP8nz72CW2+4EnfMbcfhlxew+5rZvM3rruzgbVdO4865tP6911+BTrOBfe42/PSNLrZtaQ9pkfOHX17Azqtn0HJsOA2r0FaZxmOvLuLOd2wvaH7/zqtw921vy/vcaFiwLQt3zl2DlxdW8PH3Xp/r0jHQfRFNjcagDtHUsC04dlrfD16cL+gVffLTsC10mo38nPRn7/VX5Pr0dQ3byjV95o7dOHW2i4+/93r84MX5gi7R0bRtNFUsTQ1mXL72ib24vNOEZf4J/4B/MhbjKkZ52LEt7HO34/lT5wpj+V/+zDV4/tRifuxj796BTrOBXzD699VP7MV3nz2Fp196I319z168vLCCq2faaDfL4zHbbmKfuw0/eHEen/zAzkI7X71nL37w4jz+3u03Yrpt4z/+ND139UwLD9zl5mXN1+/feRW+9CvvwveOvoIH7nIR9ZcxMz0NxyrOT92O6B5V1603XIk733EN/vqVwbkv3/0uXDbVxPxyHx/be13hui/f/S587d8dx5XTLXz57nfhP71yDr/6t24ciuWd77gG//eR1HM/fG2g65ffswMf2nMNjr26WKr1V269bqjNr96zF0dPncXfLPYL7Yv3HCvt//OnFnHs1UU8+Es/U4iFvqZs7L/2ifdsqIdH+dfMv6+d6+HOd2zHtZdP5TmkbK7esSfNPdp/P3vdZdh59UyeRz9zx2587+gr+aPkRMkDloWhnNRupHU/f2oRURxj7/VXFHL/Z+7YjeV+gNlOc6idW99+Je6cu6bg8fffdNWQdyXXNu10PBq2hQ/NpW1ed2UHv3r7jYW2Lss+mSO5r+008KE92/HdZ0/hvW/fml/72rle7q+qfC251MyxsjZ86B3b0bAsNB17aE3UMfjha0ul8bn1hivhNKxCrpYcLTnZzO2iTdoy/b3R/gXW9rDMT+3Dhm0V1hpZr2XtL/OvxEdiY3r3jj3b8dM30jXu5YUVbNvSxp1z1+Bs18eVMy00GzaajXTsJLatpl3w6g9fW8KH57bjF995bSGn/PSNLq69fKrg11EebjdsOI20f03bxofmtg/tX/7kuXReNOx0T9HMPNHM5rE81/NGPCx+0X0Z5WHdX9tKj4/ysJkTtGa93zD3EGVzajN42LatfO8nP1X7tFF73irv6mvL9rWNhoWGleZCc/+mx8Xcj3/mjt34qx8vFObOWnvdqawOvQ68vLCCay+fyuuWNeAzd+zOz4nGptrjWhby/e13nz2VrwNVvyuY/jXjJf3ZefVMwcdynWgTTxfmmuFnqd/8PcH0sWjUWvS+Zh3+BTZwH6H5539+/Lzr/tydt1yIpLHy+uuvY9u2bRst46IwIX3Z0BxclxhttA5zPyW/I13WbsK2R+afsbHRMdGsoWXDcvAExWis1NG/QH3GZyP9C6x/H1GHeFHDxmq4wLnMHAzm4DImZHzW5V8rUX99fClx+PDh5LbbbhtZJgxj+FGMOAGm2w30/AjiuzgBbGvwGMQJplsN9IPiP/yUa7v9CB3Hhh8Nn59q2egHaTudpg0/HLQZBBESDOoPsnNxAnQcG2EcD2nJzzdthJl+s60yjT0/GtIsX23UCwIANhoWcj1TTgOrYZTr0jHQfRFNDQuI1COAPJ5BnGCq2SjoNZF6zNgF2T9ZNa/T49L1o1zvVLNR0CVlLaS6zHbKxnK61VgrCY09Q63l4ThO0A2ivP/TzXQs5dhKP0zHK4yBRPcvRNO24McJZtoOVvohYn8VjfY0ppoD/5TFI4pidIM0xqtBlF8vr6W9OM6u9SNMOTZWw1iN0+C1aBT9L7zgYW5uDgAQRXFal9Lt2BbCrO6VrB/6dV5X5tMoSfvY7adzu+XYWA0itG0LfdX/hmWhk+mR534QIVBldJ3Sjr6+3bQLx8wYmW22bAvNZrFN03vnFhdht6Yw03bQ8yPESYJp6Y+dvvFaNvZybCM9vJZ/zfzb7YfoOA34UZznkLK5Krmn4D+ngTCOC/nA9AIwyAN5jlM5ybGQj48fREO5X3JMWTthGBfm05TTgB8P5sFSt4/ZqfRTUH4YwQYQI9Ui1wVBBN9oK4pjJBjEQDROtxqIwrjgp7XyteRSM8fK2tDI3BAlxeNmDKri0w/iwvop8ZY4++qfZZvrorSVe6EG/gXW5+HVcNiH5lpjrv1l/pW9g8TG9K7sCVbDog/lWscCwqQY24aFgqdm2g7CIMp9IzlF5p2ei1PNBvpRuYfDMEKYDOaTtKH3L1Mtu/AP0mVPoPcHos/0sPjF9EmVh3V/Zb6M8rCZE7Rmvd8w9xBlc2ozeFhyrk61Vfu0UXveKu/q82X7Wsk9vsoVZeNSmpNVblnXXjfLv4V1IPO/1C05Tp/T+VGvT8BAj6wDVX03/WvGS/oTqlygrxNt4ml93vRzHm/j94Sq32e0lpm2s17/Ahu8jxBu/I3vnXfdL/32Ry9E0lg5duxYvgeedCakLxuag+sSozroKNtPOcanvt9K6hATYQ0tG5aDJyhGY6du/gU2Pibr1LHh+2ChDvGiho3XcAFzmTkYG6+FOXg0I7Ssy7/8zpoROI6N48cHNzGmR3zFj3yR13S73Jzyv2KqzKuvcxqD5+2WUxjkRqt4vYPRk0HXVdZW8Xixf6IZAF4++aOC0aS/s1l/Gi27NAZl7Zch144qX2V2MyZl9c527ILe9epar4Y6YttW/rVU+uup5Ll83HvaiN+W7Hg7ez3baeLYiyfUPDDLD+puNGzMZrHNH7P65LVuL9eXnTNf59d2hser0bAxrcZRdAvmx9nNunQ/dB9EZ6ukHnkuPugYx3WduecK15fHRF6PatPUCQCvnDpVmp90ubKxn4SvK3McG45j57GW8V3vBsCMrQN7OB+UeEEoy0kyPp2WM1RO6iprp9GyC/NJygmv/PjFfBx13cBgHrZbjqpj0JaJaGy07CE/rZWvq3Jp1donx83+mvEZlTdH5X6tbbrEx3XHcWzMKg8Do9dsHYMh/xq+r/JuvsYpH8q1LVVOrjM91Wo5eTkdc92+zEWdf7WHdR26DdNfo9Zu81rTwzpW6/PwaG+bHjbLyxiuZ79R9O3ke9gxPLweRu15R+VdoHqOiBfKcoUel6GcbJQftdedNvbc5hyS152WM3SuCimn14Gqvpf5y1yvqvo/8N+wt6raA4Dj6o+1tN6ya0TDpPiXELI5KNtPETIp0L+EbA44lycTjtt42djbs4QQQgghhBBCCCGEEEIIIYSQ2sObioQQQgghhBBCCCGEEEIIIYSQkfCmIiGEEEIIIYQQQgghhBBCCCFkJLypSAghhBBCCCGEEEIIIYQQQggZCW8qEkIIIYQQQgghhBBCCCGEEEJGwpuKhBBCCCGEEEIIIYQQQgghhJCR8KYiIYQQQgghhBBCCCGEagzDEgAAIABJREFUEEIIIWQkvKlICCGEEEIIIYQQQgghhBBCCBkJbyoSQgghhBBCCCGEEEIIIYQQQkbCm4qEEEIIIYQQQgghhBBCCCGEkJHwpiIhhBBCCCGEEEIIIYQQQgghZCTOuCp2Xff9AL7ked4+13VvBvBNAAmA5wF82vO82HXd3wLwUQAhgM95nveDcZUdVz8JIYQQQgghhBBCCCGEEEII2eyM5ZOKruv+rwD+TwCd7NDvAvhNz/N+HoAF4GOu694K4IMA3g/gHgC/N+ayhBBCCCGEEEIIIYQQQgghhJALYFxff/ojAP+Nen0bgL/Mnj8B4E4AHwDwZ57nJZ7n/RiA47rutjGWJYQQQgghhBBCCCGEEEIIIYRcAFaSJGOp2HXdGwE85nnez7mu+4rneTuy43cA+CSAHwKY9zzv69nxJ7PjT46jrOd5J7S+w4cPJ9PT02v2o9frodPprFlunFDD5GmYm5uzxq1lvR6+GNQh9tTx1uoYt4cnKQePm83ex43oX51y8GYfX2Dz95Ee3tzjq7mU+gpcGvuIjzxy8rzrfuLXbroQSWNlM3lzEvqy0Tm4LjGqiw6gPlrqogMYrWUjc/CkxOhS1AHUR8tG+heYrH0wNUyeBubglLpoqYsOYDK0rNe/Y/ufigaxej4L4CyAxey5eXxcZYeYm5tbU/ixY8fWVW6cUAM1VPFWaalLv6mjnjoulEnJweNms/dxM/ePHk7Z7H3czP2jh4tcSn0FJr+/69N+/jcV6xiTSR8rzWbqy5ulKg51iVFddAD10VIXHcDGa6m7f4H6aKmLDqA+WuqgY1L2wdRADWUwB0+eDmBzaRnX15+aPOu67r7s+UcAPAXg+wDucl3Xdl33BgC253mvj7EsIYQQQgghhBBCCCGEEEIIIeQCeKs+qXg/gG+4rtsCcAzAH3qeF7mu+xSAQ0hvbn56zGUJIYQQQgghhBBCCCGEEEIIIRfA2G4qep73EoCfy56/AOCDJWUeBPCgcWwsZQkhhBBCCCGEEEIIIYQQQgghF8Zb9fWnhBBCCCGEEEIIIYQQQgghhJAJhTcVCSGEEEIIIYQQQgghhBBCCCEj4U1FQgghhBBCCCGEEEIIIYQQQshIeFOREEIIIYQQQgghhBBCCCGEEDIS3lQkhBBCCCGEEEIIIYQQQgghhIyENxUJIYQQQgghhBBCCCGEEEIIISPhTUVCCCGEEEIIIYQQQgghhBBCyEh4U5EQQgghhBBCCCGEEEIIIYQQMhLeVCSEEEIIIYQQQgghhBBCCCGEjMTZaAGEEEIIIYQQQsilxo2/8b3zKH0SAPDSb390PGIMzk/bgLdKHyGEEEIIIWRj4CcVCSGEEEIIIYQQQgghhBBCCCEj4U1FQgghhBBCCCGEEEIIIYQQQshIeFOREEIIIYQQQgghhBBCCCGEEDIS3lQkhBBCCCGEEEIIIYQQQgghhIyENxUJIYQQQgghhBBCCCGEEEIIISPhTUVCCCGEEEIIIYQQQgghhBBCyEh4U5EQQgghhBBCCCGEEEIIIYQQMhLeVCSEEEIIIYQQQgghhBBCCCGEjMTZaAHjwnVdG8C/APBuAH0Af9/zvBPrvT6OE3SDCLt3u/D9MD+eZI/WBWhKLuC6GMBNu3YXNOhzcQI4VnndF9JeFaIhTICGldYbY/RdabP9MNMqj2a5teqrikPVmJjtS/1l7SUAohGxBIB+nMDdswdLvQBTTgOOMxn35OM4QdcPMd12sNIPMdVsYDWIMNN20PMjREmCmexc07YQxsB0uwE/iBAnqcfcPXvQ7YeIkwTTbQfdfojploMkSeeJrkvXv9IP0bYt9OMEU04Dq2GE6VYD/SBGnCToNBvwwxhxAnSadqmubj+ChPptO29GnCRY6YdoWBY6rQaCIIIfD/rQsq18DKNMf8ex4UdxGo8k7d9KP8w1TTUbCKNUhy6j6xZN061GQYfUIVqbNuDHabmuP+hPWq/EL4JtAe2mjSiMEQMIjD40m+kY6ONTzQZ6QVwaj/RcBNsqurft2FgN41zPdLMB275YmWF8VOVg8VIcZ+OJ4jzWc9vMKbF6LrkgMvJRGTpnSR1Sb5y1qauoymlm7gszv+2qyG2jrtN6AhUTrS9MANsajo+p0eyPGTP9WmKm69Vlxa9hEOVar9+5G2EYI4zjPO6+0qx1JkZbui/AYG52+2kuqbOX4zhBEEaF8ZW4i4+jOEaCQR8dq+gp08syXub5vE0Mj4tuS7et55D2cJk3pF7Ti7IPkT5Wra/mXgAY1BOqPB3HcUGf1pBkP7aqR+KlNVat/YLUEyfDc1+0TLXS3Czx232Li54f5nGSedDIrpfnOoa67/Ja5/PpZgONRr33EWEYI47jNXNUGRdzDzqKtfaO58uuXbsLYz0KM6cKZftRnfNMX0j5svVEU7V/LpuX2qumZ2UeJQDeftNg7pq5CCXXD3Jwug+scw4mhGwOwjDGahhN5O/hhNC/k4u8H+G6e7Cc7d2577l04VyeTDhu42UzR/KXAXQ8z7sdwG8A+Mp6L4zjBPMrPpIkzt90S5D+kh0lgzfMEhTfpC57M1QIk+IbCIX21DX6vB8niNV1sXGuF8b5TTqtSdor0xcb7VXpNbUDQDeMESOBlbWv34Q269Ga4uxaWOmjvAkXq3J+djdHa07UT1X8ZEw0cUl50avbk/NhAqxmunTc9JuCZ3sh7jtwGLd88Qncd+AwFro+wjBG3Um93Me9mfaHD76IhRUf9x04jM9/6wgWun7er4cPvojFXoh7DzyD3z/0EnphjIWuj3sPPJOXlXruPXAYXT/EfLdY18HjZ/L6b/niEzh4/AzO9kOcWephoeun7S/7OLsa4KnjZ7DcD7HQ9fHU8dOVuh46eBJhnGCxPzwGx145h3PG2JzrpW8Grmb6Ty+tYtkPsRpEeX/yOlZ9nDi9hF4QoRfG6AZhXubJF07ndYumhw++iFNv9PL2TpxewsJqUeu5Xlgo9/lvHUE3CHF2NVDxewYLXR9LvfRG/WJJH366sDJ0fGEljdViP0QvjEvOncHZ1QDdIEQ3CBHEMea7Pu59JO3zvY88g/kVH3E8asZvPJKDbSR5DgbSeYjsWIxiHjJziZmj/DhBmP1ILljNcmhZnhQkd0HVIblDcrSOptZhG/U0rOLrbhAW3rgVrfIoudMxrnOUnsVeOr/iOM712Vm5QN00CpVIyXNSXto3NcvrWF23mtVr3qQRLfcdOIxuP8i1yhzshVEe93O9ECdOLyGM41ynvDEeZT+B0tY15qbMofmVfm29HMcJekFUuOEg3jjbS//Ywo9iBGq8HKvoKYm/fgzVvsAcn7J1+WwWaz+K87ZPnF4qzCHtYe3f0Gjf9LDeh5jXyg2L0Bge0/faI3Ec42yJn6XuQPWvG8awreJ8t0raK/NwkOnWfdFaHjp4Mr+heLYX4uDxM+hlf2Qjbaxm+6FIPZfcESoPx8rLZj6fX/ERRfXdR8gNxbX2imXHxAvAYD+VlLxeq269Z43Vj1zrq/mv9476uvXoleM6r6+119f7TJ279N5Xyp3rhVjpB4iyP6LQ+U6067loxgsYeN5sX3KH3u9KWCTXa88Gaq6sZuubzAtpB9bAy/r6Yg4+XOscTAjZHIRZ7pnE38MJoX8nF3k/4t5HnsEtvzk576OQ8cC5PJlw3MbPZr6p+AEA/xYAPM/7/wC8d70XdoMIn330WQDpJ6z6cVJ4Q7ofp7+U+9mjLlP2vK+uM4/3VR2+cT40rguMc2e7QaHuQF0fZq9NfYHRXpVeU7uftRfHKLTZL2nD1BRk10bZo6/OhXFRr+6nr36q4icx0seDkvJhyaOuW3TpuPmqjv2PHcGhk/MI4wSHTs5j/2NHsBpGY7LuxSP18kD7Xe+8Nu/Lp/bdjAceP1p67mN7r8PZbpCfN8vK4/5Hi3XdvuvqQqxu33U19j96BNtmO9j/2BHc9c5rseJHuP/bz+H2XVfnbejrynTptqT9Bx4/ihuumikdG/HrA48fxbbZDs52Ayz1wqE+7H/0CHZtm809sNyL8jK33rB1SNNd77wWX/jOoI5d22YLuiSGutyn9t2M5V7aZ1P/2W6Q9q2kD1fOtEuPS0zPdoPSc/d/+zks9yIs9yIkCYbi9tlHn0U3qLd3JQdHCQrzff9jRyB5Wc9zc26b5+R1aJSTHFqWJ+W15C4z3+g1wczNZo6Uenzj9XIvGsqdgXqU3GnWo9va/1g6v8w142w3QJK9USz9N9cHrV/nWbMvQVyMWWKMi6+0HDo5jyQbIz0HdVz2P5bOu0DVp+MZGtrMuTnw8pHaerkbRIV46vjuf+xI6Xj1jX6XrVumh83xMddliXVovDbnhVlHWTumh/UcKvO+9HmU77VHRJ/p58DQI9cFxvmy9spipNd8c25Jntc55/ZdV5fmjjhG4XkQD+ca/VOWz+vqXwBYDaN17RXLjple1Ptb/XqtuvWeNYiL+zO9Z9NjbO5116O3Hw/nda111D7XzF2mbhn7mXazkAf0elKWj801QTxvti9z0C+pV88P7Vm9942MtuWYOb/0nnAScjAhZHOwGkYT+3s4IfTv5CLvR0za+yhkPHAuTyYct/Gzab/+FMBlAM6p15Hruo7nefn3Nx07dqz0Qtfdg6dfWsBMu97hme00YXzT4ViZbjkX3J5c+2bqGCcz7dG6nn5pYej1TNup9NDc3NzFlFdJVfuCeFm4efuW/LV+br6+bKqJ2U6zsqyUMc/rY7rMTNvB0y8t4ObtWwAgLyttlNWldVlW9RhUHZ9uOYXncs4su6WTnpvtNAtltnScIU2mNl2mqpzus9n29Vunz7tvEqvrt06vea6q7ulmY03vvBUePt8cfLHz8lrzHrh4OcusRzx5vu2br6tiMq5cOypm4jXRo+egWU7m3Xp0jpq/VV7e6Bzsunsqv8OwLCbjGi8d67LX50OZxvPdh5i+Nz2y3jn+ZuNVplu0yJojei6bag5dr+fBevKI1GW+rvM+wt2z5y1p/1LgYqxdVZ5f71wo82nZsar6qvYko/YTG7mPqGu9F4tJ19fr9Wrfh43OwXWJ0UbrcPfsOe/1c9xsdEw0o7RsZA6elBiNmzr6F6jP+Gy0f4G134/QrPd9lHFQhzG7lDVcyFxmDk5hDh5mEsZnvf6t912zN8cigFn12tY3FIHqIC33Q7zvxq1Y6Rf/f0ySfdL9Qt7ISpLzvy6KE9iWVXqdfOrvqi2t0rovpL0qpK75ZR9bZ1qwrLT9xojvEzfbn1/2cdWWVv5oljvf+vRxYO3+S/1l7SUJsLDiV8YSAN5341YcOjlfeL3SD9+yzU4Va7UvXhbtJ04v56/1c/Pc4mqAs92gsiwALK4On9fHdJmVTMeJ08toO3ZeVtooq0vruuayduUYVB2fX/YLz+WcWXa5l/6vyLPdoFBmuRcOaTK16TI6hmacpc9m2z9Z6GLrTOu8+iax+slCtzDWZeeumG6W1tENog33LnD+Odg8Zs5jPbfNnBLFg68qkVwg834UOmdJHVJvWY6uymlm7hNPnk/7ZXp0TLS++WUfV0w3h+JjajT7Y8ZMv5aY6Xp1WfGa6NFzUOdgmXeyrkh9ifo2mTgp9gUon78b7eVRHo7jpNQbEpMkSfspfbxqS6vgKdPLMl7meaFsHZVYA4O2JfZyjfZwmTekXtOLeh9iXlvmO2DY99ojorfMzzpWcp3ES2usWvv1GEi+N+eeaDlxehk7rujkehZXg0LcZR5snUmvl+c6hkDajm1ZuZcnbR+x1AsuuM6LuQcdxVp7xwuts2rvrTFzqlC2H9W+luvM/eta7Vbtn8vmpfaq6VmZR+be18xFptaFFX+icnCRk2Oq92JRZ33nrw1YW9+xY8c2PPfVhao41CVGG61jqRfUbv3c6JhoNlpL3f0LbKyWOvoXqM/41EHHWu9H1GXfU4dYXcoa6jqXmYNHU9dx20zjs5m//vT7AP4rAHBd9+cA/Mf1XjjdbOBrn3gPgARt20LbttCyLTjZT9u20MyONbPXUqbseVtdZx5vqzpaxnnHuK5pnLtiulmou6mud7LXpr6m0V6VXlN7K2vPtlFos13ShqmpmV3byB5b6pxjF/XqfrbUT1X8JEb6eLOkvFPyqOsWXTpuLVXHV+/Zi9tvugqObeH2m67CV+/ZiymnMSbrXjxSLw+0/+nzr+Z9+fpfnMCX735X6bnvHjmFK6ab+XmzrDx+9RPFug796PVCrA796HV89RN7cWaph6/esxd/+vyrmGk18JWPvxuHfvR63oa+rkyXbkva//Ld78KP51dKx0b8+uW734UzSz1cMd3EbMcZ6sNXP7EXPzqzlHtgS6eRl/mrHy8MafrT51/Fl35lUMePziwVdEkMdbmv/8UJbOmkfTb1XzHdTPtW0oc3VvqlxyWmV0w3S8995ePvxpZO4/9n7/6DbM3r+sC/u/t0377NXEAQQ6IxOhCfuVsBJsFfRNiQLS1EKoHdLRVds4ZEfrjJokET2WAlVkXF/CDJkAjZIpowuv4MGimsISa7pQEci3AjBnaHbxyHKaKJgjMO86Nv/zg/9o9zTt+nn3v6uX177ul+zunXq6rrnvP8fH+/z/d8+5n+zDknt22uZWUl1/Xb27/pT2ZrvdtjdzoHr63k0Ov9rlffmem8XH+dN1/bzXXT573GdtM5dNY8OX0+nbua8039d0Jzbm7OkdPjbDSe37a5dt3cuV77dzp3No9TP9ddrx6/vpq/M56+NX4n1vQ49Xmy3kf1ubeZudfI1Ksdt77dRi3Li25/ZlYm16j+Gqz3y12vHr/u1mvHq/dnr5Gt+dq8Npbv7OxY3lpfO9Sf9f6969V3zrxeFxrtnvV7qzmGm9en+Xt52te9xvPm66J5jFnnaY7h+mto1tiftrlt3NfHyDRfczyvN/JM91tvrJ91vll9VP+d33xtTef5+pxz72/9/sy5Y3U1hx6vr14/19R/Zs3nXR2/SXKxt3ase8VZy5pjsX5/W39+o2PX71nXVw/fn9Xv2erXuHmve5y8F1avn9frWdvuc5tzVzP39No/sbt/aB6o/z6ZNR83fydMx3zz/NPX4MaM49ZfH/UxW7/3XWuce7qs+fqq3xMuwhwMLIeLvbWF/e9wMH4X1/TvEYv2dxTmw2t5Mblu87cyqv/vtUukqqrVJO9I8vyMP4TsNaWUT0zXX7lyZfTCF77wyP2Hw1G29wfZXFvNcHjtSzynvXWS/y96dIL9hpN9Zu03TDIcJb2V2cc+yfmOMj1Wf5SsrYwfD9NelW6evz/JOv23ud3NHq++PDPWNbefHn/W+UZJBi19mYy/Q+wpF3p5Yrefi7219HqtNfm5/z/6NxrDU8PhKNt7/WxNs6+v5er+IE+50MvO3iCD0bV2ra+upD9Mti6sZW9/kOFoPMa2LqxlZ2+Q4WiUrQu9bO/2s7XRy2g0fp3Uj1U//hO7/VxYHX+/2sXeWq72B9naWMvu/jDD0Sib62vZ6w8zHCWb66szc23vDjLt6v3aNVhbWcnmxlr29wfZqy3fWF05uIaDSf7N3mr2BuPX8bQ90+t4tT/IxfW19AfjHPVt6seeZtraWMv23uDQWLjaHxxkXV8dfz9cfbudvcHkuNP+G2R1JbmwvppBf5hho20bqytZXx9fg/ryi+tr2dkfzuyP8bpBVhtvc7jQW83V/vAgz9b6WlZXjzU85zqGTzoHT8fSdFnzdVx/bTfnlPrXMU/ngkFjPpqlPmdNjzE97qw5+qg5rTn39Sfj7WbOPyvPfq1P6vn6o2R15fr+aWZstqfZZ/Xn0z6rH7e+7XRM9iffN9GvvQb7w+FBv+/VMtdzjhrnqrclufba3N4dzyUtY/nM5+DhcJT9/mDm2JiO48FwmFGutbG3cnhMNcfy9Ho11x+cM9dfl/q56ueuv4bqY3jW2JgetzkW6/chzX1njbvk+nFfHyPD4fBQvnqG0eRntXacaX/VMx71u39qepzh6PrX3jTLxY3x3HzQf5PfEdN+mr4O1qbvMqvdG03PUW/79Hl9zt5aX8vaWrfvI/r94aH592bcynvQNje6dzzpMY+6965rzqlTs+5H63Nec1xMt7/ReY+6f571uqyP1eaYnb6Omve+zbkoM/a/NgeP7wNvcD9xpvcRU1/05l+86WM/+EOvOEmkE+lyvpNkS26cr0v/h3aLM52Du9JHXcjR7w8P/lvrmP8dPldd6JOpG2Q5szl4gfpo7ro2fpOz75Nj5jjz++Dp3yO21tcO/j3m31FuuS5cs/Oe4QSvZXNwzj6LObhdS5Zjjd+l/fjTUsowyRtOuv/q6kpum3zO7llf7C5laP+gvnYbjX9PmuGsbHQgw0msrq7ktsn3BU6/N/DS5A+ZW7Xv+Jmum9rcuLau2e7bDrZdmX2sybLpMafX/FJvuu21SbxX+6PqrGPVv//rk5Mc9awXNnq5cEQb6pq/OA76YrK8N+OPu/Vj1zP99ifLoRzTY0yzXstzfXuabVrbGG+zOaMNmxu965bfVsvZ7I/bjvgD9XT5bR3/nti6o+bga/PH6d0IPJl5r+040+c3mleO2m9q8+DRaut2p2GaZWMyf9TnzV4t34WDR6vHytnc5qTfC3iaVldXcmFj9n3EtD31PpnX9Wqe68m8ho7KeDO/G9vH8+qx882jv+rHnM7Nt/J3/6x5vsvGvzdXF/Le56Tm1db6nHdSR435J/NaaJuf2ty2IGMYWHy93mou9c7X7yKWh/G7uLr0N2HOntfyYnLd5muZP/4UAAAAAAAAuAW6/7/6AwAAAEx0+aNjAQBgmXmnIgAAAAAAANBKUREAAAAAAABopagIAAAAAAAAtFJUBAAAAAAAAFqtjEajs85wJq5cuXI+G86peeELX7gyz+Mbw8zbPMew8cu8mYNZdMYwi859BIvMHMyiMwezyMzBLDpzMIvsOOP33BYVAQAAAAAAgOPx8acAAAAAAABAK0VFAAAAAAAAoJWiIgAAAAAAANBKUREAAAAAAABopagIAAAAAAAAtFJUBAAAAAAAAFopKgIAAAAAAACtFBUBAAAAAACAVoqKAAAAAAAAQCtFRQAAAAAAAKCVoiIAAAAAAADQSlERAAAAAAAAaKWoCAAAAAAAALRSVAQAAAAAAABaKSoCAAAAAAAArRQVAQAAAAAAgFaKigAAAAAAAECrc1tUvHLlyijJDX8efPDBY203zx8ZFjLD3B13DN+Kny70vRynnmOuFmkOnvfPsrfxjNo3d8bw+WmjMbzc1/e8tvUU2jtX5238Lks7Fqgtc9c2hrvSR13J0aUsXclxjCxztQjjt0tZupKjS1nOcvwmi3UfIcNCZpgrc/Bi5ligLMfSO+6GZ6WqqtUk70jygiS7Sb6tlHJ/bf1rk7w+ST/J95dS3ldV1Rcm+dGM27eS5HWllHKS81+9evVJtuDJk0GGs9aVdstxWFdyzJM2Lr5lb9+NnIf2L3sbl719N3Ke2n+e2pqcj/YuSxuXpR3JcrVlXrrSR13JkXQnS1dyJN3KUtelXF3J0pUcSXeydCXHjXQhpwwy3IwuZexKlq7kSJYryyK8U/FVSTZLKS9K8uYkb5uuqKrq2UnemOSrkrwsyVurqrqQ5O8k+aellJcm+cEkbz3t0AAAAAAAALAsFqGo+OIk70+SUsqvJfnS2rovT/KhUspuKeWzSe5P8vwk35XkFyfb9JLsnF5cAAAAAAAAWC4ro9GxPyr1TFRV9c+TvKeUcs/k+aeS3F5K6VdV9S1JnldK+Z7JuruT3F1K+XeT51WSf53kVc2PP71y5cpoa2vrhuff2dnJ5ubmLW3TzZJh8TJcvnx5Zd5ZjjuGb4Uu9L0cp5tj3mN4kebgeVv2Np5F+7o0By/79U2Wv43G8HJf37rz1NbEfcQiWZZ2JIvRlrOeg7vSR13JkXQnS1dyJO1ZznIOXpQ+Oo85ku5kOcvxmyzWfYQMi5fBHDzWlSxdyZEsRpbjjt/Of6dikkeTXKo9Xy2l9I9YdynJI0lSVdWfzfi7GP/CUd+nePny5Rue/L777jvWdvMkgwxHOa0sXWm3HN3McVKLMgfP27K3cZnbZwyPLXsbl7l9xvBh56mtyeK39zyN32VpR7JcbXmyjuqHrvRRV3Ik3cnSlRzJ2Wfp+vhNupOlKzmS7mTpQo5FuY+QQYZZzMGLlyNZriyL8PGnH0rydUlSVdVXJvlYbd2Hk7ykqqrNqqqeluRyko9PCop3JfnaUspHTjswAAAAAAAALJNFeKfizyf5mqqqfjXJSpLXVFX1piT3l1LeW1XV25N8IOMC6VtKKTtVVf3jJBtJ3j3+BNSUUsrrzyg/AAAAAAAALLTOFxVLKcMkb2gs/kRt/buSvKuxzwtOIRoAAAAAc/Tydz+Q5IGb3u/BH3rFrQ8DAHDOLcLHnwIAAAAAAABnSFERAAAAAAAAaKWoCAAAAAAAALRSVAQAAAAAAABaKSoCAAAAAAAArRQVAQAAAAAAgFaKigAAAAAAAEArRUUAAAAAAACglaIiAAAAAAAA0EpREQAAAAAAAGilqAgAAAAAAAC0UlQEAAAAAAAAWikqAgAAAAAAAK0UFQEAAAAAAIBWiooAAAAAAABAK0VFAAAAAAAAoJWiIgAAAAAAANBKUREAAAAAAABopagIAAAAAAAAtFJUBAAAAAAAAFopKgIAAAAAAACtFBUBAAAAAACAVoqKAAAAAAAAQCtFRQAAAAAAAKCVoiIAAAAAAADQSlERAAAAAAAAaKWoCAAAAAAAALRSVAQAAAAAAABaKSoCAAAAAAAArXpnHeBGqqpaTfKOJC9Ispvk20op99fWvzbJ65P0k3x/KeV9tXXfmeTZpZQ3n25qAAAAAAAAWB6dLyomeVWSzVLKi6qq+sokb0vyyiSpqurZSd6Y5EuTbCb5YFVV/zbjd2C+K8lXJHnPmaQGAAAAAACAJbEIH3/64iTvT5JUBwjqAAAgAElEQVRSyq9lXECc+vIkHyql7JZSPpvk/iTPz7jAeHeSHzjlrAAAAAAAALB0FqGo+NQkn609H1RV1Tti3WNJnlZK+YNSyi+dVkAAAAAAAABYZiuj0eisM7SqquofJvm1UsrPTJ7/dinlCyaP/3ySry2l/G+T5z+f5AdKKR+ZPP+LSe6Y9Z2KV65cGW1tbd3w/Ds7O9nc3LxVzTkRGRYvw+XLl1fmneW4Y/hW6ELfy3G6OeY9hhdpDp63ZW/jWbSvS3Pwsl/fZPnbaAwv9/WtO09tTdxHLJJlaUeyGG056zm4K33UlRxJ8vJ3P3Ci/e751ttvaY4u9UlblrOcgxelj85jjqQ7Wc5y/CaLdR8hw+JlMAePdSVLV3Iki5HluON3Eb5T8UNJ/lySn5l8p+LHaus+nOQHqqraTHIhyeUkHz/ugS9fvnzDbe67775jbTdPMshwlNPK0pV2y9HNHCe1KHPwvC17G5e5fcbw2LK3cZnbZwwfdp7amix+e8/T+F2WdiTL1ZYn66h+6EofdSXH2MmKirc6f5f65KyzdH38Jt3J0pUcSXeydCHHotxHyCDDLObgxcuRLFeWRSgq/nySr6mq6leTrCR5TVVVb0pyfynlvVVVvT3JBzL+KNe3lFJ2zjArAAAAAAAALJ3OFxVLKcMkb2gs/kRt/buSvOuIff/l/JIBAAAAAADA+bB61gEAAAAAAACAblNUBAAAAAAAAFopKgIAAAAAAACtFBUBAAAAAACAVoqKAAAAAAAAQCtFRQAAAAAAAKCVoiIAAAAAAADQSlERAAAAAAAAaKWoCAAAAAAAALRSVAQAAAAAAABaKSoCAAAAAAAArRQVAQAAAAAAgFaKigAAAAAAAEArRUUAAAAAAACglaIiAAAAAAAA0EpREQAAAAAAAGilqAgAAAAAAAC0UlQEAAAAAAAAWikqAgAAAAAAAK0UFQEAAAAAAIBWiooAAAAAAABAK0VFAAAAAAAAoFVvngevquqpSYZJ/sck7yul/ME8zwcAAAAAAADcenMrKlZVdXeSX0rypzN+R+T/lHFxEQAAAAAAAFgg8/z40y8qpfx4ksullDckeeoczwUAAAAAAADMyTyLihtVVX1Dkv+vqqrPTfLMOZ4LAAAAAAAAmJN5fqfi30vy6iRvSvLGJN87x3MBAAAAAAAAczK3omIp5eeS/Nzk6d+a13kAAAAAAACA+ZpbUbGqqr+Z5G8k2U6ykmRUSvkj8zofAAAAAAAAMB/z/PjTb0jyR0op23M8BwAAAAAAADBn8ywqPpjk6pM9SFVVq0nekeQFSXaTfFsp5f7a+tcmeX2SfpLvL6W8r6qqz03yE0kuJvmvSV5zs8XNfn+Y4XCY5zznj2dvr/9km/GkyNCNDLvDUao77shjO/u52FtLr7d6ZlmOYzAYZnt/kK2NtWzvDfKUC73s7A2SJMNRsnVhLXv7g+wPRwfb1Lfd2x9kOBpvW91xR7Z3x32/upLJ8lEuzthve7ef9dWV7A1HB8fZH45ysbeWq/3xtrv7wwxHo2z21tIfDsfr19dydf9azuFolK3a8UZJvuCLn5vhaJQndvtZW1nJhfXVXN0bTLYbZHVlnG9jfS39/UFGSfYm594bDA/6ZjhKLm6sXpd5MJquH597f39w0I6dvUEGo3Ff1XNM21Xv3/oxtnf76a2uJEn2J8eaZr2wvppBf5jdxvK1lWR9/dr1ecqFXp6YZNxYX8sTu/2DHIPhMNt7g1zsrWWnP8jqysrBdZpuu766kv5wdK2fVpPN3lpWJ7m6qN8fpj9jDh5l/Nb34xgmWZ3xfPrv5HIf+3izzt88R32b5rr+KOmtHH6e3Hhua+53VLum587k/P3ReBzU163MeDyrDc22NPPUj1vPMRyNx2/92H/s9pubu2dlGyUZjK7NXdu7/Wxt9Do/hgdH3EfU+7w5LpOjx9Co9nhWy2ddy7bxUj9uc2yMJj9tY3h6zdvG8KzXTFoyNR/Xtz1qDN+sae7eyvXLMzlufQx+8THuP47KVr9me7X5fBHuI7p0L3xazlNbk5trb38B5+Cr/cHC3LtP8y7KHCEvwI0t2u8irhkOR9neH6Sq7sjju/1srXf77yfMl9fyYnLd5muePbmR5GNVVf3k5OcnTnicVyXZLKW8KMmbk7xtuqKqqmcneWOSr0rysiRvrarqQsbf4fgTpZSXJPn1jIuOxzb9IwpMPbLTz+vuvpIvecs9ed3dV/Lw9l76/e6OkcFgmIee2Mu/+OAn8zt/sJPX3X0lb/rpj2Z7v5+Ht/fy2rs/kh+798E8utM/2Ka+7Y/d+2B2+sODbaf79ofD7PSHeeTqfn70g5/Mpx/bzb/44Cfzu5/dPeifD/zmZ/LZSX/92L0P5tHdfj7z2E4e3h7nefjxvTxydT+/+enHstMf5NGdfj74m5/Jw0/sHeQcn3d8vB/94CezPxzl0d3D12B7v5+HHr+23Wvv/kge3t7LTn+Yhx7bSX+UfHZnfO7H9/q5uj84aP+PfvCBg7ZOM1/tD7O9388jV/fz2ruv5N//508ftGOaqd5HX/KWe3L/px/Lw1ev5Z6eY3qMaf5+I/8062M7/Wz3h9ctv9of5rcffiKPNsbdozv9/Ni9D+Z1d1/J735299C1e3h7L7/56cfyyNX9bO/3s9MfHmz76E4/P/rBT147xxN7eWxnP8PhqHUcnZV+fzgukDaXj2YXJ5LDf7gfZvzH+/r+e5O2Tpf3R+Mi1VGFmVmP+43u2huODgo/zYzN82/3h1lbOfx8e79/XVGjmWO7Pzy0zax2TZ/X27TdH2a/9nus3nfTx6PG/s0Zrdnfo9pxm9dmbzjKTn+YYUYH+0yX1fOPaucZNZ5PzznNMr1m/VFytTYfjcfxlTz0xG6nx/DeYDhzfE37vN7/zetYXzesLR/UrvF0+bBx3FnL6s9T22ZYO9/0HNOC9H5j3+YYnnV9k8OvxeYY2huO0m8Zw83H/Vreo8bwtB3Nc9f7oZ7tqNzT8w1r55mVd9T4mZVteu76Nfvsgt1H3Mp74Xm8Srv5yj+ZUePfm9nnqHXN9c0xO+s4zRzT19d07l+0Ofjh7b2Fec3JO1+LlhdYDuaexTUcjvLQE3t57bs/ki/53nvy2nd/JA89sdfZ+x7my2t5Mblu8zfPouLfTfJXkvyzyc//ecLjvDjJ+5OklPJrSb60tu7Lk3yolLJbSvlskvuTPL++T5J7knz1zZzwan+Q3eHIj5+Dn+/4qY/m3gceSn84yr0PPJTv+KmP5mp/cOPBdEa29wf5jp/6aF72J/5wvuc9/yn3PvBQvv2lz83jO4P89Z8dP3/lnZ9/aJv6tq+88/PzyPb+wbbTfYej5JHt/XzXz/xGXvYn/nDe9NPjf7/7Z3/joH9e9JzPPeivV975+fmOn/xonnVp8+BcT+wN8l0/8xt5zrMupT/p2/o+3/7S5x6ctz8c5WV/4g+Pt/vJw9fg8Z3Bddflr//sf8oj2/vZ3OgdHPtZlzbzyPZ+HtvpH7S/3tZp5ke29/P4zjjbvQ88lD/1hc+4LlNzv+c869JBrm9/6XMPzjE9Rlv+adZHtvdnLv+cp1yYOe5eeefn594HHsp3/+xvHLp23/FTH81znnUp3/Uzv5HHdwZ5ZHv/YNtp39fP8Qfb+9ne7+YYvtofpD/jddhctl97vNdY3ty231jen7HNrOPuN46xN+N5c5tZWR/Z3j+073S8tc07+5Pt2vqg33jcrx1/NCkMzdpu2mf94ey2zjrXXu24s67NI9v7GQ5z3bLmMfZrj2f133RZ/ZrV56PpOH7jT3504cbwUf3fvD71sVq/hv0Zy2dd4+ay/caxp8v2G8tmvT6m65pjeNb1bb4WZ43XG43h5rY3GsP7w8Nj6qjXcr3PZ+Vu9u9RefcaP7Oy1cfw9GfR7iNu5b1w87p09Zhn9bPX+PfJtn9vxvrmmJ11nGaO6Tiezv2LNgcv0mtO3vlatLzAcjD3LK7t/UHe+JO/3rjv+fXO3vcwX17Li8l1m795fvzpxzJ+9+B6xv8D9x9J8isnOM5Tk3y29nxQVVWvlNKfse6xJE9rLJ8uu859990384TVHXecICbL7D88+PB1z59yoXfkGLp8+fJpxGodw//hwYfz3M+77SD7cz/vtiTX2vLUi+uHtqlv+9SL67m0uX7dvisrOVg+a7/6ceuPn3Khd7DtNMNtm72Dx/V9msd77ufdlpWV66/BH33G1szr8kefsZXJJ4AenHtro3dom1mZL22uH+qf2zZ712Vq7tfcpn6OG+WfZm2qt2HWPk+9eC1nM9c0z/S49X5o5vujz9jKSo4eQ6cxhs/THLy10Tu4HtPnSQ4tO85+Jz3frdJ23Eub69etm7XsJKZzSN1/ePDhbK2vzRxHXZiDl82sa3+rru9pO4vci3gfAVNbGzc3Bydnfx9xs6+5s3ScvDs7O53J/mT797TbcpK8Zz0Hd+V6dyXHk3Gr83epT9qynOUcvCh9NG9d/V3Uletz1uM3abmPqGZfu7b7nnnqwjU7zxm6eh9hDm5nDr6xo7Icd/zOs6j4r5L85yTPS7KT5Ka+07Dm0SSXas9XJwXFWesuJXmktvxqbdl1juqkx3b2TxiVZfVlX/SM3PvAQ4eeP7HbP7WbnaO0jeEv+6Jn5P5PP36Q/f5PP54LvdWD549ePbxNfdtHr47fQdfc9+lb6wfLZ+2X5OC49XM8sds/2Haa4fGdfoajUb7si55xaJ/m8e7/9OP5Q0+9cN01+C8Pb8+8Lv/l4e0887aNjEbXrtNDj+8d2mZW5ke29w/Wj98J2b8uU3O/5jYXJp/NfZz806xN9TbM2ufRq9dyNnNN80yP+/St9UPbNs/xuZcunOkYbhu/g+Eoa43vLBiNblyEm2ruP30+/Xc0+eSSmyksNM/flrG57qHH9/LM2zYOPU9yaNkszf2Oatf03NM2PfT4Xp6+tX5o3TR7/fGsNhzV3mme+nHrOR7Z3s8znrJx6NiPbO/fsI1HnbN+rR5+Ym/m62F7f9DZMXzUeK33eXNcJkePoVHt03ZudNyjlt3odTV9PJp8b27bGD7O9Z31mklyZKbm4/q2R43hm3VU7un5VldWDo3BZt5ZjspWv2aLeB8BUw89vnhzcFdfc7McJ+99993XmexPtn9Puy1dHg9Hnb8r17srOcYeONFetzp/l/rkrLN0ffwmZ5ulq3NPV65PF3Icdf7Hd/uduu/pQl+d5wxdfS2bg9t19bot0/WZ67dTllLekKQk+Zokn3PCw3woydclSVVVX5nxOyCnPpzkJVVVbVZV9bQkl5N8vL5Pkpcn+cDNnPBiby0XVlf8+Dn4uevVd+ZFtz8zvdWVvOj2Z+auV9+Zi721Ew7p+dtaX8tdr74z/+bj/y1/939+fl50+zPzzl++P7dtruXvf/34+S989HcObVPf9hc++jt5+tb6wbbTfVdXxoWqt33DC/JvPv7f8g+/cfzvP/j6Fxz0z72/9fsH/fULH/2d3PVNd+Yzj+0cnOspG2t52ze8IL/1mcfSm/RtfZ93/vL9B+ftra7k33z8v423+6bD1+C2zbXrrsvf//rn5+lb69nZ6x8c+zOP7eTpW+u5tNk7aH+9rdPMT99az22b42wvuv2Z+Y+fevi6TM39fuszjx3keucv339wjukx2vJPsz59a33m8j94YnfmuPuFj/5OXnT7M/MPvv4Fh67dXa++M7/1mcfytm94QW7bXMvTt9YPtp32ff0cn7O1nq31bo7hi7219Ga8DpvL1muPNxrLm9v2Gst7M7aZddz1xjE2ZjxvbjMr69O31g/tOx1vbfPO+mS7tj7oNR73asdfWclBtuZ20z7rrc5u66xzbdSOO+vaPH1rPauruW5Z8xjrtcez+m+6rH7N6vPRdBy//ZvuXLgxfFT/N69PfazWr2FvxvJZ17i5bL1x7Omy9cayWa+P6brmGJ51fZuvxVnj9UZjuLntjcbw+urhMXXUa7ne57NyN/v3qLwbjZ9Z2epjePqzaPcRt/JeuHldunrMs/rZaPz7ZNu/MWN9c8zOOk4zx3QcT+f+RZuDF+k1J+98LVpeYDmYexbX1vpa3v5Nf7Jx3/MnO3vfw3x5LS8m123+Vkaj+XzRbFVV/0/Ghb13J3l1kl8vpdx5guOsJnlHxt+VuJLkNZPj3l9KeW9VVa9N8rqMC6Q/WEp5T1VVf2hy3ktJfj/JN5dSnqgf98qVK6MXvvCFR5633x9mOPTlnVyzOxzlKRd6eWK3P/6Dca+1Jj/3D1a70RgeDIbZ3h9ka2Mt23uDPOVCLzt748+OHo6SrQtr2dsfZH84Otimvu3e/vg7FKfbTvddXclk+SgXZ+y3vdvP+upK9ib9NT3Hxd5arvbH2+7uDzMcjbLZW0t/OByvX1/L1f1rOYejUbZqxxtl/P1w02uwtrKSC+urubo3mGw3yOrKON/G+lr6+4OMkuxNzr03uPZ6Ho6Sixur12UejKbrx+fe3x8ctGNnb5DBaHSordOxcLV/uH/rx9jeHRc4U8s/zXphfTWD/vBgbE2Xr60k6+vXrs/0XOurK9lYX8sTu/3rrtnF3lp2+oOsTt4iM+2H6X794ehaP60mm721rK62DtO5juHjzMH94fC6//NldBPBhjn8f85Mn0//nf72u5mGNs/fPEd9m+a6/ijprRx+nhxeNktzv6PaNT13Jufvj8bjoL5uZcbjWW1otqWZp37ceo7haDx+VxrLbtTGo85Zv1aD2ny0vdvP1kavbQyf+Rzc7w8zGA5nBqn3eXNcJkePofod242Oe9SytjFbfzya/LSN4eNc31mvmbRkaj6ub3vUGL5ZR+Wenm8lh8dgM+8sR2WrX7O9BbuPcC9MXf/m5uCkA/cR0/uzY77mztSN8nbp/2pOnlz/nkVbTpD3TOfgrlzvruRIki968y+eaL8Hf+gVtzRHl/rkBlnObA5eoD6auy7+LjrrPjlmjjO/Dx4OR+O/p62vHfx7g/ueuenCNTvvGbp2H2EOPh5zcLuWLMcav/P8+NMfTvKdSX4pyX9J8sGTHKSUMkzyhsbiT9TWvyvJuxr7/F6Srz3J+abGg2y1Exdbhm5k2OhAhpuxtraaS2vjyfLS5vjfrQuHX/KbG71sTh5Pt5n+u1n7HsK2djf3u23y3YQXZp2jN81xbRLvZfXa+rXrc06PlySfnOS4VFt228F5D7dtY5J/mmPWL45m5qYLG72D/euZfvuT5VCOa+26fkqtH3vzYNm17dY2VrMxY3nSvD7XjjN9fC3HpB0z23i4bc1zdFWvt5peR+bgW6X5IZHT5zdq4/E/PPTW7HerjzuPa3jUa7ZLzsMYnlqmNs5yq9o3/X3SnJe7qkv3wqflPLU1ubn21l//izIHX+otzvid5k0WY46QF+DGFu13Edesrq7ktsl3r7l2eC0vJtdtvub51+XNUsoPJUlVVT9bSnl0jucCAAAAAAAA5mSe7/l83fSBgiIAAAAAAAAsrnm+U/FCVVW/nqRk8pU0pZRvnuP5AAAAAAAAgDm45UXFqqp+upTyjUm+51YfGwAAAAAAADh983in4rOSpJTyK3M4NgAAAAAAAHDK5lFUfE5VVT84a0Up5W/O4XwAAAAAAADAHM2jqLid8fcoAgAAAAAAAEtgHkXF3y2lvHsOxwUAAAAAAADOwOocjnllDscEAAAAAAAAzsgtLyqWUr77Vh8TAAAAAAAAODvzeKciAAAAAAAAsEQUFQEAAAAAAIBWiooAAAAAAABAK0VFAAAAAAAAoJWiIgAAAAAAANBKUREAAAAAAABopagIAAAAAAAAtFJUBAAAAAAAAFopKgIAAAAAAACtFBUBAAAAAACAVoqKAAAAAAAAQCtFRQAAAAAAAKCVoiIAAAAAAADQSlERAAAAAAAAaKWoCAAAAAAAALRSVAQAAAAAAABaKSoCAAAAAAAArRQVAQAAAAAAgFaKigAAAAAAAECr3lkHaFNV1cUkP57k85I8luRbSymfaWzzt5O8Ikk/yXeWUj5cW/ePkpRSyj87vdQAAAAAAACwXLr+TsVvT/KxUspLktyd5HvrK6uq+lNJ/kySr0jy6iQ/PFn+rKqq7kny5083LgAAAAAAACyfrhcVX5zk/ZPH9yT56hnrf6mUMiqlfCpJr6qqZyW5Lcn3Jfmx0woKAAAAAAAAy2plNBqddYYkSVVVfznJX2ss/r0kf7WUcl9VVatJPlVK+YLaPt+b5KFSyjsnz/99kr9USrl/8vz7kvzurI8/vXLlymhra+uGuXZ2drK5uXnCVt0aMixehsuXL6/MO8txx/Ct0IW+l+N0c8x7DC/SHDxvy97Gs2hfl+bgZb++yfK30Rhe7utbd57amriPWCTL0o5kMdpy1nNwV/qoKzmS5OXvfuBE+93zrbff0hxd6pO2LGc5By9KH53HHEl3spzl+E0W6z5ChsXLYA4e60qWruRIFiPLccdvZ75TsZTyI0l+pL6sqqqfS3Jp8vRSkkcauz1aW3/UNke6fPnyDbe57777jrXdPMkgw1FOK0tX2i1HN3Oc1KLMwfO27G1c5vYZw2PL3sZlbp8xfNh5amuy+O09T+N3WdqRLFdbnqyj+qErfdSVHGMnKyre6vxd6pOzztL18Zt0J0tXciTdydKFHItyHyGDDLOYgxcvR7JcWbr+8acfSvJ1k8cvT/KBGetfVlXValVVX5hktZTy+6cZEAAAAAAAAJZdZ96peIR3Jnl3VVUfTLKX5JuTpKqqv5fkX5VSPlxV1QeS3JtxgfSvnFlSAAAAAAAAWFKdLiqWUraTfP2M5X+j9vj7knzfEfvPXA4AAAAAAAAcX9c//hQAAAAAAAA4Y4qKAAAAAAAAQCtFRQAAAAAAAKCVoiIAAAAAAADQSlERAAAAAAAAaKWoCAAAAAAAALRSVAQAAAAAAABaKSoCAAAAAAAArRQVAQAAAAAAgFaKigAAAAAAAEArRUUAAAAAAACglaIiAAAAAAAA0EpREQAAAAAAAGilqAgAAAAAAAC0UlQEAAAAAAAAWikqAgAAAAAAAK0UFQEAAAAAAIBWiooAAAAAAABAK0VFAAAAAAAAoJWiIgAAAAAAANBKUREAAAAAAABopagIAAAAAAAAtFJUBAAAAAAAAFopKgIAAAAAAACtFBUBAAAAAACAVoqKAAAAAAAAQCtFRQAAAAAAAKCVoiIAAAAAAADQSlERAAAAAAAAaKWoCAAAAAAAALTqnXWANlVVXUzy40k+L8ljSb61lPKZxjZ/O8krkvSTfGcp5cNVVd2Z5J8kGSTZTfK/llJ+71TDAwAAAAAAwJLo+jsVvz3Jx0opL0lyd5Lvra+squpPJfkzSb4iyauT/PBk1V1J/vdSykuT/FyS7zmtwAAAAAAAALBsul5UfHGS908e35Pkq2es/6VSyqiU8qkkvaqqnpXk1aWUj0626SXZOZW0AAAAAAAAsIRWRqPRWWdIklRV9ZeT/LXG4t9L8ldLKfdVVbWa5FOllC+o7fO9SR4qpbxz8vzfJ/lLpZT7J8//dJIfSfLfNz829cqVK6Otra0b5trZ2cnm5uaTaNmTJ8PiZbh8+fLKvLMcdwzfCl3oezlON8e8x/AizcHztuxtPIv2dWkOXvbrmyx/G43h5b6+deeprYn7iEWyLO1IFqMtZz0Hd6WPupIjSV7+7gdOtN8933r7Lc3RpT5py3KWc/Ci9NF5zJF0J8tZjt9kse4jZFi8DObgsa5k6UqOZDGyHHf8duY7FUspP5JxAfBAVVU/l+TS5OmlJI80dnu0tv7QNlVVfWOStyR5RbOgOHX58uUb5rrvvvuOtd08ySDDUU4rS1faLUc3c5zUoszB87bsbVzm9hnDY8vexmVunzF82Hlqa7L47T1P43dZ2pEsV1uerKP6oSt91JUcYycrKt7q/F3qk7PO0vXxm3QnS1dyJN3J0oUci3IfIYMMs5iDFy9HslxZuv7xpx9K8nWTxy9P8oEZ619WVdVqVVVfmGS1lPL7VVV9S5K/muSlpZST3X0CAAAAAAAASTr0TsUjvDPJu6uq+mCSvSTfnCRVVf29JP+qlPLhqqo+kOTejAukf6WqqrUkb0/yqSQ/V1VVkvxKKeVvn0UDAAAAAAAAYNF15jsVT9uVK1fOZ8M5NS984Qvn/hna8zw+zHMMG7/MmzmYRWcMs+jcR7DIzMEsOnMwi8wczKIzB7PIjjN+z21REQAAAAAAADiern+nIgAAAAAAAHDGFBUBAAAAAACAVoqKAAAAAAAAQCtFRQAAAAAAAKCVoiIAAAAAAADQSlERAAAAAAAAaKWoCAAAAAAAALRSVAQAAAAAAABa9c46QNdUVfW0JD+e5KlJNpK8qZRy74ztnpXkV5M8r5Syc8Sxnp3kp2qL7kzy5lLKP7vlwQEAAAAAAGBOvFPxem9K8n+XUv5Mkr+Y5IebG1RV9bIkv5TkD7UdqJTyu6WUl5ZSXprk/0jyH5O861YHBgAAAAAAgHnyTsUkVVV9X5LfnbyD8B8l2Z2s6iWZ9S7EYZKvTnKldoynJfmRJM+cLHpjKeVjk3UrSf5Jkv+llDKYRxsAAAAAAABgXs71OxWrqvrGqqp+OeN3JL5p8vjLSilXJx9d+uMZv8PwkFLKvy2lPNRY/Dczfofjn03yuiTvrK37c0n+31JKufWtAAAAAAAAgPk61+9ULKX8dJKfbrxTMVVVPS/j70L87lLKrxzzcM9L8j9UVfWNk+efU1v3LUnuujWpAQAAAAAA4HSd63cqzlJV1X+X5GeTfHMp5Z6b2PUTSf7R5PsTvyHJ/1Vb98Ikv3rLQgIAAAAAAMApOtfvVJwqpXxf7elbk2wmuauqqiT5bCnllVVVvSnJ/aWU9x5xmB9I8iNVVb0uyVOTfF+SVFX1rCSPlVJGc4oPAAAAAAAAc7UyGql1AQAAAAAAAEfz8acAAAAAAHBf0mAAACAASURBVABAq3NbVLxy5cooyQ1/HnzwwWNtN88fGRYyw9wddwzfip8u9L0cp55jrhZpDp73z7K38YzaN3fG8PlpozG83Nf3vLb1FNo7V+dt/C5LOxaoLXPXNoa70kddydGlLF3JcYwsc7UI47dLWbqSo0tZznL8Jot1HyHDQmaYK3PwYuZYoCzH0vnvVKyqajXJO5K8IMlukm8rpdxfW//aJK9P0k/y/aWU91VV9YVJfjTj9q0keV0ppZzk/FevXn2SLXjyZJDhrHWl3XIc1pUc86SNi2/Z23cj56H9y97GZW/fjZyn9p+ntibno73L0sZlaUeyXG2Zl670UVdyJN3J0pUcSbey1HUpV1eydCVH0p0sXclxI13IKYMMN6NLGbuSpSs5kuXKsgjvVHxVks1SyouSvDnJ26Yrqqp6dpI3JvmqJC9L8taqqi4k+TtJ/mkp5aVJfjDJW087NAAAAAAAACyLRSgqvjjJ+5OklPJrSb60tu7Lk3yolLJbSvlskvuTPD/JdyX5xck2vSQ7pxcXAAAAAAAAlsvKaHTsj0o9E1VV/fMk7yml3DN5/qkkt5dS+lVVfUuS55VSvmey7u4kd5dS/t3keZXkXyd5VfPjT69cuTLa2tq64fl3dnayubl5S9t0s2RYvAyXL19emXeW447hW6ELfS/H6eaY9xhepDl43pa9jWfRvi7Nwct+fZPlb6MxvNzXt+48tTVxH7FIlqUdyWK05azn4K70UVdyJN3J0pUcSXuWs5yDF6WPzmOOpDtZznL8Jot1HyHD4mUwB491JUtXciSLkeW447fz36mY5NEkl2rPV0sp/SPWXUrySJJUVfVnM/4uxr9w1PcpXr58+YYnv++++4613TzJIMNRTitLV9otRzdznNSizMHztuxtXOb2GcNjy97GZW6fMXzYeWprsvjtPU/jd1nakSxXW56so/qhK33UlRxJd7J0JUdy9lm6Pn6T7mTpSo6kO1m6kGNR7iNkkGEWc/Di5UiWK8sifPzph5J8XZJUVfWVST5WW/fhJC+pqmqzqqqnJbmc5OOTguJdSb62lPKR0w4MAAAAAAAAy2QR3qn480m+pqqqX02ykuQ1VVW9Kcn9pZT3VlX19iQfyLhA+pZSyk5VVf84yUaSd48/ATWllPL6M8oPAAAAAAAAC63zRcVSyjDJGxqLP1Fb/64k72rs84JTiAYAAAAAMNPL3/1Akgduer8Hf+gVtz4MANwCi/DxpwAAAAAAAMAZUlQEAAAAAAAAWikqAgAAAAAAAK0UFQEAAAAAAIBWiooAAAAAAABAK0VFAAAAAAAAoJWiIgAAAAAAANBKUREAAAAAAABopagIAAAAAAAAtFJUBAAAAAAAAFopKgIAAAAAAACtFBUBAAAAAACAVoqKAAAAAAAAQCtFRQAAAAAAAKCVoiIAAAAAAADQSlERAAAAAAAAaKWoCAAAAAAAALRSVAQAAAAAAABaKSoCAAAAAAAArRQVAQAAAAAAgFaKigAAAAAAAEArRUUAAAAAAACglaIiAAAAAAAA0EpREQAAAAAAAGilqAgAAAAAAAC0UlQEAAAAAAAAWikqAgAAAAAAAK0UFQEAAAAAAIBWiooAAAAAAABAq95ZB7iRqqpWk7wjyQuS7Cb5tlLK/bX1r03y+iT9JN9fSnlfbd13Jnl2KeXNp5saAAAAAAAAlkfni4pJXpVks5TyoqqqvjLJ25K8Mkmqqnp2kjcm+dIkm0k+WFXVv834HZjvSvIVSd5zJqkBAAAAAABgSSzCx5++OMn7k6SU8msZFxCnvjzJh0opu6WUzya5P8nzMy4w3p3kB045KwAAAAAAACydldFodNYZWlVV9c+TvKeUcs/k+aeS3F5K6VdV9S1JnldK+Z7JuruT3F1K+XeT538xyR2zPv70ypUro62trRuef2dnJ5ubm7esPSchw+JluHz58sq8sxx3DN8KXeh7OU43x7zH8CLNwfO27G08i/Z1aQ5e9uubLH8bjeHlvr5156mtifuIRbIs7UgWoy1nPQd3pY+6kiPpTpau5Ejas5zlHLwofXSaXv7uB0603z3fevstTtKdPjnL8Zss1n2EDIuXwRw81pUsXcmRLEaW447fRfj400eTXKo9Xy2l9I9YdynJI8c98OXLl2+4zX333Xes7eZJBhmOclpZutJuObqZ46QWZQ6et2Vv4zK3zxgeW/Y2LnP7jOHDzlNbk8Vv73kav8vSjmS52vJkHdUPXemjruRIupOlKzmSs8/S9fGbdCnLyYqK88jelT7pQo5FuY+QQYZZzMGLlyNZriyL8PGnH0rydUky+U7Fj9XWfTjJS6qq2qyq6mlJLif5+OlHBAAAAAAAgOW1CO9U/PkkX1NV1a8mWUnymqqq3pTk/lLKe6uqenuSD2RcIH1LKWXnDLMCAAAAAADA0ul8UbGUMkzyhsbiT9TWvyvJu47Y91/OLxkAAAAAAACcD4vw8acAAAAAAADAGVJUBAAAAAAAAFopKgIAAAAAAACtFBUBAAAAAACAVoqKAAAAAAAAQCtFRQAAAAAAAKCVoiIAAAAAAADQSlERAAAAAAAAaKWoCAAAAAAAALRSVAQAAAAAAABaKSoCAAAAAAAArRQVAQAAAAAAgFaKigAAAAAAAEArRUUAAAAAAACglaIiAAAAAAAA0EpREQAAAAAAAGilqAgAAAAAAAC0UlQEAAAAAAAAWikqAgAAAAAAAK0UFQEAAAAAAIBWiooAAAAAAABAK0VFAAAAAAAAoJWiIgAAAAAAANBKUREAAAAAAABopagIAAAAAAAAtFJUBAAAAAAAAFopKgIAAAAAAACtFBUBAAAAAACAVoqKAAAAAAAAQCtFRQAAAAAAAKBV76wD3EhVVatJ3pHkBUl2k3xbKeX+2vrXJnl9kn6S7y+lvK+qqs9N8hNJLib5r0leU0rZvpnz9vvDDIfDPOc5fzx7e/1b1JqTkaEbGXaHo1R33JHHdvZzsbeWXq/bNfnBYJjt/UG2NtayvTfIUy70srM3SJIMR8nWhbXs7Q+yPxwdbFPfdm9/kOFovG11xx3Z3h33/epKJstHuThjv+3dftZXV7I3HB0cZ384ysXeWq72x9vu7g8zHI2y2VtLfzgcr19fy9X9azmHo1G2ascbJfmCL35uhqNRntjtZ21lJRfWV3N1bzDZbpDVlXG+jfW19PcHGSXZm5x7bzA86JvhKLm4sXpd5sFoun587v39wUE7dvYGGYzGfVXPMW1XvX/rx9je7ae3upIk2Z8ca5r1wvpqBv1hdhvL11aS9fVr1+cpF3p5YpJxY30tT+z2D3IMhsNs7w1ysbeWnf4gqysrB9dpuu366kr6w9G1flpNNntrWZ3k6qJ+f5j+jDl4lOS4qYc5/H/OTJ9P/51c7mMfb9b5m+eob9Nc1x8lvZXDz5Mbz23N/Y5q1/TcmZy/PxqPg/q6lRmPZ7Wh2ZZmnvpx6zmGo/H4rR/7j91+c3P3rGyjJIPRtblre7efrY1e58fw4Ij7iHqfN8dlcvQYGtUez2r5rGvZNl7qx22OjdHkp20MT6952xie9ZpJS6bm4/q2R43hmzXN3Vu5fnkmx62PwS8+xv3HUdnq12yvNp8vwn1El+6FT8t5amtyc+3tL+AcfLU/WJh792neRZkj5OW0LNprGVgOw+Eo2/uDVNUdeXy3n631bv/9hPnyu2gxuW7zdct7sqqqe6uq+soZy997wkO+KslmKeVFSd6c5G21Yz47yRuTfFWSlyV5a1VVF5L8rSQ/UUp5SZJfz7joeGzTP6LA1CM7/bzu7iv5krfck9fdfSUPb++l3+/uGBkMhnnoib38iw9+Mr/zBzt53d1X8qaf/mi29/t5eHsvr737I/mxex/Mo/8/e/cfJWle14f+3d3VPT29M+s660IIYtZlzcN4CYyuKHsDyvUkIWhyyYkH2fUYSTD+wBg2EQkmIYm58XqvPzBZcpR7JeJZTMLKilw0CZCcmxB+ZA3ryIJ4xycuywpy+LHOMOzM9PR0VVfdP7qfmqefqa7umZ2eeqrm9TqnT1c99fx4f7/fz/OdOvPtrl7rDfep7/srDz6WtV5/uG91bK/fz1qvn9Pnu3nLBz+ZL5y5kF/+4CfzuS9dGPbPB/7g8Xxpq79+5cHH8sSFXh4/s5ZTq5t5Tp1dz+nz3fzBF85krbeRJ9Z6+eAfPJ5T59aHOTevu3m+t3zwk+n2B3niwvYxWO32cvLsxf2+762/nVOr61nr9XPyzFp6g+RLa5vXPrvey/nuxrD9b/ngo8O2VpnP9/pZ7fZy+nw33/fW43n///jCsB1Vpnof/el/+O488oUzOXX+Yu7qGtU5qvy9Rv4q65m1XlZ7/Uu2n+/180enzuWJRt09sdbLrzz4WL7/rcfzuS9d2DZ2p1bX8wdfOJPT57tZ7fay1usP931irZe3fPCTF69xbj1n1rrp9wdj62hSer3+5gJpc/tg9OJEsv0/7vvZ/M/7+vHrW22ttvcGm4tUOy3MjHrca3TXen8wXPhpZmxef7XXz8Lc9uer3d4lixrNHKu9/rZ9RrWrel5v02qvn27t37F631WPB43jmzNas78HtfM2x2a9P8har59+BsNjqm31/IPadQaN59U1qyzVmPUGyfnafLRZx8dz8tyFVtfw+kZ/ZH1VfV7v/+Y41l/r17Zv1Ma42t5vnHfUtvrz1Pbp165XXaNakO42jm3W8KjxTbbfi80aWu8P0htTw83HvVrenWq4akfz2vV+qGfbKXd1vX7tOqPyDhpfo7JV166P2Zem7H3E1XwvvB93aTvv/CszaHy/nGN2eq35erNmR52nmaO6v6q5f9rm4FOr61Nzz8m7v6YtLxcZO2AS+v1BTp5bz/fd99v5069/d77vvt/OyXPrrX3fw/7yb9F0Mm77bz+WZ78iyX1FUXxvY/vhKzzfC5K8J0nKsvytJN9Qe+0bk3yoLMsLZVl+KckjSZ5TPybJu5P8ucu54PneRi70B758Db/uuf/hPPjoyfT6gzz46Mncc//DOd/b2L2YJmS1u5F77n84L3720/K6d3wsDz56Mq960e05u7aR1z6w+fylx56+bZ/6vi899vScXu0O962O7Q+S06vdvObtH82Ln/20/Mivbn7/0Qc+OuyfO5/5FcP+eumxp+eetz2cWw4vD691bn0jr3n7R/PMWw6nt9W39WNe9aLbh9ft9Qd58bOftrnf27aPwdm1jUvG5bUPfCynV7tZXuoMz33L4eWcXu3mzFpv2P56W6vMp1e7Obu2me3BR0/m67/qyCWZmsc985bDw1yvetHtw2tU5xiXv8p6erU7cvuX33BgZN299NjT8+CjJ/OjD3x029jdc//DeeYth/Oat380Z9c2cnq1O9y36vv6Nb642s1qt501fL63kd6I+7C5rVt7vN7Y3ty319jeG7HPqPN2G+dYH/G8uc+orKdXu9uOrept3LzT3dpvXB/0Go97tfMPthaGRu1X9VmvP7qto661XjvvqLE5vdpNv59LtjXP0a09HtV/1bb6mNXno6qOX/22h6euhnfq/+b41Gu1Poa9EdtHjXFzW7dx7mpbt7Ft1P1Rvdas4VHj27wXR9XrbjXc3He3Gu72t9fUTvdyvc9H5W7270551xtfo7LVa7j6mrb3EVfzvXBzXNp6zkl9rTe+P9n2r494vVmzo87TzFHVcTX3T9scPE33nLz7a9rycpGxAyZhtbuRV7/tI433PR9p7fse9pd/i6aTcdt/+/Hxp59OcleSXyuK4o4kP1yWZfWDrlfixiRfqj3fKIqiU5Zlb8RrZ5J8WWN7te0SJ06cGHnB4lnPusKozKqHHjt1yfMbDnR2rKGjR49ei1hja/ihx07l9qccGma//SmHklxsy40HF7ftU9/3xoOLOby8eMmxc3MZbh91XP289cc3HOgM960yHFruDB/Xj2me7/anHMrc3KVj8IwjKyPH5RlHVrL1CaDDa68sdbbtMyrz4eXFbf1zaLlzSabmcc196tfYLX+VtanehlHH3HjwYs5mripPdd56PzTzPePISuaycw1dixq+nubglaXOcDyq50m2bdvLcVd6vatl3HkPLy9e8tqobVeimkPqHnrsVFYWF0bWURvm4Fkzauyv1vhea5PIPY3vI6CysnR5c3Ay+fcRl3vPTdJe8q6trbUm+5Pt32vdlivJO+k5uC3jPekcbbyXJ90ndeOyTHIOnpY+mgb7kb0tfTLp+k3GvI8oRs8949737Kc2jNn1nKGt7yPMweO18T1EMh3js9f63Ze/qViW5ReKovjWJG9M8r6iKL7jSZzuiWz/Lcf5rQXFUa8dTnK6tv18bdslduqkM2vdJxGXWfS8W4/kwUdPbnt+7kLvmr3Z2cm4Gn7erUfyyBfODrM/8oWzOdCZHz5/4vz2fer7PnF+8zfomsfetLI43D7quCTD89avce5Cb7hvleHsWi/9wSDPu/XItmOa53vkC2fz1BsPXDIGnz61OnJcPn1qNTcfWspgcHGcTp5d37bPqMynV7vD1zd/E7J3Sabmcc19Dmx9Nvde8ldZm+ptGHXME+cv5mzmqvJU571pZXHbvs1rfMXhAxOt4XH1u9EfZKHxNwsGg90X4SrN46vn1ffB1o+5XM7CQvP64zI2Xzt5dj03H1ra9jzJtm2jNI/bqV3Vtas2nTy7nptWFre9VmWvPx7Vhp3aW+Wpn7ee4/RqN0duWNp27tOr3V3buNM162N16tz6yPthtbvR2hreqV7rfd6sy2TnGhrUfjRrt/PutG23+6p6PBhs/l3YcTW8l/Eddc8k2TFT83F9351q+HLtlLu63vzc3LYabOYdZads9TGbxvcRUDl5dvrm4Lbec6PsJe+JEydak/3J9u+1bkub62Gn67dlvCedo41jN+k+qZt0lrbXb9KmLI9e0VH7kb0tfdKGHDtd/+yFXqve97Shr67nDG38tygxB++mreM2S+OzHx9/OpckZVn2yrL8oSS/nORDSb7yCs/3oSTfliRbf6vxd2uvfTjJC4uiWC6K4suSHE3y8foxSV6S5AOXc8GDnYUcmJ/z5Wv4de9dx3LnbTenMz+XO2+7OffedSwHOwtXWNL7b2VxIffedSzv/fhn81Pf8ZzcedvNedP7Hsmh5YX8zMs2n7/r4c9s26e+77se/kxuWlkc7lsdOz+3uVD1hu98bt778c/m516++f1nX/bcYf88+Ik/HvbXux7+TO69+1geP7M2vNYNSwt5w3c+N594/Ew6W31bP+ZN73tkeN3O/Fze+/HPbu539/YxOLS8cMm4/MzLnpObVhaztt4bnvvxM2u5aWUxh5c7w/bX21plvmllMYeWN7PdedvN+Z1PnbokU/O4Tzx+ZpjrTe97ZHiN6hzj8ldZb1pZHLn9i+cujKy7dz38mdx528352Zc9d9vY3XvXsXzi8TN5w3c+N4eWF3LTyuJw36rv69f48pXFrCy2s4YPdhbSGXEfNrct1h4vNbY39+00tndG7DPqvIuNcyyNeN7cZ1TWm1YWtx1b1du4eWdxa79xfdBpPO7Uzj83l2G25n5Vn3XmR7d11LWWaucdNTY3rSxmfj6XbGueY7H2eFT/VdvqY1afj6o6fuPdx6auhnfq/+b41Gu1PoadEdtHjXFz22Lj3NW2xca2UfdH9VqzhkeNb/NeHFWvu9Vwc9/danhxfntN7XQv1/t8VO5m/+6Ud6nxNSpbvYarr2l7H3E13ws3x6Wt55zU11Lj+5Nt/9KI15s1O+o8zRxVHVdz/7TNwdN0z8m7v6YtLxcZO2ASVhYX8sa7v67xvufrWvu+h/3l36LpZNz239xgcKWfSjpaURTfXJbl+xvbnpfkfy/L8i9cwfnmk/xCNv9W4lySv5HNBcNHyrL8jaIovi/J92dzgfQny7J8R1EUT01yXzZ/S/GPk3xXWZbn6uc9fvz44I477tjxur1eP/2+P97JRRf6g9xwoJNzF3qb/2HcGbsmv+8frLZbDW9s9LPa3cjK0kJW1zdyw4FO1tY3Pzu6P0hWDixkvbuRbn8w3Ke+73p3828oVvtWx87PZWv7IAdHHLd6oZfF+bmsb/VXdY2DnYWc723ue6HbT38wyHJnIb1+f/P1xYWc717M2R8MslI73yCbfx+uGoOFubkcWJzP+fWNrf02Mj+3mW9pcSG97kYGSda3rr2+cfF+7g+Sg0vzl2TeGFSvb167290YtmNtfSMbg8G2tla1cL63vX/r51i9sLnAmVr+KuuBxfls9PrD2qq2L8wli4sXx6e61uL8XJYWF3LuQu+SMTvYWchabyPzW78iU/VDdVyvP7jYT/PJcmch8/Njy3Rfa3gvc3Cv37/kJ18GlxGsn+0/OVM9r75X//pdTkOb129eo75P87XeIOnMbX+ebN82SvO4ndpVXTtb1+8NNuug/trciMej2tBsSzNP/bz1HP3BZv3ONbbt1sadrlkfq43afLR6oZeVpc64Gp74HNzr9bPR748MUu/zZl0mO9dQ/R3bbufdadu4mq0/Hmx9javhvYzvqHsmYzI1H9f33amGL9dOuavrzWV7DTbzjrJTtvqYrU/Z+wjvhanrXd4cnLTgfUT1/myP99xE7Za3TT/VnDy5/p1EW64g70Tn4LaMdxtytO1ebkOfVHbJMrE5eIr66Jq59cf+/RUd99j/+e1XOUl7+mSS9Zvs/j6i3x9s/n/a4sLw+y7ve/ZNG8bses/QtvcR5uC9adt7iGTyfVI3Jsue6veqf/xpc0Fxa9tDSS57QXHr2H6SH2xs/v3a629O8ubGMZ9P8hev5HqVzSKbb8Vgy9CODEstyHA5Fhbmc3hhc7I8vLz5feXA9lt+eamT5a3H1T7V9+Xa3yEc1+7mcYe2/jbhgVHX6FQ5Lk7incxffH3h0pzV+ZLkk1s5Dte2HRped3vblrbyVzlG/cPRzNx0YKkzPL6e6Y8+WW7LcbFdl06p9XMvD7dd3G9haT5LI7YnzfG5eJ7q8cUcW+0Y2cbtbWteo606nfl0WjIHXy3ND4msnu/Wxr1/eOjVOe5qn3c/xnCne7ZNrocarsxSG0e5Wu2r/j1pzstt1ab3wtfK9dTW5PLaW7//p2UOPtyZnvqt8ibTMUfIy7UybfcyMBvm5+dyaOtvr5l78G/RdDJu+6u9P64JAAAAAAAAtIJFRQAAAAAAAGAsi4oAAAAAAADAWBYVAQAAAAAAgLEsKgIAAAAAAABjWVQEAAAAAAAAxrKoCAAAAAAAAIxlUREAAAAAAAAYy6IiAAAAAAAAMJZFRQAAAAAAAGAsi4oAAAAAAADAWBYVAQAAAAAAgLEsKgIAAAAAAABjWVQEAAAAAAAAxrKoCAAAAAAAAIxlUREAAAAAAAAYy6IiAAAAAAAAMJZFRQAAAAAAAGAsi4oAAAAAAADAWBYVAQAAAAAAgLEsKgIAAAAAAABjWVQEAAAAAAAAxrKoCAAAAAAAAIxlUREAAAAAAAAYy6IiAAAAAAAAMJZFRQAAAAAAAGAsi4oAAAAAAADAWBYVAQAAAAAAgLEsKgIAAAAAAABjdSYdYJyiKA4m+ddJnpLkTJJXlGX5eGOff5Lk25P0kvydsiw/XHvtnycpy7L8v65dagAAAAAAAJgtbf9NxVcl+d2yLF+Y5K1JXl9/sSiKr0/yLUm+KcldSX5+a/stRVG8O8n/em3jAgAAAAAAwOxp+6LiC5K8Z+vxu5P8uRGv/8eyLAdlWX4qSacoiluSHEry40l+5VoFBQAAAAAAgFk1NxgMJp0hSVIUxfcm+buNzZ9P8sNlWZ4oimI+yafKsvzK2jGvT3KyLMs3bT1/f5JXlmX5yNbzH0/yuVEff3r8+PHBysrKrrnW1tayvLx8ha26OmSYvgxHjx6d2+8se63hq6ENfS/Htc2x3zU8TXPwfpv1Nk6ifW2ag2d9fJPZb6Manu3xrbue2pp4HzFNZqUdyXS0ZdJzcFv6qC05kvZkaUuOZHyWSc7B09JH19JL7nv0io579ytuu8pJ2tMnk6zfZLreR8gwfRnMwZvakqUtOZLpyLLX+m3N31Qsy/KXkvxSfVtRFL+e5PDW08NJTjcOe6L2+k777Ojo0aO77nPixIk97befZJBhJ9cqS1vaLUc7c1ypaZmD99ust3GW26eGN816G2e5fWp4u+uprcn0t/d6qt9ZaUcyW215snbqh7b0UVtyJO3J0pYcyeSztL1+kzZlubJFxf3I3pY+aUOOaXkfIYMMo5iDpy9HMltZ2v7xpx9K8m1bj1+S5AMjXn9xURTzRVF8VZL5siz/+FoGBAAAAAAAgFnXmt9U3MGbktxXFMUHk6wn+a4kKYrip5P8WlmWHy6K4gNJHszmAunfmlhSAAAAAAAAmFGtXlQsy3I1yctGbP97tcc/nuTHdzh+5HYAAAAAAABg79r+8acAAAAAAADAhFlUBAAAAAAAAMayqAgAAAAAAACMZVERAAAAAAAAGMuiIgAAAAAAADCWRUUAAAAAAABgLIuKAAAAAAAAwFgWFQEAAAAAAICxLCoCAAAAAAAAY1lUBAAAAAAAAMayqAgAAAAAAACMZVERAAAAAAAAGMuiIgAAAAAAADCWRUUAAAAAAABgLIuKAAAAAAAAwFgWFQEAAAAAAICxLCoCAAAAAAAAY1lUBAAAAAAAAMayqAgAAAAAAACMZVERAAAAAAAAGMuiIgAAAAAAADCWRUUAAAAAAABgLIuKAAAAAAAAwFgWFQEAAAAAAICxLCoCAAAAAAAAY1lUBAAAAAAAAMayqAgAAAAAAACMZVERAAAAAAAAGMuiIgAAAAAAADCWRUUAAAAAAABgrM6kA4xTFMXBJP86yVOSnEnyirIsH2/s80+SfHuSXpK/U5blh4uiOJbkXybZSHIhyfeUZfn5axoeAAAAAAAAZkTbf1PxVUl+tyzLFyZ5a5LX118siuLrk3xLYMV2nQAAIABJREFUkm9KcleSn9966d4kf7ssyxcl+fUkr7tWgQEAAAAAAGDWtH1R8QVJ3rP1+N1J/tyI1/9jWZaDsiw/laRTFMUtSe4qy/LhrX06SdauSVoAAAAAAACYQXODwWDSGZIkRVF8b5K/29j8+SQ/XJbliaIo5pN8qizLr6wd8/okJ8uyfNPW8/cneWVZlo9sPf+fk/xSkm9ufmzq8ePHBysrK7vmWltby/Ly8pNo2ZMnw/RlOHr06Nx+Z9lrDV8Nbeh7Oa5tjv2u4Wmag/fbrLdxEu1r0xw86+ObzH4b1fBsj2/d9dTWxPuIaTIr7Uimoy2TnoPb0kdtyZG0J0tbciTjs0xyDp6WPrqWXnLfo1d03LtfcdtVTtKePplk/SbT9T5ChunLYA7e1JYsbcmRTEeWvdZva/6mYlmWv5TNBcChoih+PcnhraeHk5xuHPZE7fVt+xRF8fIk/zDJtzcXFCtHjx7dNdeJEyf2tN9+kkGGnVyrLG1ptxztzHGlpmUO3m+z3sZZbp8a3jTrbZzl9qnh7a6ntibT397rqX5npR3JbLXlydqpH9rSR23JkbQnS1tyJJPP0vb6TdqU5coWFfcje1v6pA05puV9hAwyjGIOnr4cyWxlafvHn34oybdtPX5Jkg+MeP3FRVHMF0XxVUnmy7L846IovjvJDyd5UVmWV/avNwAAAAAAAJCkRR9/OkpRFCtJ7kvytCTrSb6rLMvPFUXx00l+rSzLDxdF8ePZXHCcz+bHpz6Y5PEkn8rF32z8r2VZ/pP6uY8fP97ehjMT7rjjjn3/dff9PD/sZw2rX/abOZhpp4aZdt5HMM3MwUw7czDTzBzMtDMHM832Ur+tXlQEAAAAAAAAJq/tH38KAAAAAAAATJhFRQAAAAAAAGAsi4oAAAAAAADAWBYVAQAAAAAAgLEsKgIAAAAAAABjWVQEAAAAAAAAxrKoCAAAAAAAAIxlUREAAAAAAAAYy6IiAAAAAAAAMJZFRQAAAAAAAGAsi4oAAAAAAADAWBYVAQAAAAAAgLEsKgIAAAAAAABjWVQEAAAAAAAAxrKoCAAAAAAAAIxlUREAAAAAAAAYy6IiAAAAAAAAMJZFRQAAAAAAAGCs63ZR8fjx44Mku3499thje9pvP79kmMoM+26vNXw1vtrQ93Jc8xz7aprm4P3+mvU2Tqh9+04NXz9tVMOzPb7Xa1uvQXv31fVWv7PSjilqy74bV8Nt6aO25GhTlrbk2EOWfTUN9dumLG3J0aYsk6zfZLreR8gwlRn2lTl4OnNMUZY9uW4XFffq/Pnzk44ggwwT15Z2y7FdW3LsJ22cfrPevt1cD+2f9TbOevt2cz21/3pqa3J9tHdW2jgr7Uhmqy37pS191JYcSXuytCVH0q4sdW3K1ZYsbcmRtCdLW3Lspg05ZZDhcrQpY1uytCVHMltZLCoCAAAAAAAAY1lUBAAAAAAAAMayqAgAAAAAAACMZVERAAAAAAAAGMuiIgAAAAAAADBWZ9IBrkRRFItJ3pLk1iQHkvxEWZa/UXv9Lyf5x0l6Sd5SluWbL/caGxv9bGz088xnfk3W13tXJ/gVkqEdGS70Byme9aycWevmYGchnU671+Q3NvpZ7W5kZWkhq+sbueFAJ2vrG0mS/iBZObCQ9e5Guv3BcJ/6vuvdjfQHm/sWz3pWVi9s9v38XLa2D3JwxHGrF3pZnJ/Len8wPE+3P8jBzkLO9zb3vdDtpz8YZLmzkF6/v/n64kLOdy/m7A8GWamdb5DkK7/69vQHg5y70MvC3FwOLM7n/PrG1n4bmZ/bzLe0uJBedyODJOtb117f6A/7pj9IDi7NX5J5Y1C9vnntbndj2I619Y1sDDb7qp6jale9f+vnWL3QS2d+LknS3TpXlfXA4nw2ev1caGxfmEsWFy+Ozw0HOjm3lXFpcSHnLvSGOTb6/ayub+RgZyFrvY3Mz80Nx6nad3F+Lr3+4GI/zSfLnYXMb+Vqo16vn17/0jl4kGSvqfvZ/pMz1fPq+9Zw7/l8o67fvEZ9n+ZrvUHSmdv+PNl9bmset1O7qmtn6/q9wWYd1F+bG/F4VBuabWnmqZ+3nqM/2Kzf+rn/1G2XN3ePyjZIsjG4OHetXuhlZanT+hreGFHDyfY+b9ZlsnMNDWqPR7V81FiOq5f6eZu1Mdj6GlfD1ZiPq+FR90zGZGo+ru+7Uw1frip3Z+7S7dk6b70Gv3oP7z92ylYfs/XafD4N7yN6vX76O9TwrLqe2ppcXnt7UzgHn+9tTM179yrvtMwR8nKtTNu9DHXqF2ByzMH7ayoXFZN8d5KTZVn+taIobk7ykSS/kQwXHP95kuclOZfkQ0VR/GZZlp/b68mrBUWonF7r5Z77H85Dj53K8249knvvOpYjK0utnYw2Nvo5eW4993/4U/krX/eVed07Ppan3nggr/9LR7PW7ee1D3wsf/HZT81Lnv204T7/z0f+aLjvX3z2U/PSY0/P2Qu9vPaBi8cuLcynP0hW1zfya7/96bzsec/IAw99Ot9xxzPyow98NA89dir/8u5jueNPHck99z+8eY0/87ScXevm0IHF3P/hT+Xub/yqdPuDfP6J8/mapxzO6vpGjv/hqeExT73xQH70xUVe+8DH8tBjp/Lqb709r3zBV2e1u5F73nZxDP7ldx3L2QvZNi4/87Ln5NCBTs6sdXPDgcWcvdDL2QvdHLnhQDb6gwwyyFq3n18/frGtVeY7n/kV6fX7We8N8pq3fzQ/8C1fna992pdty9Q87oEffH6e/uUruedtm/v8o7/0tRlkMDzHuPxV1iR51b/+nUu2f/7MWpYXO5fU3bt/+9N5z8c/n5992XPzjuOfHo7dXd/4VfnM6dU89caDWerMpTM/n1/d2vfeu47l/g9/Km/8z48Mr3H4QCeHlxdb+R+CvV4/a72NLDWyjVtcay5E9fqDbcev9wfpbC12L83PDRf0mosKzfPWH/e2Fszq51ycn7tkn85chteprPb6OVibL1a3Fk1vXNr5n+F+krVePyu145rnrT+vt2m118/cXHJgYX5brvrjQTYXuqvjd1sEHSQ5v3Xegwvb5771/iC9/iCdhbl0tkai2lbPX1+oGtS2Nfu4GsPO1litb/SH81F1P7zx7mO5+YYDra3h9Y3+yPqqxqze/81xnJ+7+Fo1Lr3a6lRn7tLFyPURY7neOEd1H1T7JJuLBPNzFxeiO3PV4sH2Y5s1PGp8k+33YrOG1vubjdiphpuPkwzz7lTDVbdUNTVu0b/q81G5q+vNz80NrzMq7yDb1futylbVcL+289kL0/U+olpQvBqezALwtTznpNQX8vfapnH7jvqBmZ1+IGGnHyio/2DBXDbn/mmbg0+trk/NPSfv/pq2vFxk7Jhm6hfa7dYf+/eXfcy7X3HbPiRhP5iD99+09uIDSf5R7Xn9R2yPJnmkLMsvlmW5nuSDSV54OSdf7W7kQn/gy9fw6577H86Dj55Mrz/Ig4+ezD33P5zzvY3di2lCVrsbuef+h/PiZz8tr3vHx/LgoyfzqhfdnrNrG3ntA5vPX3rs6dv2qe/70mNPz+nV7nDf6tj+IDm92s1r3v7RvPjZT8uP/Orm9x994KPD/rnzmV8x7K+XHnt67nnbw7nl8PLwWufWN/Kat380z7zlcHpbfVs/5lUvun143V5/kBc/+2mb+71t+xicXdu4ZFxe+8DHcnq1m+WlzvDctxxezunVbs6s9Ybtr7e1ynx6tZuza5vZHnz0ZL7+q45ckql53DNvOTzM9aoX3T68RnWOcfmrrKdXuyO3f/kNB0bW3UuPPT0PPnoyP/rAR7eN3T33P5xn3nI4r3n7R3N2bSOnV7vDfau+r1/ji6vdrHbbWcPnexvpjbgPm9u6tcfrje3NfXuN7b0R+4w6b7dxjvURz5v7jMp6erW77diq3sbNO92t/cb1Qa/xuFc7/2CQYbbmflWf9fqj2zrqWuu1844am9Or3fT7uWRb8xzd2uNR/Vdtq49ZfT6q6vjVb3t46mp4p/5vjk+9Vutj2BuxfdQYN7d1G+eutnUb20bdH9VrzRoeNb7Ne3FUve5Ww819d6vhbn97Te10L9f7fFTuZv/ulHe98TUqW72Gq69pex9xvnf13gs3x6Wt55zU13rj+5Nt//qI15s1O+o8zRxVHVdz/7TNwdN0z8m7v6YtLxcZO6aZ+gWYHHPw/pvK31Qsy/JskhRFcTjJryV5fe3lG5N8qfb8TJIvG3WeEydOjDx/8axnXZWczI6HHjt1yfMbDnR2rKGjR49ei1hja/ihx07l9qccGma//SmHklxsy40HF7ftU9/3xoOLOby8eMmxc3MZbh91XP289cc3HOgM960yHFruDB/Xj2me7/anHMrc3KVj8IwjKyPH5RlHVrL1CaDDa6/Ufhtsp8yHlxe39c+h5c4lmZrHNfepX2O3/FXWpnobRh1z48GLOZu5qjzVeev90Mz3jCMrmcvONXQtavh6moNXljrD8aieJ9m2bS/HXen1rpZx5z28vHjJa6O2XYlqDql76LFTWVlcGFlHbZiDZ82osb9a43utTSL3NL6PgMrK0uXNwcnk30dc7j03SXvJu7a21prsT7Z/r3VbriTvpOfgtoz3pHO08V6edJ/UjcsyyTl4Wvpov7WxfpP2jM+k6zfZuYbr2tBfMkxfBnPwJnPwpaZhfPZav1O5qJgkRVE8I8k7k/xCWZb/tvbSE0kO154fTnJ61Dl26qQza92rlJJZ8bxbj+TBR09ue37uQu+avdnZybgaft6tR/LIF84Osz/yhbM50JkfPn/i/PZ96vs+cX7zN+iax960sjjcPuq4JMPz1q9x7kJvuG+V4exaL/3BIM+79ci2Y5rne+QLZ/PUGw9cMgafPrU6clw+fWo1Nx9aymBwcZxOnl3fts+ozKdXu8PXN38TsndJpuZxzX0ObP0K/V7yV1mb6m0YdcwT5y/mbOaq8lTnvWllcdu+zWt8xeEDE63hcfW70R9kofGRaoPB7otwlebx1fPq+2Drs+AuZ2Ghef1xGZuvnTy7npsPLW17nmTbtlGax+3UruraVZtOnl3PTSuL216rstcfj2rDTu2t8tTPW89xerWbIzcsbTv36dXurm3c6Zr1sTp1bn3k/bDa3WhtDe9Ur/U+b9ZlsnMNDWqfX7jbeXfattt9VT0ebH386bga3sv4jrpnkuyYqfm4vu9ONXy5dspdXW9+bm5bDTbzjrJTtvqYTeP7CKicPDt9c3Bb77lR9pL3xIkTrcn+ZPv3WrelzfWw0/XbMt6TztHGsZt0n9RNOkvb6zeZbJY21m/SnvFpQ442/pslw7XM8OhlH7G8vDzxfqiYg8czB+/uyWaZyo8/LYriqUn+Y5LXlWX5lsbLJ5J8TVEUR4qiWEryzUkevJzzrywu5MD8nC9fw6977zqWO2+7OZ35udx52825965jOdhZuDoFvQ9WFhdy713H8t6PfzY/9R3PyZ233Zw3ve+RHFpeyM+8bPP5ux7+zLZ96vu+6+HP5KaVxeG+1bHzc5sLVW/4zufmvR//bH7u5Zvff/Zlzx32z4Of+ONhf73r4c/k3ruP5fEza8Nr3bC0kDd853PzicfPpLPVt/Vj3vS+R4bX7czP5b0f/+zmfndvH4NDywuXjMvPvOw5uWllMWvrveG5Hz+zlptWFnN4uTNsf72tVeabVhZzaHkz25233Zzf+dSpSzI1j/vE42eGud70vkeG16jOMS5/lfWmlcWR27947sLIunvXw5/JnbfdnJ992XO3jd29dx3LJx4/kzd853NzaHkhN60sDvet+r5+jS9fWczKYjtr+GBnIZ0R92Fz22Lt8VJje3PfTmN7Z8Q+o8672DjH0ojnzX1GZb1pZXHbsVW9jZt3Frf2G9cHncbjTu38c3MZZmvuV/VZZ350W0dda6l23lFjc9PKYubnc8m25jkWa49H9V+1rT5m9fmoquM33n1s6mp4p/5vjk+9Vutj2BmxfdQYN7ctNs5dbVtsbBt1f1SvNWt41Pg278VR9bpbDTf33a2GF+e319RO93K9z0flbvbvTnmXGl+jstVruPqatvcRBztX771wc1zaes5JfS01vj/Z9i+NeL1Zs6PO08xR1XE190/bHDxN95y8+2va8nKRsWOaqV+AyTEH77+5Qf3HqKdEURT3Jnl5kt+vbX5zkhvKsvzFoij+cpJ/nM1F07eUZfnzzXMcP358cMcdd+x4jY2NfjY2+lc3OFPtQn+QGw50cu5Cb/M/jMf/Ydd9/2C1vdTwancjK0sLWV3fyA0HOllb3/zs6P4gWTmwkPXuRrr9wXCf+r7r3c2/oVjtWx07P5et7YMcHHHc6oVeFufnsr7VX9U1DnYWcr63ue+Fbj/9wSDLnYX0+v3N1xcXcr57MWd/MMhK7XyDbP59uGoMFubmcmBxPufXN7b228j83Ga+pcWF9LobGSRZ37r2eu1+7g+Sg0vzl2TeGFSvb167290YtmNtfSMbg8G2tla1cL63vX/r51i9sLnAmVr+KuuBxfls9PrD2qq2L8wli4sXx6e61uL8XJYWF3LuQu+SMTvYWchabyPzW78iU/VDdVyvP7jYT/PJcmch8/Njy3Rfa3i3+u31+un1+5f85MvgMoL1s/0nZ6rn1ffqX7/LaWjz+s1r1PdpvtYbJJ257c+T7dtGaR63U7uqa2fr+r3BZh3UX5sb8XhUG5ptaeapn7eeoz/YrN+5xrbd2rjTNetjtVGbj1Yv9LKy1BlXwxOfg3u9fjb6/ZFB6n3erMtk5xqqv2Pb7bw7bRtXs/XHg62vcTW8l/Eddc9kTKbm4/q+O9Xw5dopd3W9uWyvwWbeUXbKVh+z9Sl7H9Hr9dPvey/Mpt7lzcFJC95HVO/P9njPTdRuedv0U83Jk+vfSbTlCvJOdA5uy3i3IUfb7uU29ElllywTm4OnqI/2XdvqN5l8n+wxx8TfB1fa0F8y7E+GW3/s31/2Me9+xW17zWAOzuSzmIPHG5NlT/U7lR9/WpblPUnuGfP6byb5zSdzjYWF+SwszLdisGVoR4alFmS4HAsL8zm8sDlZHl7e/L5yYPstv7zUyfLW42qf6vty7e8Qjmt387hDW3+b8MCoa3SqHBcn8U7mL76+cGnO6nxJ8smtHIdr2w4Nr7u9bUtb+asco/7haGZuOrDUGR5fz/RHnyy35bjYrkun1Pq5l4fbLu63sDSfpRHbk+b4XDxP9fhijq12jGzj9rY1r9FWnc58OmnHHHy1ND8ksnq+Wxv3/uGhV+e4q33e/RjDne7ZNrkeargyS20c5Wq1r/r3pDkvt9Xmv5uzVcO7uZ7amlxee+v3/7TMwYc701O/Vd5kOuYIeblWpu1ehjr1CzA55uD91d4f1wQAAAAAAABawaIiAAAAAAAAMJZFRQAAAAAAAGAsi4oAAAAAAADAWBYVAQAAAAAAgLEsKgIAAAAAAABjWVQEAAAAAAAAxrKoCAAAAAAAAIxlUREAAAAAAAAYy6IiAAAAAAAAMJZFRQAAAAAAAGAsi4oAAAAAAADAWBYVAQAAAAAAgLEsKgIAAAAAAABjWVQEAAAAAAAAxrKoCAAAAAAAAIxlUREAAAAAAAAYy6IiAAAAAAAAMJZFRQAAAAAAAGAsi4oAAAAAAADAWBYVAQAAAAAAgLEsKgIAAAAAAABjWVQEAAAAAAAAxrKoCAAAAAAAAIxlUREAAAAAAAAYy6IiAAAAAAAAMFZn0gGejKIovinJT5Vl+aLG9h9J8r1JHt/a9ANlWZbXOB4AAAAAAADMhKldVCyK4u8l+WtJzo14+euTfE9ZlsevbSoAAAAAAACYPdP88aefSPJXd3jtjiR/vyiKDxZF8fevYSYAAAAAAACYOVO7qFiW5TuSdHd4+f4kP5jkW5O8oCiKv3TNggEAAAAAAMCMmRsMBpPOcMWKorg1yf1lWT6/tm0uyY1lWX5p6/kPJbm5LMt/Vj/2+PHjg5WVlV2vsba2luXl5aua+3LJMH0Zjh49OrffWfZaw1dDG/pejmubY79reJrm4P02622cRPvaNAfP+vgms99GNTzb41t3PbU18T5imsxKO5LpaMuk5+C29FFbciTtydKWHMn4LJOcg6elj67HHEl7skyyfpPpeh8hw/5keMl9j172Me98+Z9sxf8Jm4OnM0cyHVn2Wr9T+zcVx7gxyceLojiazb+3+K1J3jJqx6NHj+56shMnTuxpv/0kgww7uVZZ2tJuOdqZ40pNyxy832a9jbPcPjW8adbbOMvtU8PbXU9tTaa/vddT/c5KO5LZasuTtVM/tKWP2pIjaU+WtuRIJp+l7fWbtCdLW3Ik7cnShhzT8j5Chv3KcPmLisvLyxPvh4o5ePpyJLOVZWYWFYui+K4kh8qy/MWiKP5Bkv+S5EKS/7csy/8w2XQAAAAAAAAwvaZ6UbEsy8eSPH/r8b+tbf+VJL8yoVgAAAAAAAAwU+YnHQAAAAAAAABoN4uKAAAAAAAAwFgWFQEAAAAAAICxLCoCAAAAAAAAY1lUBAAAAAAAAMayqAgAAAAAAACMZVERAAAAAAAAGMuiIgAAAAAAADBWZ9IBKkVRHEzyA0mKJL+X5P8uy7I72VQAAAAAAABAm35T8W1JnpbkPUm+KskvTzYOAAAAAAAAkLToNxWT3FyW5eu2Hr+rKIoPTDQNAAAAAAAAkKRdv6n4e0VR/NkkKYrizyT5w6IoFouiWJpwLgAAAAAAALiutek3FV+Y5MVFUXSTLG5t+x9JBklum1gqAAAAAAAAuM61ZlGxLMv/KUmKojiS5ItlWQ4mHAkAAAAAAABIixYVi6L45iS/kGQhyQNFUfxhWZa/NOFYAAAAAAAAcN1r099U/Ikk35zkc0l+MskPTTYOAAAAAAAAkLRrUbFfluWpJIOyLNeSnJl0IAAAAAAAAKBdi4qPFEXxfyS5uSiKH0vyh5MOBAAAAAAAALRrUfEHs7mQ+MEk55L8zcnGAQAAAAAAAJKkM+kANf+iLMsfrp4URfHWJN8zwTwAAAAAAABAWrCoWBTF30ry+iRHiqL4q1ub55P83uRSAQAAAAAAAJWJLyqWZfnzSX6+KIp/UJblT046DwAAAAAAALDdxBcVa365KIqvTdJL8rokbyzL8qMTzgQAAAAAAADXvflJB6h5a5KnJvnJJP8pyb+YbBwAAAAAAAAgadeiYifJ+5PcVJbl/UkWJpwHAAAAAAAASLsWFZeS/FyS9xdF8b+kXR/NCgAAAAAAANetNi0q/vUkZZKfSnJLku9OkqIoDkwwEwAAAAAAAFz3WvPbgGVZ/kGSP9h6+vbaS+9O8q2jjimK4puS/FRZli9qbP/LSf5xkl6St5Rl+earHhgAAAAAAACuE236TcWdzI3aWBTF30vyr5IsN7YvJvnnSf5Ckm9J8v1FUfyJ/Q4JAAAAAAAAs2oaFhUHO2z/RJK/OmL70SSPlGX5xbIs15N8MMkL9yscAAAAAAAAzLq5wWCnNbt2KIriP5dludPHn96a5P6yLJ9f2/aCJH+7LMuXbz3/35J8qizLf1U/9vjx44OVlZVdr7+2tpbl5eVd99tPMkxfhqNHj478Dduraa81fDW0oe/luLY59ruGp2kO3m+z3sZJtK9Nc/Csj28y+21Uw7M9vnXXU1sT7yOmyay0I5mOtkx6Dm5LH7UlR9KeLG3JkYzPMsk5eFr66HrMkbQnyyTrN5mu9xEy7E+Gl9z36GUf886X/8lW/J+wOXg6cyTTkWWv9duav6k4xuXeiE8kOVx7fjjJ6VE7Hj16dNeTnThxYk/77ScZZNjJtcrSlnbL0c4cV2pa5uD9NuttnOX2qeFNs97GWW6fGt7uemprMv3tvZ7qd1bakcxWW56snfqhLX3UlhxJe7K0JUcy+Sxtr9+kPVnakiNpT5Y25JiW9xEy7FeGy19UXF5enng/VMzB05cjma0s07Co+P9d5v4nknxNURRHkpxN8s1JfvaqpwIAAAAAAIDrRGsWFYui+PYkP5TkYLWtLMtvLcvyb+3x+O9Kcqgsy18siuJHkrw3m38z8i1lWX5mPzIDAAAAAADA9aA1i4pJ/lmSv5vkc3s9oCzLx5I8f+vxv61t/80kv3mV8wEAAAAAAMB1qU2LiqfKsvyvkw4BAAAAAAAAbDfxRcWiKL5/6+F6URS/mOR4kkGSlGX5ixMLBgAAAAAAACRpwaJikqdtff/vW9//xNb3wQSyAAAAAAAAAA3zkw5QluU/Lcvynyb5N0n+x9bjg0neOtlkAAAAAAAAQNKCRcWa+5J8duvxf0jySxPMAgAAAAAAAGxp06JiyrJ839b396dl2QAAAAAAAOB61Ya/qVg5XRTF9yd5MMk3Jjkz4TwAAAAAAABA2vXbgH89ydcm+amt76+caBoAAAAAAAAgSYsWFcuyfDzJv0vyzmz+fcWzk00EAAAAAAAAJC36+NOiKH4yyVcmOZpkPcnfT3L3REMBAAAAAAAA7flNxSQvKMvye5KcLcvyviRfPelAAAAAAAAAQLsWFTtFUSwnGRRFsZBkY9KBAAAAAAAAgBZ9/GmSn0vy20luSfLft54DAAAAAAAAE9am31RcT/KJJB9PcjrJd082DgAAAAAAAJC06zcVfybJ92dzQREAAAAAAABoiTYtKv5eWZb/ddIhAAAAAAAAgO3atKj4rqIoHkxyotpQluUrJ5gHAAAAAAAASLsWFV+d5Kfj408BAAAAAACgVdq0qPi5six/ddIhAAAAAAAAgO3atKh4viiK9yT5SJJBkpRl+Q8mGwkAAAAAAABo06Lib046AAAAAAAAAHCp1iwqlmV536QzAAAAAAAAAJean3QAAAAAAAAAoN0sKgIAAAAAAABjWVQEAAAAAAAAxrKoCAAAAAAAAIzVmXSAK1EUxXySX0jy3CQXkvzNsiwfqb3+xiR/NsmZrU0vLcvyS9fE0O31AAAgAElEQVQ8KAAAAAAAAMyAqVxUTPJXkiyXZXlnURTPT/KGJC+tvf71SV5cluUfTyQdAAAAAAAAzJBp/fjTFyR5T5KUZflbSb6hemHrtxi/JskvFkXxoaIoXjmZiAAAAAAAADAb5gaDwaQzXLaiKP5VkneUZfnureefSnJbWZa9oigOJ7knyc8lWUjyX5K8sizLj9XPcfz48cHKysqu11pbW8vy8vLVbsJlkWH6Mhw9enRuv7PstYavhjb0vRzXNsd+1/A0zcH7bdbbOIn2tWkOnvXxTWa/jWp4tse37npqa+J9xDSZlXYk09GWSc/BbemjtuRI2pOlLTmS8VkmOQdPSx9djzmS9mSZZP0m0/U+Qob9yfCS+x697GPe+fI/2Yr/EzYHT2eOZDqy7LV+p/XjT59Icrj2fL4sy97W49Uk95ZluZokRVH852z+7cWPpeHo0aO7XujEiRN72m8/ySDDTq5Vlra0W4525rhS0zIH77dZb+Mst08Nb5r1Ns5y+9TwdtdTW5Ppb+/1VL+z0o5kttryZO3UD23po7bkSNqTpS05kslnaXv9Ju3J0pYcSXuytCHHtLyPkGG/Mlz+ouLy8vLE+6FiDp6+HMlsZZnWjz/9UJJvS5Ktv6n4u7XX/nSSDxZFsVAUxWI2Pyr1d659RAAAAAAAAJgN0/qbiu9M8ueLovhvSeaS/I2iKH4kySNlWf5GURT/JslvJekmeWtZlr83wawAAAAAAAAw1aZyUbEsy36SH2xs/v3a6z+d5KevaSgAAAAAAACYUdP68acAAAAAAADANWJREQAAAAAAABjLoiIAAAAAAAAwlkVFAAAAAAAAYCyLigAAAAAAAMBYFhUBAAAAAACAsSwqAgAAAAAAAGNZVAQAAAAAAADGsqgIAAAAAAAAjGVREQAAAAAAABjLoiIAAAAAAAAwlkVFAAAAAAAAYCyLigAAAAAAAMBYFhUBAAAAAACAsSwqAgAAAAAAAGNZVAQAAAAAAADGsqgIAAAAAAAAjGVREQAAAAAAABjLoiIAAAAAAAAwlkVFAAAAAAAAYCyLigAAAAAAAMBYFhUBAAAAAACAsSwqAgAAAAAAAGNZVAQAAAAAAADGsqgIAAAAAAAAjGVREQAAAAAAABirM+kAV6Ioivkkv5DkuUkuJPmbZVk+Unv9+5L8QJJekp8oy/LfXe41+v1BVrsbKYpn5eyFXlYWFzI/P3eVWgDTwX3ApKg9pp0aZtqpYaaZ+oXZ4F5mmqlfgMkxB++vqVxUTPJXkiyXZXlnURTPT/KGJC9NkqIo/kSSVyf5hiTLST5YFMV/Ksvywl5P3u8PcvLcel79to/kocdO5Xm3Hskb7/663HzDkuLjuuE+YFLUHtNODTPt1DDTTP3CbHAvM83UL8DkmIP337R+/OkLkrwnScqy/K1sLiBWvjHJh8qyvFCW5ZeSPJLkOZdz8tXuRl79to/kwUdPptcf5MFHT+bVb/tIVrsbVys/tJ77gElRe0w7Ncy0U8NMM/ULs8G9zDRTvwCTYw7ef9P6m4o3JvlS7flGURSdsix7I147k+TLRp3kxIkTI09eFM/KQ4+d2rbtocdOZWVxYcdj9tPa2tpErivDlWc4evToNUizcw1fDW27D5J21MD1kuNa1PC0zMH7rS31tF8m0b5Jz8FqeLao4U2zXMOVWa/lJu8jpscs1eY0tGXSc3Bb+mjSOdp4L0+6T+rGZZnkHDwtfbTf2li/SXvGZ9L1m+zt/9Pa0F8yTF8Gc/Amc/ClpmF89lq/07qo+ESSw7Xn81sLiqNeO5zk9KiT7NRJZy/08rxbj+TBR08Otz3v1iNZ7W5cs3/c6k6cODGR68rQzgx1+5mlbfdB0p7+l+PqmJY5eL9N+zjuZpbbp4Y3zfIYJ7PdPjW83SyP9SjT3t7rqX6nfazqZqktT9ZO/dCWPpp0jjbey5Puk7pJZ2l7/SaTzdLG+k3aMz5tyLGX67chpwz7leHRyz5ieXl54v1QMQePZw7e3ZPNMq0ff/qhJN+WJFt/U/F3a699OMkLi6JYLoriy5IcTfLxyzn5yuJC3nj31+XO225OZ34ud952c95499dlZXHhauWH1nMfMClqj2mnhpl2aphppn5hNriXmWbqF2ByzMH7b1p/U/GdSf58URT/Lclckr9RFMWPJHmkLMvfKIrijUk+kM1F039YluXa5Zx8fn4uN9+wlDe/4huysriQ1e5GVhYX/CFPrivuAyZF7THt1DDTTg0zzdQvzAb3MtNM/QJMjjl4/03lomJZlv0kP9jY/Pu119+c5M1P5hrz83M5dKDTql9LhWvNfcCkqD2mnRpm2qlhppn6hdngXmaaqV+AyTEH769p/fhTAAAAAAAA4BqxqAgAAAAAAACMZVERAAAAAAAAGMuiIgAAAAAAADCWRUUAAAAAAABgrLnBYDDpDBNx/Pjx67PhXDN33HHH3H6eXw2z3/azhtUv+80czLRTw0w77yOYZuZgpp05mGlmDmbamYOZZnup3+t2UREAAAAAAADYGx9/CgAAAAAAAIxlUREAAAAAAAAYy6IiAAAAAAAAMJZFRQAAAAAA/n/27j1OkrMs9PhvZmd2N5MshHARDhdjAJ+sAomgkkAIEbkYkRMOHgQihzvBoIgE5CaoKBcRAoSjRG6BhFsAlYMoISAYJBAEVoJclkdCiEAOnITck9nZmZ7u80dVz/b0dvfcuqere37fz6c/011dl+d966mat+qtqpYkqSc7FSVJkiRJkiRJkiT1ZKeiJEmSJEmSJEmSpJ7sVJQkSZIkSZIkSZLUk52KkiRJkiRJkiRJknqyU1GSJEmSJEmSJElST3YqSpIkSZIkSZIkSerJTkVJkiRJkiRJkiRJPdmpKEmSJEmSJEmSJKknOxUlSZIkSZIkSZIk9WSnoiRJkiRJkiRJkqSe7FSUJEmSJEmSJEmS1JOdipIkSZIkSZIkSZJ6slNRkiRJkiRJkiRJUk92KkqSJEmSJEmSJEnqact2Ku7Zs6cBrPi64oorVjXeIF/GMJIxDNxqc7gfryrUvXFsehwDNUr74EG/xr2MQyrfwJnDW6eM5vB4r9+tWtZNKO9AbbX8HZdyjFBZBq5XDleljqoSR5ViqUocq4hloEYhf6sUS1XiqFIsw8xfGK12hDGMZAwD5T54NOMYoVhWZWq1Iw5TRNwfeG1mntQ2/FHAHwM14JzMfHtE3Bp4L3ArYDtwRmZest5l79u3b91x94sxGMOwVaXcxrFcVeIYJMs4+sa9fCvZCuUf9zKOe/lWspXKv5XKClujvONSxnEpB4xXWQalKnVUlTigOrFUJQ6oViytqhRXVWKpShxQnViqEsdKqhCnMRjDWlQpxqrEUpU4YLxiqfydihHxQuAdwM624dPAG4GHAw8GTouIOwJnAJ/OzAcDTwH+elMDliRJkiRJkiRJksbMKNyp+F3gMcB72obvBi7LzOsAIuJi4EEUHY37y3GmgLlNilOSJEmSJEmSJEkaSxONxqoflTo0EXEkcH5mHtcy7ATgOZn5uPLznwHfz8x3lJ/vCFwA/EFmfrZ9nnv27GnMzMysuOy5uTl27ty54niDZAyjF8Pu3bsnBh3LanO4H6pQ98axuXEMOodHaR88aONexmGUr0r74HFfvzD+ZTSHx3v9ttpKZQXbEaNkXMoBo1GWYe+Dq1JHVYkDqhNLVeKA3rEMcx88KnW0FeOA6sQyzPyF0WpHGMPoxeA+uFCVWKoSB4xGLKvN31G4U7GbG4FdLZ93AdcDRMS9gfOBF3TqUGzavXv3igvZu3fvqsYbJGMwhm42K5aqlNs4qhnHeo3KPnjQxr2M41w+c7gw7mUc5/KZw8ttpbLC6Jd3K+XvuJQDxqssG9WtHqpSR1WJA6oTS1XigOHHUvX8herEUpU4oDqxVCGOUWlHGIMxdOI+ePTigPGKZZQ7FfcC94yII4CbgROB10fEzwEfBh6XmV8bZoCSJEmSJEmSJEnSOJgcdgBrFRGnRsRpmbkAnAFcCFwCnJOZVwKvAXYCZ0XERRHx0SGGK0mSJEmSJEmSJI28kbhTMTOvAI4r37+/ZfjHgI+1jXvKpgYnSZIkSZIkSZKkyjj53MuBy9c83RV/8cj+BzNGRu5ORUmSJEmSJEmSJEmby05FSZIkSZIkSZIkST3ZqShJkiRJkiRJkiSpJzsVJUmSJEmSJEmSJPVkp6IkSZIkSZIkSZKknuxUlCRJkiRJkiRJktSTnYqSJEmSJEmSJEmSerJTUZIkSZIkSZIkSVJPdipKkiRJkiRJkiRJ6slORUmSJEmSJEmSJEk92akoSZIkSZIkSZIkqSc7FSVJkiRJkiRJkiT1ZKeiJEmSJEmSJEmSpJ7sVJQkSZIkSZIkSZLUk52KkiRJkiRJkiRJknqyU1GSJEmSJEmSJElST3YqSpIkSZIkSZIkSerJTkVJkiRJkiRJkiRJPdmpKEmSJEmSJEmSJKknOxUlSZIkSZIkSZIk9WSnoiRJkiRJkiRJkqSe7FSUJEmSJEmSJEmS1JOdipIkSZIkSZIkSZJ6slNRkiRJkiRJkiRJUk92KkqSJEmSJEmSJEnqyU5FSZIkSZIkSZIkST3ZqShJkiRJkiRJkiSpJzsVJUmSJEmSJEmSJPVkp6IkSZIkSZIkSZKknkaiUzEi7h8RF3UY/qiI+HJEXBIRz2z77n9ExPs3LUhJkiRJkiRJkiRpTFW+UzEiXgi8A9jZNnwaeCPwcODBwGkRccfyu7OA1zAC5ZMkSZIkSZIkSZKqbhQ63b4LPKbD8N3AZZl5XWbOAxcDDyq/+wJw+ibFJ0mSJEmSJEmSJI21iUajMewYVhQRRwLnZ+ZxLcNOAJ6TmY8rP/8Z8P3MfEf5+STgdzLz8Z3muWfPnsbMzMyKy56bm2Pnzp0rjjdIxjB6MezevXti0LGsNof7oQp1bxybG8egc3iU9sGDNu5lHEb5qrQPHvf1C+NfRnN4vNdvq61UVrAdMUrGpRwwGmUZ9j64KnVUlTigOrFUJQ7oHcsw98GjUkdbMQ6oTizDzF8YrXaEMYxeDO6DC1WJ5eRzL1/XdBc8+ag+R1KdOoHusaw2f6f6HtHmuRHY1fJ5F3D9Wmawe/fuFcfZu3fvqsYbJGMwhm42K5aqlNs4qhnHeo3KPnjQxr2M41w+c7gw7mUc5/KZw8ttpbLC6Jd3K+XvuJQDxqssG9WtHqpSR1WJA6oTS1XigOHHUvX8herEUpU4oDqxVCGOUWlHGIMxdOI+eC3W16k4iNirUycbj2WUOxX3AveMiCOAm4ETgdcPNyRJkiRJkiRJkiRp/Ixcp2JEnAoclplvi4gzgAspfhvynMy8crjRSZIkSZIkSZIkSeNnJDoVM/MK4Ljy/ftbhn8M+FiXaS4CLhp8dJIkSZIkSZIkSdJ4mxx2AJIkSZIkSZIkSZKqzU5FSZIkSZIkSZIkST3ZqShJkiRJkiRJkiSpJzsVJUmSJEmSJEmSJPVkp6IkSZIkSZIkSZKknuxUlCRJkiRJkiRJktSTnYqSJEmSJEmSJEmSerJTUZIkSZIkSZIkSVJPdipKkiRJkiRJkiRJ6slORUmSJEmSJEmSJEk92akoSZIkSZIkSZIkqSc7FSVJkiRJkiRJkiT1ZKeiJEmSJEmSJEmSpJ7sVJQkSZIkSZIkSZLUk52KkiRJkiRJkiRJknqyU1GSJEmSJEmSJElST3YqSpIkSZIkSZIkSerJTkVJkiRJkiRJkiRJPdmpKEmSJEmSJEmSJKknOxUlSZIkSZIkSZIk9WSnoiRJkiRJkiRJkqSe7FSUJEmSJEmSJEmS1JOdipIkSZIkSZIkSZJ6slNRkiRJkiRJkiRJUk92KkqSJEmSJEmSJEnqyU5FSZIkSZIkSZIkST3ZqShJkiRJkiRJkiSpJzsVJUmSJEmSJEmSJPU0tdkLjIgnAS8BdgATQCMzj9rsOCRJkiRJkiRJkiStzqZ3KgIvAh4F/GAIy5YkSZIkSZIkSZK0RsPoVLw8My9b60QRcX/gtZl5UtvwRwF/DNSAczLz7RFxCPBe4A7ATcCTM/PqtSyvVqtTr9e5+93vyfx8ba3h9pUxVCOG/fUGcfTR3DS3wCFT25iaqvbTgxcX68wuLDKzfRuz84scumOKuflFAOoNmNmxjfmFRRbqjaVxWsedX1ik3ijGjaOPZnZ/UfeTE5TDGxzSYbrZ/TWmJyeYrzeW5rNQb3DI1Db21Ypx9y/UqTca7JzaRq1eL76f3sa+hQNx1hsNZlrm1wDu8jP3oN5ocMv+GtsmJtgxPcm++cVyvEUmJ4r4tk9vo7awSAOYL5c9v1hfqpt6Aw7ZPnlQzIuN5vfFshcWFpfKMTe/yGKjqKvWOJrlaq3f1nnM7q8xNTkBwEI5r2asO6YnWazV2d82fNsETE8fWD+H7pjiljLG7dPbuGV/bSmOxXqd2flFDpnaxlxtkcmJiaX11Bx3enKCWr1xoJ4mYefUNibLuKqoVqtT67APblDc4r4adZY/47v5ufm3XN2rnl+n5bcvo3Wc9u9qDZiaWP4ZVt63tU/XrVzNZVMuv9Yo8qD1u4kO7zuVob0s7fG0zrc1jnqjyN/Wef/0UWvbd3eKrQEsNg7su2b315jZPlX5HF7s0o5orfP2vITuOdRoed+p5J3WZa98aZ1ve240ylevHG6u81453GmboUdM7e9bx+2Ww2vVjHtq4uDhlPNtzcGfWUX7o1tsretsvmV/PgrtiCq1hTfLViorrK28tRHcB++rLY5M270Z76jsI4xXm2XUtmWplfk7uur1BrMLi0Qczc37a8xMV/v8iQbLbVk62DC2gNmIuCAiXhMRr46IV680QUS8EHgHsLNt+DTwRuDhwIOB0yLijsDpwNcz80HAecDL1hJg8ySK1HT9XI3TztvDz/7RBZx23h6unZ2nVqtujiwu1rnmlnnedfH3uPK6OU47bw9nfPBSZhdqXDs7zzPP+wrvueQKbpyrLY3TOu57LrmCuVp9adzmtLV6nblanev3LXDOxd/jqpv2866Lv8ePb9i/VD+f+87V3FDW13suuYIb99e4+qY5rp0t4rn25nmu37fAd666ibnaIjfO1bj4O1dz7S3zS3EWyy3md87F32Oh3uDG/cvXwexCjWtuPjDeM8/7CtfOzjNXq3PNTXPUGnDDXLHsm+dr7FtYXCr/ORdfvlTWZsz7anVmF2pcv2+BZ563h3/9z6uWytGMqbWOfvaPLuCyq27i2n0H4m4uozmPZvy1tvibsd40V2O2Vj9o+L5anR9eews3tuXdjXM13nPJFZx23h5+fMP+Zevu2tl5vnPVTVy/b4HZhRpztfrSuDfO1Tjn4u8dWMYt89w0t0C93uiZR8NSq9WLDtL24Y3OnROw/MR9neLkfev082VZm8NrjaKTqlvHTKf3tbbqmq83ljp+2mNsX/5src62ieWfZxdqB3VqtMcxW6svG6dTuZqfW8s0W6uz0PJ/rLXumu8bbdO379Ha67vRMt/2dTNfbzBXq1OnsTRNc1hr/I2W5TTaPjeX2Yyluc5qDdjXsj8q8ngP19yyv9I5PL9Y75hfzTpvrf/29dj6Xb1l+GLLOm4Or7fNt9Ow1s+0jFNvWV5zGc0O6YW2adtzuNP6heXbYnsOzdcb1HrkcPv7Wku83XK4WY72ZbfWQ2ts3eJuLq/espxO8TbaXp1iay67dZ3dMGLtiH62hQexlVZzy1+fRtvftUzT7bv279tzttN82uNobl/Nff+o7YOvnZ0fmW3OeAdr1OLVAa47jTLzd3TV6w2uuWWeZ577FX72ZRfwzHO/wjW3zFe23aPBcluWOhtGp+LHgfOBbwNZvlbyXeAxHYbvBi7LzOsycx64GHgQcALwiXKcC4CHriXAfbVF9tcbvnwtvZ57/qVccvk11OoNLrn8Gp57/qXsqy2unExDMruwyHPPv5RH3OtOvOjv/oNLLr+G00+6BzfPLfKHHy4+n3LsnZeN0zruKcfemetnF5bGbU5bb8D1sws8/0Nf4xH3uhNnfLD4+4IPf22pfo6/++2W6uuUY+/Mcz9wKbfftXNpWbfML/L8D32Nu99+F7WyblunOf2keywtt1Zv8Ih73akY7wPL18HNc4sHrZc//PB/cP3sAju3Ty3N+/a7dnL97AI3zdWWyt9a1mbM188ucPNcEdsll1/Dfe92xEExtU9399vvWorr9JPusbSM5jx6xd+M9frZhY7Db3Pojo55d8qxd+aSy6/hBR/+2rJ199zzL+Xut9/F8z/0NW6eW+T62YWlcZt137qM62YXmF2oZg7vqy1S67Adtg9baHk/3za8fdxa2/Bah3E6zXehbR7zHT63j9Mp1utnF5ZN28y3XvudhXK8XnVQa3tfa5l/o+wY6jRes85q9c5l7bSs+Zb5dlo3188uUK9z0LD2eSy0vO9Uf81hreusdX/UzOPf/8ClI5fD3eq/ff205mrrOqx1GN5pHbcPW2ibd3PYQtuwTttH87v2HO60ftu3xU75ulIOt4+7Ug4v1JfnVLdtubXOO8XdXr/d4p1ve3WKrTWHm69Ra0f0sy3cvl6qOs9hvebb/m60/PMdvm/P2U7zaY+jmcfNff+o7YNHaZsz3sEatXh1gOtOo8z8HV2zC4v8/ge+2tbu+Wpl2z0aLLdlqbNhPP70e2udIDP/LiKO7PDVrYAbWj7fBNy6bXhz2EH27t3bcXlx9NFrDVFj7stXXHvQ50N3THXNod27d29GWD1z+MtXXMs97nDYUuz3uMNhwIGy3OqQ6WXjtI57q0Om2bVz+qBpJyZYGt5putb5tr4/dMfU0rjNGA7bObX0vnWa9vnd4w6HMTFx8Dq46xEzHdfLXY+YoXwC6NKyZ7ZPLRunU8y7dk4vq5/Ddk4dFFP7dO3jtC5jpfibsbZrLUOnaW51yIE42+NqxtOcb2s9tMd31yNmmKB7Dm1GDm+lffDM9qml9dH8DCwbtprp1ru8fuk13107pw/6rtOw9WjuQ1p9+YprmZne1jGPqrAPHjed1n2/1u9mG0bco9iOkJpmtq9tHwzDb0esdZsbptXEOzc3V5nYN1q/m12W9cQ77H1wVdb3sOOo4rY87Dpp1SuWYe6DR6WOBq2K+QvVWT/Dzl/o0Y6IzuuuV7tnkKqwzrZyDFVtR7gPHrxBxF6lOukWy2rzdxidiqeXfyeAnweuAP51nfO6EdjV8nkXcH3b8Oawg3SrpJvmFtYZjsbVLx15BJdcfs2yz7fsr21aY6ebXjn8S0cewWVX3bwU+2VX3cyOqcmlzzfuWz5O67g37ivuoGuf9vCZ6aXhnaYDlubbuoxb9teWxm3GcPNcjXqjwS8decSyadrnd9lVN/NTt9px0Dr4wbWzHdfLD66d5baHbafROLCerrl5ftk4nWK+fnZh6fviTsjaQTG1T9c+zo7ymeqrib8Za7vWMnSa5sZ9B+Jsj6sZT3O+h89MLxu3fRm327VjqDncK38X6w22tf1mQaOxcidcU/v0zc/Nv43yySVr6VhoX36vGNu/u+bmeW572PZln4Flwzppn65buZrLbpbpmpvnOXxmetl3zdhb33cqQ7fyNuNpnW9rHNfPLnDEoduXzfv62YUVy9htma3r6tpb5jtuD7MLi5XN4W752lrn7XkJ3XOo0fK0nZXm223YSttV832jUfwubK8cXs367bTNAF1jan/fOm63HF6rbnE3lzc5MbEsB9vj7aRbbK3rbBTbEVLTNTeP3j64qttcJ6uJd+/evZWJfaP1u9llqXI+dFt+Vdb3sOOo4robdp20GnYsVc9fGG4sVcxfqM76qUIc3ZZ/8/5apdo9VairrRxDVbdl98Frcfm6phpE7NWpk43HsumPP83MJ5SvxwP3AzZyv/Be4J4RcUREbAdOBC4BPg/8ejnOycDn1jLTQ6a2sWNywpevpddZjz+W44+6LVOTExx/1G056/HHcsjUtg2k7mDNTG/jrMcfy4Xf+BGv/c37cPxRt+Xsiy7jsJ3beN1ji88fvfTKZeO0jvvRS6/k8JnppXGb005OFB1VZ/7WMVz4jR/xhscVf1//2GOW6ueS7/5kqb4+eumVnPWEY7n6prmlZR26fRtn/tYxfPfqm5gq67Z1mrMvumxpuVOTE1z4jR8V4z1h+To4bOe2g9bL6x57Hw6fmWZuvrY076tvmuPwmWl27ZxaKn9rWZsxHz4zzWE7i9iOP+q2/Pv3rz0opvbpvnv1TUtxnX3RZUvLaM6jV/zNWA+fme44/Lpb9nfMu49eeiXHH3VbXv/YY5atu7MefyzfvfomzvytYzhs5zYOn5leGrdZ963LuM3MNDPT1czhQ6a2MdVhO2wfNt3yfnvb8PZxp9qGT3UYp9N8p9vmsb3D5/ZxOsV6+Mz0smmb+dZrvzNdjterDqba3k+1zH9igqXY2sdr1tnUZOeydlrW9pb5dlo3h89MMznJQcPa5zHd8r5T/TWHta6z1v1RM4/f/IRjRy6Hu9V/+/ppzdXWdTjVYXinddw+bLpt3s1h023DOm0fze/ac7jT+m3fFjvl60o53D7uSjk8Pbk8p7pty6113inu9vrtFu/2tlen2FpzuPkatXZEP9vC7eulqvMc1mt729+Nln97h+/bc7bTfNrjaOZxc98/avvgUdrmjHewRi1eHeC60ygzf0fXzPQ23vyEX2hr9/xCZds9Giy3ZamziUZjeD80GxEzwBcz8z6rGPdI4PzMPC4iTgUOy8y3RcSjgD+m6CA9JzP/upzvucCdgHng1Mz8cev89uzZ07jf/e7XdXm1Wp163R9d1QH76w0O3THFLftrxQnjqZ598gN/sNpKOby4WGd2YZGZ7duYnV/k0B1TzM0Xffj1Bszs2Mb8wiIL9cbSOK3jzi8Uv6HYHLc57eQE5fAGh3SYbnZ/jenJCebL+mou45CpbeyrFePuX6hTbzTYObWNWiqs9aYAACAASURBVL1efD+9jX0LB+KsNxrMtMyvQfH7cM11sG1igh3Tk+ybXyzHW2Ryoohv+/Q2aguLNID5ctnziwe253oDDtk+eVDMi43m98WyFxYWl8oxN7/IYqOxrKzNXNhXW16/rfOY3V90cNISfzPWHdOTLNbqS7nVHL5tAqanD6yf5rKmJyfYPr2NW/bXDlpnh0xtY662yGR5i0yzHprT1eqNA/U0CTuntjE52TNNB5rDq9kH1+r1g658aawhsDrLr5xpfm7+bf73W0tB25ffvozWcdq/qzVgamL5Z1g+rJP26bqVq7lsyuXXGkUetH430eF9pzK0l6U9ntb5tsZRbxT5O9E2bKUydltm67pabNkfze6vMbN9qlcOD30fXKvVWazXOwbSWufteQndc6i1xbbSfLsN65Wzre8b5atXDq9m/XbaZugRU/v71nG75fBadYu7ubwJludge7yddIutdZ3Nj1g7wrawWtXWtg+GCrQjmu2zVW5zQ7VSvFW6qhk2Vr/DKMs64h3qPrgq67sKcVRtW65CnTStEMvQ9sEjVEcDV7X8heHXySrjGHo7uF5vFOfTprct/V2h3TMwVVhnWz2GqrUj3AevzZEv/qd1TXfFXzyyz5FUp06gZyyryt9Nf/xpRFwF1CgCnALOWs10mXkFcFz5/v0twz8GfKxt3FngsRuJs9g5TFZiZRtDNWLYXoEY1mLbtkl2bSv+ye3aWfyd2bF8k9+5fYqd5fvmOM2/O1t+h7BXudunO6z8bcIdnZYx1YzjwD/fKSYPfL/t4Dib8wP4XhnHrpZhhy0td3nZtpfxN+Po9A+/PeZ2O7ZPLU3fGtMPv5fL4jhQroN3qa3z3rk07MB427ZPsr3DcGhfPwfm03x/II6yHB3LuLxs7cuoqqmpSaYqsg/ul/aHRDY/r1TG1T88tD/T9Xu+g1iH3bbZKtkKOdw0TmXspF/la/4/ad8vV1WV2sKbZSuVFdZW3tbtf1T2wbumRid/m/HCaOwjjFebZdS2ZamV+Tu6JicnOKz8zTzXndyWpYMN4+xyZuaDhrBcSZIkSZIkSZIkSeswjE7FekR8BEjKp0pl5kuHEIckSZIkSZIkSZKkVRhGp+I5Q1imJEmSJEmSJEmSpHXa9E7FzDx3s5cpSZIkSZIkSZIkaf0mhx2AJEmSJEmSJEmSpGqzU1GSJEmSJEmSJElST3YqSpIkSZIkSZIkSerJTkVJkiRJkiRJkiRJPdmpKEmSJEmSJEmSJKknOxUlSZIkSZIkSZIk9WSnoiRJkiRJkiRJkqSe7FSUJEmSJEmSJEmS1JOdipIkSZIkSZIkSZJ6slNRkiRJkiRJkiRJUk92KkqSJEmSJEmSJEnqyU5FSZIkSZIkSZIkST3ZqShJkiRJkiRJkiSpJzsVJUmSJEmSJEmSJPVkp6IkSZIkSZIkSZKknuxUlCRJkiRJkiRJktSTnYqSJEmSJEmSJEmSerJTUZIkSZIkSZIkSVJPdipKkiRJkiRJkiRJ6slORUmSJEmSJEmSJEk92akoSZIkSZIkSZIkqSc7FSVJkiRJkiRJkiT1ZKeiJEmSJEmSJEmSpJ7sVJQkSZIkSZIkSZLUk52KkiRJkiRJkiRJknqaGnYAK4mISeAtwDHAfuAZmXlZy/cvAp4A3Aj8ZWb+Y0T8DHAuMAH8F3BaZs5uevCSJEmSJEmSJEnSGBiFOxUfDezMzOOBFwNnNr+IiHsDpwLHAQ8H/iwiZoDXAX+TmQ8CLgLO2OygJUmSJEmSJEmSpHExCp2KJwCfAMjMLwK/2PLdbuCizJzLzDngO8B9gJ8DLijH+Xw5D0mSJEmSJEmSJEnrMNFoNIYdQ08R8Q7g7zLzgvLz94GjMrMWEbuB9wMnAtuBS4GnAE8HLszMc8vHo/5Gedfikj179jRmZmZWXP7c3Bw7d+7sZ5HWzBhGL4bdu3dPDDqW1eZwP1Sh7o1jc+MYdA6P0j540Ma9jMMoX5X2weO+fmH8y2gOj/f6bbWVygq2I0bJuJQDRqMsw94HV6WOqhIHVCeWqsQBvWMZ5j54VOpoK8YB1YllmPkLo9WOMIbRi8F9cKEqsZx87uXrmu6CJx/V50iqUyfQPZbV5m/lf1OR4rcSd7V8nszMGkBm7o2Iv6K4K/Ey4N+AnwDPB/4qIp4AfLocdpDdu3evuPC9e/euarxBMgZj6GazYqlKuY2jmnGs16jsgwdt3Ms4zuUzhwvjXsZxLp85vNxWKiuMfnm3Uv6OSzlgvMqyUd3qoSp1VJU4oDqxVCUOGH4sVc9fqE4sVYkDqhNLFeIYlXaEMRhDJ+6D12J9nYqDiL06dbLxWEbh8aefB34dICKOA77e/CIibg/cLjNPAJ4L3BX4BvAw4BWZ+WtAHfjUZgctSZIkSZIkSZIkjYtRuFPxI8DDIuILwATw1Ig4g+LOxI8BR0XEl4F54A8zczEiEjgnIvYD3wR+d0ixS5IkSZIkSZIkSSOv8p2KmVkHfqdt8Ldb3j+rwzT/BvziIOOSJEmSJEmSJEmStopRePypJEmSJEmSJEmSpCGyU1GSJEmSJEmSJElST3YqSpIkSZIkSZIkSerJTkVJkiRJkiRJkiRJPdmpKEmSJEmSJEmSJKknOxUlSZIkSZIkSZIk9WSnoiRJkiRJkiRJkqSe7FSUJEmSJEmSJEmS1JOdipIkSZIkSZIkSZJ6slNRkiRJkiRJkiRJUk92KkqSJEmSJEmSJEnqyU5FSZIkSZIkSZIkST3ZqShJkiRJkiRJkiSpJzsVJUmSJEmSJEmSJPVkp6IkSZIkSZIkSZKknuxUlCRJkiRJkiRJktSTnYqSJEmSJEmSJEmSerJTUZIkSZIkSZIkSVJPdipKkiRJkiRJkiRJ6slORUmSJEmSJEmSJEk92akoSZIkSZIkSZIkqSc7FSVJkiRJkiRJkiT1ZKeiJEmSJEmSJEmSpJ7sVJQkSZIkSZIkSZLUk52KkiRJkiRJkiRJknqyU1GSJEmSJEmSJElST3YqSpIkSZIkSZIkSerJTkVJkiRJkiRJkiRJPdmpKEmSJEmSJEmSJKmnqWEHsJKImATeAhwD7AeekZmXtXz/IuAJwI3AX2bmP0bE3YD3ABPAtcCpmTm76cFLkiRJkiRJkiRJY2AU7lR8NLAzM48HXgyc2fwiIu4NnAocBzwc+LOImAGeB3wwM08Evgk8fdOjliRJkiRJkiRJksbEKHQqngB8AiAzvwj8Yst3u4GLMnMuM+eA7wD3AS4FblOOcytgYfPClSRJkiRJkiRJksbLKHQq3gq4oeXzYkQ0H9v6deDEiNgVEbcFHgAcCvwQ+L2I+CZwMvDhzQxYkiRJkiRJkiRJGicTjUZj2DH0FBFvAL6YmR8qP/8wM+/S8v3TgacClwGHAX8OvAt4SWZeGBGPBJ6dmY9sne+ePXsaMzMzKy5/bm6OnTt39q0862EMoxfD7t27JwYdy2pzuB+qUPfGsblxDDqHR2kfPGjjXsZhlK9K++BxX78w/mU0h8d7/bbaSmUF2xGjZFzKAaNRlmHvg6tSR1WJA6oTS1XigN6xDHMfPCp1tBXjgOrEMsz8hdFqRxjD6MXgPrhQlVhOPvfydU13wZOP6nMk1akT6B7LavN3auVRhu7zwKOAD0XEcRR3JwIQEbcHbpeZJ0TErYFPAt8AruPA3Y3/lwOPQl1m9+7dKy587969qxpvkIzBGLrZrFiqUm7jqGYc6zUq++BBG/cyjnP5zOHCuJdxnMtnDi+3lcoKo1/erZS/41IOGK+ybFS3eqhKHVUlDqhOLFWJA4YfS9XzF6oTS1XigOrEUoU4RqUdYQzG0In74LVYX6fiIGKvTp1sPJZR6FT8CPCwiPgCMAE8NSLOoLgz8WPAURHxZWAe+MPMXIyI5wB/FRHbyml+d0ixS5IkSZIkSZIkSSOv8o8/HZQ9e/ZszYJr09zvfvcb+O3ug5y/NMgcNn81aO6DNerMYY062xEaZe6DNercB2uUuQ/WqHMfrFG2mvzdsp2KkiRJkiRJkiRJklZnctgBSJIkSZIkSZIkSao2OxUlSZIkSZIkSZIk9TQ17ACqKiImgbcAxwD7gWdk5mUDWtY0cA5wJLADeCXwQ+BjwHfK0c7OzA9GxJ8AjwRqwB9k5pf6GMdXgRvKj98D3gqcVS7rk5n5ikHXS0Q8BXhK+XEncCxwKvA64Afl8D8BPtfvOCLi/sBrM/OkiLgH8G6gAXwD+N3MrHeq/27jbiSWQdpovq2lbvoYxz8AtwUWgH2ZefKA4/gi8HbgNsA24EmZ+d2IeCbwrHLer8zMf4yI2wHvBw4B/i/w1Myc7TRuH+N4M/BA4KZy8lOA6X7EMSzr3f6GFvA6tJXxWOB/A4sU+7AnZeb/G5X11Ulr+VqGnQo8JzOPLz+PbPlWMu45PO75C1s7h8c9f9tthXxutRVzezOP5XrE0Klt9y02eIwxyPb5Ksp0B2AP8LByniNblmGLiEOA9wJ3oGjTPzkzr24bZ9XHQAOO43XACRTnj96WmW+PiCOA/yxjAPhIZp61juX33FbXcvy11mWvI5bnAY8vP368PD8yQXEM2zx+vSQzX7IJsaz6eHCjsXSJrxL5u4ZYzGE2L4ernr/riHfgbaT11Flm3nDQjPoTy0HtxnL4o4A/pqiHczLz7YNY/goxnAE8HWhu48/KzOzzsg9qv2XmP7R8v2n10CG2ymxbvWIpj6/e1DL6ccCjgS/Rh/1ul3hWnber+b8xgDieAPwBxTHnfwDPLtu3y/piMvOp/YhjhVgO2o6A77PGOvFOxe4eDewsD7RfDJw5wGU9EbgmMx8EnAz8FXBf4A2ZeVL5+mBE3Bd4MHB/iobAX/crgIjYCdCyvKcCf0PRoXcCcP9y+QOtl8x8dzMGigPW36eoixe2xPbZfscRES8E3kHRkQnwBuBl5TqZAE7pUf8HjbuRWDbBRvNtLXWz4TjKce8BnFAOO3kT4vhL4H2ZeSLwMuDoiLgjRT4+EHgE8JqI2EHxz+n95fRfBZ7VY9wNx1GOe1/gES31dEMf49h0G9z+RkKHMp5FcTL3JODvgReNyvrqpEP5mg3Jp1OsQ0a5fCsZ9xwe9/yFrZ3D456/7bZCPrfawrm9mcdy3XRq223oGGMT2uddlSfZ3grsG3B8Y70PanE68PWynOdRtPXbreoYaJBxRMSvAPcot6UTKPaRt6E4HvlAy/HIek8Kdt1W13L8tc5lryWWo4DfBh4AHA88PCLuA9wd+PeWethwh+JKsZRWdTzYp1g6qUr+rhiLObwUy2bmcNXzd9XxbmIbaT111ned2o3l8GngjcDDKf4fn1bWzabFULovxQWAzXroa4diqVP7rRnbptVDF1XatrrGkpmXtpzb/2vg7zPzE/Rvv7vMOvJ2Nf/D+hnHIRQXF/5KZj4AuDXwG136YvpiHdvRmuvETsXuTgA+AZCZXwR+cYDL+jDw8pbPNeB+wCMj4l8j4p0RsauM6ZOZ2cjM7wNTEXH7PsVwDDATEZ+MiM9ExInAjsz8bmY2gAuBX2WT6iUifhH4+cx8G0VdPC0iPhcRZ0bE1ADi+C7wmJbP9wM+W76/AHgo3eu/07hVttF8W0vdbDiOiPgp4HDgYxFxcUT8Rjn+ION4IHCXiPhniob3RcAvA5/PzP3lP+bLgPvQkostcXQbd8NxlFcD3RN4W0R8PiKeVo7frziGYSPb36hoL+PjM/PS8v0UMMforK9OlpUvIm4L/AXFlVhNo1y+lYx7Do97/sLWzuFxz992WyGfW23V3N7MY7luurV1N3KMMej2eS+vp7jo9P+Wn0e5LFXQqe2+ZI3HQAOLA7gEaB5vNCienrJQxnHfiPhsRHw4Iu600eV32FbXcvzVD71i+QHwa5m5mMWdddMU/y/uB9w5Iv4lIj4eETHoWNZ4PDgoVcnfFWPBHG7azByuev62W8863LQYetTZILS3k5t2A5dl5nWZOQ9cDDxok2OAIl9fUu5X+nURR7tO7bemzayHTqq0ba3Y1o6IQ4FXUHTMQ//2u+3WmreDqpNucewHHpAH7hBtHnO298Uc16c4esUCnbejNdeJnYrd3YoDt58CLJadWX2XmTdn5k1lR87fUvQGfwn4wyzuULqc4pGf7THdRNG73Q+zFAeKjwB+B3hXOax9WZtVLy+l2PEAfAp4DnAicFgZX1/jyMy/o2hYNk2UnanQvezN4Z3Graw+5Nta6qYfcWynuOLl0RQ7xDdG8eilQcZxJHBdZj6U4hbwF/WYd+vwzYjjUIrHtD0R+DXg2eUVhn2JYxg2uP2NhPYyZuaPACLiAcDvUVw9NbJlbC1fRGwD3gk8jwOP3YARLt9Kxj2Hxz1/YWvn8Ljnb7utkM+ttnBub9qxXDdd2nYbPcYYaPu8myh+ouLqzLywZfBIlmUYIuLpEfGN1hdF/O1t91ZrOQYaWByZOZeZ15VX+59L8ejIm4FvA3+SmQ8G/g/F8cl69NpW13L81Q9dY8nMhcz8SURMRMTrga9m5n8CPwJek5m/Arya4tFhA42FtR0PblhV8ne9sZjDQ8nhyuTvKq1nHW5mDN3qrO86HBd0i29g66hHDADnU5wTfghwQssFC/1cfqf2W9Ow2yNV2rZW09Z+OvDhzPxJ+blf+91l1pG3A6mTbnFkZj0z/x9ARDyHom/jUxzcF/O+fh2vrGM7WnOd2KnY3Y3ArpbPk5lZ6zbyRkXEXYF/Ad6Tme+neK7wnvLrjwC/0CGmXcD1fQrhP4H3lld//idFIh3RYVkDr5eIOBw4OjP/pRx0TmZeXjY+P0rnuuh3HK3P9e9W9ubwTuNW2gbzbS110484fgz8TWbWMvMqitv1Y8BxXAM0n5n+MYorbrrNu3X4ZsQxC5yVmbOZeRPwGYqrW/oWRwX0bd1WWUQ8juKK/0dm8azycSnj/SiukDuborHycxHxJsanfKsx9jk8xvkL5vDY52+7Mc/nVlsptzf1WK6bDm27jR5jDLx93sXTgIdFxEUUv3l/HsVvroxiWTZdZr4zM+/V+qI43m5vu7dayzHQIOMgikdFfgL4Vma+phz8GYrchgPHbevRa1tdy/FXP/Tcb0TxmLL3leM8uxz8FYpzFGTmxRR3fE0MOJa1HA9uWFXydwOxmMOlTczhyuTvKq1nHW5mDN3qbDMN/f9wmZdvysyfZHHX2T+x/u12pWW1t9+ahl0PVdq2VtPW/m2KR3A29Wu/u1qbvQ/uKiImyws6Hgb8ZtnH0d4Xcw3Qr7s3u8XRbTtac53Yqdjd54FfByhvP/36oBZUPhrik8CLMvOccvCFEfHL5ftfpfh9wc8DjygT8W4UG+xPDp7jujyN8vnHEfHfgBngloi4e5lwjwA+x+bUy4nAP5fLmAD+IyLuUn7XWheDjOOrEXFS+f5kDpS9U/13Grey+pBva6mbfsTxUOBD5TSHAfcC9g44josp84siH79JcRflgyJiZ0TcmuI2+m/QkostcXQbtx9x/CxwcURsK6+2PAH4937FURF9WbdVFhFPpLgj5qTMvLwcPKrra5nM/FJm/nwWz89/PMXB+x8wJuVbpbHO4XHOXzCHGfP8bTfu+dxqi+X2ph3LddOlbbfRY4yBts+7ycwTM/PBZe5cCjwJuGAUy1IhndrurdZyDDSwOKL4HaBPU1zo++ctX70D+M3yffO4bUPL77CtruX4qx+6xlKel/go8LXMfFZmLpZf/Qnl46Qj4hjg+3ngTryBxMLajgcHpSr5u2Is5nBhk3O46vnbbj3rcDNj6FZnm2kvcM+IOCIitlOcn7pkk2O4FfCNiDiszOeHsP7ttqsu7bemYddDlbatnm3tcnvZkZk/aBncr/3uanVbX8PY37yV4vcNH50HHoPa3hdzK4q7xwep23a05jrZ1EfAjJiPUFyN+QWKH5Du249ldvBS4DbAyyOi+dzmM4A3RcQ8xVVep2XmjRHxOYoNYBL43T7G8E7g3RFxMcVz5p9GcRXZ+yieOf/JzPy3iPgyg6+XoHj0JZnZiIhnAH8fEfuAbwFvBxYHHMfzgbeXO529wN9m5mKX+j9o3D7H0m8bzbe11E2/4nhERHyRIidfmsVjOwYZx5OBd0TE6RRXPp6axSNT3kyxY50E/igz5yLilcC5EfFM4CfluLd0GrePcbwP+CLFreznZeY3+xhHFfRr3VZSFI+fezPFI23/PoqfrfhsZv7JiK6vVcnMH49z+dqMbQ5v1fyFLZXDY5u/7bZyPrca09zezGO5bjq17Z4LvHm9xxh9GrdfBhXfVtkHnU3Rdr8YmAdOBYiIv6Qo8wWrPQYaZBwUv/F+FPDM8jgDiu3pxcA5EfFs4BbgGetc/kHbakScQfEbSP+w2uOvdS571bFQnBN5MLAjIk4ux38JxW/UvjciHknxu1tPGXQsZb2s6niwT7F0UpX8XTEWzOFh5HDV83et8W5GG2nNdTaAGA4SEacCh2Xm28p4LqSoh3My88ohxPBSijvd9gOfzsyPD2CRndpvbwcOHWY9lKq0bfWMhaKT84q2afq13+1ppbyNiI7/NwYVB8Ud4U+n2I98pjzmPIsOfTEd7vbsayzdtqMonkaypjqZaDT6cRGVJEmSJEmSJEmSpHHl408lSZIkSZIkSZIk9WSnoiRJkiRJkiRJkqSe7FSUJEmSJEmSJEmS1JOdipIkSZIkSZIkSZJ6mhp2AJIkSZIkSZKk6oqIWwPvBW4FbAfOyMxLOox3e+ALwL0zc67LvO4InN8y6FjgxZn5N30PXJLUV3YqjqGI2Ak8EagB12bmP2zCMu8GHJOZHxv0siRpXETEScCHgG8BDeAQ4H2Z+b9bxvk14G6Z+bahBKmxtdn5FxG/DLwSmKB4WsbHM/PMPi/jJOB3MvPxG52XqmMr5mpETAPnAEcCO4BXbkabXtUSES8GHgrUKXL/pZm5p8N4J1HmU0T8ODPv2GOePb+XBi0izgTuB9wRmAEuB67OzMcONTCpjyLiwcArWgbdBbgmM+8/pJD65Qzg05n5pogI4APAfVtHiIhHAH8B/FSvGWXmj4GTymmOB14FvH0AMWuVIuJPgR9vpGM3In4vM/+qf1FJqiI7FcfTHYFnZOZxm7jMhwBHA3YqapnVnAhsG3+e4oq2Vr+dmVd2GPcI4Ncy8/09ln8FsDczT24ZdgZwZmZOrLIM7wbOz8xPrGLc04B3ZebCauYtAZ9pnlSOiB1ARsR7MvN6gNXknbQBm5l/fwU8KTO/XXaYfCEiPmOOa5W2Wq4+keLk4/+KiNsCXwXsVNxCIuLngP8OPDAzGxFxLHAucMxwI5M2JjOfDxARTwGOzswXDzciqf8y87Mc6DD7KeBiig65kdPW0fRGYH/51RTQ6S7EOsUFMUsXwZR3OL4TuG056Pcz8+vldxPA/6Y477M4iDJoU72Moi0taYzZqTie/gj4uYioA88Gvg28hOIf/12Bv6HoBDwGOCszzy6vonoVsAh8F3hWt06RiHg28GSKhsLFwIvL10xEfAH4HvBmiqu7rwGeBvxCGVedotPzbZn51/0vuiqq54nANtdm5kmrnO99KE62dO1ULN0lIm6XmT8pP/86cN0ql7FWLwXOA+xU1HrsotgP/3NEfA+4DcXVn/fMzBdHxMuAR1P8/z47M98aEc8BTqXotD8/M988pNg1+gadf/8F/F5EvAu4lOJE+XzrScWIeDnwP4CrKe5eeDnFCZmfAe4A/DTwvMy8MCL+J/C7FO0NgP/Zr4pQ5W2FXP0w8Lctn2urmEbj5SrgbsDTIuITmXlpRPxyRNybg4+1NiQijqQ42TtNsY38fmZ+LSKeDvwecC0wD3wwM9+90eVJ7coLUV9LkWdvA/Zx8H7zXsCLynF+hiIfXxURjymHLwBXUFwUUt/M+KVuyouT/hZ4XWZ+ftjxrEVEPA44neKpCfMR8XjgVZn5qfLRpe8F/qB9usz8VDl96+CXUtzheHZE3BN4F3BC+d2jgG9mZg6qLOOubKM+iuIi/jsBZwGnUOw3X0D5qFqK9vPFZVv2DsC7gcMp9rVPKmd3SkQ8lqID+OXdnkgXET9bTr9A0U59EvAU4IiIeAvwXIrzz/ekePLHyzLzooj4FvA54Ocp2hdPyMxb+lQV2sLK7eBpFPkWmXn7cvj5FLl4JMX54Bng7sBrbdeu3+SwA9BAvIrirrA/axl2F+A3KRoELwP+F3Ay8KzyqqC3A4/JzAcDV1L8I+jmqcBzM/N4ikeVTFA82uD95WOZ3g78btkx9HHgheV0d6boADoOeF75D0xbT/NE4JpOjkXE6yLi1RExGRGfjohHUnRUP6S8O7CXDwOPLedzNEXH+Xz5+V4R8cmI+OeI+EpEPKAc/l8RcWFEvKklhvtHxL9FxF3L1wUR8S/l37uWJ17uCJwfEbePiM9ExEUR8fnyBJDUyUPKPPkM8D7gOcDNFPvUh1JsL0TEL1Dst+8PPIDi4pGfBx5HcUB2AvDoaDt6k1awmfn3dOD/AWdTnCw/s7zQhHIZx5TL+CWKDqE7tUy7v7zj/LnA88phPws8smxvJPCI9VaCRsKWytXMvDkzb4qIXRQnI1+20jQaL+XFcP8deCBwSUR8G/gNuh9rbcTrgTdn5okUufvOiLgdRUfNA4GHA4f2YTlSLzsz80GZ+R667zd/muK8xvEcyP0nAG/MzBOAT1L81ptUFWdRdJiN3E9ZZOYHy23w3cAbMvOkskPx3sCnKR7J/dlVzu7eFBfJXETxf+w2Ld89keJiAm3Mrsz8dYoLNE4HHgOcRtGufQXwq+V+8s4R8TCK82n/kJkPKN//cjmfKzPzVyk6jE/vsbyHUdyN+lCK89C3ycxXUdwo8GzgGcBPyrbFKUDzxpIZiqeXnUBxE8yz+lJ6qXBdmVvd7nq+dWb+BkUb2yclbIB3Km4d38jMhYi4HvhuebX1dcBO4PYUJ0M+VJ5fOYSiMd7NU4EXwCj2cwAABzVJREFURMRrgUs4cPVg027gLeW8poH/LId/ITP3A0TENyiuCriqH4VT5T2kbDzWKa5iek5m3txl3CPKcZuuzMzfpriy7XMUj336Umb+U0TcQvH7MSs1QD9A0Ug9m6LB+j6KRg0UV0c9PzO/HhGnUuT3Fyju6r1vZl4TxeNPHwD8KvCozLwqIj5IcfLlgoj4VeAvMvO3yzsXHl+OewPFXRE/hwe36m7pTt6miHghxQmUZYMpcn8RmAWeGxG/RXFy5dPlOLcB7tFhWqmbTcm/KH7v+b6Z+efAn0fxOMdzKA50bypH292yjH0R8ZWWWXy1/PsDirYLFG2IcyPiZopHsF+yppJr1Gy5XI2IuwIfAd7S61HvGk8RcQ/gxsx8Wvn5Fyk6EQ+h87HWRuwG/hWgvCPyrhTbyLcyc7ZcfvvPE0j91rpP7rbf/Hpm1oBaROwrh50BvCQiTgf2Av9nswKWeomIp1I8XelXhh1Lv0TxaO4PA4/LzK+tYdJvA+/NzPeXNxg8o+W7+3HwT+Bo7Zpt0OspfgKoUZ73PYzivO/Hy7bDLuAoijbzOQCZ+RlYetRt87G1P6boAOzmnRQXH32C4tzXS9u+vzfwoIho/o7oVNmuXsjMfy2HfYHiQj2pXzqdC2vtt7i0/Nt6rKZ1sFNxPNU5+C7URo/xfwL8EDglM2+IiP9OceV3N8+k6MiZi4gLKTpbWpeZFI8c+X5EPJADV28fGxHbgB0UHTnfWUuhNNIOOhHYQ8fHn5ad4m+ieLTo3da4/B8AE+UJkgdSPKKs6Urg5eVB6S7gxnL4TzLzmpbxHl5+33ys6b2Bl0bEiyj+Qc23LfMCisc8fLSc5pVrjFlqf2zTt4HTI2IS2EZxYvEFwDeBk8uDhucBX9/cMDWm+p1/deC9EfFrmfmN8oKN/+LAb7JQzus55TKmKR6d3rSsHRPF77K8ggP/Dz7FwRc5aWsYy1yN4veXPgn8XmZ+eqXxNZbuQ5HLj8rMOYrOwxso2q6djrU2Yi/wIOAfovjtxh8DlwFHR8QhFPn/yxTblzQodVhxv9npvMZpwJ+WF36+leLR1OcOOFapp4j4JYpOlhO6/bTQqMjMP235+BqKE/FnlR1UN2TmKRFxBnBZ+fSyTl5FcRf8aRQXXP8pQETcHrgpM3uds9TqdKvDBsU5sYeV59WeQtGxcjTFUze+FhEnAo+kePT0atfFKcDnMvMVEfEEig7Gp3Jgf/1t4IeZ+eqyLfFHFD9DNB0Rx5Sd0g+kaFdL/dI8NpyOiMMoztX+fMv37mv6xE7F8XQVxfOyD1nNyJlZj4jnAv9Unhy5kQPP0u7k68CXI+JqioPafyun+aOI+HeK2+PPKzsQobjV/r9RnHS5gOK53K/MA79vJ60oIm5D0Sg/g+JxGY+icwd6N+cDZwKXlCcUm8PfTPGD4Hsj4hUUz9iGg09S/inFY4TPprgT8dvA6zPzC1E8UvXBLdNNUvyu0o8y8+ERcTzwasboCkVtvvLOgU8An6fIsbPL3zv6NHBx+Wi+L1Hsl6W+2mj+lU9I+C3grRExRdGY/zLF1bFPLMf5ekR8HPgixQVPC3T/fdoby1j+HbiF4gD1v1H8rrO2sDHK1ZdS3FH58vIpCFB0iu7rMY3GSGb+fUTsBv6tvFtrEvhDihODnY61Vuu2bXfXnknR8f72iHgBxTHb0zPzJ+WTaT5H8ZtHh+BvhmtzrHW/+SXgUxFxDcUd5f+4GUFKK3g1RefKB1vOPdxcPnZvZGXmKV2Gv6HDsCNb3l9D8cj49nGuBo7tY4g62ALwBuCzZdvhCuBDFDl6TkQ8kaK9+3R6nwtu9xWKC/FqFOfBmo/9/1ZEvLec39sj4rMUHclvKc8/A7woIu4GfB8f8a/BeBPFsdrlwH8NOZaxNNFo2EGrwYvih9d/Zw13q2lMrHXdR8Q8Bz/64iUUJ1H+PjPfWz6O9N+BvwP+GXhrZr6JDiLiCoorsA4FfgQcm5nfiogfZ+Ydyyvqfofit5N+CNwuMx/W/L6cx7uB8zPzE+WJyvMo/jmdTXGV3iEUvzN6SUScy4Hf+vhgudxF4M8ys9djhSVpSysfhfQ/M/MtZcfPN4GHZOb3hxyatIy5qq2g7FR/Ufn7SETEvwIva3lkmSRJ0po0z9GVT2GQNKLsVFRH5RUj53X46rOZ+SfrmN9J2Kko6f+3d8c2CMNAFEBPWcYNgzADUyA6FkC0NIwBczDCbUPhFAhFDooiiMJ7reXIRQrrfnIHrFrfQv0wsHTJzPvI3i7qbI5N1K9lb5l5nv+UsJx3tZRyjTp7+Z2/Epmsby+3G1g6ZubH82dLKaeI2EZtHfWIiL0WdQDwP+a+qwoVYR2EisDXzVXoeHne5MIgAAAAAAAwTqgIAAAAAAAANHW/PgAAAAAAAACwbEJFAAAAAAAAoEmoCAAAAAAAADQJFQEAAAAAAIAmoSIAAAAAAADQ9ATPMx1bSBBvHQAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 1800x1800 with 110 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"sns.pairplot(mean_df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 24,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Text(0.5,1,'Z per External Stock Market Price')"
|
|
]
|
|
},
|
|
"execution_count": 24,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHbCAYAAADF1iwqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XmcJHV9//FX3z0998zu7C57sOxBMSAgrCA3iDd4RSN4xZuoEaOGmETJLxriQWKMZ4wGJWJQo2jUgIoKeACyHCs3s7XA3tfs3Gff3b8/qqq7uqd7pufumX4/Hw8eTFdXV32na2fm05/6fD9fTzabRURERESkVngXewAiIiIiIgtJAbCIiIiI1BQFwCIiIiJSUxQAi4iIiEhNUQAsIiIiIjVFAbCIiIiI1BT/Yg9ARJYuwzCeB3yjaPNaYMg0zS0LcP5PAO8HDhU9dbtpmn83yesuB55vmuY/zOPwnHO9HfhT0zRfUWYcfw9EsH4fPwn8lWmaBw3DaAZ+bJrmpXN93qL99gIrgVWmaY4Wvf6/gNebpvnDuT5v0WvOAt5lmuZ7Szz3W+B4YAjIAkHgIeB9pmmOl9j/EeAS0zQHKz2/iNQeBcAiMmOmaT4EPNd5bBhGJ3A3cM0CDuP7pmlePc3XnAW0zcdgKmUYxnHATcA20zT32duuBX4AnAe0Amcv0HB6gdcC33ZteyvQvUDnPwVYN8nzH3GCcMMwPFjv0XXAXxfvaJrmc4u3iYgUUwAsInPCMIw24Dbgc6Zp/rTE858AtgDrgTXAI8C7TdMcNgxjLfAVYAMQAP7HNM1PG4axESug7gI2AhebpnmkwvHUYWUK/900za8ahvEu4EPA1cB7AZ9hGEOmaV5rP/cXWGVhfcDVpmnuNAzjW1iB8mb7e1sFDAOn2t/HY8BbTdMcNQzjncB7sDKUbcD1pmn+xyRDXGHv2+Da9gXgUfvr/wLq7IzmNqyg+LNY2eIE8Pemad5uf68fBd4GpICngbcXvRd/CvwzcJlpmmaJsdwMvAU7ADYM43h7XDtdxyj5/dkZ33cB9VhZ2pvKnbfU+wyMYQWzzYZh/Jdpmu+Y5D3DNM2sYRi/AS6zzxEHfgqcDrwZeBBYaZpmb6n3xTTNoXLXe7LzisjyohpgEZk1wzD8wC3AfaZpfmaSXS8GrgBOwgpKnBKE/wZuNE1zG1bW80WGYVxhP7cO+CfTNE8sE/xeaRjGI0X/vdQ0zSjwBuA6wzAuAz6FdWv+d8DXsDLH1xqGcTFWkHShaZpnAP8C/Nh1/IhpmqeYpvm39uNtwMuATqyg/PWGYTQAV2EFemcAV9rHKcs0zceAG4CHDcN4yjCMG4BXArfbu7wDiNoZzRbgh8AHTdM8zR7vzYZhnGAYxquwAt5zTdN8DrAHK7AEwDCMNwKfwCoLKBX8AvwMON0wjDX24z/DlQ2u4Ps7xT7+C8qdt9z7bJrmAax/B3dPFfzax221z/8be1MQuNU0TcO+I+HsV/J9qeB6i0gNUAZYRObCF7EygO+eYr9bTNPsBjAM45vAFwzD+DhWYNxmGMY/2fs1YJVWPIAVKN83yTHLlkCYpvm4YRj/iJW9fVuZAPByrMz0HwzDcLa12hltgHuK9r/dNM24/T08DrTZGeBXAJcbhrHVHnsDUzBN8xrDMD4NXIL1HnwW+IBhGBcV7fp84BnTNO+3X/ekYRj32q87A+t9HbCf+yt7bG/HKvV4GfAhO9AsJ4EVYL8J+BxWgHkx8Kf2Maf6/h4zTXPY9bjUead6nyfzWcMw/h7w2I9vw/o357i7xGteROn35V/KjcM0zf4KxiIiy4ACYBGZFcMw3gO8CjjLNM3YFLunXF97gTTgwwpsznMmNRmGsQKIYZUJxE3TTBUfaBpOwaplPQcr01zMB/y3k+E1DMMLHAcM2M+PFu0fdX2dBTyGYazDCtL/Eytg/iEw1eSzVwHtpmn+F/Aj4EeGYXwMOIgV1PYWjTFbdAgvVrlIyv2cYRgtWBljgEHgjcAPDMO4zTTNvZMM6dvA1wzDuA8wTdPsdwLECr6/4veo1Hmnep8nk6sBLqP4/FD+fZnNOERkmVAJhIjMmJ2p/AzwatM0j1bwklcbhtFsBx1XYd26Hga2A06GrgW4F3j1HIzvtcClwGnASwzDeI39VAoreAT4JfBG1+3/9wJ3TvNUzwN6gE8Cv8IODg3D8E3ymhHgM4ZhnOzatske27P2/332pK/7gJMMwzjbPu4pwEXAb4E7gNcahtFkH+MT2O8l8LRpmncBXwa+bb/vJdnZ5Trg08C3Zvn9lTrvZO+z+3rMlXLvy1xcbxFZ4pQBFpHZ+Lj9/xtdt5Md20zTTBdt6wZ+jpXZ/T1WsAXWrfev2CUFQeB7pml+x54EN5UrDcO4oGjbfqz2aF8DXmmaZo9hGG8DfmIYxkPAXcB3DcP4smmaHzAM45+BXxuGkcGa5PZae7JVBacHrKDwnYAJZIDfYQWMZVvBmab5G8MwrgZusoP+FHAEq852wDCMYawSkCeBC4HXA182DCNin+MdpmnuAnbZQfS99nifxPpw8TrX6T6FlaX/CNaktHL+G6t++Pai7dP+/orPa5rmP0/yPm8HPm4Yxv+apvnaKY5ZEdM0f17qfTFNc6TcOObivCKyNHiyWf3Mi8j8s7tArJhByzIREZE5pRIIEREREakpygCLiIiISE1RBlhEREREaooCYBERERGpKQvaBWLHjh2qtxARERGRBbFt2zZPqe0L3gZt27ZtC31KALq6uujs7FyUc8vC0XVe/nSNa4Ouc23Qda4Ni3Wdd+zYUfY5lUCIiIiISE1RACwiIiIiNUUBsIiIiIjUFAXAIiIiIlJTFACLiIiISE1RACwiIiIiNUUBsIiIiIjUFAXAIiIiIlJTplwIwzCMAHATsBFIA1cBEeBW4Gl7t/8wTfP7hmF8HLgcSAEfMk3zgfkYtIiIiIjITFWyEtxlgN80zfMMw3gx8CngF8C/mab5OWcnwzDOBC4Gng+sB34EnDX3QxYRERERmblKAuBdgN8wDC/QBCSBbYBhGMarsbLAHwIuAH5lmmYW2G8Yht8wjJWmafbM09hFRERERKatkgB4FKv8YSewAngFYADfME1zh2EY1wIfBwaBPtfrRoBmoCAA7urqmv2oZyAWiy3auWXh6Dovf7rGtUHXuTboOteGarzOlQTAHwZ+aZrmRw3DWA/cBVxomuZR+/kfA18Gfgo0ul7XiBUUF+js7JzdiGeoq6tr0c4tC0fXefnTNa4Nus61Qde5NizWdd6xY0fZ5yrpAjEADNlf9wMB4FbDMM62t70Q2AHcC7zUMAyvYRgbAK9pmr0zHrWIiIiIyDyoJAP8eeBGwzDuBoLAx7DKIb5iGEYCOAr8uWmaw/Y+92EF1u+fpzGLiIiIiMzYlAGwaZqjwBUlnjqvxL6fAD4x61GJiIiIiMwTLYQhIiIiIjVFAfAsDMeS3HjPHtKZ7GIPRUREREQqpAB4Fr5x9x6uu+0pfvTHg4s9FBERERGpkALgWYgEfQD84Rk1uxARERFZKhQAz0IylQFgT+/YIo9ERERERCqlAHgWRuIpABJp1QCLiIiILBUKgGdhJJYEIJZML/JIRERERKRSCoBnYThqZYDHE6lFHomIiIiIVEoB8CwM2xngaMLKAMdTaWWDRURERKqcAuBZGIlZmd9Y0poM9w8/eZKrvv3QYg5JRERERKYw5VLIUp6TAU6kM6TSGZ7pGWVgLLHIoxIRERGRySgAnqFoIs3unnz7s2gyTf9YQiUQIiIiIlVOJRAz9IU7dwGwpjkMWAFw32icqAJgERERkaqmAHiGDvZHaQz7ueYlBmB1hBiOpXIT4kRERESkOikAnqHu4RinHNdEvb0c8uHBKADxVIZMRgtjiIiIiFQrBcAzdGwkTkdjmLAdAB+yA2CAWEpZYBEREZFqpQB4BrLZLN3DMVY1hagL2AHwQD4AHlcZhIiIiEjVUgA8A8OxFPFUho7GMBE7A3xwYDz3vOqARURERKqXAuAZ6BmJAdDhzgAPFmaA06oDFhEREalKCoBnoG/UWuyivT5EJGS1Ut7fn88Av/QLv+cd33pwUcYmIiIiIpNTADwDA+NWANxaH6C9PghA93C8YJ/f7+rRohgiIiIiVUgB8Az0jeUzwOGAj4ZQ6QX1Hjs4tJDDEhEREZEKKACegQE7AG6JBABY0WBlgRvDhYHweCK1sAMTERERkSkpAC6jezhWdiJb/1iS+qCPsD0BbkVDCIB1rZGC/eKpzPwOUkRERESmTQFwCb2jcZ7/6Tv57C/Nks/3j8Vps7O+kM/8bmxXACwiIiJS7RQAl+B0ebijq7vk8/3jSdoi+QC468gIAFeetb4gCI5rEpyIiIhI1VEAXELcXsrYU+b5vtE4bfX5APj/veJkOtc0ccGWFdx1zSXcec3FAMSUARYRERGpOqXbF9S44ejkk9eOjcR5znHNuceXn7aGy09bk3vs1AQrAywiIiJSfRQAF/mrHzzC7U8cLft8OpOlbzROR1Oo7D7hgJVYVw2wiIiISPVRAFzkf/94KPe1p0QNRN9onEwWOhrLB8BBnwJgERERkWqlGmCXaKKwZMFTogr42Ii14tvKxnDZ43g8HkJ+b66WGGBwPMF3799PNlu6tZqIiIiILAxlgF367SWOHekSweqxkRjApCUQgBUAJ/MZ4PfevIPtu/s5+4RWtnQ0zsFoRURERGQmlAF2cVZ4c4zGJk6GOzJkBcCrm8pngAFCAV9BBnj77v6C14uIiIjI4lAA7DJQlAEeiSUn7PN09yiRoG/KADgcyGeAe0fjue1HBhUAi4iIiCwmBcAu/UUZ4LFEesJyyLu6R9i6qhGvt1yXYEvI78tNgnvy8HBu+6HB6ByNVkRERERmQgGwy+C4lfH93Ucu4UMv2grAULQwC7yre5QTOxqmPJZ7EtyTh4dy244MKQAWERERWUwKgF26h2N4PLC2pY6N7fVAYVnEvr4xekfjbFxRP+WxrADYygDv6RljVVOIk1Y3qgZYREREZJGpCwRwZCjKF+94mt/v6uGs49vw+7y0RAKA1b4M4A/P9PKmb9wPwKop6n/BKoGI2SvBDceSNNcFaKsP0uOqBxYRERGRhacMMPCRWx7jfx48wOGhGK987nEAtEaCAAyMWSUQv3wyvzrcZItgOMKBfAZ4JJaiMRygtT6YO56IiIiILI6aC4Cz2Sy3PXaYVDrfo3dv31jua6e7Qy4AtjPAz/bk95mqBzDYk+CS+QC4KeynNRKc0GlCRERERBZWzQXAP3v8CFd/92G+/vvduW2HXZ0ZmsJWVUhLvVMCYWVs9/eP5/bpmGQVOEdbQ5ADA+P0jsYZjiVpDFslEOOJdK40QkREREQWXs0FwE6rMyfoTaUzuDudNdVZgW9jyI/f68llbAddmdsWe5/JvPP8ExhPpPnfPx60SyD8rrpilUGIiIiILJaaC4A9Hqt/rxP07uoeLXi+0c4AezweWuyShVQ6w7C9KpzHw5Q9gAG2dDTQXBfgQH+UEScDbJdVFPcbFhEREZGFU3NdIHxOAGxHwI8dHCx4vsmV3e1oDHF0KJYLfj/xypN5+/knVHyuNc1h9vaNkUxnaQz7aa0vrCsWERERkYVXcxlgJ3mbyVoB8C57aWNHQzD/meD49gj7+8dzAWuLncGt1OrmME/bGWZnEhwoABYRERFZTDUYAFsRcNoOgKPJNPWhfNDrLm/Y0BbhwECUgTEnAJ669tdtTXOYo8PWwhdWGzTr9QMqgRARERFZNDUXAKfs0gc7/iWeTBPyl34bNrRHSKQy7Dw6AswgA9xUl/u6uS5AS52TAdYkOBEREZHFUnMBcCJltSBzSiDiqQzhgK/kvutbIwA8cWgIgNZpZoBPWJlfMnlLRwNBv5fGkF+T4EREREQWUc0FwM7qbD995DDP9owSszPAL3/Oai4xVhbs295gZWxvf/Iofq+HFQ1TL4Dhtu341tzX61qtbHBrfbCgpZqIiIiILKya6wKRSOVXgHvh534HWIHqf7xl24R9nUlrg+NJ3nLOhoJa4Uoc15xfMMNpv9YaCdCvEggRERGRRVNzAXDcFQA7ytUAt7pqfs9Y31pyn8l4PB5+9L5zaQjlSyda64P0jSoDLCIiIrJYai4ATqQrD4DrXO3ROpqmV/7g2HZ8W8Hj1kiQZ46NltlbREREROZbTdUA947G+c72fRO2l5sE57aqKTzlPpVY0RDk2EicZIlAXERERETmX00FwB/8n4cZS6Rzjy/cugIonwF262icWQa42OnrW0ikMjx5eHhOjiciIiIi01NTAfCRoVjB4/VtVpuzSjLAzXXTa4FWztkbrZKIB/f0z8nxRERERGR6aioA9nk8BY/b7EluwUkywH57ZThP0WtnqqMpTFt9kB/98SDbd/fNyTFFREREpHJTToIzDCMA3ARsBNLAVaZp7rSfexPwAdM0z7UfXwW8B0gBnzRN87Z5GveM+FzLHH/sspNyq8JN5p6/vZSR2Ny2LWuNBNh5dIQ3/Od29l5/+ZweW0REREQmV0kG+DLAb5rmecB1wKcADMN4LvAuwGM/Xg38JXA+8FLgM4ZhzE3h7Cz1jMQZS2QI+PLf7p9ftJmIXfqQniQQXt0cZuuqxjkdT1v99JZUFhEREZG5U0kbtF2A3zAML9AEJA3DaAeuBz4E3GDvdzZwr2macSBuGMYzwGnAg+6DdXV1zdXYK/bB2w6xudVHIp6fANfV1UVfjzURra9/YEHH5U/HC8YhcycWi+k9XeZ0jWuDrnNt0HWuDdV4nSsJgEexyh92AiuAVwLfBD4MRF37NQFDrscjQHPxwTo7O2c41Jnz3N7DUCJNxhsA4rlxPDa6H+ilsal5QcfV8WgMDoznxiFzp6urS+/pMqdrXBt0nWuDrnNtWKzrvGPHjrLPVVIC8WHgl6ZpngicDtwDnAr8B/A/wMmGYXwBGAbctQKNwOAMxzynwkEfsVSW4aJaXq89sW2yEoj54D7fQp9bREREpNZVEgAPkM/s9gP7gNNM07wEeAPwlGmaHwIeAC40DCNsGEYz0Ak8MfdDnr5IwEcslWE4mqIx7Ocbb30eAH6fFQBXMhluLmWy+fONJVILem4RERGRWldJAPx54EzDMO4G7gI+ZprmWPFOpmkeBb4EOPtda5pmrHi/xRAJ+hhLZIgm0/z5hZt40cmrAKgL+HPPL6SgazLeaEwBsIiIiMhCmrIG2DTNUeCKMs/tBc5xPb6B/KS4qlEX9HFkxAo0O5ryjSlefPIqPvyiE3n7+RsXdDwfu7yTe57po3c0zlhcAbCIiIjIQqqJhTDqAj4SaavsYG1LJLfd5/XwwRdtnbNV3irV0Rjms68/DYARBcAiIiIiC6omAmB3icNxLeFFHEleY8hKvqsEQkRERGRh1UQAXBfMV3oc11K3iCPJawjbAbAywCIiIiILqiYCYCcDvKIhRDiwsBPeymkKW2UXA+OJRR6JiIiISG2piQC4zg5611ZJ+QPAqqYwAZ+HWx89zOHB6NQvEBEREZE5URsBsJ0BXttaHeUPYE3AW90cZvvufl73H39Y7OGIiIiI1IyaCICdEoi1VVL/6xiLpwE4MlQV7ZJFREREaoIC4EWUzWoZZBEREZGFVhMBsDPxrVo6QDi++fazcl9/8Y6nF3EkIiIiIrWjJgLgMza08qLNDTx/U/tiD6XAmRta+eqbzwTg83fsWuTRiIiIiNSGKZdCXg6a6wJcc0HHgq/4VokXda6iJRLAs9gDEREREakRNZEBrmZBv5crnree8UR6sYciIiIiUhMUAFeBprCfeCpDPDUxCB6Np0hnNFlOREREZK4oAK4CjfaqcCOxwmWRE6kMz/n4L/nMz7sWY1giIiIiy5IC4CrQVGeVYg9HkwXbnzw8BMBPHjm84GMSERERWa4UAFeBxlDpDPCOfQMAHN8eWfAxiYiIiCxXCoCrQJPdnWI4VpgBfubYKAB+r3pEiIiIiMwVBcBVoDFslUAUZ4CjSWtSXN9YYsHHJCIiIrJcKQCuArkMcFENcMwOgPvnOQD+ycOH6B6Ozes5RERERKqFAuAq0BCyMsCj8cIMcCyZAWBgPDFvrdBG4yk+9P1HeNuND8zL8UVERESqjQLgKhAJ+gAmLIbh9AXOZucvCxy1z7m/f3xeji8iIiJSbRQAV4GAz0vQ580FwD977Ag9I3FiyQxBn3WJnI4Qc80JgFNpLbYhIiIitUEBcJWIhHyMJ1IMjCV4/3f/yKu/cg+xZJrzt7TTGPZz187ueTnveNIqu0hmMvNyfBEREZFqowC4SkQCPsYTafb2jQFweCjG4HiS+pCf09Y151qizTUn65xVAlhERERqhALgKhEJ+RlPpApqcY8OxwgHfKxoCNEzGp+X80aL6o5FREREljsFwFWiPmhlgPf3FU5GCwe8rGgI0TuS4Lpbn+K35rE5Pa974t2Hv/8IJ3z0Z3N6fBEREZFqowC4StQFfYzH0xO6MYT8VgY4mkxz4717ePt/PTin5x1P5Fuv/fjhQyqFEBERkWVPAXCVqA/6GU+mGIomqbfbooGTAQ4W7Hugf5wf7TjIYwcHZ33eUiUQmXnqOSwiIiJSDRQAVwknAzyWSLG+LZLbHvb7WNEYAiDg8wDw5OFhrrnlUV71lXtnfd7i3sMA40nVBYuIiMjypQC4StQH/Ywn0ozF06y0A16AcMDHqsYwAB+4dCsADx+Yu57A0RLB7mgsVWJPERERkeVBAXCViIR8jCVSjMVT1Af9+L1WtjcU8NK5ppEvXPlc/vyiTaxrreOep3tzrxuLzy5YLVUCMRpPzuqYIiIiItVMAXCViAR9RBNpKwAO+WkM+wGrBMLj8fCaM9YSDvh4znHNPHl4OPe6u3bOrivEeCKNHWvnjCgDLCIiIsuYAuAqEQn6SWWyDIwnqQ/52NrRCFgZYLeXn7o697Xf6+HGe/fM6ryj8SQrGkIE/V7XNgXAIiIisnwpAK4SITsAjSbT1If8dK6xAuAjQ7GC/V588qrc15ee1EHPyMwXyOgejnHLjoN0NIX49jvP5gOXbgFmX1YhIiIiUs0UAFeJUCDf+qw+6ONt520k6PfywpM6CvaLBP18823P43VnrmN1c3hW5QpPHR4mm4X3XryZcza1c8Xz1gMqgRAREZHlTQFwlQi5ShDqQ342rWxg1ydfztZVjRP2fWHnKj53xek0hQOMxJJkZ7h6xYid6T1ptXUOp+5YJRAiIiKynCkArhLhggywv6LXNIb9ZLIwVqKTQyWcUof6kL/g/8oAi4iIyHKmALhKFGeAK9EYDgAwEptZ2zKn32+Dfb6Az0vQ5+Xffr2LL9359IyOKSIiIlLtFABXCXcAHAn5JtkzzylZmG7G1imZcEod3Blnp+vEv/1617SOKSIiIrJUKACuEiF/PuhtqDAD3FQ3/Qzwg3v7OeGjP+eJQ0OMxlNEgj68rkbA7lIMERERkeWoskhL5p27328kOL0M8HC08gzwA3v6AfjhjoPEkukJwXY4oM9EIiIisrwpAK4S7hKIijPATgBclAF+YE8/O48O89ZzN054TXt9EICH9vVzZDBGs51FdoT9ygCLiIjI8qYAuEq4SyAiFXeBcEogCjPAV3z9PoCSAbBT9/vEIWs55eKSB/fjbDaLx1O0TrKIiIjIEqf73VViJhngqSbB3fLQgQnbxuKFLdMODUYLHrtLIKLJmbVXExEREalmCoCrhFMD7PVUXodbF/Dh93rKToL7yA8f45ljowXbxhKT1wt7XRnfUVdgvat7hL7RmS+7LCIiIlItFABXCaf0oD7or7jswOPx0Bj2MxxL8k+3PcUrv3wP6UzhqnCxoixu8SpvF25dUfb4I659X/L53/Piz/8egHuf6WVX90hFYxQRERGpNqoBrhJOCUSlPYAdjeEAI7EUNz+yH4Cb/rC34PnigHfM9XhtSx03vv2sgufd4XNxaUX/WAKAN3/jfgD2Xn/5tMYqIiIiUg2UAa4SQZ91KSpdBc7RGPYXBKrX3fZUwfOjsfIBcCjgJeAr+ifgioCd18ZTqgUWERGR5UMBcJXweDyE/N6CVdkq0Rj2MxwtrAH+s3OOz309Ei98zln8AihM9+Jsym90aovdQXQilZnW+ERERESqjQLgKhLye6mfZglEUzjA4aJODn9y5loeuPaFQKkMcJpVTWEAWiKFPYCLjSeszK87w1w8qU5ERERkqVENcBUJBXwzyAAHODwUA+ASYyVD0SQnr2nKPe+eyDaeSPH4oSFecdoarjxrPa86/bgJx8u6ssLj9gQ6dx2xe/Lbsz2j/OrJbt578Sb1CxYREZElQwFwFakP+miqmzwrW8zpBQxw9Qu28LyNbYC1iEXA5ynI3n7xzqft8/h578WbSx7PXRURtVumuY/xoe8/kvv6hZ/7HQCvOeM41jTXTWvcIiIiIotFAXAVuf51p7GyMTSt1zS5AmBjdWPua4/HQ0PIX1AC8TuzB4D3v2BLRcfOl0CU7jPs6BtNKAAWERGRJUMBcBU5Z1P7tF+zdVU+6HWWRnY/HoklueWhA2xoi7Dz6Ah//ZIT2dAeKXu8rKsGIpqYWAJRSq8WyBAREZElRJPglrgXn7wKgOOawxOeawhZLdI+8sPHuPI/twOwaWXDpMe7+lIrO+z1WKvG7e0dK7nU8g1vfR5feuMZgJUBFhEREVkqlAFe4sIBH7d94AJa64MTnlvdHGZ371jBtqk6P1x60ir2Xn85533mTm7evp+bt+/n5c9ZPWG/Mze0ELQX7+gbUwZYRERElo4pA2DDMALATcBGIA1chZU5/k/AAzwKfMA0zbRhGFcB7wFSwCdN07xtnsYtLs9Z21xy+4mrGrlr57GCbS11EwPlUuqC+XZsD+0bIBL05WqCAZrrAvi8HoJ+rzLAIiIisqRUUgJxGeA3TfM84DrgU8CngY+Zpnk+EAFeZRjGauAvgfOBlwKfMQxjejO6ZE4ZqyeWO7TWV9ZlIuJqx9YzEmdNc5gPXLqFPzljLXuvvxy/z4vH42FFfZBeBcAiIiKyhFRSArEL8BuG4QWagCRwhZ3xDQKrgW7gbOBe0zTjQNwwjGeA04AH3Qfr6uqay/EcvoAmAAAgAElEQVRXLBaLLdq5F4u/RGlC9/7dDPqn/tyTTRW+tjmQ4bL1GVgfKngf6/0Z9nX3Vc17W4vXudboGtcGXefaoOtcG6rxOlcSAI9ilT/sBFYAr7CD3+OBO4AhwAQ22V87RoAJ9+Y7OztnOeSZ6erqWrRzL5a1sSTcdqhg23NPPaWi167YPgLdsdzjrcetKPn+rd0+Qt9oomre21q8zrVG17g26DrXBl3n2rBY13nHjh1ln6ukBOLDwC9N0zwROB24yTCMsGma+0zT3Ap8Dfg3YBhodL2uERic8ahl1prC01tUwy0SLFyS+biW0n1+2+tD9BW1QYsm0vzgoQMFLdVEREREqkUlAfAA+cxuPxAAbjUMY6u9bQTIAA8AFxqGETYMoxnoBJ6Y4/HKAqkLFN4c2NBeOgBe0RCkdyxREOx+9pcmf/PDx/jtrp55HaOIiIjITFRSAvF54EbDMO4GgsDHgL3AtwzDSADjwLtN0zxqGMaXgLuxAutrTdOMlTmmLLD3XbKZ6SRkizPAlxqrSu7X3hAkkcowGk/lFuIYHLcmxfWOqD2aiIiIVJ8pA2DTNEeBK0o8dX6JfW8AbpiDcckcaQj5GY2n+NuXnTSt1612Laxx7WWdNJfpH9xebzX66BtN5ALgsB08x5Lpkq8RERERWUxaCGOZ++WHL+LZY6PTft3p61oAWNkY4qqLNpXdr73B6ivcNxZn44p6AOoCTgCcmfZ5RUREROabAuBlbm1LHWvLTGCbzKn24hojseSk+61stDLA3cP5cgcnAI4qAywiIiJVSAGwlNQcCXDNi0/k3M3tk+63vi0CwIH+8dw2v88DTAyA05ksP374ED9++CDvu3gLF2xdMcejFhEREZmaAmAp6wMv3DrlPk3hAC2RAAcG8gFwMm2VPozGUgX73v7EUf76lkcBePbYGNs/9sI5HK2IiIhIZSppgyYyqQ1tEfb3R3OP43bt72C0sHwilcnXBLdEAuoTLCIiIotCAbDM2vq2CLt7RnMBbcLOAA8VBcAjrozwzqMj/OX/PLJwgxQRERGxKQCWWbtwywoODkS5o+sYAImUFQAXT6BzAmJngt2tjx5ewFGKiIiIWBQAy6y9bts6TlzVwDU/eISRWJK4HQDHi9qgDY4niAR9fPTlVk/imXSnEBEREZktBcAyawGfl2teYjAcS7GndyyXAY6nCrtADIwnaakLcN6WFbx+2zoyqgEWERGRRaAAWOaEk809PBjLBb5OJtgxOJ6kOWItnNESCTA4PnmPYREREZH5oABY5sQae+nkI0PRXOBbvBLcUDRBS521XHJLJEg0mdZyySIiIrLgFADLnGirDxLyezkyFCtbAjE4nqQl4gTA1v+LO0WIiIiIzDcFwDInPB4Pa5rDHB7MZ4DdJRDZbJajQzE67KWTW+qsUojB8SS3PHSAnz5yaOEHLSIiIjVJK8HJnNm8soHHDw0RCVr/rBKpDNlsFo/Hw8B4kpF4ig3t9UA+Azw4nuAjP3wMgFc/d+3iDFxERERqijLAMmcuOamDfX3jdB0Zzm1zssD7+sYAa9U4yE+a23l0ZIFHKSIiIrVOAbDMmfM3t0/Y5vQC3t8/DsDx7VYAvHFFPVs7GvjRHw8u3ABFREREUAAsc2hN88SFLZyJcAcHogCsa83vc9YJbTx2cCj3OJ1RX2ARERGZfwqAZc7UBX00ha3630jQB+RLIIajSYJ+b64+GKAu4Ct4vTpCiIiIyEJQACxzqr3B6vLQVm91eXAywMOxJE3hQMG+IX/hP7/+scQCjFBERERqnQJgmVO9o3EAztrYBuQXwxiOpmiqK2w6EvIXZoAHxhUAi4iIyPxTACxzaiSWAuBce0KcOwPcXFeYAQ4HlAEWERGRhac+wDKnvvaWbfzqyaO5dmfxZL4GuCUSLNi3uAQimtCyyCIiIjL/lAGWOfWy56zm3658LuFA0SS4WIqmogxwqGgSXMK1cpyIiIjIfFEALPPCye7GknYJRDSZ6xBRvI8jnlYALCIiIvNPAbDMCye4jdvLIQ/HkhMywGFlgEVERGQRKACWeeEEuwPjCb593z6S6eyUbdAUAIuIiMhC0CQ4mRft9UGawn7ufaaP3+/qAeDMDS0F+xS3QXM6RoiIiIjMJwXAMi88Hg9bOhq4o6uboM/L3X/zAtbbnSEcIVcbNL/XowywiIiILAiVQMi8qbOXQ37HBRsnBL8AYVcGOOj3KgAWERGRBaEMsMybqy7cRHNdgA+/6MSSz7szwEG/l4S6QIiIiMgCUAAs8+YSo4NLjI6yz7snwQV9ygCLiIjIwlAJhCwa9yS4UEABsIiIiCwMBcCyaIozwHEFwCIiIrIAFADLonEvhBH0+xQAi4iIyIJQACyLJujXJDgRkeVsf9842Wx2sYchMoECYFk0Pq+Hqy48gR+971xCPi8JLYQhIrJsPHFoiIs++xu+fd++xR6KyAQKgGVRXXv5yWw7vk19gEVElpmhaBKAHz98aJFHIjKRAmCpCiqBEBFZXjz2//f0ji3qOERKUQAsVcHpA3zjPXv4xt27F3s4IiIySzG7rM3JBJez8+gwn/i/J1UrLAtKAbBUhVDAy97eca677Sk++bMuAH6z8xi3PHRgkUcmIiIzEUvm7+qNxlNl93vzDffzrT/spW8ssRDDEgG0EpxUCQ9MKIF4x7ceBOB1Z67D6/WUeJWIiFSruGtis3l0hM41jUSCE8OOQTtDnFQZnCwgZYClKjx2cCj3dVO48BfkbtWPiYgsOe4M8E8fOcTJ//BLfvDgxLt66Ux2wv4i800BsFSFlY0hAN5yzoZcJthvZ33/uH9g0cYlIiIzE0taGeDGkD/XCu22x4+U3T+aUCtMWTgKgKUqfPXNZ/J/V59PR2OYWDJDKp1hRYMVFD/bM7rIoxMRkelyVvf86GWduW2TTXSLJhUAy8JRACxVob0hxGnrWmgIWeUPY/E0Ywlr0sS+3vHFHJqIiMyAkwHe2B7Jbbv76V4edt3VcwfEMQXAsoAUAEtVcQLg4VgyN2t4b59qgEVElpK9vWN84Y6n8Xk9tESCBc/9yVf/kPu6bzwf9KoEQhaSAmCpKg32BLie0ThOYmCf1pIXEVlSrv7eHwFrgltTXfmGUw8dyt/hUwmELCQFwFJVnAzwlV+/D4ATVtQTTaYZmaSHpMhkekfj+gAlssAGxvKLXzTXBSY8PxRNEkumuXXnMB67y6VKIGQhKQCWqlJvB8DJtBWwrGkOAzAaUwAs0/f7XT0875N38FuzZ7GHIlJT3D2A60v0/j3jul/xvQf2s3sgwT+/9jRAAbAsLAXAUlXqQ76Cx2ua64DJVxESKcdpvXRoMLrIIxGpLe563lILGWWy8L0H9nNyR4jLT1tjvUYBsCwgBcBSVToawwWPnQzwiDLAMgOPHhwEIODTSoIiC+Xff/MMYxVMaOsejrO5LUQ4YCU+ogkthCELRwGwVJW2+iC//vBFuccnrWkE4Obt+/iX23cu1rBkicrYK0yNxZVZElkodz9dvuSoJZKvBx6KJqnze/F5PQT93lwGOJvNctfOblJaGlnmkQJgqTrrWvM9I7d2WAHwjx8+xFd/++xiDUmWKI89u+Ynjxxi49/9jP6xxCKPSGT5iyYzXLh1RcG2d5y/kXddcAKP/MNL+PyVp+e21wU89v99uRrgXz3VzTu/9RA33rtn4QYtNad8bxKRRVIXzNcBO23RHEPjSZojE2cUi5RmZYAfOzgEwP7+cdrqg5O9QERmqXckzuYV9YDVyQfg4688Jfe8s8onQF3Aa/8/HwB3HRkGYDiq0jeZPwqApSp976pzWNdal2uL5jgwME5zpHmRRiWLZfvuPhpCfp6zdnrXPpYsvIXqLzEZR0TmTjabpW8sTntDEPOTL8PDxJ85dwAc9tsZ4KAvN9m5ZyQOwMrG0ITXiswVlUBIVTp3czvr2yITAuCDA5rNX4ve8J/becWX75mwfXA8wca/+xk/feRQwfZd3SPc83TvhLZK7tZMIjL3xhJpYskMKxpChPw+gv6JYYY7AI7YGeDONY1s393Pru4RvnP/fgB8+sAq82jKDLBhGAHgJmAjkAauAsLAl+3HceCtpml2G4ZxFfAeIAV80jTN2+Zp3FIjin8B7tOyyOKyv99aReqLdz7Nq5+7Nrf9JZ//fcn940lNqhGZT7129ra9oXz2tq0+iMcD2SyE7QD5slPX8PPHj/Kx/308t188pZ9XmT+VZIAvA/ymaZ4HXAd8Cvgi8AHTNC8B/hf4W8MwVgN/CZwPvBT4jGEYun8hc+r+Pf2LPQRZAE93j/Avt++ccgW3oai12tTQeHLS/RwxZYBF5lWfPdG0vaF8rb3P66EtYj3v1ABvbLdqhd093xMKgGUeVVIDvAvwG4bhBZqAJPAG0zSPuI4RA84G7jVNMw7EDcN4BjgNeNB9sK6urrka+7TEYrFFO7fMzmUnNtJW52coluZXz/Tw6BNPESzT11XXeXl48w/20R9Nc/GqFE3h/KTIrq6ugmv82O4RAAbGExVd92f27GdNVh+ilgL9LC89B4cSHB6xAtjeIwfpyvSV3bcxkKUP8GWSdHV1cWTICpwP9o9RH/Aylsxw6Eg3XV3q3LIcVOPPcyUB8ChW+cNOYAXwCif4NQzjPOBq4CKsrO+Q63UjwIQZK52dnbMb8Qx1dXUt2rlldr5qX7dfP9XNreZD7E+38IpT1uRaXLnpOleXZ46Ncuujh/nQi7aWvF7lJDNWDeAJm7fQ0RQGdluPt5zInmd25a7xvb27gR4yWTCMk1wrTu0uedwVq9bQ2blupt+OLCD9LC8tPSNxXn7THRxnL1500pbNdK4rP2l17b1D7B3so7k+TGdnJ23DMfjJQUYTGTa0RUgOxWhsbaOz86SF+hZkHi3Wz/OOHTvKPldJCcSHgV+apnkicDpwk2EYYcMwrgS+BlxummYPMAw0ul7XCAzOeNQiRc7Z1AbAB773MA/uHVjk0Ugl3v+dP/LFO5+e9lLEabv0IZpMFzTDHywqdehz9fUdTViZp+KJb27FXSFEZG48edjKfx0eigEQDkweXjgT4Zw+wBFX+8vmugBBv1clEDKvKgmAB8hndvuBAHAlVub3EtM0nVTLA8CFdnDcDHQCT8zxeKWGNYYDnLe5HYBDg+OLPBqphDMDvHs4Pq3Xpe0V3MYTaWKuP4ID44W3Q/tG88d16oCdFkqlTBYci8jMPXFoqOCxs7xxOfkA2PodEQnmb0i3RAKE/F51bZF5VUkA/HngTMMw7gbuAq61tzUC/2sYxm8Nw/hH0zSPAl8CcvuZphmbp3FLjfriG84AYDSmBulLQYfdx3O6GWBn7ls0mSaayP8RfOMN2wv26xvNB8TDMSsA7h0tDIDXttTlvtYkOJH5sfPoSMHjqQLgC7au4NKTOgjZ8zl8Xg8h+wNzU50dAOuOjcyjKWuATdMcBa4o2vydMvveANwwB+MSKanRXhluWAHwkuA0sj84MM4/3vokrz1jHadOUhfoyDglEIk0jx3MV1IVl0CMJfL/DpyOECNF/zb+9fWnc/YJbWz+2M/1B1VknhTfnXGv6FnKC4wOXmB0FEyMqg/5iacS+RKItH5eZf5oIQxZUsIBHyG/N5ftk+rmlEA8tHeA/7p3L++9ufyEBDenBnhgPMG7bnoIgHWtdROa6lsN9612SsN2ABwtKnMIB7y57JIywCLzo3jZ4nCJBTCmUmdnjZvrAoT8Pn1glXmlAFiWnKa6gNaIXyKcSSx37TwGQKBM+7piTgnE0aF8FVVrJEgilcllh8FqlN/RaM0639dn1YUX1/k6t2JDfi+xRJpEKsNvdh7j9ieOzuA7EpFitz9xlMeLaoD9vumHF07Gt70+SFA1wDLPKmmDJlJVGsP+qswAp9IZvB6PqxWXFN/CbI6Ub45fyuHBfADcEgkAkEy7AuBkmg3tEZ46Ap/5xU4u2LqC8UTpADgc8HHTffu46b59uef2Xn/5tMYjIhM5d3bWtdbNarn6Abury/q2CCGVQMg8UwZYlpymcCB3u7uabLn2F1zx9fsWexhVpbiN0aMHBvnbHz5W8euPDuf/mDbXWQFwwhUAx5Jp2uvzC072jMQLJs0BuYk1U03KEZHZcU84nYmU3f1lXWsdoYAmwcn8UgAsS05TXaBqJ8E9tE/9id0SqQybVtbzrgtOyG37/kMHJn2Ne/njnz+eL1NotbPHQ7F8gBtPZagLel2vzdcAX/2CLYD17wWm7ksqIrOzrjUyZ8cJ+pQBlvmlvwiy5DSF/YzMsATiXd96kF8+qdrPhZJMZ6gP+vl/rziZF3V2VPSacotVOCUQV/3kILc9dtjeN03I7+N1Z67LPY4m0ng8cM1LTmTnP72MhpBV6RUoUZPoDrZFZPqcnt0Aa1tnlwF2aBKcLAQFwLLktEaC9IzEpx28xFNp7tx5jPf8d2WdCGT2EulMrnNDz2hiir0tfWOlF7Jwt1W6/hc7ASsDHA54+cClVrY3mkwTTaaJBHx4PJ6Csod19h/nN5y1nvVt1tdjCU2yEalENpvlrTc+wLmfuTO36AwUTjptDM1uWtEP3nMu17/2VABNgpN5pwBYlhxjdSMjsdS0F1co7g8r82N/3zg/3HEQgGQqS9DOvP75hZsAWNUUKvtagP39E1f5W9UUYmN7fe7xwYEosWSaVCZLyO/LBcexZIZoMl2yB+mX3ngGX37jGfzjq0/h/ZdYAXM11pKLVKNjI3F+v6uHI0Mxnu0dzW13B8CzLTM6+4Q23nD2BsCq3ddSyDKfFADLkvOctdZCCk8cGp5y3+FYkmPDVicBrR63MN73nR389S2P8qmfPcVYIkXAzgBfftoaXnfmOvzeyX/tHCgRAN//sRflJsE5nKVXwwEvYb8V8Dorx5UKgEN+H688/ThCfl+uLrgau4mIVCP3UsfHXEubO0uVR4I+/nTb+jk7XzjgYySeKnmn74E9/SV/T4hMhwJgWXJOWt2IxwNm0dKbpVz6r7/j7E/fCcxvBthdB1frnL9XN9y9hycPD+cywAB1Qe+EPr3F9vWN4/d6eM9Fmzh5TRPvOH8jkO/m4HD6job8PsL2RDinBrhuio4PTWErANZdAZHKuBMOPSP59oRO15XPvPbUKVd/m45T1zUzEkvx1JHCRMe9z/Ryxdfv49qfPDFn55LapD7AsuSEAz7Cfh+j8amzd72j+UzFTCfOVSKp2co5WzoaCv5oBf35vsh1Ad+EldqKHRiIclxLHR+9rJOPurYXtzHrGYnb270EfV68HjsATlYQANfZS2qrBEKkIkeHY7RGAgxGkxwbcWWA7Z9n5+fziuetY0tHw6zP9wLDmjT7u109nHJcfvn0u5/uBaB3pPRcAZFKKQCWJakuOHUg5Xb9L3byyIF8i7JsNovHM3cLVsRVq5bjL1oIpCADbAfAk73/vSNxOhon1gkX1xc6H25C/vyEt2giXbYG2K0xrBIIkemIJ9PUh/z4fd7CEoiiAPhf/vT0OTnfysYQLZFAwWqQAEP2h9Zyk2VFKqUSCFmS6gK+su2ySvna755l++7+3OPR+Nze+lYGOC+WSrN5ZX2uZCHoKl0IB31ks5N/YBgYT9BaP3HFuJA/H9T6vZ6CDDDkg+vKSiCcDLBKIEQqYXVc8dHRGOKYqwTC+T081c/cTJRa9Mh53D0c586ubl7z7/fO6909Wb4UAMuSFAp4p5UBLtYzx7fP3LOV7366p6BNUK2JJTPUBX102N0eAkUZYGuf8tduYDxBW4klk0OuDHBj2E+PKwMMVgZqsi4QbrkMsEogRCpi9dz20t4Qos9esjibzfLNe3YD87PQTFOdf8KiR4PRfDtF687eIDdv3z/n55blTwGwLEl1AR+xWfRwfdkX72Zv79icjccdAP/ZNx/gfd+p3V7DTgZ2VWMYKMwAOwFwuQ8v2WyWgbFkyQywuwa4MRygd8T6Q+gExuGANcEulkznukKUE/R7qQv4VAIhUiEnA9wWCTAwbv3sPdszxm/MHmB+M8DpTDb3oXkomsz1Gz5qd/i5b3ffnJ9blj8FwLIk1QV8xKZokj5ZljGRyvDV3z4zZ+MpLoF45thomT2Xv1gqTTjgY1WzHQAXdIGwA+AyH17GE2kS6QytkcCE59xBbWPYn/vj52SAnbrweCpTkC0up6nOry4QIhVyMsAtkSCDY9YHR3cpWfEk1bnQFA5weDDKhf98F5d89rekM1mGoknOOL4VyHdxOTiglmgyfQqAZUlyJjxNplR2r82VWVzdPDfLdsLEmtZKArDl6NofP87D+wcJB3xsaIsA4HNNiguXyQB3D8c4PBil3761WioDHPBZx1nbFCDiKnFw1wDHkmkSqUxBvXA5jeGAMsAiFXI+2LZGgozEUyTTGfpdE9Hm43deY9jP4aEYh4diHB2Osad3lKHxJCe0Rwo+JB8ciJJRK0qZptr8Ky1LXjjgIzrFJLhS9Z3u7gLFfWVnozgDPNUt+OVqxz6r00Y44MstPexuRVeuBvj5n76T866/K3drtVQNsMfj4XtXncO/vuw4+uxllf1eD5tXNuTOaWWA0wVlF+U0hf2aBCdSRjab5Z6ne3MLUcSTGUJ+L231VuA5OJ6kfyz/O3ZeSiCKFr955MAQw7EUzZEgx9srQ7bXB0mkMjx5eJifPXZkzscgy5cCYFmS6oI+4lNMghsqEdw0hvOd/8bmsBNE8ZKd83E7cCk4NGAtT10X8HKcnWE/4mpjlC+BKP3h5UC/9fq2hokBMMC5m9tpqfNxeMja76dXn597r527AlYGuJISCGWARcp5+MAgb/nm/dy/x+qe42SAW+wPp4PjiYIM8HyVQACcuKqBcMDLdrvWt7kuwJvO3sBFJ67kPRdbS6y/8iv38P7v/nFC2zSRchQAy5IU9k/dBWJwPDFhW2M4wN1/8wJgbgPgZLrw9ttcZpcX0/89erhgCVSAYyMxvn3f3glLlA7HkozY72nQ7+WEFfkMjaPBnrwy5MrOu6/Tzdv30dEY4tS1+cb3pTjHcbK/YGWgRuMpMtnK3v9SLZZElrs7nurmk7c9NeV+zkITzs9nPJkhHPDSagfA/WOJXAb4S288o6Dby1xJZawPymdtbGN1U5inDlsL7LTXB7nirPV8+51n82fnbOSiE1fmxz2q/sBSmeXxV1pqTiULYTitetwaw37Wt0VY21LHaHzmXSTe+J/bueyLd+ceJ9KFx1oOGeB0Jstffu9hXvHlewq2f/B7j/APP32S3UVdNA4PRnNfJ1NZNq6o56Z3ns11r3lObvtauyzi4MA4l37ut7zk878rmDB43+4+3nbexin/mP7Pn5/LF658bsH7HA54c4F1RSUQJVosiSx37/72Q3zjnj1EE2muu/Upjg2Xzpg6P0vO71lrEpyPVrsEomc0Tv9YnFVNIV51+nHzMlanZO1Vpx9He0Mot8LkqqZwbp+6oI9vv/NsPvunpwHk5hGITEUrwcmS5Ex4mkypX4SvPXMdAPUh36wywMVtd4pLIOZwkblFs7+/9MxqZwWm4kmI7gDY+aN5sSszA1bWtbkuwIGBcXb3WAH04aJblu++8IQpx7alo2HCcqt1AV9uVnglk+CcDPBcrwooshTcvH0fN967h97ROF964xkTnnc+HD5+cJg/PPMoY4k0oYB1Z2dlY4iv3PUM61rraKufuGrjXHnj2Rs4d3M7WzoaiyYwhyfse6bdGeJ7D+znnE3tFX0IltqmfyGyJIXsRQ8mm/k7UBQA3/03L8gFZPUhP2OJ2Wf/nPMnikog4vYEvZ6ROF+84+klOUPZPGplW9x10wA+r/VrY6iofODQYD6QnSw7v76tjoMD+WB53PVB5CUnr6ooeC0l7OoMUUkJRGskSCqTzZVtiNSSx+3SJp+39Ic/5+f7xnv3cMuOg6QzWUJ+H5GgnzedvYGdR0c4NhLPTYqbD36fly0djQCscM0LWN00MQB2Js7+4omj/FMFJR4iCoBlSXJmHE+2pG5xCUR7Q2Et6kx7wLprX51zOBngNz1/A0CuR/Hf/+RxPn/HrtxEkqXEKU0o/mPjt/9gDhTVWLszwJNl59e1RDjgyi4P2KvmffXNZ5bMRFXK3XmjkuyP8+/B6SghUkv+79HDQL6e3u32J46yr2/iQkFOy0GnBdme3rF5zQC7tdvnaQz7S6706O4Y8eOHDy3ImGRpUwAsS5Lzi3iyQKt/LMGqpvwv50gw/4u+PuifcQnEmOvW/xG7G4HTBu0vL93Ky05ZnRuXMzluKa5V72RG00XZa28uAC78ntwBsHtyWrGVjaGCDyfOinwvPnnVrGqn6woywFMfp73B+rfRp0kzUiNK9U6PFAWTjx0c5L037+CnjxyesK/zc+V0ghiJpWgrsWjNfHA+sJZrt+bOZI/GU0vyd64sLAXAsiQ5vwTHJwmA+8YSHNdSerGL+tDMA+B+V8bQafHlZIADPo+9JK/12AnKluJkK6eMwz32xw8O8eiBQQAGxyZmgJ9/Qhu3vPdcPnrZSWWPGw54c8cGK4sU9HtnPYvc/YexogywXVPYqwyw1Ihue8Lblc9bn9vmvouWzWa5efu+sq93Eg/NrqB3oTLATqD+4pNXVbS/eXRkPocjy4ACYFmSGu3+kLc8dIC/+M6OkvsMjidY3xrhzc/fwE/ef37R6/0MRpPEp1hOuZQ+V+/LI4OFGeCg30vYNUEvYgdlf33Lo3z/wf3TPtdicv4w9o7Gcw3xr7nlkdzzEzPAMda21HHWxrZJM7DOghWO3b1j1Je4pTldYddKVJXUAK9wMsBjygBLbXCyum8/f2Nu27hrLsSOfQP84KGDZV/vlBm1uMoNyvXsnmuXnbqGv7+8k//3ipPL7vOPrzqFj7zUAKDL7hghUo4CYFmSmu1fwF+442l+/vjRkqUQY/E09SE/n/qTU3nu+paC5y49qYPxRHrSX/bluGtGP3HrU/xoxx1ZU8oAACAASURBVEH2948TDnipC/gKAuCAKxD72x89Pu1zLSb3h4O3fPN+7tvdx67ufMsyd//eWDLNkaEo6+zljydTHJz2jsYLylNmyl0+UUkA7Mwqv/bHTzCqiXBSA372+GEu2LKCzjVNvOUca76Cu6TL6cxSTveIlUFuca3UWGrVxvnQGA7w7gs3TVom9bbzNvIXl2ymPujj2Sm+FxEFwLIkNdUVBkxHSqz+E02kJtS3OS46cSWtkQC7ZnCbrLj7wTW3PMqvn+rmoq0r8fu8hAJeYnb2NFZUc7eUukEUTzB80w33Fzx2T4Lb3TNGJgtbO8rX/jpK/QGrD80+AzzdEgj3Po8dHJz1+UWqWTab5dBAlK2rrJ/RT77mVE5d21zQhcUpkVhT1GYs5PeysT3CS09ZDRRlgOsXJgCulMfjYVVzmJ4R3dmRySkAliWpuWiN+EOutlpg/bKPJtOTrk8fCc6sFVqp1xwZivGCkzoA6zZhImW1aCvOLM5F67WF4q7Tdbz7gnyPXncJxDM9Vma4uDdvKaES12TuM8CVBdSv32b1hR5dgjXaItMxHE0xlkiz1jUvIhL0FWSAu0ditEYCBRlesH6uf/uRF+Qmt7o7LqxrLT3PYjF1NIZywbxIOQqAZUkqDoDdHQjAyl5mspRsl+OIBH0lZ0VPpdzt8jM3WI3Yw64WbeP28V97xlqAGbdeWwzF9dG/+OCFfPSyTi47dTVrmsO5DPBdO7v5+u+exesht/zxZEqVJ8xJBtjdBSJQ2a+2qy/dAizNSYoi03HI/h3pnhhcH/IX1AB3D8dZ1RSecAelOJHgdFxwVtasNquawhxTBlimoABYliRnEpzjYFEA7AS25UogACIhf0H2o1Jj8RQ+r4cLt67IHyvoy2U/6+zgayyRYiyR4sKtK3hhpzVzeWkFwBk61zTx9vM28tR1L6VzTRM+r4evvnkbLzl5VW6hkXd+6yGePDxM55qmitqYldpnLjLABSUQFXaUcD5IDUfVMkmWNycALs4Aj7uWhO8ejrGqKUw6U3j3p1Qi4a5rLuYPf3fpPI12dpwMsLtnu0gxBcCyJPm8HhpdDdx394wWPO+0R5s0AA74iM6gJGE0lqIh5Off33wmK+216jetrM9lRZxlOo8OxRiPp6kP+nOrqQ0vod6U8VSGjsYQn3jVKRMC1JZIkOFYilQ6/4fyzc8/vqLjhl3ZJad+cM67QFSYAXYWASiu6xZZbpySAPcywvVFZWDHhuN0NIZI2f3LnUVvSn1o3bSyYUIiolqsagoTT2V0Z0cmpQBYlix3Hdqu7sLJbE5gWzdJZrE+5GMsPpMSiDQNIT9N4QDb7LKHJtcfgrUt1i3BgwNRxhIpIiFfbqxLqTl7PJku203BWQnKmWn9nos38caz15fct5j7j+l6u35wNgtglDpupTXAfp+XhpB/SX0wEZkJp++5e2nzSMhH93Cc3+3qIZvN0j+eoK0hmGvruGmlVdJUSVeVauK0OOzVIjcyiaX1r1rExR0A7+4Zyy1GAeRqbyOTBFZ1QX9BP9pKjcVTuZpV59agezlRZ1LID3cc5OBAlEjQl88AR5dORiKRypScsAbQamduX/qF3wNwzgnteDyekvsWc/8xfdeFmzh5TRPnbGqf5WgLSyAmy/wXawr7l9R1EZmJsUQaj6dwyXBnUYnbnzhKNJkmkcrQGgmSsrvVdK5psl67xNoE1tu/j8dnkOCQ2jH7wjuRRbLCbsDeXh+kbyxRsHb9eAU1wPVB34x+sY8lUrmA18k6NriyKi2RAPVBH3d0dQMwMJbMZYiXVAY4lSmb+WkquvU5nYkw7kztmRta+PkHL5zZAIu01Qf5u5efxMUnrpzWqnJNdQFlgGXZymazPLRvgOFokkjAl1vKHOC8zSvYtKKekViSfrumvy0SzJVAdK5p4qePHM49t1Q4CYql1HVHFp4CYFmyVjVZtWwnrKinbyxBz0icVvs5ZxLcZF0g6mbYBWIklspldJ0A212P7PF4WNcawbTLMq66aJOrBnjp/EKOp8qXQBS3PjquJVxyv1LcAbBzq3IueDwe3nvx5mm/Lhzw8eunuhmKJid0FxFZ6h49OMTrv3YfUPrnrTHsZzSeYtBua9gSCZC2M8An2j2D+8eXWABsl74ttcy1LCyVQMiS1W5ngNfawViPq95rvIIA2OqBmZr2TOGxuDsDbP0IuTPAAJs7rNq5129bx3PXtxAO+Aj6vAxFk2Sz2SUxOzmezJStpd26qpGPvzK/JOl0uji4g+q5qP2dLeda3rx93yKPpHJ/eLaX796/tJbWlsXR62oHVqrdYEPYz0gslc8A1wf5m5cZeD1w2jprBc2G0NL6YJjPAKsEQspTACxLlpOtc2rael1LFDu9LSOB8oFZJOgnk5244lkp2Wx+UYvBaDIXNHnwFIzB4fTDbWvIN5Tf3NHA4weHuP4XOznhoz+v+iA4lkpP2k1ha0fjjI5bDUGv26f+5DkAPFvUSaSavemG+/nYj5fW0tqyOEbi+fKeUgsDNYT8jMZSub7eLZEgrz1zHbs/czkrGkL86+tP54a3bluw8c6FfA2wMsBSnkogZMn6/+zdeZhjZZU/8G+Sm32p1L71Ur2mq5tuduiGBhoRZHHGBXUc11HAfRzRcRTUEfdlVGbmNwPuAyo6IqKOIgLKKjRLN9Ab1WmaXmvt2lKVyr79/rj3vbnZqlJVSVUq+X6ep58nldwktytJ5dxzz3uO9nS1pNdhdCoCKGupwrHiMsCAnC2eKSj72dPH8bnfHcB7L1yFYX9EXYAnFosYDJkLwER7IO0o5O1rG3HnU8ex88goAHlBXJ2tMjMriWQKsURq2tXfTc65jUC1FNmibKGsbLRj+9omvHJq6QTAAss2aCYzLfB0WoyYisTVvt7Zo43fpExLXErEGalCQ4uIAGaAaQnb0CZnINe02NHoMGW0vCluEZySJShiocSDL8kL2n785FEAwHsu7AIAJJUsriGrA8IbzuzE6iY73nVBl3rdhWubENX0zR0JVG6LHtFRY7oDg7nW7xbbomwhrWm245XhQMVn5bOdHAsu9i5QhdMuvI3mOdvlMEvo84Xwmxf7odflTtlciuya5AZRIQyAack6e2UDfv+R7bhu+2o0OcxZJRBKBniaAE7U7RYzBEEbSF+3fRWW1ctdD0S/TIM+MwBudVnw8D/vwJpmh3rdeasaYNRkikcqeFSnGIM8XQa43iZnirQT8YpRiT1FlzfYMBWJL4mBGM8eHVMv944zAKbpaadPag/ABZfyd3DPSR+aneacv2VLkWTQwyzp2QWCpsUSCFrSNi+rAwA0OsxyCQTkgDMUS8Bi1Ge0/Mm2XAliT44Fsamjbtrn0S7yOnOFW70sVktLRXxp2EwSzlxRrwYwoxXcWkjURU+XrTXodXj0n3egxTW7TLBer8M7tq7AlZva57WPpSSC+YlQDG7b3Eo7FspbvrdTvXxyLD0C/IdPHIFBr8N7Lly1GLtFFWpyhgywXdPBps1VfDeXSmc3S+wCQdOqvFQM0RzU24wZ2btgND5jZ4KuJjkAPjoycxZNW0u8tiWd1X3/JWtwblc9XndGZ1H7uX1tOls6WsFTiiIxEQBP/yeiq8k+qw4QwpdfvxnbZ5k5Lie3UostWkFVqlhWBk8b3Hz5vh584fcvLfQuUYXTtl7Mfv8AmZ0SZtM/u9LZTAYEIwk8fHAIx0YCM9+Bak71vNupptVZjfBlBMCJacsfAHnxR5PDVNQfR21p6MoGu3q5023Frz5wgToZbSYXagLg4alKzgArJRAVtmCtXNQAuMJLIMTZg29euwV2kyFvjeNSq2Om8vKH4+h0y60iY4nc90ZcExSLRb3VwGGW+xu/945d2PGtRxd7d6gC1ca3G1U9t1XOAItFaaFoYtoOEEJXox3Hx2YOgEOaWrJiHreQM5e78aXXbYJOl84Av3jSh65P34fdx8fn/LilVkwJRDWps8oHML4Kbvh/yh/G23/4DABgWYMVVpOkBsDaIGa8wrPYtLAmQzEsb5AD4Cs2tebc/sEda/CqDS0A0iVd1cBmMrALBE2LATBVhTqbCakUEFRO3QejiWk7QAhum2nGNkHi8UpBr9fhndu6sLzeptanPeYdBgA8cvDUvB67lON8i1kEV03EyvdKXgT31OFR9fLyehtsJoN6YKYdVXuCnSFIYyoSR73NhGduvgxff+OWnNudFiNue/tZ2La6EV9+/WmLsIfl0egwo3c8NPOGVLNq49uNqp5bCWDe/IvjSKVScga4iIELdrOhqDZooVgCq5rs2POvV8x7XwExhU4OMsX6ueQ8Tl0/c2QUW255EI8fGi7F7hVdA1wtRABcyTXAfz08AgC4YmMrOtxWucZReQ+d0nQUOTgwuSj7R5UpHJP7nLe6LDAV+DxbjAb84n1bcfpyd97bl6KOOgtOarqkJKsou02lURvfblT1tL0rJ0NxBGPxojLANpOEQDSB3vHgtBnUYDSBDrelZIMr7GZJDbxFp4r5/H2+e1cvgNJNM1NLICpsalu5mCQ97CZDxQbAqVQKTx4ewTWb2/H9d50Dg14Hq8mAkDLwRTsG/Fe7exdrN6kCxRJJmKpocVuxOtzWjLUbldx3nRZH7X0qqCq5NYHp+V/7M/p94aK6E9hNBgQjcWz/xiN4/X89WXA7eVFd6boG2kwGBCKZZRXzWbz04km5ftg+h44M+dRaCQQgl8NUag3wkZEABibCuGBto3qdyAAfGwng3uf7AABXb27Diyd9XAhHqmg8WTDzW83alYV/wqlJBsCUqfY+FVSVtBPLwrEkxgLRohar2cwSgkoW7cg03SBC0eIyysWym9IZYNGaaD4LUMQp8FI1fk8vgqudPxENdpPam3kqElfHaVcC76AfAHD6svQpaqtRXgR3xa2P4/d7+gEA61udSCRTGa2tqLbVagDcUZfZ0zgST+Lhg0M4NORfpD2iSlN7nwqqSutbnVjf6si4rpiA1W4yoJhkWbGL6oplM6czwGIxXLFBy+FTfrx40pdxnQjWSrVYT60BrpESCABo0ozTPu3zD+DSCmqdJParVTOoQCyC0073EoMMKnkxHy2saKJGA+CsDPDoVATvvWMX3vr9pxdpj6jS1N6ngqqSSdLjruu3ZlxXbAa4GMW2VSuWQ1MDLAJff5FdHF79ncfx+v9Ol2uEogm1v2cxC/qKUYslEPI47fRp0oGJ8CLuTaYRfwR6nZylFmx5+gC7RDeLCq1lpoWVTKYQS6Rqsga4xWmGdkDnH/cNAMg/DIRqU+19Kqhq1WctUCuqC0QRQW0ymUIwlihZfS2QXnwHpDPAf9g7gCdenr6Lg/a0/O7j4+j3hTCqWdxRsgxwDZZANDnNGJ2KVuRq8eGpKBrsJhg03+hWkwGhrNe7XO3cWFO8NImzA7WYAZYM+owzJnv7JgAAq5vshe5CNab2PhVUtaSsLEexXSBmMhqIIpFMocVlnvO+ZbObDIjGk4glkhnz6r9+/0H8pWdIzcBme+DAoHr52tufwgVffxijmoly/nAch4b8885yiEC7VgZhAECzw4x4MoXxClwIN+yPoMmR+f6zmQxq/bpQrgD4n/73RbztBzx1vNSIALiWDmS1tGUQQ8oZHZYHkVCbnwqqWt++qkO9XFQXCHNugHfv8714+kh66MDAhNxMvc1lydl2rkTpRTCayJhWFIkncd2du/CBn+7Oe79v3H8QzqyyDW0G+J7dvbji1sex7jP3q6f85iIST0KnA4wG3cwbV4kmpxxgHhtN9w71BaP48V+PLmoG9JQ/jD/3DOUJgCUkkqmM07wiAJ4s4Zd8vy+E/9vTj6deGZ15Y6oo0XjtZoABoF2zEE6ccav0cee0cGb8VHg8HqPH4/m5x+N5yuPxPOHxeDZobrvV4/F8QPPzDR6PZ5fH43na4/G8tlw7TVRIV326RtJpmTkA1gbJBr0OE8EYPn73noyFEqIWtL3OmnP/uRKlF8FoHIFIAjoliDl8Su7j+4g3sxRiYCKEm+7dh/6JMN59QVfGbSNKBtiV9f996KWhOe9fJJ6EWdJDp6uhAFiprz2q6Qbymd/sxxf/8BJeyFp0qJVKpfDMkdGyBcl3PHkMQGanEyB9hkNUbPzv+7aqNcClnAoo3pMAhwksNWoAXIM1wACwrsWZc91EKFZVI59p7or5VFwNQPJ6vRcA+CKAr3g8nmaPx3M/gL8VG3k8njYAHwVwIYDXAPiax+Mp3TljoiKYNRnLYgJgbQbYZNDjgZfSJQYnlEzgoBIAt9WVPgMciCQQiMRxzeZ2rGnOrE0TZQz7+ybw5u/uxC+ePQEAWFafGYj3KqNvlzfYMq53FLnAL59ILFFT5Q+APJwEAAYn0uNTe33yZRFI5PP7vQP4u+8/jV8rvXhLLax05Ljp6g0Z12/urFMv33TVBmxd3QinWYJOV9rTvNqFlf5waRZZ0sIQ71tjjQbA779kNR668eKM61Kp4hccU3Ur5hvyEADJ4/HoAbgAxAA4ANwC4CrNducBeNLr9UYARDwez2EAWwA8p32wnp6eEuz27IXD4UV7blo4sWi6HGB0sA89qbFptx+aSv8hlPQpPNNzXP35zof34E2nubH/yCgkPXDq5CsYKVFGdPyUHLTuP/gyhv0hIGKAIZkZXDy75wAarBJee+eRjOtjk5nZ4ae8fTBLOlh1mX/Ug37fnN/zQyNjMCBZkZ+Zcn2WB3xyJv3g8fRB0MiEnA0+ePgo6iKn8t7v2R55CMmug8exyVb6HqMDwyOotxgQHTmJnpH09bZUCjajDsFYCgHfCHp65P23G/U41n8KPT2lWe1+6Gj6/7RrXw86XKWZhjgT/s2ev+Pj8ntieGgAPT2V2f+23K+z6JADyGPnkylg976DC/Y+Jlklfp6LCYCnAHQBOAigCcBrvV7vUQBHPR6PNgB2AZjQ/OwHUIcs3d3dc97Z+ejp6Vm056aFo/2AbVq/Ft0drmm335BKAb8+CQAwG42IG+1Y0RCD22bE88NJfK67G6n9e9DsjGDTxo0l28+Iwwf8ZRDWxnb4I/1Yu7wVY/ExHBqNQNLrEE+m0NTRhdXNdgCZAfB5p62H4eEh9TTeickkmp0WNNfXAX3p7KXZUZf3PT8yFcHH796Db715C1qc+bPa1r0R2K3xivzMlOuz7BgLAuhFxGAFMAkA6JuUDyocjW3o7l6W936NvYcAjKO5uQnd3Z6S75d5TxhOWyLv//mNZyfws6dPoKmlFd3dXQAAl7UfJpurJL+j/9vTj+88mX7/NXWsQPdy9zT3KB3+zZ6/RN8EgF6sWrkc3d1ti707eZX7dU6lUtDpjiKVAlY12fHKcAD/b5cfVqMBP73uvJzF01Qei/V53r07/3oaoLgSiBsBPOD1etcDOB3AnR6PJ9+35iQAbcGNE0DhwjmiMiumBEKn02HPv16BLcvqEEskMTgRRpvLgrNW1Ku1j5OhGFyW0mYLGpV6U/EcjXaTegre0yZ/jMYCUfVU9hf+dpN63zaXBZJm5dMpfwSNDnPOor9Cp8F/8cwJPH5oGD/669GC+xeJ114JhKipHZrM7f9793MnC06GK3c1oTyGO/9r8akrN+CdW1fims3t6nV2s5TRWWQ+vvyHlzJ+fuHEeEkelxZGpMYXwQHIWMewqUPOyb140oedR0bVyY9Um4r5VIwjndkdA2AEkO+v8bMALvJ4PBaPx1MHoBvA/pLsJdEcFFsDW2czYuvqRkTjSQxNhtHiMqOtzgJ/OI6pSBz+cBwua+l6AANAs9Jx4KAy4rbRYYb4M+1pTQfAYjW/yyrhv992Fi5Y0wiXVcroBwvIC7i2rm6Awyzho5etQ5PDVLATgPgynK6uNRJL1lzrJDHo5NRkJOe2Z4+N4buPvZL3fiGlRnY2o5N/9Nej6Pr0fUXdJxQrPITFaTHiS68/DY2aDhF2szSvkdi+YFTtgpJdO3rL71/ikI0KE44lCr6PxGfcXONZTrE+dcuyzJPSPr6Xa1oxn4pbAZzl8XieAPAwgJu9Xm8geyOv1zsI4D8BiO0+4/V6K2eUEtUc+ywWgZklPcLxBIYmI2hzWdT2OYMTIUyGY3CWOANsMRrgMEvwDsqn2hvsJoSUL7H1IgMcTGeA66xGXLOlHT+/YSt0Oh0+9up1GY/X6DDhzecsx/4vvAYfv3w9NnXUFQyAxeK6yDQBcDieqLkA2KJkvLVt5bRCBYKMceVLdDZfprc9chhA/mxzttmO4XaYpYzWerP1htuewlu//zTiBUbo+kLMmhVjKhLHbY8eLnvHgctvfQxnf+mhvLfV8iCMfJbVZy4U9lVgz29aODNGCF6vdwrAWwrcdkvWzz8A8IOS7BnRPM3mj75Z0iOVkoOctjqL2vJsYCIMfziOdS2lzQADQJPDhCPDAfWymOolMsCPHxrGcqXjg+jvKrzv4jV4/RmdOO+rfwEANNgzG67UWY04PppznIpwLIGdSnZvdCp/oCdvlyzp6OelQK/XwWLUq10XPntNN758X7qmvN5myns/EfjOpr+oXsngD06EsbJx+slUwWgiZ8rhdOxmA0755557EG3gpiLxvH2g5xNcV5s/7R/ErmNjuPnqbvU1Fb5yXw9+8ewJrGl24DWbyld/e3JMrvsPxxI5rfJqvQ9wtmZn5meYPYFrGz8VRMj8grh4fbOaAR7whcuSAQaAJmXyGCAHsGKMcaPDhPdeuAoPvTSERw7KnQeyA2AAMGu+7LIDJJdVylsD/MU/vIQnD8sBcL+vcJAUjiXUjGgtEbW2DrOE6y9ajWNfv0a9LVgg8BNZpNmUBhiUusTBIjLAoWgc1lmM4ZZrgOc2EnsskDlVUFsC8dPrzgOAOT92NfqPv7yMH/71KH6562TObcN++QCzFO2hxwLRGftM/2TnMbzvJ7syDlAYAGdqtJvx1Tdsxt+cLg9MYjlPbeOnggjpkb9NDjPWtzrVGt3hqUhZaoDFcwFyax631YiL1jcBkPsNf/yK9TBLety5U27L5soTAFuM6Y9vdrnHygY7xoMxnMoKsF7qn1QvT3f6PRRLwFJjGWAgPRhFm/1+8V8vBwBMFQj8xEKa2fTeFTXcYsjKdILRBGwFFsHl4zRL6POF8Lnfzn4JhvaU8GQ4lhE4iZr6F0+OL+pkvErSqYzafe5obrtFMc7cbJzf1+xtjx7GWV96CN960Jv3dvF34Kt/PIgHXxrCwYH0ZzyakPehVgdhZGtymvG281fga2/cDIDlPLWOnwqqOh/csQav3dI+84Yaot51ZaNN/dmg12HYH0EimSpLBrjRIZ+Oa7CboNfr8MkrPHjy069Ci9MCh1nChy9dq26brwuF9kste8HfuasaAMiLt7S0o0FP+SO448n8Y34jsWRNZoBFMGHXBMBumwmtLnPGQAhhKhLHMaXUZDZlB+KxBosIgEPRwovg8hEHQz99+jieOzZ9H+zc/UoH+VPhOLTlq+I99tU/HsQdTx2b1eNWKxHk9gzm9tgVNfbz7Rz+/HG5mdJ3HzuSkaEH5BZfsUQKl6xvhls5C6Q9EIvF5ReQGWCZ+FzbTQYYDTougqtx/FRQ1fnUlRvwX287a1b3ERm5VpecldXpdLAa07WUpW6DBqQzwI1K/a5k0KsZJQD46GXphW7ZtX1iH4XsDPCmDhdMkh57eycyrhdfoG84sxOAvKq/dzyEbHLngdr785DOAGf+Pu2m/AvL9vVOIJUCzl/VgPFgLG+QnC0aT6oL54anqcMG5AAnGJvdIjjte0GbDSyGdqGfPxzPKPvQPu4DBwZBUOv2ewYmccWtj+HQUDoQFgHwdN1WiiGC7ERSHrmd8fyxBBLJFLaubsTvPnwhgMzFmBEugssg/mbqdDrUWU3q55BqEz8VRADGlVO/ra50htRqMmBIaYlVlhIIpcyiwZ5/cRUAPHvzZfjf922d8bHsWQGS0aBHvc2Ys8p5eCqCqze3YduaRvU68QWrVes1wNkBp90s4Q97B/DU4ZGM6/f3yQcYVyt9eI+PBpGcYdW/9jWZqV9vLJFCIpmaVQCs7e6hzegWQ7u9PxJTf37fxath1xwU5KsfD0UTeGV4albPt9RpDxgODU3hgf3pA4OIcpvoxDBXkXgS56ysh81kUNvTpVIp3L9vQA3gnBYJbqv8d2Rc8/5Kt0Grvc+yVlejDdlDPOttRoyzD3BNYwBMhPS4zC7Ninyr0aDWyZajBKJZKYEQpRD5tLgs2Lq6seDtQr6Wb448i6FG/BE0O8xo0HQ0mAhlBmGpVGra3rPVTNQ9ZwecohvC2374TMb1J8aCcFkknNYpTxy86j+ewKd+vXfa59Ceop4pABYZxtksgtN295htABzSZLBFH+x3b1uJm6/uht2c/p2IBV5aH7prNy779mPzznguJaFY5pCSXcfTg0LEgUgkNv8A2G6WsKLBhn6lZOaxQ8P44F3P4yv3yYNKnBYJTosEvS4zAzwRikGnA2zm2vssaz308Utw8EtXZlzXVmcpahEqVS8GwEQA3nvhKvzLlR687fwV6nU2k0EdiuAqYqrcbKVLIAoHwMUqFAD7NQFWOJbAZDiOZqcZ9ZrnnAxnngaMJpJIpfKXXVQ7sdgse/JaoVrBfl8InfU2dLrT/UV/tbt32ucQAbBJ0hdcWCd84fcHAMzu/ffq7lb18myGcwBZGeBwHMFoXH1vaUfGhuOJnP62j3iHARTX27haRGJJLKtPly09f2JcPQNQsgxwTO7J7TBLaomNKMd54YRcH+yyGKHX6+C2mdSFXbuPj+EnO4+hyWHOGWhSa4wGfc5kyzaXpagafKpetf2pIFJYTQZ8aMfajC8Ki9GgfnmVqw0agIwpXnOVb+qdw5I5EvdXSqum05e7M9qmZQ/MCEfl/3MtBsAOJdDMzgCPKFnV7Ov7fCF0uq1ocZpx0bomuCzylL7psqAiAO50W2fMAB8bDcBlkdS2TcW4vZ57QwAAIABJREFUdEMLjn7tatTbjPMqgRidiiKWSOU9uEqlMk+1awPtYjpbVItQLJERAPvDcRw6JdcBpzPA82sbF4knYTYaYDNL6gGTeB+eUjLx4n3rthrVsohrb98JXzCWsfCV0trrLDjlDyM+zwMUWroYABMVoA12ylED3O624PTlbpzTVT/vx8p3itNukjDsj6hB1l8OnsK6Fge2r23KGOowGc4MwsJKTbBlnu2blqJVTXIJTHYVr/gduZV2dM8cGUXXp+/DwUE/ltVbodfr8NPrzscXX3caEsmU2hki23ggig///HkAQIfbMmMAPBGKYfu6plkfjIhFnLMPgOX9MUt67D4ud5BoLnCANjqVDoA/8vMX1Mv9vtxFldUqFE2gUxMAA8CV//4EJkKx9CK4EmSALZIeDrNBXZQoHlJk4Z0iALYZc3rb1mItfzFa6yxIpoCRKdYB16ra+4YjKpL2NHg5ukCYJQN+9+ELccGapnk/lj1PjajDIuHEWBCbb3kAgBywdNZbodPp4LYZ8ffnLQcA+LNKINS60xrMAK9tcQCQB6BovensZQDSZQD3axY7dbjTGbYuJYA+MRrM+/jff+KIOmmuo84641S1iVA87xCUYlhNBoRis5vaJgLmFpcZe3onYDUa8JrT8k8x09YaP/HysHq5f6L6A+BQNIFkUq6V105hvHCtXK9/x5PH1AVypagBNhv1sJnSZ3SyS1tWNMglOPU2U0ZmHsgtcSKZyIzXwvuV8mMATFSAWARmMujVPsGVyqDP7TYqyiJEqeZYIKq2XNPpdPjaG7cAAL75J29GZ4J0Brj2AuA1zXIA3JeVxfzGtVvw5rOXqcGEpPl9a+t/xe88kKcd2oH+Cdz+6Cvqz+11FkTiyYKnYFOpFCZDsbxDUIphM0nqwUyxQtEETJJeDbo9bc6MAPz+f7oIP3zXOQCAxzRB76omOy7f2Aq3zVjVGWB/OIbBiTC6//VP+O9HDgPIPFC86/qt2Lq6Ab97sU/NzpaiC4RZMsBhTrfi0wbA33vn2Wr7vjqbMadeXdvZhtLEWbDZDLCh6lLZ3+pEi0h8sTktUkbP3aVCW7uZSqUwMhVBU4GOE/doFm7VcgZ4ZaMN7XUW3Hx1d8b1Br0ObXUWTIZiSCZTGS2VtKfARdlMvsDz+jt3ZfwsAttCo4XDsSSiieS8MsBzqQG2mQxwmo0Z+yh0t7tw9kq5ZOd7jx3BgJI984fjcJolrGtx4OBA7lCIarH5lgex9Wt/AQDct28AAGA16nH6sjpcuUnOlG9Z5saRkXQJTKQEfYDNkh52s/x6plKpjABYlO0AclDnC8pjkw16HZY3WPHtt5w+r+evVqI3ci11LaFMDICJChAZ4Llm4BbC+crEt5kMT0UQiScLtlzTBsviFP18R7guRUaDHjtvugzX5Jkk6LIYkUwBU9F4RpZNO7xEBMD5As/sYQQiWzxVYHiGyEzNOQA2GjL61BZDjF0WNaX5uk9o90fUAQeicTgsEjZ11OFA/2ROh4il4BHvKbzp9qfy9sXO56Ay/c1iNOB3H9mO777zbADAOqWMRphPgJVIypPezJIBNpOEeDKFSDypfkaBdPkDIPe2DUQTGAtEkUim8O5tXepiW8okukLM9wCFlq7a+4YjKpIIgJ1laIFWKr+4YSsOf+WqvLdpa3sPDcoDCrT1igDw0VetzdlWlEDUYgZ4OiLw2/bVv+DPPUPq9dqsuigbyRd4alfjr262qwcdwQJ1wPMNgG0mw+xLIGJxWE0GtetJvoM/vV6Hm67aAAD47Qt9+NBduzEVltulbe6sQyiWwNGRpTcQ4z3/8xx2HR9XWx9mK/S7zO6X7WlzZvxcbECdj7iv2ahXD5iC0YSaAb4oa4FknXJaXyzCnOt7pxaIsrb5dumgpYsBMFEBIgDMt8CsUuj1uoz+rFqhaDqzcXBQHombnQG+8fL1MOh1mNQMwwhHa7cGeDqid3IgmsgYoaotjzFLeuh1+YMlhzkdjDz8iR3pDHCZAuC5l0BI6kFfoec+XxnO8sO/HsUf9w0inkzBYZbUIH90ia2s13ZOyFe/DSBncVkha1scGSUy88kwigV0Fkmvnl247s7nEI4noNcBP3nveRnbi/aGR0eCys/z7zFercQZLmaAaxcDYKICxIrr7DZHS8UnrliPNc1yfaA4XduUlQHW6XRwWaSMhSDMAOfXlrWY6NyuejzwsYszrtPpdLCZpLyBp2gx9tCN8n1Eaz1fgUU4i1ECEVYmm4lFfvn6Sxe63mGW1El6wSWWVTuqaVs3FZ5dAJzKqvawmSS1LMFpluYXAItRxkaD+jt/4YQP4VgSFqMhZ22CCHhfVnoR15dgyE61YgkEMQAmKuBVG1rhaXXiX670LPauzEmH24q7rt8KANjfNwEAaHXl1gO6rMaMVkmhGh6EMZ22rIECpy9z55zuBkT7sdwAcCoSxyXrm7GuVb5Ph1I7XKhrggiY8w2iKIbNZFAfo1ii5ZaI6aQ83UWA/GVBDrOkHjSFZ5l5XmzHNIvWCmXk800D3La6Me+QknUt8mvcWmeZVw2wWgIh6RHX1FVPhGJ5D1DdSgZ45yuj8n60OnK2IZmZi+BqXuWe2yVaZNvWNOKBGy+eecMK1uw0w6DX4eCgH3pd/qlzdVZjxjQ4UV/IDHCm7JHVhSb4WY0GhPIEnlOROJZrFiy1OC0wGnToHc8fAIvT33NtwWczSQjHkkgkU3nb5OUTjiXRaDcgqaQ19QW6n+QLyu1mKd0FY6llgDUBcKGuHGOB3AzwW89bnvd3e9G6JpwcC8JiMpQmAywZ4GlLB7O948G8B6giA7y3dwJdjbay9C+vFiaDKIFYWu9VKh1mgImqmEGvQ6tTDtREMJzNZTFmlECI4KUWu0BMR5/1uyvUUcNWoPZ2KhyHQ1NPbtDr0F5nLRwAz7Mfs8gGzqbPaSSekDPASrKxUPc/m9GQc5vTks4AL7UA+OR4enBJoel8olf2s5+5DF2N8oGMu0CN7bsv6MIDN14Ms6RHdD6L4DQHQWtbnPjRu+UezL3jobyfT+17clNH3Zyftxbo9TqYDHqWQNQwfsMRVbl25VR7oYb4LquUMQ45EktAp5t75rFWFOqpXKgEIhCRW4VpLau3onc8/9S4dPZvbq9Dg5Kxzpe5LCQSS8IiGfDq7lYAwFZlsVs2vV6XszjUrqkBnm33icXmC8awvEH+nPgLBMCjyu/RbTWp5QjuGeqzzdL8Aqzsg6Bm5WC2dzyUd8SxWTKoreu6mmw5t1Mms6Sf96Q+Wrr4DUdU5cTK/BZn/gC4zmrCuCZICsUSsEi5C2wIuPv929TLjfb8JRD52o8lkykEoomc0oH2OiuGJjLHLguiFGXuGWA5APYV2b0ASGeAt69rwitfvRqndRbOIopFWU0OM85c4caqJns6A7zEAuDJUAztdXIAXCgDfHQkgE63FSZJr/Y5nmmBolkyZPTsnS1xX9FDWgTAAGCZ4QzNsnoGwDMxG/VFlUA8cGAQB/onFmCPaCGxBpioyonMb3d77oItAOhqtGE0EMVEMIY6m1FZYc5j43zOW9UAvU4eL12oBMJqNGA8kFl2IFprObMC4DqrMSP7rhWJJ6HXFV6INpMG2+wzwGElAwzkH6+tZTfL271qQzO++ab0tDFJr1tyJRAToRjWtjhglvQFA+CXh6awVhly0dVox8BEeMYe4VaTIWNq22yNTMk9iRvscqDdaDer779CB0YiO60d0EL5mQz6vIvgnj06hrt3nYTdZMBNV3fj/T/dDQA49vVrFnoXqYwYABNVuRsuWo3udhded0buanUAWK90JTh0yo9zuxoQUlphUX52swR/OF4wA2w1STkBoFhYlZ0BdlklTEXieReqhWOJvK2uilWvBE35uhcUIjLAxXAoC6xsWaUQhUpAKtlEKIY6qxFOi5S3BCKZTOHIyBS2rZFLQm57+1l47thYwYWQgtWoLyobnkqlEMxzhkCUx4hsrknSo7vdhQP9kwUXuMUSSeU+DIBnYjbmX6T4rh8/o2bfL1jbtNC7RQuEaR6iKtdWZ8Gbzl4GY4GBGaJV0sFBP556ZQSToRhboE3j7vdvw79c6cmZACbYjLntx0RAaMu6j5i4lq/3bCSenFcdtugIMFZkCYQYu5uvtjSfFuV0fPb/yWqcX9ZzMUyEYnBZjbCbpbwZ4OGpCMKxJLqa5L7a9XYTrtjUNuPjWo0GDE6G8eCBwWm3u+uZE9j0+Qdy6sF7x0NocpgzPo/idX31xta8j3WeMh69gxngGck12rnvVW3ZSqFFqrT0MQNMVOM63VaYDHp87rf71es2trsWcY8qW3e7C93T/H5cViljsh6QronNLi0RC5Ymw3L5iVY4llCb9c+FzWSASdIXPcFszc1/BFB8948OpbY8+2yBdQ4jmBdTOJZAJJ5EndUIh1nKfzCiBES2WR4YikWB7/vpbuy95YqMrO2xkQB+/XwvPn75evz2hT4AcrClrd2Vf84MZD991Qb818OHcc3m9rzPefs7zsbR4QAPYouQb5Gidiw8ALzUP7mQu0QLiBlgohqn0+ngylrMwxrguWt0mBGKJTKywKECC9rE7z1fq7JIfH612DqdDg02E8ZmOZbYUmTWuUk5/T+Vle22Gosfwfype/bixl++OKv9KzXRA9tlNaLeZsqbMY8m5P+PaZYZee3BweFTUxm37fjWo/h/Dx9Gny+kTl9MZo2V6x0P5kyiPK2zDt9959kFz0C4LEacvtw9q/2sVWbJkFMD/Mqw3BP6B+86B+etasCj3lOLsWu0APgtR0Sos+bWcdLciIEZf/e9p9VSgEiB4SIiIzgZzg2A55sBBuTJf0P+yIzbaYMAc5GZwyalBGI0K8C2FDmCOZVK4Ze7TuI3SvZzPqLxJE6O5W8nNxPtyOkGuynvokGRJZxtAKw94Dk8JAfAiWQK//mXl9XrfcGYmmH2Z2WffaGYupiRSs+UJwMspgKuarLhvRd2qe3vqPowACainHZOxdaBUi7RHWJf3wT2KSOoC2eAlRKIUP4a4Plm4ltcloJt1rS02epin/PcLrnWdHvWIqFia4Azp6/NbmRzts/9dj8u+uYjeQ8kZiICYJdFkgPgPBlzcYBgKlBHX4j2gOflU34AwOOHhvGdhw6p1/uCMTUIm8w6ExCM5C6Mo9LJVwN8bDQAnU5eeLjD07JIe0YLgQEwEeV8yVqYAZ4zbXcIEdiJADg7sy4ywNl1h0BpMsBtLguG/DMHwAFNyUKxz7m2xYEDX3hNTneRQpPwsomDA0AOOubj0UPyaersALIYYl8dZjkA9kfiOUFRdI4ZYG0AfELJUGf/X8eDUfX5tBngaDyJaCIJh5mfxXIxG3MHYRwfDaKjzgqL0cA66irHAJiIcjADPHfa/sDDSvmBWBSWUwJhFSUQmRnQpw6P4OkjY/MeR93qMsMXjM2YkQ1GZp8BBuQDp+w2baub7fAO+tVTyYVoV9cfG5lb+YIgOpxMzSGTrM3Oi+l52X2co4k5lkBoDnj6fPL/9+hIAFajAY9/8lIA8qAS8f4QAfDLQ348e3QMQO7BKZWOWcptg9aXZ+GhkK9nMC1dDICJKGfxjdXEPw1zpc0Af/Kevbjw6w8jrHxxZmeUxDS17Azw2374DIDc12W2xBCUU5PT1wFrM8Amw/wOfq6/aDXiyRTu2zcw7Xa940GI2Hk0MHOd8nREacJEET2Pdx8fw+d/tx8p5Xcb1mTnRf129v6UogSi3ydn4o8MB7C+1YE2pYtGry+kHgCJEo7Lb30c7/iR/B5gAFw+NpMhp/zGH4nnLAoWstsb0tLGbzkiQjIrseEwTz/ilQqzmgy4QtOjtc8XQkj54szOrhr0OpilwsMShmYIXGciRucOT01fBqHNAItBCnPV6rKgxWkuKgO8TpmsVmzXiEJEBrjQVD2ta2/fiTt3Hlczv9rsvMgAZy+Ei80xA6wNgMcCUYwFotjT68OGNhdMkh52kwG7j42r2+QrhbGbGACXS73NBF8oph4MAcBUJKYemGYLzON9+otnT+DPLw3N+f5UegyAiSgn09jptizSnlSH77/rnIyfxantfDWF+WpmjQY5NVrMArbpOC35Syyyab/YSzHFravJPmNdb+94SB0tPO8AWJJ/X7OpAR5XssUhTYcOt9JxIXtRojhNXmiYTCHZZ1L+58mj8IfjeONZnQAAt82EXcfTAfDdu3oxOpV50GNnDXDZuG1GJJKpjM9HIJIoHADPY7HmTffuw/U/2ZURbNPiYgBMRHh1d+ZUqezeozR7V2omhY0FojAadHkDKJtJygkAxWnvfGN5Z0MM2sg33EFLnNrd0ObEpSVY+d7VaMPRGep6h/0RtLossBoNaoZ8rtIZ4OkD4EQyHXz4lH6/2gWKYqpdIGt/RAnEbCfzZS8o/OvhEeh1wDlKBw0xrtpo0MGpvOaPeIcz7lMoGKP5Ewc8Pk3v56lwHA5LaQPgEc1BzZ7eiWm2pIXEAJiIcP1Fq7Drs6+GpJczaZ1u2wz3oJnc/o6z8OXXnwZAXulfaEW51WRAKJaVcVRWpr/nwq557YNT7TIxQwY4IgeBd773vJL0gF7V5MDIVARfu78Hn7pnLwD5IODQkF/dJhJPwGKUg86ZTi2nUikMTBQeSWvUKzXAM2SAtY/hUzLAYeW5zZJePfAIZgU6c10EJ4hSCO+gH26bCQblc+ZUSo1anBZ8711nA8gNslgDXD71yvTF8WAMw/4Idh8fVzpv5P+dz/VMxctD6SEo2QNRaPEwACYi6HQ6NDnMiCsZsg6WQMybTqdTv0jHAoUD4OwSiEAkjlAsgU9duQGf/5tN89oHkcmaikwfGIoMsK1E7e82dsijor/32BH8ctdJ+MMxnPWlh3DFrY8DAJLJFGKJFEwGfVGjk7//+BFs+9rDau/gVCqF7z/+itplI5IQfXQzg8ef7jyWEXRrh3b4NCUQVqMBOp1OkwEu0AZtliUQ4vEuWif3Sg5GE2qdMZDuA+20SDhrRT2A3DpgZoDLR2SAx4NR/NP/voBrb38KQObv/At/m/4MzqXLCAAcHk4HvX3jhQ/kaGExACYi1Qd3rAGQzhzS/Iig1xeM5bRAE7JHB4sgTdtOba7sJgN0OuCrfzyI49PU5IoMsK1EC642d9Zl/NwzkA5CU6mUmlE1G/Wwm6QZV9c/qpQF9CutxPb1TeCrfzyID921G+FYQs3i/vjJo2qQnEim8LnfHcDV//GE+jjDmql448EoTk2G8bOnT6hZb7Okh0Gvy9kfEQAbZ5kBXt3swB3vORf//tYzYFeeQzvZTXzOXFYjzJIekl6Xs/CxVAcllEtkgH3BaEaZgjbr/u4LuvDIP+8AMPcuED5lUWW9zYg+3/xa/lHpMAAmItWnrtyAY1+/ZrF3o2qIwGo0EC0YAMsZ4PQXq6hjzZ7ONxc6nQ5izc2H7nq+4HZTkRgsRr16an6+tFlOILP0IBBNpEcLKxngmU4tpyD/J8TeiYD9uWPjeOv3n0ZQU0LyUv8kgPSCuHgyhYlQDP/x55dx/U92qdtNhGL4wM92IxRLqDXSIgssHl9Qu0DMMgMMADs8LbCZJLUlXUYGWATAFqN8xsAiYXAyc+EjSyDKp96W7vusbV+YnXUXCxGz3xfFmorGYZL0WNloR58vhDfe9iQ+/PPCn0daGAyAiYjKRAS944Fowel62YvgxOVSt7+arj522B9RW6aVyuOfvBSfunIDAODEaDrrNRmKqZPPzEoN8EwlECKIF6UO2jrZF0/6cHIspC7kHFN6+Po0/99r/vMJ3Prn9PhhAPi3B7x4/oQPQLrGF0DejLSaATbM/QBB/H4bHNoMsPwai2lvdpOEwazOH7NdeEfFc1mNMEl69PtCGNcshHNmLYITn8W5LoILROKwmwzorLeibzyE50/4cN/e6ftkU/nxk0VEVCbi9HU8mcKKhvwLC7NrYEUHAluJ21/pdYWDt6HJCFqdpa37XtFow6omO4D0GGBAznBruyoUMzpZ9G4QAUh2n14g3bpvRCkh0Qb8vVl1l+11hf+vNnPuorxIIgmTpM+Zejcbq5vllm+JRLoThRi4oFcy7w5zbgZ4Ps9J0zPoddjU4cLe3omMADi77ESuEZ97H+BgJAG7WUK7y5Lz+tLiYQBMRFQm2oVvYuhDNntWABiMlCcDnELh/qNDk2H1FH0piTKO45oAeCIYU0sgzJIeVpM0Y+9h0TtVBMCjeQLgaCIJt82oBsfa1lbZ3LbC9dV2k5ST6YvGkzDPofxB6/qLVgEANi9L10eLzK9OKe6wmw0Zdcqrm+3zek6a2enL3NjXN6EeOAG5B4t6vQ42oyGnO0ixpiJxOMxyGUw4xnHKlYLFRUREZaJtKba+NX8AbDVJ+TPAJV78NOKPIpVK5c0oDk2GcYmnuaTPB6QD4IwSiHB61KxZ0sNmzB1Hm02UQEwpBwfjeYLbI8MBNNpN6hjj6Uo+xOKnfGwmg3oQIkTjyVkvgMu2ptmBPZ+/Qu33C+Rmd7UHTFdvblNLSKh8Nna41AOwf3zVWrS6LNiyrC5nO5tZyukPXaxANA67WUKLq7RlRjQ/zAATEZWJduHb2hZn3m1sJgOiiaS60EpkmUq1+Ok/3noGmhxmebFXnkBzKhJHIJooSwbYrQSa2tO+E6F0BtgkFdcGLZmdAZ7KDYAvWteERrtZvU0EwKcvq8Pd79+mPt/Prjtf3a98HHkCnWg8OacFcNnqrEa13AGAWtsh4mCx79980xbc9vazsbKRGeByW6YZ+rO83oZ3bF2Z9yDRYZbmvghOKYFoKXGZEc0PM8BERGUisrhGgw5djflrgMU2e3t9GJ2KqnWGpcoAv+6MTgQiCdz8m30IRBIZLe4GJkK4+d59AIC2MpZAAECn24o+XwiTIW0NsLwIzh+J48RoECuyfkfJZAp37zqpLmgTAXB2Bvj9l6zGh3asxYH+SXiVvr+iz+89H7wARoMez958GZwWI6wmA+7b159xf9H+D5Azfdk1yTGlBrjUupQa6dOVjKM4UPC05j9YotJbphn6M91C0OxuLcX61a6T2HPSh6s3t6GVGeCKwgwwEVGZiBX8q5sckApkEEXLpWtv34n3/XQ3ApE4DHpdSVf/izZO2Rngf3/oZXX07toCNcrzYTMZYDHK/w+RafviH15S61zNkh6XrJdLL2579HDO/f9y8BQ+fe8+HBkOZOx/dsnE35+7Anq9Dqd11uHIcADHRgKYCMVgNxnUMcktLotakiLp07/blY22jFIDu8mQ83uKlikAPm9VA/70sYvwjq0rAaRb4LH2d+G0aRZEbup0FdzObpLmNAjjk8okRJtJQksZDjJp7hgAExGViU6ng9VowLoC9b8Ack7H3/boK5D0upKu/hcL6rIzWNphG+UIgHU6nZpVa3aasUmZECe6QpgkPc5f3Yj1rY68Nbva4QRAOvANx9MLifZ/4TVqJvXas5YBAO7fPwh/OFZwoIv2V5u9OFE+1V2eEoh8NrS51Nf6ruvPx3XbV3EQzQLSHthMV6JgNxvUswpzEYnLI5a/9LpNasY/kSy8MJXKjwEwEVEZ3XDxavz9eSsK3p6vI0EkXtqV4qKeODuDpa0zLjSqeb7EgIHOeis+fvl6AOkODWbJoO5Hvuza8dHMqVliEZyY/LahzalOWAPkbJ7LImFwIoRAJKFmvrOJVf4Xr2/Gd/7ujIzbXFYjgtGEWpM9MhXBruPjGZnCcrlgTRM+99qNZX8eyvTaLe1467nLp91meYMNBwf9eMR7ak7PMaSUt7xzWxeu3twOAAjP0P2EyosBMBFRGX388vW4cG1TwdunW5BVKiIQzO5uIBafffUNm8v23GLNV6fbqpYgiEyayL45CgTAx5SxxtdsbseGNqda+xuKJfCGMzvxp49dnJMpb3aaMTwVUVtP5SMmgL12c7s6jU1wKUMQ/Mp0uJ2vjMIXjOEjr1o7u/84LRn/9baz8PVrt0y7zb8oZTJPHxmd03NENMGu+Bz0+UKFNqcFwACYiGgRua2Fe9KWisj0Znc3CEYTsJsMeNv5hTPU8xVTBj90uq2wKaUY42oGWP4Kytd7FwB6fUHs8DTjv99+FraubsRL/ZOIJ5IIxRIFM9bNTjOG/REEo3H1+bK9/5LV+NxrN+KNZ3Xm3CbKD8QoZREId7qtOdtS7XCYJaxstKHfN7tBFk0O+QzIt9+SPtMg3rtX3Pp46XaQZo0BMBHRIlqQDLApfwlEKJaAtcQDN7KJUoImh1ntbCG6OqgBcIEWU/5wXO0kceYKN0KxBA4O+hGOJjJazGk1Oy0Y9kfU1lP5WIwGXLd9Vd6FiaJH8dNHRtEzMAm/sjCtUDaZaken24q+8eDMG2oEo3Fcv31VRo19ofduten3hXDTvfvU0eeVhp9oIqJFpM1ker98JY6NBFHq9VaFSyDiJR+4ke0TV3jwT//7Ata0ODCeNaUtXQKR23kBkBe9iSD2tE554dChIb8SuOf/JTU7zDim1A4XGj4yHVECcdNv9uH8VQ04t6sBel3pB5PQ0tPhtuKB/YO46d69uPHy9TP29U0mU/JZlqyDJ20AnEimYNBX57jrbz94CL9+vherm+y4oKnyFvwxA0xEVCHMkgGeNmfBoRlzZSuQAQ5Ok0ktlcs3tuKlL14Jh1lSg8iBCfk0cvYiODHyWNDW8TYpi+mG/RHEkylYpPz7LdquicedLZEBTqWAsUAU/rC8D6XsykFLU4fbCn8kjl88exIf/cULM24vSo6yzx5oD3pnGgO+lDXY5c/SV/7Ygz2DsysdWQgMgImIqpxBL7djy66zlTOpC5fZFIG4qKs1GuSg0mGRkEimMrpfJJIphGNJtXzDaZGg16WD50L7fc2WdvXyXMoWXJrhHb5gDP5wnG3JCACwTFMH/vSRsRm3F2U92Qdi2pKAmaYgLmXaDHmTrfLOoLAEgoi5VWXhAAAaN0lEQVRokf31U5eWZdCClt0sqVPmhFA0saCn9rXZWQBqVtWhadMmsmMhJRgW5Rt6vQ5umwn9ysr5QovgNnXU4e3nr8Bdz5yY0/9NlEAAcq2yPxxj/S8BkDPAWjOVL0ypY80z34fax6nmADihOaOzzFV5B5HMABMRLbJl9bYZ6wnny2HOzQAHFzgA1pYRfPSydeplkeXV7l8oJn95aoNPt82YzgBPU7rhUIJY4xyKqe0mSRlEIg/AGJ6KqI9Hta3DnfkZHQtEC2wpE+/n7AOo7nYXbvkbud9zMDb76XJLRSQmH8S+7+LVFVlCxACYiKgG2DStxiZCMdzwk104MjJVtgEYM3nPBV3q5XyDOoLRZMZtgNy/d2BCzgBPV7rhKFDzXAy9Xof/ettZ+Milct/f3vEQnAyACbkZYDHSu5B0Bjj3/bOyUZ5eWM0Z4Eg8AZNBj5uv7l7sXclrxk+1x+MxArgTQBeABIAbAMQB3AEgBWA/gA97vd6kx+P5PIBrlNs/5vV6ny3PbhMR0Ww4zJK6KOeXz53AQy8NAVi87gba9m/1ymVtRi2olEA4MgJgI3Yfl7eZLgOsBtThuWXXrjytTV2QN+yPsASCAOSW3Zzyh7ERroLbi/He+VodigO46g6Ak2Uv7ZqPYvbsagCS1+u9AMAXAXwFwHcAfNbr9V4EQAfgdR6P5ywAlwA4H8BbAfx3eXaZiIhmy2Y2IBBJYPfxMRwdSfcyLTQsoty0p0Tb6+TMmihvAIBQLDcDrB0bbTYW/vq6rLsFAPD6MzvmvH91mqCFGWASPvkaDz6hjPTWZoD3901gf99ExrbigK4hz7hzcQAXrOoAOKH2+q5ExXyqDwGQPB6PHoALQAzAVgCPKbffD+AKAF4AD3q93hSAEx6PR/J4PM1er3dY+2A9PT0l2/nZCIfDi/bctHD4Olc/vsZzk4wEcfhUENfevjPj+pDftyi/T+1zRpVpcXsPn8Rm+xQAYCIoBxen+k+gJyxnq1Nhv3qfob6T6IlmfL1kuP/dq4HgEHp6hua0f+Nj6eCmXhfke65Mltrn+VVtQDiexLcB7Dt8Eqcp79fX3nkEgPK+A7B3MITPPjAAABg8cQSjhswa2AGfHBzvPHAEnbqZO0osRUMjY9AjgZ6enop8nYsJgKcglz8cBNAE4LUALlYCXQDwA6iDHBxrh2SL6zP+QnV3L04tSE9Pz6I9Ny0cvs7Vj6/x3LQfiCF0LJBz/baNXejuzh0JXC63v90NnU6H7u62jOubHP2IGx3qa/vQYbmCbvOGdWq9pGf4FeCAnGXbuH4tPG2l7ZestSaexPn7Q+jzhfCP15y7oO3iaslS/Tyvbh5GX9iI7u5uJJMpAHIALP4vb/nlA+q2W07bmHN/53gQ+F0vfrR7DO+8dAu6muwLst8LyfpiGA5rCt3d3Yv2Ou/evbvgbcUEwDcCeMDr9d7k8XiWA3gYgDaf7wTgAzCpXM6+noiIFpnNnD+AO2O5e0H346rN7Xmv73Bb0K8pgfArPVTrNH15tZ0y2lzl7ZphkvT45fu3IZlMQV+lk7po7s5f1YA/7B1AIplSW/NpNdhNar/rfLQ17KOBSFUGwJVeAlHMno0DEIUtYwCMAF7weDw7lOuuAvAEgCcBvMbj8eg9Hs8KAHqv1ztS4v0lIqI5yF7ItUr5wl3ZaFuM3cnR5rJgcCIdSPRNxlBnNWbU/TY7zepll3Vh6nIZ/FI+W5a54Q/HMTARwuFTUzm3N9hz6361tLX3U5HqrAOOxJMVHQAX8xfkVgA/9ng8T0DO/N4MYBeAH3g8HhOAHgD3eL3ehLLNTsiB9YfLtM9ERDRLYjHZReua8G9vOh0uqzx+uFL6czY6THj+RPqkYb8/npMV0wbAlbLfVJtEgOsLxnCgfyL39jwL37S0Q2FEt4hqE40n1XHnlWjGANjr9U4BeEuemy7Js+0tAG6Z914REVFJ2ZUaVrtJQludXD6wWB0g8qm3meALRpFKpaDT6dA/GcMF6+oztmnRBMBEi8mtlOZMhGLY2ysHwJJep75/40l5mVRzgfesTqdDe50FAxNhTASnH6ixVEXiyUVrs1iMys1NExFRyYh+nJX6hVRvMyGeTMEficsT2AJxdfGboK0HJlpMojTHF4xhn9L+LJ5MIZqQ2/cFo3G0OM24/58uKvgYj35yB4DqzQBXQw0wEREtcaLhfqV2M6hXTilvueVBnPKHkUJu9kyn0+Gb127BfR/dvgh7SJQmhrcMTYYxMBFWSyI+85v9ePDAIAKRBLYsc6PJUfishVkywGo0VG8AHFviJRBERLT0Ka12KzaL2mBP79fRkYByXW4d5VvOXb5g+0RUiEv5HL18Su5N3dVow1ggint29+Ke3b3oqLNgXatjxsepsxqrNwCugklwRES0xP39ecvx7m0r8cEdaxZ7V/LSdnv41oOHAMhlEUSVyGKUs7eHhuQOEF1Z5Tr9E+GiauzrrEb4gksvAP7T/kH4w9PvN0sgiIho0dlMEr7wutPgtFRoBlgT7O45KXeDmKmVFNFiqrcZcWhIzgBn16sD6YWn06mzGbHr+Dh++vTxku9fuew56cMHfrYbn/71vry3p1IpJJKpim+DVrl7RkRENaPBkRvsMgCmSlavGXbR1ZTbTzsQnbm/b53ViLFAFJ/77X74KrwbRCKZgj8cwx/29gMA/nJwCD/ZeQzvveM53PXMcaRSKQz7I7jg6w/jk/fsQTCagNlYuTXADICJiGjRuSxGfPcdZ2dc57ZVZraaCAD+4YIu9fKy+nQAfMNFqwDIC+Rmoq3J39Ob20+4kvzbA15svuVB3LlTzlaHY0n86+8O4OGDp/CZ3+zHybEQHnxpEAMTYdz7fB+i8SQuWNO4yHtdGANgIiKqCJ42Z8bPRgO/oqhyvfmc5fjYq9fhio2tGZMWL1jbBAA4s4gx49oA+EVlEMywP4Lr79w1Y0b44OAkfrLz2Ox3fJZeHvLDH47hsUPDAOQBF284szNnuwP9E2q3GQBY2+LAJeuby75/c8W/LkREVBG0QURXPcsfqPJ97NXr8f13nYN2t0W9bktnHZ789KvwoUvXznh/tyYAPj4qdz/54RNH8OeeIfz82RPqbYlkCgOaUeEAcM+uXnz+/w4grvQeLodYIonLb30c192xC8vrrQCAW/5mI153Roe6zVffsBmSXof9/ROIxNP7csNFqyp6YiPboBERUUVwWtJfSbf/7bJF3BOi2XFpFpfWWY1oLPLsRZ2mzGdQKZnQ6+WgMalMkwOA2x45jG8/JHdH+cUNW7FtTSMC0QRSKcAXik3bb3g+REvCZ4+NAQC2rm7AP1y4Cvs05RpbltVhdbMd3sEpdLc7odMBD914MdY0z9wGbjExA0xERBWhkleME83kZ9edj+u2r4I0i9IdbQmEqBk2KFnTXcfHEYjIi+yeODyibveXniEAUG8bC5Rv8dzBQX/Gz2Jhar2mb3dXkx3tdVac8ocRiSdhkQxY2+Ks6OwvwACYiIgqRKV/YRJNZ/u6JnzutRtndR9t5nhoMpJx26PeYdz8m30527XVyeUWwWj5A+BDWQGwCNgb7emMs8MsodVlxuBEGOFYAmbj0ggtl8ZeEhEREVUZ7THfVCSu/hNeVgZtGA25B4dTC5ABHgtG4bYZ8UZl0Vs0LpdlZI9Ub3NZMDIVQSCSgKWCxx9rMQAmIqKK8a03n467rj9/sXeDaEGIbO6KBrmN2tBkGJOa0cii5EAb5AYicqeFoNJxYbSMAXA0noTNaMClG1oAAFORzOlvmzvrAACtdRYkU0DveHDJZIC5CI6IiCrGm86WF7/19Awv8p4Qld+GNhf+8I/b4QvG8I4fPYOhiTAmNAFwvRIAjwaiOGO5Gy+e9KmlD6IGeLzMAbDZaMDGDhcAYPu6dFuzvbdcAZNS79zmkgP546PBjLrmSsYAmIiIiGiRnNZZh1eG5VKHIX8Yk+F0ACxanI1ORbBtdSNOjgURUANgOQNczhKIaDwJk0GPNc0O7Prsq9Gomc6orUsWXSgGJ8NocZWnI0WpLY08NREREVGVEhnUwYkIJkIxdQriVCSOQCSO8WAMzU4zbGYDgkrgKwLhcpZAROIJmJTuLE0Oc8GFqtoWhqwBJiIiIqIZ2c0SbCYDvvGngzg0NIWrTmvDxeub4Q/H8exRuQfvWSvqYTNKCETjSKVSC1MCkUiqAfB0nJpsMGuAiYiIiKgoQc0YYU+rE5OhOPp9ITx2aBgmSY9zuurlDHA0gUg8CTEnoxwZ4JNjQfxk5zGEY8mi+nNrM8DmJZIBZgBMREREVEFO66xDz4Af/b4Q7tndiys2tsJiNMBukhCMJtTsLwCMBSLTPNLcfPzuF/HcsXEAwA5P8wxbAxajASaDHtFEcslkgJfGXhIRERFVsfs+uh31Su3vhnYXHBY52J2KxPGWc5YDAGwmg1oTDADNTjPGAzGkUqmCjzsXcc0YZlORk+1EFpg1wERERERUlE0ddXjq05fhwRsvhsMswWFOn6TvcMuL5OxmOSi+b+8AAODyja2IJpIZwzNKwahPh4dmY3EBrQiAmQEmIiIioqJZTQasb3UCyKyrbVBGD9tMBpwYC+LWPx/CxnYXzlpRD6D0rdAkzeS54jPAcva6mJrhSrA09pKIiIiohnS6repltzJcQrRHA4B/f+sZal/e0gfA6fCwmC4QgKYEosiM8WLjIjgiIiKiCrOs3qZe1uvljGyjPT1kYm2zQ+0cUeoA2KhPZ4CLzeiOTsn7oC3dqGTMABMRERFVmOUN1pzrmpzpAFiv16kZ4FK3QtOWQBQbAHva5NKNNyvjzCsdA2AiIiKiClNnNeZc16QZRQwADcrP/3LPXhwdCZTsuSX97EsgvvbGzXjm5svQoky1q3QMgImIiIgqjE6nQ5PDhMs3tqrXaTPAgLwoTvj8/x0o2XPHk0n1crGL4OxmCa1LJPgFWANMREREVJF2ffbyjJ8bszLAOl26VMFawvZj4ZgmAF4iXR1mqzr/V0RERERVpt4mB8AtWZlg7W2lEImnxzIvlbZms8UMMBEREdESoNfr8ON/OAeeNlfObYFoIs895iYS12aAl0Zbs9mqzrCeiIiIqAq9akNrRo/ghz9xCcySHr5g6TpBaEsgjJqOENWEATARERHRErW62YFtaxoxEYqV7DG1JRB9vlDJHreSMAAmIiIiWsLcViP29k7gNy/0luTxIrEkzljuBgBctK65JI9ZaRgAExERES1h40E5+3vjL/eU5PEi8QQ2dbhw7OvX4OyV9SV5zErDAJiIiIhoCetwy/13VzbaZtiyOJFYEuYqXfwmMAAmIiIiWsI+e81GrG6yw1jk0IqZhOMJWErYV7gSVff/joiIiKjK2c0Stq1pxFhg/p0gYokkYokULEZmgImIiIiogjXaTRgPRpFIpub1OKNTchDd6CjdYI1KxACYiIiIaIlrsJuQSmHe/YBHpiIAgCZH7rS5asIAmIiIiGiJa1AC1vmWQQz7GQATERER0RJQbzMCSLdEm6thJQPc4mQATEREREQVzGaSAADBaBz3Pt+LJw+PzPoxTo4FcWjQD6D6M8DSYu8AEREREc2PVenaEIgk8PG75YEYx75+zawe47LvPIZoPAmLUQ+riV0giIiIiKiC2ZSAdffx8Tk/RjSeBABcXKXjj7WYASYiIiJa4kQA/NQr6dKHVCoFnU5X1P1F8PvhS9fgk6/ZUPodrDDMABMREREtcaJkoW88pF43OBnGzldGi7r/uNI+rb3OWvqdq0AMgImIiIiWOFED7I/E1eve8z/P4e9/8DR6BianvW8ymcIHfrYbANBU5QMwBAbAREREREucZNDDZMgM6w4qHR3+uG8Afb4Qbrp3r1rqoNU/EcILJ3wAgMYq7/4gsAaYiIiIqApYTQZEQ7kB7lOvjOLZo2N45ugYrj1rGc7pasi4fWAirF5utDMDTERERERLhFgI1+lO1/GaJT0ODfpxfDQIAPkzwL503XBzlQ/AEBgAExEREVUBsRCuw21RrztvVQP8kTgGJ+Usb75JcX1KAHzfR7fDaTEuwJ4uPgbARERERFVALIRz29JlDOevyix3GFO6PWj1+0Jw24zY1FFX3h2sIAyAiYiIiKqAKIFwmtNLvDa0uTK2GQ9kBsB/2NuPnz19AutbnOXfwQrCAJiIiIioClhNcuDrsKQD4NXN9oxtxrMywB/5+QsAgDec1VnmvassDICJiIiIqoBdyQDbNRngVpclY5vsDDAAOMwS3lhjAfCMbdA8Hs8/APgH5UcLgDMAvAvATQACAP7k9Xq/7PF49ABuA3A6gAiA671e7+Ey7DMRERERZdm+rgn37x+ET7PQTZRFCGOa22IJuSPE+y5eDbOUuV21mzED7PV67/B6vTu8Xu8OALsBfBTAtwBc6/V6twPY4PF4tgN4PQCL1+vdBuDTAL5dvt0mIiIiIq23nrsCH71sHW64aJV6nU6nUy9v7qzDidGA+vNUWJ4a57TU3liIov/HHo/nHACbAHwBwIe9Xu8R5aYnAWwH0ALgTwDg9XqfVrbP0dPTM68dnqtwOLxoz00Lh69z9eNrXBv4OtcGvs6ld9UyIDJyEt+5qgN9/ljG73dDPXDP/iCe33sAVqMeA345G+wfG0ZPT7jQQ85bJb7Oswn5b4Yc/A4DsHk8ng0AXgZwNYAXAbgATGi2T3g8Hsnr9ca1D9Ld3T2/PZ6jnp6eRXtuWjh8nasfX+PawNe5NvB1Lp/MX6ucs7z8zLX41f7dgLsD3SvqkeibAHAS61etQHd3W9n2ZbFe5927dxe8ragA2OPxuAFs8Hq9jyg/vxPAdwGMA/ACGAFgB6DtoaHPDn6JiIiIaGH97sMXYl/fBLrb5ZZoPQOTOGtFPfxKCYSLJRAFXQzgz5qfrwJwDYAggHsB/A+ADQD+BsDdHo9nK4B9JdxPIiIiIpqD05e7cfpyN1KpFJwWCQcH/AAAf1gugaiV6W9axQbAHoj8uawXcu1vCMBdXq/3gMfj6QFwucfjeQqADsB7SrqnRERERDRnOp0O3W0u9AxMAoCaAeYiuAK8Xu+/Zf38AwA/yLouCeADpds1IiIiIiqlDe1O/Ob5PgDaDHDtBcAchEFERERUI1pdFvgjcYRjCU0GuPZKIBgAExEREdWIOqsc7E6GYvBH4jBLepik2gsHa+9/TERERFSjRAA8EYrBH47VZPYXYABMREREVDPcNjng9YVimAzHa7IFGsAAmIiIiKhmqBngYAz+cLwmF8ABDICJiIiIaobbagIgZ4BZAkFEREREVS+zBjgOh5kZYCIiIiKqYk6LBJ0OmAhGMcUSCCIiIiKqdnq9Do12M547No5JlkAQERERUS344I412HlkFMFoghlgIiIiIqp+l6xvUi8zACYiIiKiqre8waZeXlZvm2bL6sUAmIiIiKiGmCWDevm8VQ2LuCeLhwEwERERUY2pVybCNdhNi7wni6M2Cz+IiIiIatjDn9iBWDK52LuxaBgAExEREdWY+hrN/AosgSAiIiKimsIAmIiIiIhqCgNgIiIiIqopDICJiIiIqKYwACYiIiKimsIAmIiIiIhqCgNgIiIiIqopDICJiIiIqKYwACYiIiKimsIAmIiIiIhqCgNgIiIiIqopDICJiIiIqKYwACYiIiKimsIAmIiIiIhqCgNgIiIiIqopDICJiIiIqKYwACYiIiKimqJLpVIL9mS7d+9euCcjIiIiopp29tln6/Jdv6ABMBERERHRYmMJBBERERHVFAbARERERFRTGAATERERUU2RFnsHys3j8egB3AbgdAARANd7vd7Di7tXNFcej8cI4McAugCYAXwZwEsA7gCQArAfwIe9Xm/S4/F8HsA1AOIAPub1ep9djH2mufF4PC0AdgO4HPJreAf4GlcVj8dzE4C/BWCC/Hf6MfB1rirK3+w7If/NTgC4Afw8VxWPx3M+gG94vd4dHo9nLYp8bQttu1D7XQsZ4NcDsHi93m0APg3g24u8PzQ//7+9+wvNKY7jOP7e0yylTcqfUnPpeysUDdsuaLhRSrmQcKVcSIrSdqPciVoUTSvEjWkXVrOVqPmXFOWCr5Jy4Yb5txWxxcXvPHb0PDfHo/PM73xed7/f87v41qed8z3n+W7bBYy7+wZgC3AGOAV0J3sNwDYzWwl0AGuAncDZOtUrfyG5aZ4HviZbyjgyZtYJtAHrCDm2opxjtBVodPc24DhwAuUcDTM7AlwA5iZbWbKtOJtn7UVogNcDNwHc/SGwur7lSI2uAT2p9RSwivDmCGAY2EjIfdTdf7r7G6DRzBblWqnU4iRwDnibrJVxfLqAZ8AgcAMYQjnH6CUhsxLQAvxAOcfkFbA9tc6SbbWzuSlCA9wCfE6tp80s+tGPWLn7pLtPmFkzMAB0Aw3uXv57fhPAfCpzL+/LLGdme4B37j6S2lbG8VlIeCGxA9gPXAFKyjk6k4TxhxdAH9CLfp6j4e7XCQ81ZVmyrXY2N0VogL8Azal1yd2n6lWM1M7MWoHbwGV3vwqkZ4aagU9U5l7el9lvH7DJzO4AK4BLwOLU58o4DuPAiLt/d3cHvvHnDVA5x+EQIeflhN/FuUiY+S5TznHJcj+udjY3RWiA7xFmkDCztYSv3OQ/ZWZLgFHgqLv3J9tPknlCCHPBY4Tcu8ysZGbLCA8+73MvWDJz93Z373D3TuApsBsYVsbRuQtsNrMGM1sKzANuKefofGTm7d8HYA66ZscsS7bVzuamCKMAg4S3SfcJQ9Z761yP1OYYsADoMbPyLPBBoNfMmoDnwIC7T5vZGPCA8KB3oC7Vyr9yGOhTxvFw9yEzawceMZPfa5RzbE4D/UmGTYRr+GOUc6yyXKsrzuZZqP4VsoiIiIgUShFGIEREREREflMDLCIiIiKFogZYRERERApFDbCIiIiIFIoaYBEREREpFDXAIiIiIlIoaoBFREREpFB+Aac3tjdtdDd8AAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 864x576 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.figure(figsize=(12,8))\n",
|
|
"plt.plot(mean_df['time_step'],mean_df['Z']/mean_df['P_Ext_Markets'])\n",
|
|
"plt.title('Z per External Stock Market Price')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 25,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# plt.figure(figsize=(12,8))\n",
|
|
"# plt.plot(df['time_step'],(df['TDR_Int']-df['TDR_Ext'])/df['TDR_Ext'])\n",
|
|
"# plt.title('Availability of TDR arbitrage opportunity')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# plt.figure(figsize=(12,8))\n",
|
|
"# plt.plot(df['time_step'],(df['Zeus_LT']/df['Zeus_ST']-1))\n",
|
|
"# plt.title('Availability of LT vs ST arbitrage opportunity')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 26,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr style=\"text-align: right;\">\n",
|
|
" <th></th>\n",
|
|
" <th>P_Ext_Markets</th>\n",
|
|
" <th>Price</th>\n",
|
|
" <th>Price_Signal</th>\n",
|
|
" <th>Price_Signal_2</th>\n",
|
|
" <th>Sell_Log</th>\n",
|
|
" <th>Trans</th>\n",
|
|
" <th>Z</th>\n",
|
|
" <th>mech_step</th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>63</th>\n",
|
|
" <td>24911.742439</td>\n",
|
|
" <td>101.206349</td>\n",
|
|
" <td>101.153044</td>\n",
|
|
" <td>100.510046</td>\n",
|
|
" <td>1.083333e+06</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>1.968254</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>64</th>\n",
|
|
" <td>24912.741288</td>\n",
|
|
" <td>101.243386</td>\n",
|
|
" <td>101.188759</td>\n",
|
|
" <td>100.531805</td>\n",
|
|
" <td>1.138889e+06</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.000000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>65</th>\n",
|
|
" <td>24912.468684</td>\n",
|
|
" <td>101.283069</td>\n",
|
|
" <td>101.225359</td>\n",
|
|
" <td>100.554042</td>\n",
|
|
" <td>1.111111e+06</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.000000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>66</th>\n",
|
|
" <td>24912.923774</td>\n",
|
|
" <td>101.324074</td>\n",
|
|
" <td>101.264025</td>\n",
|
|
" <td>100.576824</td>\n",
|
|
" <td>1.083333e+06</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.000000</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>67</th>\n",
|
|
" <td>24913.678203</td>\n",
|
|
" <td>101.367725</td>\n",
|
|
" <td>101.304258</td>\n",
|
|
" <td>100.600176</td>\n",
|
|
" <td>1.083333e+06</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>21000000.0</td>\n",
|
|
" <td>2.000000</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" P_Ext_Markets Price Price_Signal Price_Signal_2 Sell_Log \\\n",
|
|
"63 24911.742439 101.206349 101.153044 100.510046 1.083333e+06 \n",
|
|
"64 24912.741288 101.243386 101.188759 100.531805 1.138889e+06 \n",
|
|
"65 24912.468684 101.283069 101.225359 100.554042 1.111111e+06 \n",
|
|
"66 24912.923774 101.324074 101.264025 100.576824 1.083333e+06 \n",
|
|
"67 24913.678203 101.367725 101.304258 100.600176 1.083333e+06 \n",
|
|
"\n",
|
|
" Trans Z mech_step \n",
|
|
"63 0.0 21000000.0 1.968254 \n",
|
|
"64 0.0 21000000.0 2.000000 \n",
|
|
"65 0.0 21000000.0 2.000000 \n",
|
|
"66 0.0 21000000.0 2.000000 \n",
|
|
"67 0.0 21000000.0 2.000000 "
|
|
]
|
|
},
|
|
"execution_count": 26,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"# vol_df = df.rolling(window = 21).mean()\n",
|
|
"vol_df = pd.DataFrame()\n",
|
|
"rolling_days = 63 # days = number * mechanisms\n",
|
|
"for n in names:\n",
|
|
" vol_df[n] = mean_df[n].rolling(rolling_days).mean().shift()\n",
|
|
" \n",
|
|
"vol_df = vol_df.dropna() #(vol_df.iloc[0:rolling_days])\n",
|
|
"# vol_df[n].iloc[:rolling_days], axis=1)\n",
|
|
"vol_df.head()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 27,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Text(0.5,1,'Rolling Average of Z')"
|
|
]
|
|
},
|
|
"execution_count": 27,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsIAAAHbCAYAAADBI/wXAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGgJJREFUeJzt3Xu05Wdd3/HPhAmJCQMNKigYTZfId02rRhm6uJhAaEEgeEPrjRUvgFqQ2IhtRdMEW1dcFQqytBiF4KxwMdYmNDVQgVAMSoKUcgBFPfnGWK14LUbIpcMQkkz/2Ht0M8wtczuTfF+vtWbN7N/vt3/nmdnPmvOeZ559zqZdu3YFAACmOWGjBwAAABtBCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAI23e6AEAHC1VtSvJ7yW5O8muJKckuS3JC7v7Awd47p8k+edJHpTk1d395VX1k0lu7u43HMExfl6Sjya5vLtfeKTuu5Gq6vQkb0tyVxZ/1r+9cu7Xkzxi5fLPSfLoJGd39/XHdKDAeEIYuL97Snf/ze4HVfWvk/ynJE+4tzfq7pceyYEtPT/JryV5TlX92+7+26PwMY61pyT5q+5+6p4nuvvc3b+uqgdk8Xv/SJIbjt3wABaEMDBGVW1O8sVJ/nb5+MQkP5Pkn2Wxavw/k7y4u2/fx/MvT/J73f2KqtqZ5KeTfG2SL0zy8u7+hWXc/cck35Dk1uU9/1F3n7OX+52Q5F8k+cEsVp5/YHnPVNV7k7yyu9+8fPyyJOnul1TV85fPOSHJLUnO7+4bl+N7aJIvTfLWJL+U5OeTbFmO8cNJvr27d1bVuUletvx9fzjJU5Oc1d1/sq/772X8P5DkXy7v8ddJzk/yyCSXJHlIVV3X3U/Z64ux8MosVofP6m7f3Qk45uwRBu7vrquq362qv0hy0/LYc5c/X5RFiJ25/HFCFhF7ME5K8jfd/cQstlC8qqpOTvJ9SbYl+fIsVp2/dD/3eEYW2zX+R5LXJzl/GetJctnucS7j+rwkr6uqJyf5niy2Enx1kpcnuXrlnqd09z/u7pck+f4kr+/uxyd5VJJ/mORZVfW5Sd6Y5Lzu/qok12URsDmI+2d53T9N8qNZrLifmeSKJP8tybuTvDTJe/YXwVX1vCTfnuQbu3vHfv6MAI6aDQ/hqnpcVb17P+efUVXvXv74zaq6u6q2HsMhAvdtT+nur0zydVlE53Xd/X+X556Z5Be7+9PdfU8WWyaeeS/u/WvLnz+YRRifmuTcJG/o7p3dfWeS1+zn+S9M8svdfVeSa5bj+9bluV9N8oSq+oIkT09yU3f/YZJnZRG1762qD2cRqqdV1UOXz1vdZ/uSJB+rqh9N8gtZRP+DkjwpyR909+8kSXe/Pou90zmI++/2jCS/2t0fW97j8ixi+oz9/H6TJFX1xCSvSvLs7v7oga4HOFo2NISXfzm/LsnJ+7qmu9/e3ecs/1vxrUle1t3rx2iIwP1Ed38wyYuTXF5VZywPPyCLN9HtdkKSE+/FbT+5vPfue2zK4g1im1auuXtvT6yqL8kimr9j+ca8zmK72ouX99yR5Mokz8liZfh1K2N+Y3d/1XI19zFJHpvk48vzd6x8mF/JYrvF/8kiPD+4jzEmyT0Hef+sXLfndoZNOcCfX1V9cZL/muRF3f2+/V0LcLRt9IrwHyX55t0Pquorquq65ervm6vqISvnvijJdyX59xswTuB+oLt/Jcn7s4jCJHl7khdW1YnL/bovSvLOw/ww/z3JeVV10nKbw/fms4MxWewNvr67H9ndZ3T3GVlsqXjMcsU0WWyP+J4kX5Pkzctj70jynVX1hcvHL0jyrn2M5elJfrK7f3X5+HFZBOwNSR5dVV+ZJFX1LUn+wXKcB3v/t2cR8Z+/vMdzs9hPfPM+xpKqOiWL7RPbu/tN+7oO4FjZ0BBevgnk0yuHLstileCcJL+exf6z3X4kyau6+1PHboTA/dD5Sc6tqqdn8aauv8rizWLrWaxmXnCY9788izfIfSjJe5PcmeQz9sBW1QOz+GoRL189vtz68Cv5+1XhtSxWlK/q7p3LY9dm8Sa3d1bV72axYvzN+3iz2YVJrq6qj2SxReM3kzxq+ZUpvjPJG6rqg1kE811Jdhzs/bv7nVn8g+I3qur3swj2r1tuMdmXb0ny1VnsU/7wHj+evZ/nARwVm3bt2tg36i7/i/I/d/fjq+rWLD55JItPSDd193OXKzU3Jjmzuz+5QUMFOKCq+tokD9u94llVP5tk5/LNa8eFqnpwFm8U/HfdvaOqHpPFSvYjfPUGYJLj7cundZLv7u4/raqvyeLL/SSLd1/fKIKB+4DfT/Jvlu+BeECS38niTXHHje6+raruTPK/qurTWfzP3LeJYGCa4y2EX5jFf9U9YPn4+cufK8n/3pghARy87v7zJE/b6HEcSHdflMWqMMBYG741AgAANsJGf9UIAADYEBu2NWJtbc1SNAAAx8S2bdv2/PrpG7tHeNu2bRv54TmK1tfXs3WrbwA4nXlAYh5gDrCwkfNgbW1tr8dtjQAAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYKTN+ztZVScm2Z7kjCQnJbmku69ZOf+dSX44yd1JfjfJDy5PXZrkzCSfSvJ93X3zER85AAAchgOtCJ+X5JbuPjvJM5O8eveJqvqcJJckeUp3PzHJQ5J8XZJvSnJydz8hyY8leeXRGDgAAByOA4XwlUkuXnl818qvP5Xkid29Y/l4c5KdSc5K8vYk6e73JXnskRkqAAAcOfvdGtHddyRJVW1JclWSi1bO3ZPkr5fnfyjJg5K8M8m3Jbl15TZ3V9Xm7l6N6CTJ+vr64Y6f49TOnTu9vpgHJDEPMAdYOB7nwX5DOEmq6vQkVye5tLuv2OPcCUlenuTRSb6lu3dV1W1JtqxcdsLeIjhJtm7desgD5/i2vr7u9cU8IIl5gDnAwkbOg7W1tb0e3+/WiKp6eJJrk7yku7fv5ZLXJDk5yTetbJG4Icm5y+c/PslHDnHMAABw1BxoRfjCJKclubiqdu8VvizJqUk+kOT5Sd6T5DeqKkl+NovV46dV1XuTbEry3KMwbgAAOCwH2iN8QZIL9nPJvlaUX3DIIwIAgGPAN9QAAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMtHl/J6vqxCTbk5yR5KQkl3T3NXtcc0qSdyZ5fnffuDz2oSS3Li/54+5+7hEeNwAAHJb9hnCS85Lc0t3fVVWfm+RDSf4uhKvqsUl+MckXrRw7OUm6+5wjPloAADhCDhTCVya5auXxXXucPynJs5O8ceXYmUlOqaprl/e/sLvfd7gDBQCAI2nTrl27DnhRVW3JYiX4su6+Yi/n353kBd19Y1V9RZLHJ3ldki9L8rYk1d2fEdFra2u7TjnllMP/HXBc2rlzZ04++eSNHgYbzDwgMQ8wB1jYyHmwY8eObNu2bdOexw+0IpyqOj3J1Uku3VsE78VNSW7u7l1JbqqqW5J8YZKP7nnh1q1bD+J23Betr697fTEPSGIeYA6wsJHzYG1tba/HD/RmuYcnuTbJ+d39roP8WM9L8hVJfrCqHpHkwUn+8uCHCgAAR9+BVoQvTHJakour6uLlscuSnNrdr93Hc34pyeVVdX2SXUmet+e2CAAA2Gj7DeHuviDJBQe6yepXiOjuO5M857BHBgAAR5FvqAEAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhp8/5OVtWJSbYnOSPJSUku6e5r9rjmlCTvTPL87r6xqk5IcmmSM5N8Ksn3dffNR2HsAABwyA60Inxeklu6++wkz0zy6tWTVfXYJL+V5EtXDn9TkpO7+wlJfizJK4/ccAEA4MjY74pwkiuTXLXy+K49zp+U5NlJ3rhy7Kwkb0+S7n7fMpaPG29e+7P8lw98dKOHcb+3Y8eOnPJbn9joYbDBzAMS8wBzgIWzHvmAbN260aP4TPsN4e6+I0mqaksWQXzRHudvWJ5fPfzgJLeuPL67qjZ3954RnfX19UMb9WH4i7+8PTt27DjmH3eae+65x58z5gFJzAPMARY+fefJG9J++3OgFeFU1elJrk5yaXdfcRD3vC3JlpXHJ+wtgpNk6wb8s2Dr1uSHjvlHnWd9fX1DXl+OL+YBiXmAOcDCRs6DtbW1vR7f7x7hqnp4kmuTvKS7tx/kx7ohybnL5z8+yUcOfpgAAHBsHGhF+MIkpyW5uKouXh67LMmp3f3afTzn6iRPq6r3JtmU5LlHZKQAAHAEHWiP8AVJLjjQTbr7nJVf35PkBYc9MgAAOIp8Qw0AAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBImw90QVWdmGR7kjOSnJTkku6+ZuX81yd5aZK7kmzv7suqalOSP0vyh8vLfru7f/wIjx0AAA7ZAUM4yXlJbunu76qqz03yoSTXJH8Xya9K8k+S/L8kN1TVW5I8KMkHu/vrj86wAQDg8BxMCF+Z5KqVx3et/Hprkpu7++NJUlXXJzk7iy0Xj6yq65J8MsmLu7uPzJABAODwHTCEu/uOJKmqLVkE8UUrpx+c5NaVx7cneUiSm5L8h+6+sqrOSvKmLFaNP8P6+vqhj5zj2s6dO72+mAckMQ8wB1g4HufBwawIp6pOT3J1kku7+4qVU7cl2bLyeEuSTyT5QJYrx919fVU9sqo2dfeu1ftu3br1cMbOcWx9fd3ri3lAEvMAc4CFjZwHa2trez1+MG+We3iSa5Oc393v2uP0epIvq6qHJrkjyZOSvCLJTyS5JcnLq+rMJH+6ZwQDAMBGOpgV4QuTnJbk4qq6eHnssiSndvdrq+pHkrwji33B27v7z6vqp5O8qaqelcXK8Pce+aEDAMChO5g9whckuWA/59+S5C17HPt4kmcd9ugAAOAo8Q01AAAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIwkhAEAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAI20+0AVVdWKS7UnOSHJSkku6+5qV81+f5KVJ7kqyvbsvq6rPSfKmJA9LcnuS7+nujx354QMAwKE5mBXh85Lc0t1nJ3lmklfvPrGM5Fcl+dokT07yA1X1BUlemOQjy+e8IclFR3rgAABwOA4mhK9McvHK47tWfr01yc3d/fHuvjPJ9UnOTnJWkrcvr3lbkqcegbECAMARc8CtEd19R5JU1ZYkV+UzV3cfnOTWlce3J3nIHsd3H/ss6+vr937E3Cfs3LnT64t5QBLzAHOAheNxHhwwhJOkqk5PcnWSS7v7ipVTtyXZsvJ4S5JP7HF897HPsnXr1ns7Xu4j1tfXvb6YByQxDzAHWNjIebC2trbX4wfzZrmHJ7k2yfnd/a49Tq8n+bKqemiSO5I8KckrknxJknOTvD+LfcXvOeSRAwDAUXAwK8IXJjktycVVtXuv8GVJTu3u11bVjyR5Rxb7jbd3959X1S8keX1VXZ/kziTPOQpjBwCAQ3Ywe4QvSHLBfs6/Jclb9ji2I8m3HvboAADgKPENNQAAGEkIAwAwkhAGAGAkIQwAwEhCGACAkYQwAAAjCWEAAEYSwgAAjCSEAQAYSQgDADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACMJIQBABhJCAMAMJIQBgBgJCEMAMBIQhgAgJGEMAAAIwlhAABGEsIAAIy0adeuXRvygdfW1jbmAwMAMM62bds27Xlsw0IYAAA2kq0RAACMJIQBABhJCAMAMNLmjR4A901VdWKS7UnOSHJSkkuS/EGSy5PsSvJ7SV7U3fdU1U8keVaSu5L8cHe/fyPGzNFRVQ9LspbkaVm8xpfHHBinqn48yTckeWCSS5P8ZsyFMZafE16fxeeEu5N8f/x9MEpVPS7Jy7r7nKp6VA7ytd/Xtcdq3FaEOVTnJbmlu89O8swkr07yM0kuWh7blOQbq+oxSZ6c5HFJviPJz2/QeDkKlp/8XpPkk8tD5sBAVXVOkicm+ZosXuvTYy5Mc26Szd39xCQ/meSnYg6MUVU/muR1SU5eHro3r/1nXXssxy6EOVRXJrl45fFdSbZlsQqUJG9L8tQkZyW5trt3dfefJtlcVZ9/TEfK0fSKJL+Y5C+Wj82BmZ6e5CNJrk7yliRvjbkwzU1ZvJ4nJHlwkk/HHJjkj5J888rje/Pa7+3aY0YIc0i6+47uvr2qtiS5KslFSTZ19+6vx3d7kodk8RfirStP3X2c+7iq+t4kH+vud6wcNgdm+rwkj03yrUlekOSXk5xgLoxyRxbbIm5MclmSn4u/D8bo7jdn8Y+f3e7Na7+3a48ZIcwhq6rTk1yX5I3dfUWS1T09W5J8Islty1/veZz7vucleVpVvTvJVyV5Q5KHrZw3B+a4Jck7uvvO7u4kO/OZn8zMhfu/F2cxBx6d5Mws9gs/cOW8OTDLvemBvV17zAhhDklVPTzJtUle0t3bl4c/tNwrmCz2Db8nyQ1Jnl5VJ1TVF2exSvQ3x3zAHHHd/aTufnJ3n5Pkw0m+O8nbzIGRrk/yjKraVFWPSHJqkneZC6N8PH+/2ve3SU6MzwmT3ZvXfm/XHjO+agSH6sIkpyW5uKp27xW+IMnPVdUDk6wnuaq7766q9yT57Sz+4fWiDRktx8q/SnKZOTBLd7+1qp6U5P35+9f4j2MuTPKqJNuXr+8Ds/gc8YGYA1Pdm88Fn3XtsRyob7EMAMBItkYAADCSEAYAYCQhDADASEIYAICRhDAAACMJYQAARhLCAACM9P8Bmn7sGmBrQCQAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 864x576 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.figure(figsize=(12,8))\n",
|
|
"plt.plot(vol_df['Z'])\n",
|
|
"plt.title('Rolling Average of Z')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 28,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Text(0.5,1,'Rolling Average of External Stock Market Price')"
|
|
]
|
|
},
|
|
"execution_count": 28,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAssAAAHbCAYAAAA9NtfdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8VfX9x/HXzQ6ZBEiAsNeXhCF7D7HgQC3uKu6trXW2tS5qrXbZalu1at1bcdUtspfMsCF8IewVMggJkJ3c3x/34i/FhJnk3PF+Ph4+zL333HPe595D8rnf+znf43K73YiIiIiIyI+FOB1ARERERMRXqVgWEREREamDimURERERkTqoWBYRERERqYOKZRERERGROqhYFhERERGpQ5jTAUSk4Rlj3MAaoApwA02AIuB2a+3SYzx3K3AJEAs8a63taYx5DMiy1r5ZjxmbAzuA1621t9fXep1kjGkLfANU4nmtF9R47HVgHJB7xNNetdb+6yjrvAmIsNb+u/4T/2hbjwLNrbV31PLYdcAv8fwdCQMWAPdZawuNMR2Bv1lrL67v7R6xnBvYBnS01rpr3P8o8Dtg4LGO75PZ7hHPORcYbK2dVMtjW4EyoATPv7sI4Ds8r1P1Ecu2Bj6y1g473m2LSONQsSwSPMZYa/MO3zDG/Ap4Bhh6oiuqrTCoBzcCnwETjTEPWWv3NcA2GtsYINtaO7aOx5+21v7tBNc5As8HH8cYYwYCk4AB1tp9xphQ4DngeWAi0B4wjRTHBYwE5nizuYDLgIJG2v5AIOkoj195uGA3xkQAs4GfA8/WXMhauxtQoSzig1QsiwQhY0wY0A7Y570dDjwF/ATP6PMi4B5r7YE6nv86sMZa+zdjTCnwZ+BMoBXwV2vt894C6kngp0Chd53p1trTa1lfCHArniIiFrjFu06MMd8Df7fWfuy9/RcAa+39xpgbvc8JAfKBO6y16735koDOwJfAK3iKuThvxhXAz6y1pcaY8cBfvPu9AhgLjLDWbq1r/bXkvwW407uOvcAdQCrwOJBgjJlprR1T65tR++ub4s1yo7X2a2PMH4AhwAve13OcMabEWvucMeYh4GJvxq3Az621u40xs/C8v93xFLEX4xn9HY7nvZ8G3GKtrTbGPAhMAKKBGOBX1tpPjxKxlXd7TYB91toqY8wkoIf3fX8ZSDXGTLHWnmWMuQDPSG8IcAC411q72Hsc/hU4D8/o+/fe17vma3E3cD1wlrU2u5YsbwNX4S2W8XyYWOfNdngdte6fdyR5KNAaWAlk1bXd2l5noC1wGxBqjCm01j50lNcMa225MWYu0N0Y0wGYC2QCHYBrganW2ti6Xhfv82t9v4+2XRE5NepZFgkeM40xq4wxu4EN3vuu9/7/YTwFw2ne/0LwFLrHIxLI8359fAnwtDEmCrgJ6A/0xFOQdD7KOs7GU9xMA94A7vAWDAAvHc7pLcSuAl42xozGU2CMtNb2xVNc1Czwmlhre1hr7wduBt6w1g4BugAdgXONMc2At4CrrLV9gJl4ilyOY/14lzsD+A2ekfvTgHeB/wKz8Iy+zj1KoXyPMWbFEf/1stbu9W77P8aYC70/T/R+YPgcz4j0c8aYa4BewCBv/q/xFKqHFVhr0621z3hvdwZOB3oD5wCjjTHt8XxAON1a2xt4CHisjryHfQPMB7YaY5YZY57FM8I6y1pbhee93+QtlLvjKfIv9r4+k4DPjDHxeArO/niOuZ54Psz8rMZr+xvgUmB0HYUyeF7vC40xkd7b1wKv11jHsfavPdDXWntVXdut63W21i7y7tsHxyqUvettDZyP5zgDaAP8wVrbDdhTY9FaX5fjeL9FpAFoZFkkeIyx1uYZY/rh+SM701qb433sHOAha20FgDHmGTwF3/H6zPv/ZXiK5xhgPPCmtbbUu84X8Yy+1uZ24B1rbaUx5nPgRTzFynvAB8DfjDEtgX7ABmvtRmPMzXgK3++N+eEb/6bGmMNfic+rsf778YzG/gbohueDQSwwClhnrV0JYK19wxhzuF/43LrWf0SLyNl4iqVc7zpeN8b8E89o4bHU2YZhrf3OGPMB8DGeou3I3mbwjDwOApZ6M4ZSY0QVz8hlTV94e2WLjDFZQJK1dqa3CLvSGNMFzwh27NFCe4+TK40xv8bTajIaz4ec6dQodr3OAKZbazd7nzvDGJODpxgcC7xlrS3xLvsz+KF3+CI8I9jnW2v3HyXOXmAxcJ4x5ms8LRm31ci67Rj7t9BaW1njdm3bPdbrfDTvGGNK8HwArcBTZH/sHVmuxDPaf6S6XpfJp5BDRE6SimWRIGOtXWaMuQd43Riz3Fq7Fc8fXXeNxUKA8BNYbYl33W7vH3EXnkLAVWOZqtqe6B35Gw/0M8YcPiEsDLgHeM9aW2yM+RBPL+xQ/n8kLRRPQXG/dz0heIrgw72qB2ts5j3vOicDX+FpQ6gtI8DhE6+OtX5qLFd+xH0uTuz1+xFv720anmJwCD8ufA9v+y/W2ue9z4kEmtZ4/OARy5fU+NkNuLwfnj4DnsZz8tlsPG0bR8t2A55vEz4H3sFTED6OZ6T5F7VkdB9x3+Hjq7LmY972k8PfeGbhOYHw38aYeccomN/E841DJJ4PBJWHP+Acx/4d+RrVtt1jvc5H80PPci3KjijUD6vrdTmVHCJyktSGIRKErLXv4RmNe9p717fA7caYcG9R+Atg6ilu5ivgKmNMpLel4jp+XDSBp1d5nrU21VrbwVrbAc+oYz9jzOETnl7C8/X6cDwjrQBTgCuMMa28t2/DM7JZm7OAx6y1H3hvD8ZTeMwHuhljegN4i/VEb87jXf+3wOXGmBbedVyPp785q5ZlT8Q9eEZABwD3Gs9JdeAppA4X4lOAm7wtDeBpL3jrBLczClhqrX0KTyF5AZ7X5miqgb8YY9rUuK8HnpkpCo7IOB04yxjTCX5oW2mLp4d9Gp4TOiO9x93zwBXe563ytp1Mx9NvfjSf4Tk57g5qtGCc5P7Vtt2jvc4197W+1PW61Mf7LSInSMWySPC6AxhvjDkLz4lo2XhOKsvE88f/rlNc/+t4CqLleE5QKgeKay5gPLMD3IinH/gH1tqNeEaD7/HezsAzMv3R4bYOa+13eE7Mm2qMWYVn5PmimlOI1fAg8KkxZjWeFo/ZQBdvO8UVwJvGmGV4iupKoPh412+tnYrnQ8cMY8xaPEX9eUdODVaH2nqWXzDG9PVmvtZauwu4G3jPGBOHp1/4NmPMA3hG2b8EFnq33RvPh5IT8R7Q3BiTiefEuINAkndbtbLWvo5nJpWvjTHWGLMeTyvNWd6e5XVAqTFmMZ7j6efAJ8aYNXhO3DzfWluI573I8P63Gk/f7pHT5t0NjDLGXHaUPKV4erkjrLVHzhRywvtXy3aP9jrPwPNh4Jla13Jy6npd6uP9FpET5HK7a/u7IiJyaowxZwLJ1tq3vbf/CZQebmvwBd4RuoeBR73tHv3wjIi3rqPoFhGRIKNiWUQahDEmFc/ocgqer71X4rkwR6GTuY7k7bW9EM/JVxV4pjWrrT9YRESCkIplEREREZE6qGdZRERERKQOKpZFREREROrg0/MsZ2RkqEdERERERBpc//79j5x3H/DxYhmgf//+TkeQBpCZmUlaWprTMcRhOg4EdByIh44DAeeOg4yMjDofUxuGiIiIiEgdVCyLiIiIiNRBxbKIiIiISB1ULIuIiIiI1EHFsoiIiIhIHVQsi4iIiIjUQcWyiIiIiEgdVCyLiIiIiNRBxbKIiIiISB1ULIuIiIiI1EHFsoiIiIhIHVQsi4iIiIjUQcWyiIiIiEgdVCyLiIiIiNRBxbKIiIiISB1ULIuIiIiI1EHFsoiIiIhIHcKcDiAiIiIi/isr5yCfLt9Js5hIBnVMonvLOMJCA2c8VsWyiIiIiJyw0ooqXv9+K8/NyOJAWeUP90eGhdC9VTw9W8fzk7Rkzuie4mDKU6diWUREREROiNvt5q73lzNl7V5Gd2vBHy/qhQtYsnUfq3cWsmZ3IZ+v3M07i7YzxrTg3N6tGdWtOS1iI3G5XE7HPyEqlkVERETkhHyxag9T1u7lgXO6c+vozj/cP6FPKhP6pAJQUVXNK/O28J85m5lpcwGIDg+lTdNouqbE0iohmuuGdaBN02ifLqBVLIuIiIjIcTtUVskfv8qkZ2o8N43sVOdy4aEh3Da6M7eM7MTa3UUs2pJPdmEpW/OLydxzgO/W7uWVeVuIiwrjikHt+PVZphH34vipWBYRERGR4/bczCyyi0p57sq+hIYce0Q4JMRFrzYJ9GqT8D/3795fwucrd7N2dxH/mbOZqmo3l3T2vRFmFcsiIiIiclz2FJbw8twtXNQ3lf7tk05pXa0To7nN28LRLCaCV+ZtoVtMK9LS6iNp/VGxLCIiIiLH5a0F26isruaecd3qdb0Pjk8jPNRFXGRFva63PgTOJHgiIiIi0mBKK6p4b/F2xqal0DapSb2uOyIshIfOTadj04h6XW99ULEsIiIiIsf02YpdFBRXcP3wjk5HaVQqlkVERETkqNxuN6/N30r3lnEM6XRqvcr+RsWyiIiIiBzVml1FrM8+wNVD2/v0nMgNQcWyiIiIiBzVl6t2Exbi4txerZyO0uhULIuIiIhIndxuN1+u2sPIrs1JbOJ7J+A1NBXLIiIiIlKnZdv3s2t/Cef1bu10FEeoWBYRERGROn25ajcRoSGM65HidBRHHPWiJMaYcOBVoAMQCTwOLAReApoCocA11tpN3uVDgK+Az6y1LxhjooG3gWTgAHCttTbXGHM+MAmoBF611r7UAPsmIiIiIqegutrN16v3MNq0ID4q3Ok4jjjWyPJVQL61diRwDvAs8FfgHWvtKOBhoHuN5R8Has4ncjuw2vv8N4GHvQX408CZwGjgFmNMy/rYGRERERGpP0u27mNvURnn9Q6+E/sOO1ax/CHwSI3blcBwoI0xZhpwJTALwBhzCVANfFNj+RHAt96fvwHGAmlAlrW2wFpbDswDRp7aboiIiIhIffty1R6iwkMYmxacLRhwjDYMa+1BAGNMHPARnpHkN4ACa+1YY8wk4H5jzGRgInAJnvaKw+KBQu/PB4CEI+6reX+tMjMzT2R/xE+UlpbqvRUdBwLoOBAPHQe+p6razRcrdjKwdTTbN29slG364nFw1GIZwBjTFvgU+Le19l1jzFPA596HvwCeAKKAVGAGnv7mcmPMVqAIiPMuGwfsP+K+mvfXKi0t7bh3RvxHZmam3lvRcSCAjgPx0HHge+Zn5bG/dAsTRxjS0hqnDcOp4yAjI6POx451gl8K8B1wh7V2uvfuecB44C1gFLDWWvubGs95FMi21n5rjOnhXXYxnp7nuUAm0NUYkwQc9K7jbye1ZyIiIiLSIP67fBexkWGM6Z7sdBRHHWtk+UE8s148Yow53Lt8LfCyMeZ2PO0UE4/y/OeBN4wx84ByYKK1tsIYcy8wBU/P9KvW2l2nshMiIiIiUn9KK6r4dk02Z/dsSVR4qNNxHHWsnuW7gLtqeWjcUZ7zaI2fi4FLa1nmCzwtHCIiIiLiY6Zn5nCgrJIL+6Y6HcVxuiiJiIiIiPyPdxZto2V8FEM6NXM6iuNULIuIiIjID5ZtL+D7TfncOKIjoSEup+M4TsWyiIiIiPzgmekbSWwSzsTB7ZyO4hNULIuIiIgIAN+uyWamzeXWUZ2JiTzmDMNBQcWyiIiIiFBYUsEjn60hvVU8N43s6HQcn6GPDCIiIiLC01M3kH+wjNeuG0h4qMZTD9MrISIiIhLk1mcX8dbCbUwc3I6eqQlOx/EpKpZFREREglhpRRV3v7+ChOhw7htnnI7jc9SGISIiIhLE/vR1JuuzD/DadQNpGhPhdByfo5FlERERkSC1Zlchby7cxnXDOjCme7LTcXySimURERGRIOR2u3n087UkNYngnnHdnI7js1Qsi4iIiAShL1btYem2An59liEhOtzpOD5LxbKIiIhIkNlZUMzvPltDz9R4Lh3Q1uk4Pk3FsoiIiEgQKa2o4ra3M6iscvOvy/sSGuJyOpJP02wYIiIiIkHkia8yWbOriFeuHUCnFrFOx/F5GlkWERERCRJb8g7x7uLtXDO0PT9JS3E6jl9QsSwiIiISJP45bQPhoS7uOKOL01H8hoplERERkSCwbHsBn63czbXDOpAcF+V0HL+hYllEREQkwFVUVfPgJ6tJiYvil2d0dTqOX9EJfiIiIiIB7l/TN7I++wAvXt2f2EiVfydCI8siIiIiAez7rDyenZnFpf3bcFaPlk7H8TsqlkVEREQCVN7BMu76YAWdmsfw+wk9nI7jlzQOLyIiIhKA3G43v/pwJYUlFbx5wyCaRKjsOxkaWRYREREJQB8u3cksm8uD53QnrVW803H8loplERERkQCTU1TKH75ax+COSVwztIPTcfyaimURERGRAPPXKZayimr+fHFvQkJcTsfxayqWRURERALIqp37+ShjJ9eP6EDH5jFOx/F7KpZFREREAsjTUzeQFBPBHWN0Sev6oGJZREREJECs3V3ITJvLDcM7EBcV7nScgKBiWURERCRA/HvmJmIjw7haJ/XVGxXLIiIiIgFg2fYCvlq9h+uHdyAhWqPK9UXFsoiIiIifc7vd/OHLdSTHRXLb6M5OxwkoKpZFRERE/NznK3ezfPt+fnWWISZSV+qrTyqWRURERPzY3qJSHvtiHT1T47mkXxun4wQcFcsiIiIifqqq2s2d7y2nuLyKf/ysjy5A0gA0Ti8iIiLip16bv4VFW/bx5CW96ZIc53ScgKSRZRERERE/tDn3IE9OsYxNS+aS/mq/aCgqlkVERET8TEVVNXd/sIKo8FCeuLAXLpfaLxqK2jBERERE/MzfvrOs2lnI81f2IyU+yuk4AU0jyyIiIiJ+5MtVu3lx9mYmDm7HOb1aOR0n4KlYFhEREfET67OL+PWHq+jfvim/Oz/d6ThBQcWyiIiIiJ/4w5friIkM5fkr+xEZFup0nKCgYllERETED9jsA8zPyufGEZ1IVp9yoznqCX7GmHDgVaADEAk8DiwEXgKaAqHANdbaTcaYe4DLvU/92lr7e2NMNPA2kAwcAK611uYaY84HJgGVwKvW2pfqfc9EREREAsjkpTsID3Xxs4FtnY4SVI41snwVkG+tHQmcAzwL/BV4x1o7CngY6G6M6QRcCQwDhgJnGmN6A7cDq73PfxN42FuAPw2cCYwGbjHGtKz/XRMREREJDOWV1Xy6fBfj0lNIiolwOk5QOVax/CHwSI3blcBwoI0xZhqeAnkWsAM421pbZa2tBsKBUmAE8K33ud8AY4E0IMtaW2CtLQfmASPrZ3dEREREAs+M9TnsO1TOpf01qtzYjtqGYa09CGCMiQM+wjOS/AZQYK0da4yZBNxvrZ0E5BljXMCTwHJr7QZjTDxQ6F3dASABqHlfzftrlZmZeVI7Jr6ttLRU763oOBBAx4F46Dg4uldm7qFZdCgtqvLIzMx3Ok6D8cXj4JgXJTHGtAU+Bf5trX3XGPMU8Ln34S+AJ7zLReHpbz4A/Nz7eBFw+ELlccD+I+6reX+t0tLSjndfxI9kZmbqvRUdBwI03nFQXF5JdHiornTmo/T7oG6795eQsXszPz+9Cz17GKfjNCinjoOMjIw6HzvWCX4pwHfAHdba6d675wHjgbeAUcBa74jyZ8AMa+1faqxivnfZxXh6nucCmUBXY0wScNC7jr+d+G6JiIjUrqyyipfmbObr1dnkHyojPiqcjTkHSWwSTuuEaEJC4I4xXTm7p06ZEd/34dKdVLvRiX0OOdbI8oN4Zr14xBhzuHf5WuBlY8zteNopJgIX4DlZL9IYc453uQeA54E3jDHzgHJgorW2whhzLzAFT8/0q9baXfW5UyIiErxKK6q4+c2lzN2Yx6AOSaS1iqeguJwz0pIpKqlgZ0EJewpLuf2dDB6/oCdXDm4PgNvt5pNlu3hxzia25hdzfu/WTDo/nYTocIf3SIJZVbWbyUt3MLJrc9omNXE6TlA6Vs/yXcBdtTw07ojbnwJ1Tfh3aS3r/QJPC4eIiEi9Ka2o4qY3ljJ/Ux5/vaQ3lw2ofSSutKKK29/OYNJna+ncIpb01vHcN3klU9ftJa1VPBf0ac0ny3axfd8h3rt5CGGhuiyBOGNeVh679pfwwPjuTkcJWsfsWRYREfEHB8squf3tDOZvyuPJS07jkv5t6lw2KjyUf1zelwuem8/l/1lIbGQYpRVVPHJeOjcM74DL5WJY5+bc/cEK3lywjRtGdGzEPRH5f5OX7qBpk3DGpac4HSVo6aOyiIj4vYxtBZz+5CzmZeXx14t7H7VQPiwhOpz//nw4F/RpTXrreN6/ZQg3juj4wwmAE/q0ZmTX5vxj2gb2HSpv6F0Q+ZHC4gqmrtvLhD6purS1g1Qsi4iIX9uxr5ib31xKbGQon9w+jEvraL2oTUKTcP5xeV8m3zqUAR2S/ucxl8vFI+elc6i8iqenbqjv2CLH9MWq3ZRXVh/Xhz9pOCqWRUTEby3bXsAFz82noqqal68dQN92Tet1/d1S4rhycDveWbSN9dlF9bpukaNxuz0n9pmUOHq0jnc6TlBTsSwiIn5p2fYCrn55EbFRYXz68+F0SY479pNOwj1juxEXFc7vP1+H2+1ukG2IHGnJ1gJW7SzkqqHtNTe4w1Qsi4iI31m9s5BrX11M87hIPrhlKF2SYxtsW01jIvjVWYYFm/N5Zd6WBtuOyGFut5s/f5NJ89hILu6X6nScoKdiWURE/Mq3a7K56pVFxEeF8+7NQ2iZUNfMpfXnykHtGJeewuNfZfLPaRs1wiwNasGmfJZt38+947rRJEITlzlNxbKIiPiNxVv28Yt3l9E6MZr3bh5CamJ0o2w3JMTFv6/sx0X9Unl62gZe/35ro2xXgtObC7aREB3ORRpV9gn6uCIiIn5hf3E5v3xvGe2SmjD51iHERTXulfXCQ0P42yWnUVhcwZ++WU+v1IQfzaAhcqo27D3AlHXZ/Pz0zkSFa7o4X6CRZRER8Qt/+daSd7CcZ67o2+iF8mEhIS7+eklvUhOjuf2dZZp/Werdv6ZvpEl4KDeN6OR0FPFSsSwiIj5v2rq9vLd4OzcM70DP1ARHszSLjeS5if3YX1zOg5+sVv+y1Jtl2wv4avUerhnWgaYxEU7HES8VyyIi4tN27Cvm1x+tJL1VPL86yzgdB4D01vHcd6bh27XZfLxsl9NxJEA88VUmKXFR/GJMF6ejSA0qlkVExGcdKK3gpjeWUlnt5pmJfX3qkr83j+zEwA5NeeKrdewvVjuGnJpl2wvI2FbAraM7ERupU8p8iYplERHxWX/4ch1ZuQd5/sr+dG7RcHMpn4zQEBePTehJYUmFLoctp+yVeVuIiwo7ocu1S+NQsSwiIj5p3sY8Ji/dyc0jOzGia3On49QqrVU8Vw1pz5sLt/Fxxk6n44if2rGvmG9W72HioHYaVfZBKpZFRMTnHCqr5LefrKJT8xjuHtvV6ThH9eD4NIZ2asZ9H67kySnrqa7WCX9yYt74fisul4trh3VwOorUQsWyiIj4nCenWHbtL+Gvl/T2+blmo8JDef36QVw+sC3PzdzEne8vp7Kq2ulY4icOlFbw/pIdnNurFa0b6SI7cmI01i8iIj5l0eZ8Xv9+K9cN6+A3F/2ICAvhTxf1on2zGP7y7XoA7jvT0KFZE1wul8PpxJd9sGQHB8squWlkR6ejSB1ULIuIiE/IP1jGv2dt4u2F22ibFM2vfWSauOPlcrm4/fTOVLvdPDnF8uWqPaQmRjOhT2su7t/G505QFOdVV7t5/futDOqQRO82iU7HkTqoWBYRkQazYsd+pq3bS7/2iYzulkxoyP+OslZXu5m26QC/+HoWm3MP4XLBxf3a8OuzDDF+eqLTL8Z0Ia1VHFvzipm9IZcXZm/i37M2MahDEk9e2pv2zWKcjig+YsHmfHYWlPjdB8Ng45+/iURExOfN25jHjW8soazS07/bKiGKCX1SuWFEB/IOlPPt2mzeW7yd3ANl9G6TwAPndGd4l+aOX6GvPpzRPQWAG0Z0JKeolP+u2MVzMzcx7uk5jDEtuG10Z3q3SSTEhdo0gthHGTuJiwrjrB4tnY4iR6FiWURE6t3eolJufWspHZvH8MYNg1i+vYDJS3fy4pxNvDB70w/LjTEtGJzi4pazBxASEphFY3J8FLeM6sx5vVvzwuxNfLFyN1PW7sXlgmYxEYwxyQzt3Ix9h8qJjgildWI0HZrF0Cw2gojQEJ8/wVFOTlFpBd+s2cPF/droPfZxKpZFRKReud1ufvfZWiqq3Lx4dX9S4qM4u2crzu7ZilU797Nwcz4tE6LplZpAx+YxZGZmBmyhXFPrxGgem9CT35zdnU+X72JXQQnZhSV8vnI3H9YxR3NoiIvTu7XgN2d3x7SMa+TE0pC+WrWH0opqXYTED6hYFhGRevXy3C18uzabB87p/qP+3N5tEoP+RKbYyDCuHtL+h9uPFpdTUFxBXFQYJeVVrNlVSHF5FfsOlZNdVMqny3cx4bl5/OXi3kzok+pgcqlPH2fspGtyLKe18f+2o0CnYllEROrNyh37+fO36zmnZ0tuGdXJ6Th+IbFJBIlNIn643Tapyf88fuuoTtzx7nLuen8FFVVuLunfprEjSj3LO1hGxvYC7hnbTT3rfkAXJRERkXpRWlHFPZNXkBwXyZ8v6q0ioJ4kx0fx9k2DGda5GQ98sopp6/Y6HUlO0ZwNubjdcEb3ZKejyHFQsSwiIvXi7YXb2Jx7iL9e0puEJuFOxwkoEWEhPH9Vf9JbxXP7OxlMWZvtdCQ5BTNtLi3iIklvFe90FDkOKpZFROSUlVVW8dLczQzplMTIri2cjhOQEqLDeeumwfRoncCd7y1nS94hpyPJSaisqmbOhlxO79YiKE5sDQQqlkVE5JR9sGQHe4vKuGNMV6ejBLT4qHBevLo/EWEhPPDJKtxut9OR5ASt2LGfwpIKTjdqwfAXKpZFROSU5BSV8uQUy5BOSQzv0szpOAEvJT6KB8ensXDzPv41PcvpOHKCZtocQkNcjOja3Okocpw0G4aIiJySR79YS1numwTRAAAgAElEQVRlNX/SSX2N5vKBbVmyZR9PT9tAfHQY1w3roNfeT8xcn0v/9k1JiFZfv79QsSwiEiQOlVXy7qLtzN+UR1xUOO2Sormwbypdkk/+YhffrtnD16uz+fVZho7NY479BKkXLpeLP13ci/0lFfz+i3V8sXI3Vw1pzxiTTHlVNUu3FjBlbTYbcw6S1iqO357dneT4KKdjB73swlLW7Sni/rO7Ox1FToCKZRGRAOd2u3l70Xb+/p1lf3EF3VJiKa04xDer9/DSnC28fv1AhnU58a+Es3IO8KsPV9G7TYLmVHZAZFgor1w7gPcW7+DFOZu4d/LK/3m8eWwkaa3i+Hr1HpZtK+DD24bRIi7SobQCMMvmADCmu06C9ScqlkVEAlhpRRVPTrG8Mm8LI7o0574zu9G3XVPAc2GEiS8t5M73VzDr16cTG3n8fxIKSyq4+c0MosJDeOGq/oSH6hQYJ7hcLiYObsflA9uyeOs+1u4uwu1207tNIn3bJRIeGsKy7QVc+dIirnl1Me/fMkRf/ztops2hVUIUJkWXLvcn+u0mIhKACksqeOKrdfR9bCqvzNvCtUPb89aNg34olMEz8viXi3uTd7CMP36deULrf+yLdezYV8zzV/WndWJ0fceXExQS4mJIp2bcOKIjN43sxKCOST98gOnXrikvXt2frJwD3Pj6EkorqhxOG5zKK6uZtzGP002y+sv9jIplEREHuN1uJi/dwW1vZfDIf9eQf7Cs3ta9a38JFz//Pa/M28JZPVJ47bqB/H5Cz1r/QPdt15RbR3Xi3UXbf/iK+Fg+ytjJx8t2ctvozgzskFRvuaXhjOrWgqd/1oel2wp4ZsZGp+MEpeXbCzhUXsXobmrB8DdqwxARccCzM7L4+9QNpCZGs7eolK9X7+GusV05t1crmsWefF9p5p4irnttMcXlVbx78xCGdDr2VG73ntmNqev28rvP1zLl7mZEhYfWuezLczfzxNeZDOvcjLvGak5lf3Je79bMWJ/Di7M389PTUjEt1QrQmOZn5RHigqGdNb2iv9HIsohII/tsxS7+PnUDF/VNZe5vxvDVnSNpnRjNpM/WcvqTs3hl3hYqqqpPeL0LN+dz2QsLcOHio9uGHVehDJ4TxR6b0JNt+cW8OHtzrcu43W7++HUmj3+Vydk9WvLqdQPVp+yHHj43nbioMB78dDXV1bqgSWOavymfXm0S1TPuh/SbTkSkEZWUV/Ho52vp374pf764NyEhLkzLOD77xXA+v2M4fds35Q9fruPMp+fwp68zmbcx77iu0ransITb3s4gJSGKT34+7IRHDUd0bc75p7XmuVlZbMv/38sou91unvgqk//M2cw1Q9vz3MR+Rx19Ft+VFBPBQ+emk7GtgPeWbHc6TtA4UFrBih37GaGL9vglFcsiIo3oo4wdFBRX8NtzuhMR9v+/gkNCXPRuk8gb1w/k5WsG0CI2ktfmb+WqVxZx3WtLyDlQWuc6yyqruOv9FZRXVvPSNQNO+oS7h89NIyI0hJ+/s+yH7ZWUV/GrD1fx8rwtXDesA7//aQ9CQnRykj+7uF8qwzo348/frCenqO7jSurPos37qKp2M7yzrtrnj1Qsi4g0kqpqN6/M20KftokMaN+01mVcLhdj01OYfNtQVj16Jo+en87iLfu4+uXF7C8u/9Hy5ZXV/OKdZSzeso8/XtjrlC4MkhIfxTNX9GVz7iEufO57PliynetfX8wny3dy5xld+N356TqLPwC4XC6euLAXZRXV/HO6TvZrDPM35REZFkK/Ov7di29TsSwi0kimZe5la34xN4/sdFxFZ1R4KNcN78jL1w5gS94hrn99CcXllT88XlFVzS/fW8a0zBz+MKEHF/RNPeWMY7onM/nWoZRXVXP/x6tZvbOQv1zUm3vPNCqUA0jH5jFc3D+VjzJ2klePM7FI7eZn5TGoY5Lal/yUimURkUby1oJtpCZGc1aPlBN63vAuzfnXFX1YuWM/1766mJnrc8g5UMrd769gytq9TDovnauHdqi3nL3aJDDn12OYes8oljw8lssGtq23dYvvuGlkJ8qrqnnj+61ORwloOQdK2bD3IMPUguG3jjl1nDEmHHgV6ABEAo8DC4GXgKZAKHCNtXaTMeZm4FagEnjcWvulMaY58C4QDewGrrfWFte2bH3vnIiIrygsrmDB5nxuHdWJsJOYReLsnq3426Wn8ejna7n+9SU/3P/g+O7cMKJjfUYFIDoilK66ylhA69wilrN7tOT1+Vu5fnhHkmIinI4UkL7PygdgxElcUl58w/H8xr4KyLfWjgTOAZ4F/gq8Y60dBTwMdDfGtATuBIYDZwF/MsZEApOAd73PXw7cepRlRUQC0qwNOVRVuxmbfmKjyjVd1K8NSx4ey2vXD+Sh8Wl8dNtQbhnVuR5TSrC578xuHCqv5LmZWU5HCVjzs/JIbBJOeut4p6PISTqeYvlD4JEatyvxFLltjDHTgCuBWcAgYL61tsxaWwhkAb2BEcC33ud+A4w9yrIiIgFp6rq9NI+NpE+bxFNaT2RYKGNMMjeP6sQAXT1PTlGX5Dgu7d+WtxZsY8e+YqfjBJyqajczbQ4jujQnVLPI+K1jtmFYaw8CGGPigI/wjCS/ARRYa8caYyYB9wMbgMIaTz0AJADxNe6v7b6a9/9IZmbmCeyO+IvS0lK9txI0x0FFlZsZmdmM6hCLteudjuNzguU48FXndnDx6XI3j360hF+NTHYsRyAeB2tzSsk7WE6PxKqA27eG4ovHwXFd7toY0xb4FPi3tfZdY8xTwOfeh78AngCWAjUb3OKA/UCR9+eSWu47ctkfSUtLO959ET+SmZmp91aC5jiYuzGX4ootXDLUkJZ28m0YgSpYjgNflQZcuzeUV+Zt4YEL+tEl2Zle9UA8Dj7dkkl4qIurzuhDXJSu3Hc8nDoOMjIy6nzsmG0YxpgU4Dvgfmvtq9675wHjvT+PAtYCi4GRxpgoY0wCnn9/a4D5NZY9B5h7lGVFRALOtHV7iQoPYURXneAjvum20Z2JiQjj91+sO64rRsqxud1upqzNZljn5iqU/dzx9Cw/iGfWi0eMMbOMMbOA+4BrjDHfA2cDf7TWZgP/wlMMzwAestaW4pk943JjzHxgKPDsUZYVEQkobrebqev2MrJrC82xKj6rWWwk957Zjbkb8/hmTbbTcQLC5rxDbMsvPqWTesU3HE/P8l3AXbU8NK6WZV/CM6Vczfv24imoj7msiEigWbeniN2Fpdw9rpvTUUSO6uoh7Zm8dCd//mY949JTCD+JKQ7l/822uQCc3q2Fw0nkVOlfgohIA5q6bi8uF5zR3bkTp0SOR1hoCL85y7B9XzEfLt3pdBy/N3tDLp1axNA2qYnTUeQUqVgWCUCbcg+yZleheg99wLTMvfRv15TmsZpKXnzf6aYF/dol8q/pGymtqHI6jt8qrahi4eZ8RmtUOSCoWBYJMC/P3cxP/j6b856Zx61vZegPnoN27y9hza4i9SyK33C5XNx3piG7qJT3Fm93Oo7fWrRlH2WV1SqWA4SKZZEAkrGtgCe+zmRsWgr3juvG1My9XPfaYvIPljkdLShNz9wLwFhNFyd+ZFjnZgzumMRzMzdRUq4P2ydjts0lMiyEIZ2aOR1F6oGKZZEAUVZZxf0fr6J1QjT/uLwPd/6kK09ddhrLtu/np8/OZ82uwmOvROrV1MwcOjWPoUtyrNNRRI7b4dHlvINlvL1wm9Nx/NLsDTkM6pikGXAChIplkQDx7IwssnIO8sSFPYmN9Ex0c2HfNnx82zDcbjdXvLSQVTtrvfaPNIADpRUs2JSnFgzxS4M6JjGya3NenLOJskqNLp+IHfuK2ZR7SC0YAUTFskgAWLe7iOdnbeKifqmcbv531oVebRL48PZhJDYJ58qXFjFnQ65DKYPLnA15VFS5GadiWfzUTSM7kXewnClr9zodxa/M2eidMs6oWA4UKpZF/FxlVTX3f7yKxCbhTDovvdZlUhOj+eCWoaQ2jeb615fw3VpddKChTV2XTVJMBP3aNXU6ishJGdmlOW2Tonl3kVoxTsTM9bmkJkbTuYXarwKFimURP/fyvC2s3lXIYxN6ktgkos7lWidG89Htw+iZmsCd7y9nxQ61ZDSU0ooqZqzPYYxJJjTE5XQckZMSEuLiikHtWLh5Hxv2HnA6jl8oKa9iXlYuY9OScbn0bz9QqFgW8WObcw/y9NQNnN2jJeN7tTrm8rGRYbxy7QBaxEVy0xtL2LGvuBFSBp8pa7MpKq3kwr6pTkcROSWXD2xHTEQo/5i2wekofmHuxlxKK6oZl97S6ShSj1Qsi/ip6mo3v/14NZFhITw2ocdxP695bCSvXTeIiio31762mIJD5Q2YMjhNXrqDNk2jGdZZ00aJf0uKieDGER35enW2ZtQ5DtMy9xIXFcbgTklOR5F6pGJZxE/9fapl8dZ9PHJeOsnxUSf03C7Jsfzn6v7s3FfCOf+c+8N8wHLqduwrZn5WPpf2b0uIWjAkANw4shMJ0eE8PVWjy0dTXe1mxvocTjfJhIeqvAokejdF/ND8rDyem7mJnw1oyyX925zUOgZ3asbk24aS2CScG99YyqOfr6WiqrqekwafDzN24nLBJQNO7n0R8TUJ0eHcMqoT09fnaHT5KNbtKSLvYDljNAtGwFGxLOJn/rt8F9e/voROLWKYdH76KZ1E0qdtIp/dMZwbhnfk9e+3cvvbujz2qSivrObDpTsY0aU5qYnRTscRqTdXD21Pk4hQXv9+q9NRfNbhKeNGdG3ucBKpbyqWRfyE2+3mqe8sd3+wgr5tE/n4tmHEeC8+cioiw0KZdH46f5jQg+nrc7j21cUcKK2oh8TB5/OVu9lTWMoNwzs6HUWkXsVHhXNRv1Q+X7mbfTrPoVZzNuSS1iqe5LgTa4sT36diWcRPvDJvC/+akcVlA9rw1o2DaRpT9zRxJ+PqoR34x8/6kLGtgIkvLdKJfyeoutrNC7M30b1lnC5GIAHp2qEdKK+s5qOMHU5H8TmHyirJ2FbAKI0qByQVyyJ+YNf+Ep6cYjkzPYW/XNybiLCG+ac7oU8q/7mmPzb7AHe+v5yqaneDbCcQzd6YS1bOQW4/vbPmV5WA1DUljtPaJvLZit1OR/E5CzfnU1HlZpQucR2QVCyL+IGnvtuAG/jdT3s0eCF2RvcUfj+hB3M35vHMjI0Nuq1A8vaCbbSIi+Scnsee71rEX/30tNas3V3EptyDTkfxKXM35hEVHkL/9rpiZyBSsSzi42z2AT5ZvpPrhnVotJPGLh/Ylgv7pvLMjCzW7S5qlG36sx37iplhc7hiYNsGG/UX8QXn9W6FywVfrNTock1zNuYypFMzosJDnY4iDUC/1UV83D+nbyA2IozbR3dutG26XC4ePb8HTSJC+ed0za16LO8u3o4LuHxQO6ejiDSolPgoBndM4vOVu3G71aYFsLOgmM25hxjZVS0YgUrFsogPyykqZcravUwc3K7eT+g7loQm4dw4oiNT1u5lls1p1G37k9KKKiYv2cHYtBRaa7o4CQI/PS2VzbmHWLdH3zqBpwUDYHQ3ndwXqFQsi/iwf0zfSLXb7diI5W2jO9MtJZa73l/Bjn3FjmTwda/N30r+oXJuGKHp4iQ4nNOzJWEhLj5XKwbgmTKuVUIUnVvEOh1FGoiKZREfNWdDLu8u2s4tIzvRsXmMIxmiwkN5+ZqBVFZV88hna/S16xFyDpTy7IyNjEtPYUinZk7HEWkUTWMiGNm1OV+u3EN1kM+YU1lVzfysPEZ2ba5ZcAKYimURH1RwqJzffryKzi1iuGdcN0eztGvWhHvPNMyyuXyzJtvRLL7m3zM3UVZZzYPj05yOItKoLuibyq79JT9ctS5YLd+xn6LSSk0ZF+BULIv4mJ0FxUx4bj65B8v426Wn+cTZ1dcObU96q3h+/8VaXd3Pq7CkgveXbGdCn1THRv5FnHJOz1Ykx0Xy2vytTkdx1LdrsokIDWG0iuWApmJZxIfs2l/CFS8tZH9xOe/fMpS+7Xxjzs6w0BD+eFEvcg6U8ffvNDsGwNR1eymtqOaqIZoBQ4JPRFgIVw1pz+wNnovxBCO3282UtdmM6NqcuKhwp+NIA1KxLOIjdu8v4Yr/LGR/cQVv3TjY5ya379M2kasGt+fNBVtZvbPQ6TiO+2rVblITo+nTNtHpKCKOuHJwO5pEhPLnbzKD8nyGtbuL2FlQwtk9WjodRRqYimWRelZWWUXGtgImfbaG33+xlq9W7WF+Vh5zNuTWOqNEdbWbjG37uOKlhRQcKuetGwdzmo8WYL8+29AsNpKH/rs6qC+FXVhcwdyNed4LNOikHglOzWIjuWdsN6Zl5gRlO8aUtdmEuGBseorTUaSBhTkdQCSQTFmbzUOfriHvYBkuF4SHhPzoj8gY04LHL+xFs5gInpxi+e/yXeQfKqdZTARv3jjIp0cq46PCeeS8dO58bzlvL9zGtcM6OB3JEVPWZVNZ7ebc3rq0tQS3G0d0ZMnWfTzxdSa92yQwoEOS05EazTdrshncsRlJjTwHvjQ+Fcsi9aC62s0/p2/kn9M30is1gccm9GBQxyRiI8PYlHuQwpIKwkJCWLJ1H/+avpHTn5xJQnQ4eQfLObd3K84wyYxNSyGhie/3vZ3fuxUfLt3Bk1MsZ/dsSUp8lNORGt1Xq/bQNimaXqkJTkcRcVRIiIunftaHs56ew/0fr+Lru0YSGeb8SckNLSvnAFk5B7lmaHuno0gjULEsUg/+MmU9L87ezCX92/D4BT3/ZwaLHq3/v6Aa1DGJC/um8p85m9mWf4jrhnf0u7OoXS4Xj1/QkzOfnuMZYb5pMOGhwdPRVXConPlZedw0spNaMESA2MgwnriwJ9e9toSX527hF2O6OB2pwX3rnUbzLPUrB4Xg+Qsn0kBmrs/hxdmbmTi4HU9e0vuYU721Tozm0Z/24LXrB/ldoXxY+2Yx/PniXizaso/Hv1zndJxG9Z23BeM8tWCI/OB0k8zobi14c8FWKquqnY7T4Kas3Uu/dolB+c1aMFKxLHIK9hSWcO/kFXRvGcek89KDaqTxwr5tuHlkR95YsI3/Lt/ldJxG8+WqPbRv1oQereOdjiLiUyYObsfeojJm2cC+UMmewhJW7ypkXLpGlYOFimWRk1RcXsnNby6lvLKa567s5xMXD2lsvz0njdPaJPCnbzIpLq90Ok6DKzhUzveb8hnfS7NgiBzpjO7JNI+N5P0l252O0qCmZ+YAMC492eEk0lhULIuchOpqN/d8sIJ1u4t4ZmJfOreIdTqSI0JDXEw6P529RWW8MHuz03Ea3NTMvVRVuxnfUy0YIkcKDw3h0gFtmLE+h+zCUqfjNJjpmXtp36xJ0P7eD0YqlkVOwotzNjNl7V4ePjedM7oH9xyb/dsncf5prXlx9iZ27S9xOk6D+mb1Hto0jaZnqlowRGpz+cC2VLvho4wdTkdpEMXllczflM9Puqfo26UgomJZgl5hSQXfb8qjqLSCvINlLNycz5pddV+hLnNPEU9NtYzv1ZLrh3dovKA+7P6zDSEuFw98sjpgr+SVc6CUeVl5asEQOYr2zWIY1rkZHyzdQXUAXrho7sY8yiurGasWjKCiqeMkaG3NO8STUywz1udQUlH1o8fP7dWK352fTnKNs53LKqu454MVJERH8PgFvVQ0ebVp2oQHxndn0mdreX/JDq4Y1M7pSPXunYXbqax2B+S+idSnywe14873lvP9pnxGdG3udJx6NW3dXuKiwhgYRBdfERXLEqR27Cvm0hcXUFJexQV9WzOkUzP2FJZSXllNv3ZNWba9gGdnZjEvK4/fnZ/OhD6phIa4+Me0jazPPsDL1wzQVZuOcNXg9ny9eg9/+jqTcekpNI+NdDpSvSmrrOKdRdsZY5Lp2DzG6TgiPu3M9BTiosL4KGNHQBXLVdVuZqzPYYxJDqq55UXFsgShwuIKrn11MeWV1Xzy82F0S4n70TIjujbn3N6t+MU7y7h38kreXbSdpJgIvlu3l8sGtGFsenD3KdcmJMRzsZLx/5rHfZNX8tp1AwkJCYyR9/cWbSfvYBnXBenlvUVORFR4KBf1TeXdxdu5Z1w32jcLjA+YK3bsJ/9QOT9JUwtGsNFHIwk6T363nq35h3jpmgG1FsqHdW4Ry9d3juSPF/ZiZ0EJK3fu5+end+aJC3s1Ylr/0iU5jkfOS2f2hlxemLPJ6Tj1orC4gr9P3cDIrs0ZGUCjZCIN6RdjuhAa4gqoWXK+Wb2H8FAXpxsVy8FGI8sSVN5euI23F27nhuEdGdTx2D1nISEuJg5ux8TB6lM9XlcNbsfCzfn8/bsNDOyQ5Pe9fS/N3cyB0koeHJ+mHnWR45QcH8X4Xq34cuVuJp2XTnSEf89DX13t5qvVexjVtQUJ0eFOx5FGppFlCRoLNuXzu8/XMsa04MHx3Z2OE7BcLhd/vqgXbZpGc/f7Kyit5eRJf7HvUDmvzd/Ceb1bkdZK08WJnIjLBrTlQFkl367d43SUU7ZsewF7Cks57zTNsR6MjjmybIwJB14FOgCRwOPATuALYKN3seettR8YY54CRgDVwH3W2vnGmObAu0A0sBu43lpbbIy5GbgVqAQet9Z+Wa97JlLDvkPl/PK9ZXRo1oR/XtGXMJ2c0aDiosL544W9uPLlRbyzaDs3jujodKST8uLsTZRUVHH32G5ORxHxO4M7JtG+WRMmL9nJhX3bOB3nlHy5ag+RYSGMTdP5KsHoeCqGq4B8a+1I4BzgWaAf8JS19nTvfx8YY04DhgGDgauBf3mfPwl41/v85cCtxpiWwJ3AcOAs4E/GmMA5dV58zqTP1lBYUsGzE/sRH6Wv0BrD8C7NGd6lGc/NzOJgmf9dCjsr5wCvzd/KBX1T6ZKsK3WJnCiXy8Wl/duwYHM+2/OLnY5z0txuzywYI7o0J05/P4LS8fQsfwh8VON2JdAfMMaYCXhGl+8GdgHFeEaf44EK7/IjgD96f/7G+/MmYL61tgwoM8ZkAb2BJUduPDMz8wR3SfxBaWlpo72387Yd5MtVOVzTpyns30Xm/l2Nsl2Bi7pGcl9WPi9+m8H4bj9uY2jM4+BEPTJtDxGhcGmXMJ/NGCh8+TiQU9M7vhIX8PyU5VzT9+jnL/jqcbCzsJzt+4o5v2sTn8wXaHzxODhmsWytPQhgjInDUzQ/jKcgftlam2GMeQj4HZ72jGpgPZAA3OxdRTxw+HJoB7yP1byv5v0/kpaWdmJ7JH4hMzOzUd7b/INlvPDRHHqmxvPIpUM0N2Yj697dzUvLDzBjWzn3/rT7j06Qa6zj4EQt3rKPpbs288A53Rnar7PTcQKerx4HcurSgJGrSpi97QCPX96d0KNMJ+mrx8H387YAcPnoXrRNauJwmsDn1HGQkZFR52PHVTkYY9oCM4G3rLXvAp9aaw+v9VOgL3ANkA10BjoCjxpjUoEi4PD8XHHA/iPuq3m/SL16coqlqLSCv1/aR4WyA1wuF9cN68Da3UXM2pDrdJzj9tRUS4u4SK4Z2sHpKCJ+77IBbdhdWMr3m/KcjnJSZtkcOreIUaEcxI5ZPRhjUoDvgPutta96755ijBnk/fknQAZQABy01lbhGSkuA2KB+cB477LnAHOBxcBIY0yUMSYBz4fPNfWzSyIe67OLmLx0B9cM7YBpWfd8ytKwLurXhpbxUbw2f6vTUY7L6p2FLNy8j1tHdfL76a5EfMG49BQSm4QzeelOp6OcsOLyShZt3scYza0c1I5nqO1BoCnwiDFmljFmFnAv8A/vz8PxtGC8C2CM+R74HnjHWmu9j11ujJkPDAWetdZm4zkBcC4wA3jIWltanzsm8uS3ltjIMH55RhenowS1iLAQLh/UljkbctmWf8jpOMf06vwtxESEctnAtk5HEQkIkWGhTDitNVPWZlNYXHHsJ/iQBZvyKa+q1oVIgtzx9CzfBdxVy0PDarnvtlqevxc4u5b7XwJeOo6MIidsfXYR09fncN+4biQ2iXA6TtC7fGA7npmRxbuLt/PAOb7Xk3jY3qJSvli5m6uHttesKSL16NIBbXljwTY+X7mLq/2ovWmWzaVJRCgDOzZ1Ooo4SE2cEpBenL2ZJhGhXD20vdNRBGiZEMUZ3ZP5ZNkuqqrdTsep05sLtlLldnPdsA5ORxEJKD1TE0hvFe9XrRhut5uZNodhnZsRGaaWrGCmYlkCTk5RKZ+v3M3lA9tpVNmHTOjTmtwDZSzaku90lFoVllTw5oJtnJmeQvtmMU7HEQk4lw1ow+pdhazbXeR0lOOyKfcQOwtKGK0WjKCnYlkCzifLPaOXVw1p53QUqeGM7sk0iQjly1W+eenbtxdu40BpJXf+pKvTUUQC0oQ+qUSEhvBhxg6noxyX+Vme2TtGd23hcBJxmoplCShut5sPl+6gf/umdGqhq675kiYRYfwkLYVvVu+hoqra6Tj/o6razTsLtzG8SzN6tK51yncROUVNYyI4o3syX67aQ7UPt2MdtmBTPqmJ0bRNinY6ijhMxbIElBU79rMp9xCX9m/jdBSpxfm9W1FQXPHDiI2vmLE+h92FpVw9RD3uIg1pfO9W5B4oY+m2AqejHFV1tZuFW/IZ1rnZjy6mJMFHxbIElBnrcwgNcXFOr1ZOR5FajDYtiIsK87lWjLcXbiMlPpKxaSlORxEJaGd0TyYiLISvV/vW74Aj/V97dx5eZXnnf/ydhYQtbLIvAorcBBRltQIurbtWHe2mVq3WWtvp/KrjdPTXVmtn6ozT38xYR21ttW610tq61GrrhkVFQFEEFQg3m4DsJGwhkD2/P3LsUCUSIMlzTvJ+XReXJ8+5c8738dwX+fDk+9x30YYdbNtVxXGHH5J0KUoDhmW1KjOWFnP0wK507eCyX+koPzeH00b25fmFG6iorkm6HABWlZTxypLNXDTxUAnlwnEAACAASURBVHLd5VFqVp3zczlpeC+eXZDerRizl9ffiGxYFhiW1YpsLavk3TXbmOLNGGntnKP7UVpezatL0qMV46FZq8jNzuKiid4QKrWEs0f3Y+OOCt5enb6tGK8tK+awnp3o19V+ZRmW1Yq8vGQTtXVw8giX+Ulnk4f1pHvHdjz9zrqkS2FHeRWPvrmac47uT58u7ZMuR2oTPmzF+FOatmJUVNfw+ooSjj+iZ9KlKE0YltVqTFu0iV4F+Rw1wNUM0lm7nGzOOLIf04o2UlqRbCvGb95YTVllDVdOGZpoHVJbUtC+HScc0Ytn39uQlq0Yc1dupbyqlhOG+1tK1TMsq1WorK7llSWbOaWwN9nZ3rmc7i47bjC7q2r43XvbEqthw/Zy7pq+jOOP6MmR/gNLalFnj+7Lhh3lzPsg/VoxXl1aTLucLD51mP3KqmdYVqvwxvsl7Kyo5uQRrmaQCQr7deGCMQN5qmgHq0rKWvz9q2tq+fZv51FdU8ePzjuyxd9fautOKexDfm42T81Pvh3ro2Ys3czYQ7vTKT836VKUJgzLahWmLdpI+3bZTB5mj1mm+M7pw8nPzeJLv3id7z35Hi8VbaS6hTYruX3aUua8v4V/v+BIhvR0a2uppRW0b8cpI/vwzLvptUlR8c4KFq7bYQuG/oZhWRmvrq6OaUWbmDKsJx3ycpIuR43Ur2sHbjmlLwO7d+CP89dx5UNv8dWH3mr2JeVeWbKZn768jC+NH8T5Y9y8RkrK+ccMYEtZJTOWbk66lL/6cMMkb+7TngzLyniLN5SydttuN5TIQKFXex775iTm/eBUfnjOSF5dsplvPTKPyurmudK0YXs5//jofIb3LuCH545qlveQ1DgnDO9F947tePzttUmX8lcvLtrIIZ3y3PZef8OwrIw3bdFGoH45ImWmdjnZXD55KD86bxTTijZyyS/fYOnGUv6yeCML121vkvdYsrGUL90zm92VNfz0y2P8LYSUsLzcbM47ZgAvLtzI1rLKpMthd2UNLxVt4vQj+5LjjeLag93rynjTFm/i6EHd6O06uRnv0uOG0Ll9Ljc+uYBTf/IqAFlZ8K/nHcmlnxp8wK87a1kxX394Lu3b5fDrr01kWO+CpipZ0kH40oRBPDhrJU/OW8txCS8+8XLcxO6qGs4+ql+yhSjtGJaV0TbtKOedD7bxT6cOT7oUNZHzxwxk4tBDePa99Qzq0ZFH3/yAHzy1gMK+BYwf0mO/X29lcRnf+PVc+nVtz0NfnUj/bu7IJaWLwn5dOHpgVx55YxUTzkj2t4N/em89PTrlcezQ/f97Rq2bbRjKaK8urb8Z49O2YLQqA7p14GvHH8bpo/py50VjGNCtA/8wdR5rtu7ar9dZt203Vzz4JtnZWdx/+QSDspSGvnnSMJZvLuOJhU3TcnUgNpdW8MLCjZwzuh+5OUYj/S1nhDLaa0s3c0inPEb265J0KWomnfJzufey8ZRVVnPZfXMo2VnRqO9bVVLGF34+m+LSCu77yngG9ejYzJVKOhBnHNmXM4/sy6/nb2X55p2J1PDIG6uorKnlK5OGJPL+Sm+GZWWsuro6XltWwuRhPd21r5Ur7NeF+y+fwLrtu/nGr+fucz3mNVt3ceE9r7OrspqpV32KcYP9taqUzv7lvFHk52bx3cffo66uZbfArqiu4devr+LkEb05rFfnFn1vZQbDsjJW3FhK8c4KprgeZpswYUgP/uOC0by5civ/MHUeuyqr9zpuc2kFl943h7KKah752qc4aqBLQEnprndBe746rgdzVm7h6XfXt+h7P/3Oeop3VvLVKUNb9H2VOQzLylivpfqVp7hrX5vxd2MGcNNnR/LCog188RezmbW8mJ0V/xuaF6zdzhd+PosN28t54IoJjOxve46UKU4bVsCRA7pw65+LGvzHcFOrq6vj/tfeJ/QpYNLhCS/HobTlahjKWK8tK+awXp28aauNuXLKUIb27Mi1v53Pxfe+QbucLD512CH069qeJ95eS8/O+Tx85URbL6QMk5Odxb+cO4rP3T2b/3h2Mf9y7iiyspq3xW72ihIWrd/Bjz93VLO/lzKXYVkZqaK6hjdWbOGL492uuC36zIg+vHr9p5nz/hbeWrWVaUUbmbmsmC9NOJR/Pj3Qo1Ne0iVKOgDjBvfgislDeGDmStq3y+GGM0Y02wYhNbV1/PjZxfTpks95xwxolvdQ62BYVkZ6e9U2dlfVMOWIXkmXooR065jHaaP6ctqovnzvrEIqq2vJy7WzTMp0N509kpraOu55dQWvryjhzovGMPiQTk3+Pj+bvox31mznfy48hvbt3NFTDfMnizLSzGXF5GRncexh/qpd9QzKUuuQnWrHuPOiMazesouL7nmdD7bs3xrr+7K1rJK7X1nOWUf19aqy9smfLspIM5YVc8ygbnRp3y7pUiRJTSwrK4tzju7PI187lrLKGi6693XWbdvdZK//wMz32VVZw7WnuPur9s2wrIyzubSCd9ds48ThtmBIUms2qn9XHr5yItt3VXHRva+zYXv5Qb/m5tIKHpi1kjNG9WV4n4ImqFKtnWFZGWf64k3U1cEphX2SLkWS1MxGD+zGQ1dOpLi0grPumMH0uOmAX6uqppbv/P4dKqpq+c7poQmrVGtmWFbGmVa0kf5d21PYzysCktQWjD20O0/8/WT6dGnPVx98kx/+cSEvLtrIrOXF1NQ2fse/e15dwStLNvPDc0cxrLe79alxXA1DGaW8qoYZS4v5/LiBrokpSW1I6FvAE9+cxL8+s5BfzV7Jg7NW1h/vU8Dlk4dwwdgB5Oc2vKrF9MWb+J9pSzltZB8uPvbQlilarYJhWRll9vISdlfVcHJh76RLkSS1sA55Odx6wWiuP30EH2zdxYrNZdzxl6V894n3uPvl5Xx2dD/OHt2PlcW7eHbBej7YsovinZX06JRH0fodjOhXwP/7/OikT0MZxrCsjDKtaCMd83L41GFuSypJbVX3Tnl075TH6IHdOO+Y/sxYWsx/v7iEe15dwc9eXg5Ar4J8Cvt1YWjPThTvrOTCiYP459NG0LWjqyhp/xiWlTEqq2t5bsEGThzeywXkJUlA/TJzJwzvxQnDe1G8s4IXFm7k8F6dGDe4O7k53pqlg2dYVsZ4fuEGSsoquXCivWaSpI/r2TnffmQ1Of/JpYzxyBurGNSjA8cP65l0KZIkqY0wLCsjvPPBNl5fsYWLJh5KdrarYEiSpJZhWFbaq6ur40fPLKJn5zwuO25I0uVIkqQ2xLCstPfsgg28tWor/3RaoHO+bfaSJKnlGJaV1iqqa7j12SJG9C3gi+MHJV2OJElqYwzLSmsPzVrJB1t2c+PZI8mxV1mSJLWwff5OO4TQDrgfGALkA7cAa4CngaWpYXfHGB8NIVwOfBPIAZ6KMf4ohNATmAp0ANYBV8QYd4UQrgKuBqqBW2KMzzTliSnzlVfV8ItXVnDC8F5MOcIVMCRJUstrzJXlS4CSGOPxwJnAXcBY4LYY40mpP4+GEA6nPiifBEwE8lJB+wfA1NT3zwOuDiH0Bb4NTAZOB24NIeQ38bkpw/3+rQ8oKavkWycdnnQpkiSpjWpMWP49cNMeX1cD44CzQwivhhDuCyEUAKcAbwEPAa8AM2OMVcAU4LnU9z6bGjcx9XxFjHE7sAxws3b9VVVNLffMWMExg7oxcWiPpMuRJElt1D7bMGKMOwFSgfgx4Ebq2zF+GWOcG0L4PnAzsBU4AZhEfcvFzBDCBKALsD31cqVA148c2/P4xxQVFe3/WSntlZeXf+Jn++e4gw+27ObKY7qwePHiFqxMLWlf80Btg/NA4DxQvXScB41ahyuEMAh4EvhZjHFqCKFbjHFb6ukngTupvwL9coyxFCgNISwChgM7gAJgd+q/2/Y49qEPj39MYWHhfp+U0l9RUVGDn+3uyhoefWI64wd35yunjiMryxv7WqtPmgdqO5wHAueB6iU1D+bOndvgc/tswwgh9AFeAG6IMd6fOvx8CGFi6vHJwFxgJnBSCKF9CKETMJL69oqZwFmpsWcCM4A5wPGpsV2BQmDB/p6YWqcHZr3PptIKbjhzhEFZkiQlqjFXlr8HdAduCiF82Lt8HXB7CKES2AB8Pca4I4RwH/XhOAv4UYxxSwjhFuCh1OoXxcDFMcayEMId1AfnbOD7Mcbypj01ZaJdldX84pUVfGZEbyYMsVdZkiQlqzE9y9cA1+zlqUl7GXs7cPtHjm0EztjL2HuBextdqdqEP8xbx/bdVXzTFTAkSVIacFMSpY26ujoemrWSkf26MH5w96TLkSRJMiwrfcxcVkLcWMrlk4bYqyxJktKCYVlp446XltK3S3vOPaZ/0qVIkiQBhmWliaL1O5izcgtXThlK+3Y5SZcjSZIEGJaVJn47ZzV5Odl8ftzApEuRJEn6K8OyEre7soYn5q3lzKP60r1TXtLlSJIk/ZVhWYmbtbyY0vJqrypLkqS0Y1hW4mYuKyE/N9tNSCRJUtoxLCtxs5YXM35Id2/skyRJacewrESV7Kxg8YZSJh3eM+lSJEmSPsawrETNXlECwHGHH5JwJZIkSR9nWFaiZi0voXN+LqMHdE26FEmSpI8xLCtRs5eXcOzQHuTmOBUlSVL6MaEoMeu27eb94jImDbNfWZIkpSfDshIza3l9v/Ik+5UlSVKaMiwrMbOWFdOjUx6hT0HSpUiSJO2VYVmJqKurY9byEo47/BCys7OSLkeSJGmvDMtKxNodVWzYUW4LhiRJSmuGZSVi/vpyACa7GYkkSUpjhmUl4p0Nu+nftT2DD+mYdCmSJEkNMiyrxdXW1vHuht1MGtaTrCz7lSVJUvoyLKvFLVi3nR0VtUweZr+yJElKb4ZltbjpizeTBZxwRK+kS5EkSfpEhmW1uOlxE8N75nNI5/ykS5EkSfpEhmW1qJKdFbyzZhsTB3pjnyRJSn+GZbWoV5Zspq4OJhiWJUlSBjAsq0VNj5vp2Tmfw3vkJV2KJEnSPhmW1WKqa2p5JW7ipNCLbJeMkyRJGcCwrBYz74Nt7Civ5jMjeiddiiRJUqMYltVipi/eRE52FlOOcItrSZKUGQzLajEvFW1iwpDudGnfLulSJEmSGsWwrBaxumQXcWMpp47sm3QpkiRJjWZYVot4YdEGAE4b2SfhSiRJkhrPsKwW8eKijYzoW8CgHq6vLEmSModhWc1ua1klb67cwqleVZYkSRnGsKxm95fFm6itw7AsSZIyjmFZze7P762nb5f2HNm/a9KlSJIk7RfDsprVph3lvLxkM+ePHUB2trv2SZKkzGJYVrN6/O211NTW8cXxg5IuRZIkab8ZltVsamrrePTN1Uwc0oOhPTslXY4kSdJ+Myyr2fzxnbWsLNnF5ZOHJF2KJEnSATEsq1lU1dTyP9OWUtivC2eMctc+SZKUmQzLahZ/fm89K0t28Y+nHOGNfZIkKWPl7mtACKEdcD8wBMgHbgHWAE8DS1PD7o4xPpoa3xGYBfzfGONzIYSewFSgA7AOuCLGuCuEcBVwNVAN3BJjfKYpT0zJ+vXrqxh8SEdOKXRtZUmSlLkac2X5EqAkxng8cCZwFzAWuC3GeFLqz6N7jP8pULfH1z8Apqa+fx5wdQihL/BtYDJwOnBrCCH/4E9H6aBo/Q7eXLmVS44d7FVlSZKU0fZ5ZRn4PfDYHl9XA+OAEEI4j/qry9fGGEtDCN+h/qrynglpCvDvqcfPph4vB2bGGCuAihDCMmA08ObBnIzSw32vvU9+bjZfGD8w6VIkSZIOyj7DcoxxJ0AIoYD60Hwj9e0Yv4wxzg0hfB+4OYTwLHBEjPHqEMLkPV6iC7A99bgU6PqRY3se/5iioqL9OyMlakNpFU+8vYZzR3Rh/arlrG9gXHl5uZ+tnAcCnAeq5zwQpOc8aMyVZUIIg4AngZ/FGKeGELrFGLelnn4SuBPoDwwOIbwMjADGhhA2ADuAAmB36r/b9jj2oQ+Pf0xhYeH+npMS9MfnFgNw/Xnj6d+tQ4PjioqK/GzlPBDgPFA954EguXkwd+7cBp/bZ89yCKEP8AJwQ4zx/tTh50MIE1OPTwbmxhgvjjFOjjGeBDwHXB9jnA/MBM5KjT0TmAHMAY4PIbQPIXQFCoEF+31mSiuV1bX8/q0P+MyI3p8YlCVJkjJFY64sfw/oDtwUQrgpdew64PYQQiWwAfj6J3z/LcBDqdUvioGLY4xlIYQ7qA/O2cD3Y4zlB3oSSg8vLtpI8c5KLj720KRLkSRJahKN6Vm+BrhmL09N+oTvuXyPxxuBM/Yy5l7g3kZVqYwwdc4qBnTrwInDeyddiiRJUpNwUxI1iZXFZcxcVsKXJgwix+XiJElSK2FYVpP4zZurycnO4ksTBiVdiiRJUpMxLOugVVbX8thbazh5RG/6dGmfdDmSJElNxrCsg/b8wg2UlHljnyRJan0MyzpoU99YzcDuHTjhiF5JlyJJktSkDMs6KCs272T2ihIumngo2d7YJ0mSWhnDsg7Kb+asJjc7iy+MH5h0KZIkSU3OsKwDVl5Vw2Nz13DqyD70LvDGPkmS1PoYlnXAnnl3PVt3VXljnyRJarUMyzogldW13D5tCaP6d2Hy4T2TLkeSJKlZGJZ1QH4zZzVrtu7m+jNGeGOfJElqtQzL2m9lFdXc+ZdlfOqwHpxwhFeVJUlS62VY1n57YOb7FO+s4PozRpCV5VVlSZLUehmWtV9Kdlbwi1dWcEphH8Ye2j3pciRJkpqVYVn75fZpS9lVVcP/PTMkXYokSVKzMyyr0eau2srUOav58rGHMqx3QdLlSJIkNbvcpAtQ+qutrePeGSu47cUlDOzegWtPGZ50SZIkSS3CsKxPVFdXx+3TlnDHX5Zx6sg+/Nv5R9KjU17SZUmSJLUIw7L2qra2jqffXcdDs1by9uptXDB2AP/9haNd/UKSJLUphmV9zMJ127nxDwuYt3obh/fqxA/PGcmlxw0xKEuSpDbHsKy/8eibq7npDwvp0iGX//rC0VwwZoA79EmSpDbLsKy/evj1Vdz0hwUcf0RP7rhwDN3tTZYkSW2cYVkAvLBwAz94agGnFPbm7kvG0S7HVQUlSZJMRGL55p1c97t3GD2gK3ddPNagLEmSlGIqauO276riql+9RV5uNndfMo727XKSLkmSJCltGJbbsLKKar7+8Fus2bKbn18yjv7dOiRdkiRJUlqxZ7mN2lJWyRUPvsl7a7bxky8dw8ShPZIuSZIkKe0YltugiuoaLr73dd4vLuPnl4zjtFF9ky5JkiQpLRmW26C7X17O4g2l3PeV8Zxc2CfpciRJktKWPcttzOINO/jZ9OWce3R/g7IkSdI+GJbbkO27q7j64bl069iOmz47MulyJEmS0p5tGG1EbW0d1z06n7Vbd/Po1Z+iV0F+0iVJkiSlPa8stxF3TV/GS4s3cdNnRzJusCtfSJIkNYZhuQ14bsF6bntxCeePGcBlxw1OuhxJkqSMYVhu5aYt2sg/PvoOxwzqxq0XHEVWVlbSJUmSJGUMw3Ir9ts5q7nq4bcY1rsz91423q2sJUmS9pM3+LVST81fy3effI8TjujFzy8ZR4c8g7IkSdL+Miy3MqXlVfzX85Ffv7GaiUN68ItLx3lFWZIk6QAZlluRjTvKuey+OSzdVMrfjRnAv5w7yqAsSZJ0EAzLrcDCddt5Y8UWfjljBdt3V/Grrx7LlCN6Jl2WJElSxjMsZ7g/zFvLdb+bT20dHNarE7+4dDxHDeyadFmSJEmtgmE5gxWt38ENj7/LhCE9uOOiMfQuyHdpOEmSpCZkWM5QldW1/J/fzKNrh3b89Mtj6dnZ7aslSZKa2j7DcgihHXA/MATIB24B1gBPA0tTw+6OMT4aQvhPYErqde+JMd4bQugJTAU6AOuAK2KMu0IIVwFXA9XALTHGZ5r0zFq5+157n2WbdvLA5RMMypIkSc2kMZuSXAKUxBiPB84E7gLGArfFGE9K/Xk0hPBpYFiM8TjqA/MNIYTuwA+AqanvnwdcHULoC3wbmAycDtwaQjDxNdLSjaXc+ZelnFLYh0+P6J10OZIkSa1WY9owfg88tsfX1cA4IIQQzqP+6vK1wGxgfmpMHZADVFEfnP89dfzZ1OPlwMwYYwVQEUJYBowG3vzomxcVFe3nKbVum8uque7Pa8nPgUtH5mfs/5/y8vKMrV1Nx3kgcB6onvNAkJ7zYJ9hOca4EyCEUEB9aL6R+naMX8YY54YQvg/cHGP8DlCeatt4iPo2jJ0hhC7A9tTLlQJdgT2P7Xn8YwoLCw/oxFqr2x9+i13V8Ng3JjGyf5ekyzlgRUVFfrZyHghwHqie80CQ3DyYO3dug881pg2DEMIgYDrwcIxxKvBkjPHDV30SGJMa1x14DlgUY7w19fwOoCD1uADY9pFjex7XJ3ho1kqeX7iRvz/p8IwOypIkSZlin2E5hNAHeAG4IcZ4f+rw8yGEianHJwNzQwgdgJeA+2OMP9rjJWYCZ6UenwnMAOYAx4cQ2ocQugKFwIKDPptW7LkF67n5jws5bWQfvnHi4UmXI0mS1CY0pmf5e0B34KYQwk2pY9cBt4cQKoENwNeBbwCHAVelVroAuIL61TMeSh0rBi6OMZaFEO6gPjhnA9+PMZY31Um1NptLK/juE+8xemBX7rx4DLk5jfqFgCRJkg5SY3qWrwGu2ctTkz7y9U9Sf/bmjL287r3Avft6/7aurq6O7z/5HmWVNdz2xaPJz81JuiRJkqQ2w0uUae6p+et4YdFGvnPacIb1Ltj3N0iSJKnJGJbT2NaySm7+40LGDe7OlVMOS7ocSZKkNsewnMbumr6M0vIq/v38o8jJzkq6HEmSpDbHsJymPtiyi1/NXskXxg0i9LX9QpIkKQmG5TT1n89HcrKzuO604UmXIkmS1GYZltPQu2u28cd31nHV8YfRp0v7pMuRJElqswzLaaauro5/+1MRh3TK4+sneFOfJElSkgzLaWZ63MQb72/h2lOOoKB9u6TLkSRJatMMy2mkuqaWW/+8mKE9O3HhxEOTLkeSJKnNMyynkSfeXsvSTTu54YxAO7e0liRJSpyJLI088sYqCvt14fRRfZMuRZIkSRiW08ayTaW8s2Y7nx83kKwsNyCRJElKB4blNPHE22vJyc7i3KP7J12KJEmSUgzLaaC2to4n563lxOG96FWQn3Q5kiRJSjEsp4HXV5Swfns5F4wdkHQpkiRJ2oNhOQ08NX8dnfNzOaWwT9KlSJIkaQ+G5YRV19TywqINnFLYm/btcpIuR5IkSXswLCfsjfe3sHVXFWce1S/pUiRJkvQRhuWE/fm99XTMy+HE4b2SLkWSJEkfYVhOUHVNLc8t2MCnR9iCIUmSlI4MywmavaKEkrJKzhnt2sqSJEnpyLCcoKffqV8F46RgC4YkSVI6MiwnpKK6hucWbOC0UX1swZAkSUpThuWEzFhSzI7yas5xe2tJkqS0ZVhOyNPvrqNbx3ZMGdYz6VIkSZLUAMNyAsqrapi2aCNnjOpLuxw/AkmSpHRlUkvAK0s2U1ZZw1luRCJJkpTWDMsJ+PN76+nWsR3HHX5I0qVIkiTpExiWW1h5VQ0vFW3i9JG2YEiSJKU701oLm7G0mJ0V1Zw12hYMSZKkdGdYbmF/encdXTu0Y5ItGJIkSWnPsNyCyiqqeX7hRs46yhYMSZKkTGBia0HPL9zA7qoazh8zMOlSJEmS1AiG5Rb05Ly1DOrRgfGDuyddiiRJkhrBsNxCNmwv57VlxZx/zACys7OSLkeSJEmNYFhuIU/NX0tdHZw/1hYMSZKkTGFYbgG1tXVMnbOacYO7M7Rnp6TLkSRJUiMZllvAXxZvYlXJLi6fNCTpUiRJkrQfDMst4P6Z79Ova3vOOLJv0qVIkiRpPxiWm1nR+h3MWl7CZccNcW1lSZKkDGN6a2YPzHyf9u2yuWjioKRLkSRJ0n4yLDejkp0V/GH+Oj43diDdOuYlXY4kSZL2U+6+BoQQ2gH3A0OAfOAWYA3wNLA0NezuGOOjIYSbgbOBauDaGOOcEMIw4EGgDlgAfCvGWLu3sU15Yulg6hurqayu5YrJQ5IuRZIkSQdgn2EZuAQoiTFeGkI4BJgH/CtwW4zxvz8cFEIYC5wIHAsMAh4HJgC3ATfGGF8OIfwcOC+EsKqBsa1GZXUtv3p9FScM78Ww3gVJlyNJkqQD0Jiw/HvgsT2+rgbGASGEcB71V5evBaYAL8QY64DVIYTcEEKv1NhXUt/7LHAaEPc2Nsa4uUnOKg088+46NpdW8J+fH5J0KZIkSTpA+wzLMcadACGEAupD843Ut2P8MsY4N4TwfeBmYBtQsse3lgJdgaxUKN7zWJcGxn4sLBcVFe3nKSWvvKqW//jTGoZ2z6NXTTFFRSX7/qY2pry8PCM/WzUt54HAeaB6zgNBes6DxlxZJoQwCHgS+FmMcWoIoVuMcVvq6SeBO4GngD37DQqoD9C1ezm2o4GxH1NYWNiYEtNGXV0d1/x2Ppt3VXPXJccxamiPpEtKS0VFRRn32arpOQ8EzgPVcx4IkpsHc+fObfC5fa6GEULoA7wA3BBjvD91+PkQwsTU45OBucBM4PQQQnYI4VAgO8ZYDMwLIZyUGnsmMOMTxma8B2et5I/vrOM7pwUmGpQlSZIyWmOuLH8P6A7cFEK4KXXsOuD2EEIlsAH4eoxxRwhhBjCb+hD+rdTYfwLuDSHkAUXAYzHGmgbGZrSlG0u59dnFfGZEb/7+pMOTLkeSJEkHqTE9y9cA1+zlqUl7GftD4IcfObaE+pUv9jk2k9XV1XH94+/SOT+XH39uNFlZWUmXJEmSpIPkpiRN5MVFG5m3ehs3nBHoVZCfdDmSJElqAoblJlBTW8d/v7CEoT078bmxA5MuR5IkSU3EsNwEfvfWB8SNpVx36nByc/xfKkmS1FqY7A7S9t1V/OfzMHjKdwAABUVJREFUkQlDuvPZ0f2SLkeSJElNyLB8kP5n2lK27qrk5nNGeVOfJElSK2NYPgjLNpXyq9kruXDCoRw5oGvS5UiSJKmJGZYPUHlVDdc/9i4d83L4zmnDky5HkiRJzaBR213rb9XV1XHD4+/y9upt/OzLYzmks0vFSZIktUZeWT4Ad7y0jKfmr+OfTw+cdZQ39UmSJLVWhuX9NH3xJn4ybQkXjB3gltaSJEmtnGF5P6wu2cUNj7/L8D6dufWCo1z9QpIkqZUzLDfSB1t2ceE9s6msqeWOi8aQn5uTdEmSJElqZoblRti+q4ov//INyipreORrxzKib5ekS5IkSVILMCzvQ21tHdf9bj7rt+/m/ssnMKq/6ylLkiS1FYblfXhh0QZeWryJ751VyLjB3ZMuR5IkSS3IsPwJtu2q5CcvLuXQHh257LghSZcjSZKkFuamJB+xbVclT7+7nm1llfxh/lo+2Lqbey4dR062K19IkiS1NYblj/jxc5HfzFkNwBG9O/PA5ROYPKxnwlVJkiQpCYblj7j+9MDXTziMnp3zKGjfLulyJEmSlCDD8kd075RH9055SZchSZKkNOANfpIkSVIDDMuSJElSAwzLkiRJUgMMy5IkSVIDDMuSJElSAwzLkiRJUgMMy5IkSVIDDMuSJElSAwzLkiRJUgMMy5IkSVIDDMuSJElSAwzLkiRJUgMMy5IkSVIDDMuSJElSAwzLkiRJUgMMy5IkSVIDDMuSJElSA7Lq6uqSrqFBc+fOTd/iJEmS1GqMGzcua2/H0zosS5IkSUmyDUOSJElqgGFZkiRJaoBhWZIkSWpAbtIFqHUKIbQD7geGAPnALcAi4EGgDlgAfCvGWBtCuBk4G6gGro0xzkmiZjWfEEJvYC5wKvWf84M4D9qUEMJ3gXOBPOBnwCs4D9qU1M+Fh6j/uVADXIV/H7QpIYRjgR/HGE8KIQyjkZ99Q2Nbqm6vLKu5XAKUxBiPB84E7gJuA25MHcsCzgshjAVOBI4FLgR+mlC9aiapH5C/AHanDjkP2pgQwknAJGAy9Z/zIJwHbdFZQG6McRLwr8C/4TxoM0II1wO/BNqnDu3PZ/+xsS1Zu2FZzeX3wE17fF0NjKP+ahLAs8ApwBTghRhjXYxxNZAbQujVopWquf0X8HNgXepr50HbczrwHvAk8DTwDM6DtmgJ9Z9pNtAFqMJ50JYsBy7Y4+v9+ez3NrbFGJbVLGKMO2OMpSGEAuAx4EYgK8b44VqFpUBX6v/C3L7Ht354XK1ACOFyYHOM8fk9DjsP2p6ewHjgC8A3gEeAbOdBm7OT+haMxcC9wB3490GbEWN8nPp/IH1ofz77vY1tMYZlNZsQwiBgOvBwjHEqsGd/UQGwDdiRevzR42odvgqcGkJ4GTgG+BXQe4/nnQdtQwnwfIyxMsYYgXL+9oed86Bt+Efq58Fw4Gjq+5fz9njeedC27E8m2NvYFmNYVrMIIfQBXgBuiDHenzo8L9W7CPV9zDOAmcDpIYTsEMKh1F9tKm7xgtUsYownxBhPjDGeBMwHLgOedR60Oa8BZ4QQskII/YFOwEvOgzZnK/971XAL0A5/LrRl+/PZ721si3E1DDWX7wHdgZtCCB/2Ll8D3BFCyAOKgMdijDUhhBnAbOr/8fatRKpVS/on4F7nQdsRY3wmhHACMIf//Xzfx3nQ1vwEuD/1GedR/3PiLZwHbdX+/Cz42NiWLNTtriVJkqQG2IYhSZIkNcCwLEmSJDXAsCxJkiQ1wLAsSZIkNcCwLEmSJDXAsCxJkiQ1wLAsSZIkNeD/A9s4vFirb8X9AAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 864x576 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.figure(figsize=(12,8))\n",
|
|
"plt.plot(vol_df['P_Ext_Markets'])\n",
|
|
"plt.title('Rolling Average of External Stock Market Price')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 29,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"Text(0.5,1,'Rolling Average of Zeus Price')"
|
|
]
|
|
},
|
|
"execution_count": 29,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHbCAYAAADF1iwqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd8VfXh//FXEsLeIFMQEDiEvWS468KFVKwDFSfuUfXrah21tq5WpY4qVq0ILrTi3uJGRPYMhxk2YQcIZN/fH4n+qGUbcpLc1/Px8CHn3nPPfSf3QN58+JzPSYjFYkiSJEnxIjHqAJIkSVJJsgBLkiQprliAJUmSFFcswJIkSYorFmBJkiTFFQuwJEmS4kqFqANIih9BEMSAmUA+EAOqApuAq8IwnLib16YBvwOqA0+GYdgxCIJ7gflhGI4oxoz1gaXA8DAMryqu40YpCIJmwEdAHoXf63HbPfch0GS73asAbYEjwjD8bj9muge4BlhO4bmQBKwGrg7DcO4O9n8OeC0Mw8/3VyZJ8cMCLKmk/SYMw7U/bQRBcDPwBNB3bw8UhuHdxRmsyKXAO8C5QRDcEYbh+v3wHiXtN8CqMAyP++UTYRie/NOvgyBIovBrnwGMLYFco8IwvHa7978OeAXouYOcQ0ogj6Q4YQGWFJkgCCoAzYH1RdvJwKPAsRSOEo8HbgzDcPNOXj8cmBmG4cNBEGQBDwInAI2Bv4Vh+HRRqfs7cBqQUXTM9mEYHr2D4yUCVwBXUzjSfHnRMQmC4HvgkTAM3yzafgggDMPbgiC4tOg1icA64NowDOcU5asLHAy8DzwP/BOoUZRxKnB2GIZZQRCcDDxU9HVPBY4DDg/DMG1nx99B/suB64uOkQ5cCzQF/grUCoLgyzAMf7PDD6PQIxSOBh8ehmGs6Jh3AGcUvXcahSO0K4Ig+IrCkfj/FO3383YQBH8GTgdyivJeFIbhyl2870/GAA9sd7z1QDvg6aIMPx3/1KKvKRHIBK4Mw3BaEASHFn0PqxV9D/4chuH7e/C+kuKMc4AllbQvgyCYHgTBCuCnf+q+uOj/d1JYwLoU/ZdIYXndE5WAtWEYHkrhVImhQRBUBoYAPYCOFI4yH7yLY5xI4bSMz4EXgWuLSjrAsz/lLCrV5wPPBUFwFHAhhVMGugF/A97a7phVwzDsEIbhbcBlwIthGPYBWgMtgVOCIKgHjATOD8OwK/AlhcWVPTg+RfsdA9xK4Qh7FwpHUt8GvgLuBr7dVfkNguAS4GxgQBiGW4seuwDoBPQqyvUh8Nwuvn8/Tbe4ATgkDMOewKdA7129puh1FSgcff9yu4c3hGHYPgzDJ7bbryHwEnBxGIadKTw/HgyCoA7wAjA4DMPuwADg6SAImu/uvSXFHwuwpJL2m6LiciqFZfPLMAxXFz13EjAsDMPcMAwLKJwacdJeHPudov9PprAQVwNOBkaEYZgVhmEO8MwuXn8V8HIYhnnAu0X5zix6bhTQNwiCRkA/YG4YhvOAUygss98HQTCVwoJaJwiCukWv234e7W3AmiAIbqVwVLMJhSPNRwKzwzCcBhCG4YsUzo1mD47/kxMpnFKwpugYwyks0S128fUCUDRyOhQ4PQzDpds9dSrQB5hY9N7XAcFuDrccmAZMDoLgYWBqGIZv72Tfs4MgmFp07OlAAwr/kvCTb3fwmsMoHPWfAhCG4egwDE+i8C83jYG3i473IYVzizvvJq+kOOQUCEmRCMNwchAENwLDgyCYEoZhGoUXQsW22y0RSN6Lw24rOnYsCAKABAov/ErYbp/8Hb0wCIKDKCzL3YMgOKPo4QrAjcCrYRhuDYLgDeBcCsvWTyOhScDIohHen6ZRNAE2FD2/Zbu3ebXomK8DH1A4/WNHGQEK9vD4bLdfzi8eS2A337+iEdLRwDVhGP6wg2M+FIbh00X7VgLqFD0X+0XmigBhGBYUjVr3pHAax9AgCD4Ow/DWHbz9f80B3oEtO3gsj+3OkSAIEigcpU4CUsMw7L3dc02ANbs4vqQ45QiwpMiEYfgq8COFo48AHwNXBUGQXFT0rgE++5Vv8wFwfhAElYr+mf0i/rtk/+QK4LswDJuGYdgiDMMWFE6d6F40QgqF0yAupHAU8s2ixz4BBgVB0Lho+0oK57LuSD/g3jAMRxVt96awuI0F2gZB0BmgqIDXLsq5p8f/GDgnCIIDio5xMYXzb+fvJAtBEFSlcJrEv8MwfGkHu3wCDAmCoGbR9r0UTtWAwmLZs+g47SkaaQ2CoAuFK32khmH4AIWf7SE7y7APxgMpQRB0KNoeQOGUiB+ANkEQHFmUoyswj6KpJJK0PUeAJUXtWmB6EAT9KLyw6WEKLwKrQGE5vu5XHn84hf9sP4XCEcVFwNbtdwiCoCKF808v2f7xMAznBUHwKoWjwN+HYTgpCIJ84D9hGGYV7fNp0QVxnwVBUEDh1IWB241Cb++PwFtBEGRSeEHe10DrMAzXB0EwCBhRdIyJFI50bt3V8X+R9bMgCIYCXxT95WENcGrRiOzOvjdnAN2ApKKL8Lb3ZwpHuZsCPxQtYbeEwr9AQOFn9WIQBKcAc4BvinJMC4LgdQqnTWyhcFT++p0F2FthGKYHQXBe0XtXoPD7cU4YhmuK/uLw96K534kUzgdOK673llR+JMRiOxoIkaTyIQiCE4AGP41wBkHwGJD105SC0qBohPVO4J6iqRbdKRy5bvLLoitJ+vUswJLKtSAImlI4CtyQwukG0yi8GURGlLl+KQiCv1K4dFhu0X83hWG4o4vAJEm/kgVYkiRJccWL4CRJkhRXLMCSJEmKKyW6CsSkSZOcbyFJkqQS0aNHj1+usQ5EsAxajx49SvotVUJSU1NJSUmJOoYi5nkg8DxQIc8DQXTnwaRJk3b6nFMgJEmSFFcswJIkSYorFmBJkiTFFQuwJEmS4ooFWJIkSXHFAixJkqS4YgGWJElSXLEAS5IkKa6U+I0wSqPx48dzww030Lp1awCys7Pp378/gwcP/nmfb775hpUrV3L22WdHFVOSJEnFwAJcpE+fPgwdOhSAnJwcTjzxRAYMGEDNmjUBOPLII6OMJ0mSpGJSqgrwm5OW8frEpcV6zLN6NuOMHgfu1Wu2bNlCYmIiF110EQceeCCbNm3ilFNOYfHixdx888089dRTfP755+Tn5zNo0CDOOeccRo4cyfvvv09CQgInn3wyF1xwQbF+HZIkSSoepaoAR+mHH35g8ODBJCQkkJyczF133cVzzz1H//79Of744xk9ejQAs2fP5ptvvuGNN94gJyeHRx55hHnz5vHhhx/yyiuvkJCQwEUXXcThhx9Oq1atIv6qJEmS9EulqgCf0ePAvR6tLS7bT4H4yXPPPUfLli3/67FFixbRuXNnkpKSqFKlCnfeeScffvghK1as4KKLLgIgIyODJUuWWIAlSZJKIVeB2I2EhIT/2m7VqhWzZ8+moKCA3NxcLr74Ylq1akXr1q0ZMWIEI0eOZODAgbRt2zaixJIkSdqVUjUCXBakpKRwxBFHMGjQIAoKChg0aBDt2rWjb9++DBo0iJycHDp37kzDhg2jjipJkqQdSIjFYiX2ZpMmTYr16NGjxN5PJSs1NZWUlJSoYyhingcCzwMV8jwQRHceTJo0iR49eiTs6DmnQEiSJCmuWIAlSZJU7LJy8/n3d4vYkpMfdZT/YQGWJElSscrKzeeyERP5ywezWb0lL+o4/8OL4CRJklRstuUUlt+xC9by9991oVXVzVFH+h+OAEuSJKlYbM3J45LhE34uv7+L6P4Ou+MIsCRJkn61zOw8Lh4+gYlp63n0rC6c3q10ll+wAEuSJOlXWr05i8tGTGLm8gz+cU43TuvSJOpIu+QUCGD8+PH07duXwYMHM3jwYM466yxGjhy50/07duz4874//Zeenr7DfTdu3Mh77723y/c/5phjGDJkyH899sILLxAEwR5/DbfffjvffPPNHu07atQocnNz9/jYkiRJO5O6chO/fXIsc1dt5unzupf68gulbQR46qsw5aXiPWa386HroN3u1qdPH4YOHQpATk4OJ554IgMGDKBmzZr/s2+tWrV2WZC3F4YhX3zxBf3799/lfunp6axfv566desC8PXXX1OrVq09eo+99cwzz/Db3/52vxxbkiTFjzGp6Vz/6hRqVE7mjSv70rHp/ukuxc0R4B3YsmULiYmJJCUl7dXrHnroIR599FEKCgq48MIL+eqrrxg2bBg//PADo0aN2uVr+/Xrx8cffwzAggULaN68OcnJyQDMnTuXSy65hIsuuoiBAwcyefJkAH7zm99w6aWXct999/18nGnTpnHmmWeycuVKVq5cyZAhQxg8eDBDhgxh5cqVvPHGG6xZs4Ybb7yR9evXc8EFFzB48GDOOeccwjDcq69XkiTFp4KCGE9+MY8hIybS6oDqvHPtYWWm/EJpGwHuOmiPRmv3hx9++IHBgweTkJBAcnIyd911F9WqVdvhvhkZGQwePPjn7QYNGvDII49w0003cd5553HbbbfRuXNnjj76aKpUqcJrr73G2Wefvcv3P/XUU7nrrrs499xzeffdd+nfvz9jxowBYP78+dx2220EQcB7773H6NGj6d69OytXrmT06NHUqVOH22+/nSlTpjBu3DiGDRtGvXr1uOGGGxg8eDBHHXUU48aN4+GHH+aRRx7h6aefZujQoYwbN44aNWrwyCOPMH/+fLZs2VJ831BJklQubc7K5eY3pvHJrHR+27UJDwzsTJWKezdoGLXSVYAjtP0UiN3Z2RSI5ORkLrzwQm677Ta+/PLLvXr/xo0bA7By5UomT57MDTfc8PNzDRo04KmnnqJy5cpkZmZSvXp1AOrUqUOdOnV+3m/s2LFkZmZSoULhxzp37lyeeeYZnnvuOWKx2M8jyj858sgjSUtL4+qrr6ZChQpcddVVe5VZkiTFl4VrtnDZiImkrdvKXae255LDWpCQkBB1rL1mAS5GGRkZDBs2jNtvv5277rqLYcOGkZiYSEFBwR69/uSTT+bBBx+kW7du/3Uy3XfffTz88MMcfPDBPP744yxfvhyAxMT/nsFy7bXXkp6ezj333MPQoUNp1aoVl1xyCd27d2fBggVMmDABgISEBAoKChg/fjwNGjTg3//+N1OmTOHRRx/d47nNkiQpvoxJTeeG16aSXCGRkZf24tCD60cdaZ9ZgPfBL6dAANx00008//zzDBkyhAEDBjBz5kxGjBhBv379mDt3LsOHD+eiiy7a5XFPPPFE7rvvPt5+++3/evy0007j6quvpl69ejRq1IgNGzbs9BhnnnkmH3/8Me+99x633XYb99xzD9nZ2WRlZXHHHXcA0LNnTy6//HIef/xxbrzxRl588UUSExO55ppr9u0bIkmSyq2CghhPfjmfoZ/PpUOTmgw7vwcH1qkadaxfJSEWi5XYm02aNCnWo0ePEns/lazU1FRSUlKijqGIeR4IPA9UyPOg7MvYmsuNr0/lizmrGditKfcP7ETl5L2b7xvVeTBp0iR69Oixw/kZjgDvxKhRo3j//ff/5/GbbrqJbt267fXxxowZw/Dhw//n8QsuuIDjjz9+XyJKkiTtN7NWZHDVS5NZmbGNvwzowPl9DiqT8313xAK8E2efffZuV27YG8ceeyzHHntssR1PkiRpf3l/+gr+7/Vp1K1WkVFX9KV78zq7f1EZYgGWJEkSUDjf97Ex83hszDwOaVGHp8/vQf3qlaKOVewswJIkSWJbTj43vzGND2as5Hc9DuS+0ztSqULZWt93T1mAJUmS4tyqjCwuGzGRmSsy+MNJ7bj8yFblZr7vjliAJUmS4tj0ZRsZ8uJEMrPzeHZwT45r3zDqSPudBViSJClO/XSxW/3qlXjz6kNp16hm1JFKhAVYkiQpzsRiMf7xeeHFbj0PqsOwweXzYredsQBLkiTFkc1ZudzyxnQ+nrWKM7ofyP0Dy+/FbjtjAZYkSYoT81dv5vKRk1i8bit3nJzCkCNaluuL3XbGAixJkhQHPpyxklvemEbl5CReurQ3fQ+uF3WkyFiAJUmSyrG8/AL+/knIM98spGuz2jx9fnca16oSdaxIWYAlSZLKqfRNWVz/6hTGL1rPeb2bc3f/9nE333dHLMCSJEnl0Ffham56fRrbcvJ5+Mwu/K7HgVFHKjUswJIkSeVIXn4BD386l2FfL6Bdoxo8eW43WjeoEXWsUsUCLEmSVE6kb8riulem8GPaegb1asaf+negcrJTHn7JAixJklQOfD9/Lde/NoXM7HyGnt2F07s55WFnLMCSJEllWCwW46mvFvDIpyEt61fj1cv60KahUx52xQIsSZJURmXn5fOH0TMYPXk5/bs04cGBnahWyXq3O36HJEmSyqANmTlc8dIkfly0nhuPa8v1x7aOy7u67QsLsCRJUhmzaG0mlwyfwPIN23jsnK4M6No06khlSuKe7BQEQe8gCL76xWPnBkEwbrvty4IgmBgEwQ9BEJxazDklSZIE/LhoPac/NZaNW3N45bLelt99sNsCHATBrcBzQOXtHusKXAokFG03Aq4HDgP6AQ8EQVBpfwSWJEmKV29NWcZ5z/1A3WoVefuaw+jZom7UkcqkPRkBXgAM/GkjCIJ6wIPADdvt0wsYG4ZhdhiGGcB8oHNxBpUkSYpXsViMoZ/N5cZR0+hxUB3euuowDqpXLepYZdZu5wCHYfhmEAQtAIIgSAKeB24Etm23W00gY7vtzUCtHR0vNTV1X7OqlMvKyvLzleeBAM8DFfI8KB45+TH+8f0avly4heMPrs51fWuxYvF8VkQdbA+VxvNgby+C6wG0AZ6mcEpE+yAI/gF8AWy/4FwNYOOODpCSkrIPMVUWpKam+vnK80CA54EKeR78ehnbcrl8xETGL9rCLf0Crj764DK30kNU58GkSZN2+txeFeAwDH8EOgAUjQq/FobhDUVzgO8LgqAyUAlIAWbua2BJkqR4t2LjNi564UcWrc10pYdiVizLoIVhuCoIgseBbymcV3xHGIZZxXFsSZKkeDNn1SYu+vcEMrPzePHiXhzaun7UkcqVPSrAYRimAX129VgYhs8CzxZjNkmSpLgzfuE6hoyYSNWKSbx+ZV9SGteMOlK5440wJEmSSomPZqzk96Om0qxOFUZc2pumtatEHalcsgBLkiSVAiN/WMzd78ykW7PaPH/hIdSpVjHqSOWWBViSJClC+QUx/vbJHJ75eiHHpTTkiUHdqFIxKepY5ZoFWJIkKSKZ2Xn8/rWpfJ6azvl9mnNP/w5USNqT+5Tp17AAS5IkRWD5xm1cOnwCc9M38+fTOnDhoS2ijhQ3LMCSJEklbNLiDVwxciLZeQUMv7gXR7Y9IOpIccUCLEmSVEJisRhvTFrGnW/PpHGtyrx2eU9aN6ix+xeqWFmAJUmSSsCmrFzueGsm701bQd9W9XjqvO6u9BARC7AkSdJ+NmnxBn7/2hRWZmRxS7+AK486mKTEhKhjxS0LsCRJ0n4Si8V4/rtFPPDRHJrUrswbV/ale/M6UceKexZgSZKk/SAvv4C7353FK+OXcGKHRvztzM7UrJwcdSxhAZYkSSp2m7NyueaVKXwzdw1XHX0wt5wQkOiUh1LDAixJklSMflrfd97qLTw4sBPn9GoedST9ggVYkiSpmMxYlsElL04gKyefFy/uxeFt6kcdSTtgAZYkSSoGn85axe9fm0rdahV5+eretG3o+r6llQVYkiTpV4jFYvx7bBp//WA2nQ+szXMX9OSAGpWijqVdsABLkiTto7z8Au59fzYjxi3mxA6NGHp2V6pUTIo6lnbDAixJkrQPtmTnce0rk/kqXMMVR7bithPbudJDGWEBliRJ2ksrNm7jkqKVHu4/vRPn9nalh7LEAixJkrQXpi/byKUvTiQrJ58XLjqEI9seEHUk7SULsCRJ0h76eOYqbhg1hfrVK/HyEFd6KKsswJIkSbuRXxDjsc/n8sSX8+narDbPXtCT+tVd6aGssgBLkiTtwtot2dzw2lS+m7+Ws3oeyL0DOlI52ZUeyjILsCRJ0g7EYjH+M2kZD3w0h8zsPP52RmfOOqRZ1LFUDCzAkiRJvzA3fTN3vjWTH9PW0715be4f2Il2jWpGHUvFxAIsSZJUZGtOHo+Nmcfz3y6ieuUKPDiwE2f1bOb6vuWMBViSJAn4bHY697w7i+Ubt3FmjwO5/aR21PNCt3LJAixJkuLa8o3b+NM7s/g8NZ22Davz+hV96dWybtSxtB9ZgCVJUlwqKIgx8ofF/O3jORTE4PaT2nHp4S1JTkqMOpr2MwuwJEmKO/PSN3Pbm9OZvGQjR7Spz/2nd6JZ3apRx1IJsQBLkqS4kZNXwLCvF/DkF/OpWimJR8/qwundmpKQ4EVu8cQCLEmS4sLUpRu57T/TCdM3c2rnxtxzWgfv5hanLMCSJKlc25qTxyOfzuWFsYtoUKMyz13Qk+PaN4w6liJkAZYkSeXWt/PW8IfRM1i2YRvn9W7ObSe1o2bl5KhjKWIWYEmSVO5s3JrDX95P5c3Jy2hVvxqjLu9D71b1oo6lUsICLEmSyo1YLMaHM1bxp3dnsmFrLlcffTDXH9uGyslJUUdTKWIBliRJ5cKqjCzuemcmn81Op2PTmrx4SS86NKkVdSyVQhZgSZJUphUUxHh1whIe/HAOOfkF/KHohhYVvKGFdsICLEmSyqxw1WbuensmP6atp2+rejwwsBMt6leLOpZKOQuwJEkqczZl5fLEmHn8e2waNSpX4MGBnTj7kGbe0EJ7xAIsSZLKjMzsPIZ/n8a/vllIxrZczjmkGbee2I661SpGHU1liAVYkiSVetty8hn5QxrDvl7I+swcjm3XgBuPb0vHpl7kpr1nAZYkSaVWXn4Br01YymNj5rFmczZHtKnPTce3pVvzOlFHUxlmAZYkSaXS9wvWcu97s5mzajO9WtblqfO6c0iLulHHUjlgAZYkSaXK0vVbuf/DVD6auYqmtavw9HndObFjIy9wU7GxAEuSpFJha04eT325gH99u5CkhAT+7/i2XHZkK+/ipmJnAZYkSZGKxWK8O20FD3w4h1WbshjQtQm3n9SOxrWqRB1N5ZQFWJIkRSZtbSZ3vTOTb+etpVPTWjx5bjd6Os9X+5kFWJIklbjsvHz+9fVCnvhyPhWTErl3QAfO630QSYnO89X+ZwGWJEklKm1tJte8MplZKzZxSqfG3N2/PQ1rVo46luKIBViSJJWYD2es5Nb/TCcpMYF/De7BCR0aRR1JccgCLEmS9rvsvHzu/yCVF8ctplvz2jx5bnea1vYiN0XDAixJkvarpeu3cs0rk5m+LINLD2/JbSe2o2KFxKhjKY5ZgCVJ0n7zyaxV3PLGNGLAM4N70M8pDyoFLMCSJKnY5eQV8K8J63hr9kI6Na3FP8/tTvN6VaOOJQEWYEmSVMyWb9zGNS9PZurSDC7sexB/PCWFShW8m5tKDwuwJEkqNl/MSeem16eRlx/jj0c14PKTOkYdSfofFmBJkvSr5eYX8PCnIc98vZD2jWvy1Hnd2bZmSdSxpB2yAEuSpF9lVUYW1706mQlpGzi3d3PuPrU9lZOTSF0TdTJpxyzAkiRpn309dw03jppKVm4+j53TlQFdm0YdSdotC7AkSdprefkF/OPzeTz55XyChjX453ndad2getSxpD1iAZYkSXtl9aYsrnt1CuMXrefsns2457QOVKnoKg8qOyzAkiRpj01esoErR05ic1Yej5zZhTN6HBh1JGmvWYAlSdIeee3HJdz9ziwa1arMi5f0IqVxzagjSfvEAixJknYpJ6+AP783i5fHL+GINvV5YlA3aletGHUsaZ9ZgCVJ0k6t3pzF1S9NZuLiDVxxVCtu7deOpMSEqGNJv4oFWJIk7dCUJRu48qVJbNqWxxODutG/S5OoI0nFwgIsSZL+x+sTlnLn2zNpULMSb151KO2bON9X5YcFWJIk/Swnr4C/vD+bkT8s5vDWhfN961Rzvq/KFwuwJEkCCtf3veaVwlsaX35kK27tF1AhKTHqWFKxswBLkiQmLV7PVS9NZnNWHo8P6sZpzvdVOWYBliQpjsViMV76YTH3vj+bJrWruL6v4oIFWJKkOLU1J48735rJ6CnL+U1wAP84uxu1qiZHHUva7yzAkiTFoXDVZq55ZTIL1mzhhuPacP0xbUh0fV/FCQuwJElx5o2JS7nrnZlUr5TMy5f25tDW9aOOJJUoC7AkSXFia04ed709izcnL6Nvq3o8NqgrDWpUjjqWVOIswJIkxYFFazO5fMRE5q/ZwvXHtuH3x7bxlsaKWxZgSZLKuclLNnDp8AkkJCQw4pJeHNHmgKgjSZGyAEuSVI59OmsV1706hUa1KvPixb1oUb9a1JGkyFmAJUkqp0aMS+Oed2fR6cDaPH9hT+pXrxR1JKlUsABLklTO5BfE+OsHs3lhbBrHpTTg8UHdqFrRH/nST/bod0MQBL2Bh8IwPDoIgvbAv4AEYBpwXRiG+UEQXAZcAeQBfw3D8P39FVqSJO1YZnYe1786hTFzVnPJYS2545QUL3aTfiFxdzsEQXAr8Bzw0zop9wN/DMPwMKAqcFoQBI2A64HDgH7AA0EQ+O8skiSVoLS1mZzx9Pd8Ga7mLwM6cHf/9pZfaQf2ZAR4ATAQGFm0fUbRiG9FoBGQDvQCxoZhmA1kB0EwH+gMTNgPmSVJ0i98MmsVN78+jaSkBF64uBdHtXWlB2lndluAwzB8MwiCFttt5wdBcBDwOZABhECrol//ZDNQa0fHS01N/TV5VYplZWX5+crzQIDnQUnKL4gxfPJ6/jMrgzb1KnHH0Q1okL+W1NS1UUfzPBBQOs+DfZoRH4bhYqBNEARDgEeBN4Ea2+1SA9i4o9empKTsy1uqDEhNTfXzleeBAM+DkrJ6UxbXvjqFHxdlcH6f5tx1ansqVUiKOtbPPA8E0Z0HkyZN2ulze12AgyB4F/i/MAznUTjSWwD8CNwXBEFloBKQAszcp7SSJGm3fli4jmtfmUJmdh7/OLsrv+3WNOpIUpmxLyPADwLDgyDIAbYCQ8IwXBUEwePAtxReWHdHGIZZxZhTkiQBsViMYV8v5O+fzKHxSrpFAAAgAElEQVRF/Wq8PKQ3QaMau3+hpJ/tUQEOwzAN6FP06+8pXO3hl/s8CzxbnOEkSdL/l7Etl5vfmMZns9M5pVNjHvpdZ6pXcn1faW/5u0aSpDJg1ooMrn55Mss3bOPuU9tz8WEtSEhwiTNpX1iAJUkq5UZNWMJd78yibtWKjLqiDz0Oqht1JKlMswBLklRKbc3J4553Z/H6xGUc1roej53TjfrVvc+U9GtZgCVJKoWmLt3ITaOmsnBtJtcd05objmvrXd2kYmIBliSpFMnNL+CfX87niS/m07BGJV65rDeHHlw/6lhSuWIBliSplFi4Zgs3vj6NaUs3cnq3ptxzWgdqVUmOOpZU7liAJUmKWCwW46XxS7jvg9lUqpDEk+d249TOTaKOJZVbFmBJkiK0elMWt745na/CNRzRpj5//10XGtWqHHUsqVyzAEuSFJGPZqzkj2/NYGtOPvcO6MDgPge5tq9UAizAkiSVsE1Zudzz7ixGT15Op6a1GHp2V1o3qB51LCluWIAlSSpB4xeu46bXp7EyYxvXH9Oa645tQ3JSYtSxpLhiAZYkqQTk5BXwyKch//p2Ic3rVuWNKw+lx0F1oo4lxSULsCRJ+9nS9Vu59pXJTFuWwaBezbjzlPZUq+SPYCkq/u6TJGk/GpOazo2jphIDnj6vOyd1ahx1JCnuWYAlSdoP8gti/OPzuTzxxXw6NKnJ0+f1oHm9qlHHkoQFWJKkYrchM4frX5vCt/PWcmaPA/nLbztSOTkp6liSiliAJUkqRtOXbeSqlyazZnM2DwzsxDmHNHNtX6mUsQBLklQMYrEYr01Yyp/enUX9ahV548q+dGlWO+pYknbAAixJ0q+0ITOHP4yewcezVnF46/o8PqgbdatVjDqWpJ2wAEuStI9isRifzU7nzrdnsmFrDref1I7LjmhFUqJTHqTSzAIsSdI+mLNqE399P5Xv5q+lbcPqvHDxIXRoUivqWJL2gAVYkqS9sHpzFkM/m8uoCUupUTmZe/q357w+B3k7Y6kMsQBLkrQHsnLzef67RTz15Xyy8wq46NCWXH9sa2pXda6vVNZYgCVJ2oVYLMYns9K578PZLF2/jRPaN+QPJ6fQsn61qKNJ2kcWYEmSdmLq0o089NEcxi1cR9CwBi8P6c1hretHHUvSr2QBliTpF+amb+bhT0I+nZ1O3WoVuXdAB87t1ZwKzvOVygULsCRJFE51mLh4A899u5BPZ6dTvWIFbjq+LZcc3pLqlfxxKZUn/o6WJMW1vPwCPpq5iue+W8S0pRupXTWZa45uzaWHt6SON7OQyiULsCQpLm3OymXUhKW8MDaN5Ru30bJ+Nf7y2478rvuBVKmYFHU8SfuRBViSFFdWZmzj398t4rUfl7I5O49eLeryp/7tOS6lIYnewU2KCxZgSVJc2Lg1h6e+WsDw79PIL4hxcqfGDDm8JV2a1Y46mqQSZgGWJJVr23LyeeH7RTz91QK2ZOcxsNuB3HBcG5rVrRp1NEkRsQBLksql3PwC3pi4jMfGzCV9UzbHtmvALScGtGtUM+pokiJmAZYklSsFBTHem76CRz+by+J1W+nevDaPn9ON3q3qRR1NUilhAZYklQs5eQW8M3U5w75ewII1mbRrVIPnL+zJMe0akJDgxW2S/j8LsCSpTFu3JZs3Jy9j+Ng0VmRkkdK4Jk8M6sYpnRq7qoOkHbIAS5LKnIKCGN8vWMerE5bw6axV5ObH6NWyLvcN7MTRbQ9wxFfSLlmAJUllxupNWbwxaRmjJixlyfqt1KqSzPl9DuKcQ5oTNKoRdTxJZYQFWJJUqhUUxPhm3hpeGb+EMXNWk18Qo0+ruvzfCW3p16ERlZO9a5ukvWMBliSVSuszc3hj4lJe+XEJi9dtpV61igw5oiXnHNKclvWrRR1PUhlmAZYklSpTlmxg5LjFvD9jJTl5BfRqWZf/OyHgxA6NqFghMep4ksoBC7AkKXK5+QV8MH0lL3yfxrSlG6leqQLnHNKM83of5NxeScXOAixJikx+QYx3py3nH5/PY/G6rbQ6oBr3DujAwO4HUr2SP6Ik7R/+6SJJKnGxWIxPZqXzyKch81ZvIaVxTZ69oCfHtmvg2r2S9jsLsCSpRP2wcB0PfTyHKUs20uqAajx5bjdO7uhNKySVHAuwJKlEzE3fzAMfpvJluIZGNSvz0BmdOKP7gVRI8sI2SSXLAixJ2q82bs1h6GdzeWn8EqpVTOL2k9px0aEtXL9XUmQswJKk/SIvv4BXf1zCI5/NZdO2XM7vcxA3HteWOtUqRh1NUpyzAEuSit3Uldu44ePvCNM307dVPf50WnvaNaoZdSxJAizAkqRitGTdVu7/MJWPZ62iWd0qDDu/B/06NCQhwQvcJJUeFmBJ0q+2cWsOT3wxnxHj0khOSuTCbnX4w8DezvOVVCpZgCVJ+ywrN5/h36fx1Jfz2ZKdx5k9mnHTCW1Zv3yR5VdSqWUBliTttbz8At6cvIyhn81j1aYsjg4O4PaT2v08z3f98ogDStIuWIAlSXssFovx6ex0/v5JyPzVW+jarDb/OKcrfVrVizqaJO0xC7AkaY+ML7qD2+QlGzn4gGpe4CapzLIAS5J2KXXlJv728Zyf7+D24MBO/K6Hd3CTVHZZgCVJO7R0/VaGfjaXt6Yup0alCt7BTVK5YQGWJP2XdVuyefLL+bz8wxISEuDyI1tx9VGtqVU1OepoklQsLMCSJAAys/N4/rtF/OubhWzNyeOsns34/XFtaFyrStTRJKlYWYAlKc7l5hfw2o9LeGzMfNZuyaZfh4bc0i+gdYMaUUeTpP3CAixJcSoWi/HBjJX8/ZOQxeu20qtlXf51QQ+6N68TdTRJ2q8swJIUh2Ysy+De92cxIW0D7RrV4IWLDuHo4ACXNJMUFyzAkhRHVm/O4uFPQt6YtIx61Sry4MBOnNmzGUmJFl9J8cMCLElxYEt2Hi9+n8bTXy0gOy+fy45oxbXHtKZmZVd2kBR/LMCSVI6tz8xh+NhFDP8+jU1ZeRyX0pA7TkmhZf1qUUeTpMhYgCWpHFqZsY1nv1nEqz8uYVtuPv06NOTqo1vTpVntqKNJUuQswJJUjixam8mwrxYwesoyCmIwoGsTrjrqYNo0dEkzSfqJBViSyoFZKzJ46qsFfDRjJclJiQzq1ZzLjmhFs7pVo44mSaWOBViSyrCJaet58sv5fBWuoXqlClxx1MFcclhLDqhRKepoklRqWYAlqQxavC6T+z9M5ZNZ6dStVpFb+gWc3+cgalVxVQdJ2h0LsCSVIRu35vDEF/MZMS6N5KREbj6hLZce3ooqFZOijiZJZYYFWJLKgOy8fEaOW8zjY+axJTuPs3o246bj29KgZuWoo0lSmWMBlqRSLBaL8cGMlTz08RyWrt/GUW0P4A8nt6Ndo5pRR5OkMssCLEml1IS09dz3QSpTl26kXaMajLikF0e2PSDqWJJU5lmAJamUWbQ2k4c+msPHs1bRsGYl/va7zpzR/UCSEhOijiZJ5YIFWJJKiY1bc3hszDxGjltMxQqJ3HR8W4Yc0ZKqFf2jWpKKk3+qSlLE8vILeOXHJTz62Vw2bcvl7EOac+PxbWhQwwvcJGl/sABLUoTGzl/Ln9+bxdz0LRx6cD3u7t/eC9wkaT+zAEtSBBavy+S+D1L5dHY6zepW4ZnBPTihfUMSEpznK0n7mwVYkkpQdl4+T4yZz7++WUiFpARu6Rdw6eEtqZzsjSwkqaRYgCWphMxesYmbXp/KnFWbOb1bU24/qR0NvZGFJJW4PSrAQRD0Bh4Kw/DoIAi6Ak8A+UA2cEEYhulBEFwGXAHkAX8Nw/D9/RVaksqSvPwCnvlmIf/4fC61qlTk3xf15Jh2DaOOJUlxK3F3OwRBcCvwHPDTMMVjwHVhGB4NjAZuC4KgEXA9cBjQD3ggCIJK+yWxJJUhi9ZmctYz4/j7JyEntG/EpzceafmVpIjtyQjwAmAgMLJo+5wwDFdu9/osoBcwNgzDbCA7CIL5QGdgQjHnlaQyoaAgxsgfFvPAR6lUTErksXO6clqXJl7kJkmlwG4LcBiGbwZB0GK77ZUAQRAcClwLHEnhqG/Gdi/bDNTa0fFSU1N/RVyVZllZWX6+8jwAVm/J49Gxq5m2KoueTavw+74HUL/SJubM2RR1tBLjeSDwPFCh0nge7NNFcEEQnA3cAZwShuGaIAg2ATW226UGsHFHr01JSdmXt1QZkJqa6ueruD4PYrEY/5m0jHvfn01BLMYDAztxziHN4nLUN57PA/1/ngeC6M6DSZMm7fS5vS7AQRCcT+HFbkeHYbi+6OEfgfuCIKgMVAJSgJl7H1WSyqa1W7L5w+gZfDY7nV4t6/LImV1oVrdq1LEkSTuwVwU4CIIk4HFgCTA6CAKAr8Mw/FMQBI8D31J4Yd0dYRhmFXdYSSqNPp65ij++NYMt2XnceUoKlxzWksTE+Bv1laSyYo8KcBiGaUCfos26O9nnWeDZ4oklSaVfxrZc/vzeLEZPXk7HpjV59KyutG1YY/cvlCRFyhthSNI++HbeGm77z3TSN2dz/bFtuO6Y1iQn7XZlSUlSKWABlqS9kJmdxwMfpfLSD0todUA13rzqULo2qx11LEnSXrAAS9IeGr9wHbf8ZzpLN2xlyOEtublfQOXkpKhjSZL2kgVYknZjS3YeD38S8uK4NJrVqcqoy/vSq+UOL4eQJJUBFmBJ2oUxqenc9fZMVmRkMbjPQdx+UjuqVfKPTkkqy/xTXJJ2YF76Zh75dC4fz1pFmwbV+c+VfenZwlFfSSoPLMCStJ156Zt5/Iv5vD99BVWSk/i/49tyxVEHU7GCKzxIUnlhAZYkYG76Zh4fM48PZqykSnISVx51MJcd0Yq61SpGHU2SVMwswJLi2sqMbTz00RzembaCqslJXHXUwQyx+EpSuWYBlhSXsnLzefabhTz11QIKYjGuPOpgLj+iFXUsvpJU7lmAJcWd7+ev5Y63Z7JobSYndWzEH09OoVndqlHHkiSVEAuwpLixPjOH+z5I5c3JyzioXlVGXtqLI9ocEHUsSVIJswBLKvdisRijJy/nrx/MZnNWHtf85mCuO6aNd3GTpDhlAZZUri1el8kdb83ku/lr6d68Ng8M7EzQqEbUsSRJEbIASyqXcvMLeO7bRfzj87kkJyXyl9925LxezUlMTIg6miQpYhZgSeXO1KUbuf3N6cxZtZl+HRry59M60qhW5ahjSZJKCQuwpHJj3ZZsHhszj5E/LKZBjUoMO78HJ3ZsFHUsSVIpYwGWVOZty8nn32MXMeyrBWzNzWdwn4O4uV9AzcrJUUeTJJVCFmBJZVZ+QYzRk5fxyKdzWbUpi+NSGnL7SQGtG3iRmyRp5yzAksqcWCzGF3NW87ePQ8L0zXRpVpvHzulK71b1oo4mSSoDLMCSypRJi9fz4EdzmJC2gZb1q/HPc7tzcqdGJCS4uoMkac9YgCWVegUFMb6eu4Z/fbOQcQvXcUCNStx3ekfO6tmM5KTEqONJksoYC7CkUis7L593pq7g2W8WMm/1FhrXqswdJ6dwXp/mVK3oH1+SpH3jTxBJpU7G1lxe/nExw8emsXpzNimNazL07C6c2rmJI76SpF/NAiyp1Fi6fivPf7eI1ycuZWtOPke0qc+jZ3XlsNb1nOMrSSo2FmBJkVu7JZtHP5vLaz8uISkxgf5dmnDZEa1IaVwz6miSpHLIAiwpMlm5+bwwNo1/fjmfrNx8LujbgiuPOtjbFkuS9isLsKQSF4vF+GDGSh78aA7LNmzjuJQG/OHkFA4+oHrU0SRJccACLKlErdi4jdvenM6389bSrlENXh7Sm8Na1486liQpjliAJZWIWCzGm5OX8+d3Z5Efi/GXAR04t/dBJCV6cZskqWRZgCXtd2s2Z/PHt2bw2ex0DmlRh4fP7MJB9apFHUuSFKcswJL2m1gsxvvTV3L3OzPJzMnnjpNTuOTwlo76SpIiZQGWtF8sXpfJ3e/M4uu5a+jUtBaPntWFNg1rRB1LkiQLsKTilZMf48kv5vHEF/NJTkrk7lPbc0Hfg6jgHdwkSaWEBVhSsRm3YB23vreMpRm5nNKpMXed2t41fSVJpY4FWNKvtnZLNvd/mMroyctpVL0CL1x0CL9p1yDqWJIk7ZAFWNI+KyiI8dqEpTz08Ry25uRx7W9ac2yTPLpZfiVJpZgFWNI+mb1iE3e8PYMpSzbSp1Vd/vrbjrRuUIPU1NSoo0mStEsWYEl7JTM7j6GfzeWF79OoXSWZR8/qwundmpKQ4NJmkqSywQIsaY9NWryBm16fypL1WxnUqzm39WtHrarJUceSJGmvWIAl7VZufgGPj5nHP7+cT5PaVXjtsj70blUv6liSJO0TC7CkXZq/ejM3jprGjOUZnNnjQO7u354alR31lSSVXRZgSTtUUBDjxXFpPPjRHKpVqsCw83twYsdGUceSJOlXswBL+h8rM7ZxyxvT+W7+Wo5p14AHz+hEgxre0EKSVD5YgCX9l/emreCOt2aQmx/j/tM7MahXM1d4kCSVKxZgSQBkbM3lrndm8u60FXRrXpuhZ3WlRf1qUceSJKnYWYAlMX7hOn7/2lTWbsnm5hPacuVRB1MhKTHqWJIk7RcWYCmOxWIxXvw+jb9+kErzulUZffWhdD6wdtSxJEnaryzAUpzKys3nj2/NYPTk5RyX0pBHz+5CTZc3kyTFAQuwFIeWb9zGFSMnMnP5Jm48ri3XHdOaxEQvdJMkxQcLsBRnxi1YxzWvTCY3r4DnLujJce0bRh1JkqQSZQGW4kQsFuOFsWnc92EqLepV5V8X9OTgA6pHHUuSpBJnAZbiwLacwvm+b01ZzgntG/LIWV28nbEkKW5ZgKVybs6qTVz7yhQWrNnCTce35drfON9XkhTfLMBSORWLxXh5/BL+8v5salROZuQlvTm8Tf2oY0mSFDkLsFQOZWzL5Q+jp/PhjFUc2fYAHjmzCwfUqBR1LEmSSgULsFTOfDJrFfe8O4s1m7P5w0ntuOyIVk55kCRpOxZgqZxYvnEbf3pnFp+nptOuUQ2Gnd+DLs28q5skSb9kAZbKuLz8Al4Ym8bQz+cSi8EfT27HxYe1JDkpMepokiSVShZgqQz7fsFa7n1vNnNWbebYdg3484AOHFinatSxJEkq1SzAUhm0aG0m932Qyuep6TStXYWnz+vOiR0bkZDgXF9JknbHAiyVIRlbc3lszDxGjEujUoVEbukXcOnhLamcnBR1NEmSygwLsFQG5OYX8PIPi/nHmHlkbMvl7J7NuOmEtjSoUTnqaJIklTkWYKkUi8VifBmu5r4PUlmwJpNDD67Hnae0p32TmlFHkySpzLIAS6XUjGUZ/O2TOXw7by0t61fj2Qt6clxKA+f5SpL0K1mApVJm5vIMnvxiPh/PWkWtKsncdWp7Bvc5iIoVXNZMkqTiYAGWSolJi9fz5Bfz+TJcQ41KFbj+2DYMOaIlNSsnRx1NkqRyxQIsRSgWi/HtvLU8/dUCxi1cR52qydx8QlsG921BrSoWX0mS9gcLsBSB7Lx83pm6gue/XUSYvpkGNSpx5ykpnNu7OVUr+ttSkqT9yZ+0UgnakJnDy+MX8+K4xazZnE27RjV4+Mwu9O/SmEoVXMtXkqSSYAGWSsDc9M0M/z6N0ZOXkZVbwJFtD+DRs1pyeOv6ruogSVIJswBL+0lefgFfzFnNi+PSGDt/HZUqJDKgaxMuPbwVQaMaUceTJCluWYClYhSLxZi+LIO3pizn/ekrWLslhya1KnPriQHnHNKcutUqRh1RkqS4ZwGWisHKjG28NWU5oycvZ/7qLVSskMhxKQ34bdemHNOuARWSXMNXkqTSwgIs7aNtOfl8MmsVb05exnfz1xKLQc+D6vDAwE6c3Kmxy5hJklRKWYClvVBQEOPHtPW8OWkZH85YSWZOPgfWqcJ1x7ThjO5NOahetagjSpKk3bAAS3tg8bpM3py8nNGTl7FswzaqVUzi5E6NOaPHgfRqUZfERFdykCSprLAASzuRm1/ARzNXMXJcGhPSNpCQAIe3rs/NJwSc0KGhN6yQJKmM8ie49AsbMnN4dcISRny/mFWbsmhZvxq3nhhweremNK5VJep4kiTpV7IAS0XmpW/mhe1uVnF46/rcP7AjR7dt4BQHSZLKEQuw4lp+QYyvwtW8OG4x38xdQ8UKiQzs1pSLD2vpzSokSSqn9qgAB0HQG3goDMOjt3tsKBCGYTisaPsy4AogD/hrGIbvF39cqXis3pTFaxOW8tqPS1iRkUWDGpW4+YS2DOrVnHrVK0UdT5Ik7Ue7LcBBENwKDAYyi7YPAEYAbYG/Fz3WCLge6AlUBr4LguCzMAyz91NuaZ/MXJ7B898t4v3pK8jNj3FEm/rc3b89x6Y0JNmbVUiSFBf2ZAR4ATAQGFm0XR24Bzhpu316AWOLCm92EATzgc7AhF8eLDU19dfkVSmWlZVVKj/f/IIY45dt5a3ZGcxMz6JKhQRObluD/u1q0bRmMrCR+XM3Rh2z3Cit54FKlueBwPNAhUrjebDbAhyG4ZtBELTYbnsRsCgIgu0LcE0gY7vtzUCtHR0vJSVl35Kq1EtNTS1Vn29mdh7/mbSMf49dxOJ1W2lauwp3nJzC2b2aUbOyd2nbX0rbeaBoeB4IPA9UKKrzYNKkSTt9rrgugtsEbH/FUA3AITVFYmXGNoZ/n8ar45ewKSuPrs1qc2u/dvTr0JAKTnOQJCnuFVcB/hG4LwiCykAlIAWYWUzHlvbI9GUbef67RXwwfSUFsRgndmzEpYe3osdBdaKOJkmSSpFiKcBhGK4KguBx4FsgEbgjDMOs4ji2tCv5BTE+m53Ov79bxI9p66leqQIXHtqCiw5tQbO6VaOOJ0mSSqE9KsBhGKYBfX7x2D2/2H4WeLa4gkm7kptfwBsTlzHs6wUsWV84v/fOU1I4+5Bm1HB+ryRJ2gVvhKEypaAgxoczV/LIp3NZtDaTLs1qc9uJzu+VJEl7zgKsMiEWi/HtvLX87ZM5zFy+iaBhDZ67oCfHpjQgIcHbFEuSpD1nAVapl7Y2k7vemcm389ZyYJ0qPHpWFwZ0bUpSosVXkiTtPQuwSq2cvAKe/XYhj4+ZR8WkRO4+tT3n9WlOpQpJUUeTJEllmAVYpdKkxRv44+gZhOmbOblTI/7UvwMNa1aOOpYkSSoHLMAqVbJy83n4k5Dnxy6icc3KPHdBT45r3zDqWJIkqRyxAKvUmLUigxtHTWVu+hYG9zmI205qR/VKnqKSJKl42S4UufyCGP/6ZiGPfhZSu2pFhl98CEcHDaKOJUmSyikLsCKVtjaTW/4zjQlpGzipYyPuP70TdapVjDqWJEkqxyzAikRBQYwXvk/j75/MITkpkUfP6sLp3Zq6pq8kSdrvLMAqcYvWZnJr0ajvMe0acP/pnWhUyxUeJElSybAAq8TkF8R4Yewi/v5JSKUKjvpKkqRoWIBVIhau2cKt/5nOxMUbOLZdA+4f2Ml1fSVJUiQswNqvHPWVJP2/9u48Pqr63v/4ayaZ7CsECNmR5RAQCCAiiBYpLmjV1rr0trXX9tH2ttf21mpvt4ut9va2t1Wvtj/rUlv1trW/VqlLtS5UKwqogGwSCIctJEAgG2TfZ+b+8UlM2AmETJJ5Px+P85jJzEnyDXOYeZ/v+Xy/X5GBRgFYzppt5fV8e8kHbNhTw8J8q/UdqV5fERERCTEFYOlzbR0BHlq2g1+9uYOE6EgeuKmAawsy1OsrIiIiA4ICsPSpFdur+NFLm9lW3sC1BRn84GOTGJ4QHepmiYiIiHxIAVj6xJayOhb/fT/rynaRmRLL47ecx4KJo0LdLBEREZGjKADLGSmraebepS7Prd9HvM/L4qvyuXlOLtGREaFumoiIiMgxKQDLaWn3B3h8RTEPvL4dfzDIly8+h4+O9nN+wTmhbpqIiIjICSkAS6+tKz3E95/dxNYD9SzMH8Vd10wiKzWOoqKiUDdNRERE5KQUgOWUtfsDPPD6Nh5atpP0pBgevXkml09OD3WzRERERHpFAVhOSXFVI9/403o+2FvLTedlc+fVk0iI1uEjIiIig48SjJzUq4UH+NYzG4nwenj4MzNYNGV0qJskIiIictoUgOW4OvwB7lnq8uhbu5iWlcxDn51JZkpsqJslIiIickYUgOWYymqauf3pDby36yCfnp3DD6+epKnNREREZEhQAJajvLBhH4ufL8QfCHLvDdO4fmZWqJskIiIi0mcUgOVDtU3tLH6hkBc3ljEjJ4X7byogd3h8qJslIiIi0qcUgAWAlTuq+NYzG6msb+WOSyfw1fljiYzwhrpZIiIiIn1OATjMtbT7uec1l9+uKOacEfE8+69zmZqVEupmiYiIiJw1CsBhbEtZHd/88wbc8no+NyeX7y3KJzZKA91ERETCTjAINSWwZw0cKob2JmhvsVuPB3zxEBUHUfGnfj8yKtR/1XEpAIchfyDIb5bv4r6l20iO8/Hk52cx3xkZ6maJiIhIfwr4oWQlbH4O3Fegfn/3c14f+OLAF2PhuL0J2hqB4Kn/fK8PUrLxXfDfQH5ft/6MKACHmb2Hmrj96Y2sLj7IFZPT+cl1UxgWP3DP0ERERKSPNVTCuidhzeNQX2ZBd/xlMOYiyJ4NIyZChO/o7wsGoaPFgnDX1hWMj7rfvU8gcuANqFcADhOBQJAla/fyny9tIQjcc/1Urp+ZhcfjCXXTRERE5GxrrIY978GmJVD0IgTaYewCuOInMP5yK104GY8HfLG2xaed8q/2FxWdQcPPDgXgMLD1QB2Lnyvk/ZJDnJ83jPtunEb2sFM40EVERGTwCQatjrf0PSh9F0pXQZVrz8WkwPlfgpm3wAgnpM0MJQXgIayxtYNfvLGd364oJikmkp9fP5XrZ2Th9arXV0REZMhoa4J970PJu1C2HvathcYKewS/p5kAABqESURBVC4mGbIvgGmfgpw5kDkDIqND294BQAF4CAoGg7y2+QB3v7iF/bUtfGpWNt+5YiKpqvUVEREZ3AJ+OPCBhdyyDbZVFkGgA/BYr+7YBZAz2wJvmgNezet/JAXgIaa0uokf/rWQN91KJqYn8uCnpzMzd1iomyUiIiKnIxCAis1QvByK34aSd6C11p6LHQYZBTD+Ugu7ObOtx1dOSgF4iGjt8PPY27v4f//YQaTXw+Kr8rllbp5WcxMRERksAn6o2g77O3t292+03t62Bns+dQxM/jiMuRiyZkFKjg1Mk15TAB4CVu2q5vvPbWJnZSNXTknnzo9NYnRybKibJSIiIidzoBC2vGDz8ZZtsOnDACJjIX0KFHwaMmbYFGXJWaFt6xCiADyIHWxs46cvF/HM2r1kpcbyxOdncYkWtBCRoaStEQ7ttq12HzRWQlO11Tt6I3tsEXbri4WEUZA4GuKGQ0sNNFTY9wUDEJsKaRPssrFPHQUSInX7YdMz8MGfobwQPF4YXQDTP2vH5ugCO04jFNPOFv3LDlJvFJXz7SUfUNvczlfnj+XfFozXMsYiMjj5O2zKpsqtULEVqrZ1h96ukewf8kDcMFthKtDRufk7b9s7BwKdgogoyJhudZOjJsPwcbbFJPXxHyfSqXonbHsNtr0Ku5fbCVnmeXDlvTD5OogfHuoWhhUF4EGmuc3Pf728hT+8V0r+6CSe+tJsJqbrDVtEBonmGqtr3L8B9n9gobdqG/jbuvdJyoJhY2DC5Xabmmdbcrb16npPcLLf0QYN5VB/AJqqbM7ThJEQP8K+r7ESKopsbtSSd+DdBw8PzYkZMDLftlGT7XbERPUWS+/5O2zhCfcVC73VO+zxNAfm3W7TkqWND20bw5gC8CBSuK+Wb/xpPTsrG/nyxedwx2UTiI5Ur6+I9JO2JguvlVuhpdZ6UaPiuzdPBLTVQ2sDw/bshPJ4G7zTWAV1e6Gm1Hp1uyRnw8hJMO6jFjJHOBYOohNOv42RUZCSbduxRMVbmHYW2dcdrXCw2MJJ9Xbrga7YAqtXgL+185s8nUF8jLUtIgoiY+xn+WLBF9+9OtaRj0XF2b6eCAvgHo99HZdmbZWhJeCH7Uuh8Fm7bamx4yXvIjj/X2DCZXb8ScgpAA8CgUCQXy/fxX1LXYbHR/PUF2dz4bhTX4JQRKTX/B02t+i+tZ3beguGQf8pffuorjuRMdZrm5RpA3mm32ylB6MLBsYl38hoGDnRtp66yjLKN1uPcWURHCqB2r3WW93RAu1NdlIQaD+93x2TYvXKaeMt/HedBAwff2rL0srA0doA7z8Oqx61k7244eBcCc4VNidvdGKoWyhHUAAe4Mpqmrnj6Y28u6uaReem89PrppASp14DkQGptR4O7rLL8BGREJ1kg66ik858MEtrQ4/BYHug6WD3pf7WOhss1jUILCbFRo+PnmarPiWmn/hnt9Rau6t2dK8itX8jdDTb8zEpkDnTek0zZ8Coc+3v8rd1hsBG24IBiEqA6ATc3ftwzp0BEb4z+7tDJSLSgmnaeJt26kT87dDebP8W7U12v63H/Y5m6xkMBuy2vcl6xRsroX6/lYBse7VHKYbHBvHFJNm/Z1ScLW3b9b3+Nns8NbczOOfba328Xm85e9qaYM1jsPIXNjhzzMWw6L9hwiINYBvg9OoMUMFgkL9uLOPO5wvpCAT5+fVTuWFmFh7N9ycysOxZA5uftTq/Q8XH3y8qwSaoj0m2etTEdAs5qbmQkmvPg4WbmpLusPvhYLDKI36gp/PnjLKAmpTRGZCa7VK++zIQtF2TMq3HNWm07dvebL1Uh0rsdzUf6v6xkTG273mft9CbOcMu/R/3vefYC+0EouoHb/jtrQifbWcygK6jzU5CKnsMAmyttxKStiabJcAbYfXMEVF20lP6ns0k0CUl16bKyuvckjPP+E+T42hvgXX/C2/fawM1x34U5n8Xss8PdcvkFCkAD0Al1Y0sfr6Q5durKMhO4YGbCshLiw91s0SkSyAA216xXp89qyAiGs6ZDzNutpkEfPFWP9pab+Gypc56WVtq7evGCih513r/jnf53BNhc36m5tml1K6BYMPGQHKO9cCeaHnT1gY4sAnK1sG+dXa/9B0bhOaLszCckmshNzUXhp1jW9qE8AmuA0lk1LFLMU6mtR4qt8HeNTazwNa/wfo/2HOpYw4PxEmj+77d4aa9Gdb9DlY8APVlkDsPbvwd5M4JdcuklxSAB5C2jgCPLd/FL9/Yji/Cy11XT+LmOXlEeNXrG5baWyy07FtrIeZgMRC0nsPknM6BPjm2dQ3OkbOrrQk2PQ3vPGi9rCk5sOgeKPin06vxC/ihrswGh3W0AEGb3isl2waInUkQjU6wD+UjP5iDQa0cNZREJ0LWTNsu+Mrhy+buXmELLKz7ne2bPgUmXGFbxowTn0DJ4Vrq4P3fwru/sqsxOXPhEw/DmI/o/9MgpQA8QKzaVc3i5wvZXtHAlVPS+cHHJpOeHBPqZkl/6Oi85H1wV+clUNcCb/nm7prAxNHWM+fxWG/P9te76zO7JGVB2jgLw6m5Np1TYrpdGk/JscE+0nv+dluhaevf4IOnbVR3+lT45G9h0sfPrM7PG3HiGQvOBn1YD21erwXd9Ckw51/tJKu8EHa+abMSLL8P3r7HymfGX25TzY29RIO0jqexGlY9AqsftSs4YxfARd+CvAtD3TI5QwrAIVZc1cjPXtnKq5sPkJkSy+O3nMeCiaNO/o0yeLU22GXzba/ZHJEHCg8fWR+TbKPk5/5bdw1mUsbhPyMYtAEXNaUWnqt32PrxVdutx6f54OH7e7x2OX1EPmSdZ1vmTPtdcrTWetjxhoXe7a/ZB19kjPWczf4XWzxBQVIGA2+EDZAbPQ3m3WaDJ3e8YYPutr4IG/5gNcUTr4IZ/2w9muoZtisz7zwIa5+wgYf5V9vcvZkzQt0y6SMKwCFS3dDKL9/YzlOrSomK9HL7pRP44kVjiIvSSzLg+NvtklerzW8KHL7salS8DWDyxdkHR0er1Xk2VdsSrDUl1qvbtdXttZ/hi7MgeuE3bCR3Vw1m3PCThyuPB+LTbDvWG3Jrg80OUL/f3sgP7rKQXF5ovUAEAY/93qzzIGuWbSMmnniRgaEs4LeTkrVPwq43bTBa7DCY+DGrwR17ib3WIoNZ3DCYeoNt/nY7GS960Zbk3fyc1ZlP+rjVDGcU2HtMODm4y2r7N/zR3hOm3ADzvtn72mwZ8JS2+llLu5/HVxbz8Js7aWr3c9OsbG5bOJ6RiSp3CLmONqhyre62fLMtW1m93UZj92Z51Z4rWnXxxdl0SnkXWilD+lQbnHK2VpeKToDocVYScaSWWhsUtfd9Gziz9eXuQTNRiZDZOUdrRgFkz7ae46GsrsxG0q/5jfWoJ2bArC/BxCsh+wJNZSRDV4QP8ubZtvBu2PqS1Qu/+yCsfMD2ScqEcQth6o1W9zpUe4fLt8CK+6FwiXVuTP+sdU5o0YohS+/s/SQQCPL8hn3c+5pLWW0LC/NH8t1FExk3UnVXZ6QrtFZtsymdDu22HteaPda74fXapeuIKKuBjYi2cBiXZj0h/nYrF6jYYitAdY3Ij4iG4WNtlapJ11oIjE7qrJPzWCAOtNtAtc6Vr2hvsoFM0YnWcxg3DOJH2vcmZw+cD46YZOvNHHuJfR0MWq/H3jWd2/tW89YV5BMzIHuWDZrJnGGXUgdz6YS/w/7O7Uth+9+hfJM9nnshXPqf1uOr0CvhxhcDU663rbXB5oPev8HeDzY9Y1N+JWXBlE/ClBsh/dxQt7hvlK23qcy2vmSzt8y5FeZ87eRzZ8ugp3f5frByRxU/ebmIzWV1TMlM5r4bC5gzdgCsgDQY1ZfbVE67V1r9bM/QChZsU3NtAIgv1i5h+VstKHe0WKirK7Ne3sYqC8UxydY7O2eB9cymT7XwGy6lAB6P/b3Dx9ra9GAnBuWFNsftnlWwd7XVFts3WBCesMg+DIedE7Kmn7KGStjxuoXenW9YL7g30mp5L/2R1faOcELdSpGBITrBrlCNuci+bmu0K0VdM6Cs/IV1Dky5wbbBuABH6SobDLjj7/YZ8JHvwOyvWMeFhAUF4LNoW3k9P325iDfdSjJTYvnFpwq4emoGXk1r1jvBoA3aWPmAzXMJdqaePcvO1tOnWO1qaq5GMveVCJ8NxMuYDrO/bI81VsP+9dYjtH0pvPlj23LmwvTPWN3gQJqKrWaP1TYW/dUWDCBoy87mXw3jL7N5ewdzT7ZIf4mK764bbqyyWuFNz8Abd9uWOw9mfQEmXm3zGQ9UwSAUv23Bd/dyG2/x0R/ArC/qvSAMKQCfBRV1Ldz/+jb+vGYP8dGRfG/RRP55bh4xvjDpUewr/g5bYWvlL6w3MjEDLlls09CMnqrJ+vtb/HCrBRy30FY8qt1nA2c2PAUv3Aqvfg/OvY6kyFxI9duHS9yw/pl+LRCw5YErXSh+C3Yts2MGYORka++EK6x3f6CUoogMRvFpcP6XbDu024Lw+j/Aki9Yydf0z8D0m+2K0kARDNoVoLfvsStaCelw+U9g5i0a2BrGFID7UG1TO4++vZMnVu6mIxDglrlj+PqCcaTGD+Az4oGorRHW/d4mHK8thTQHrn3ILrUN5N6FcJOcCRfdbiOk96yC1Y/BpiVktjXAqru794tKhIQRNpgmOslKLnyxNjfxsM7Si2Fj7YP1RLNfdE39drDYBid2Tf1WvcMGLPpbbb+IKBu899EfQv41xx4IKCJnLjUPLv53mHeHlRat+Y11WKy4364MTbqG2LYUGJN5ZstEn66uk/SN/9/GiSRnw5X3WkD3aeB5uFMA7gONrR08+c5uHnlrJw2tHVwzLYPbL51A7nCdWfZKY7VNNr761zaNWM4cuPLnNlm7eu0GLo8Hci6wLeBn13t/45xkv8032nQQmqqgodw+jJpLIRiAtga7jNpzdo3oJKsnjh9h8yIH/LZvwG8DDQ+VQGtd9/7eSPsAHj7ergqkjbf7GQXq1RHpT14vjL/Utrr98MGfrFf41e+SB/APbIGe9Cl2FWbkRPu/nprXt/9XG6tt0ZrdK6zEoWKLPZ59gTpR5CgKwGegpd3PH94r4eFlO6lubGNh/ijuuGwC+aNDcKY7mFVugzWPWa9vRzM4V9n0MzmzQ90y6S1vBK2p4yE//+T7+ttt2rHqnXBwZ/dtUxV4ImwQYtdt4mg7IUodA8PGwPBx9uGpMhiRgSVptF0VuvA2qD9A6ZqXyfEdtIHHBzZZTX5P0cmQOMrq8xNGQWyqXSHyxdrVnAif3XojO28joL25c2uyK4atdTY2oavsyRdnV4GmXA+TPzE4BupKv1MAPg1tHQGefn8PD/5jBwfqWpg3Lo3bL5vAjJzUUDdtcGhrspkcdi2z7cAm8Ppg2k22+plG44eHCF/37BMiMrR4PJA0msaMuYefELfWd57s7oJDxTazT8MBWzRo31pbary92WbtORWRMRZ4R0+FBYsh72IbvKueXjkJBeBeCAaD/H1LOT95uYjd1U3MzE3l/ps0pdlJBYNWp7n97zblzO6VVq/ZVat56Y9g2qetTlRERIau6EQrU8ooOPF+gYBNcelvt+krAx12P9DR2UMcZ7fhMl2l9DkF4FNUtL+OH/9tCyt3VDNuZAJP3DKL+c4IPCdbsjac7f8AtjwPm5+3S9tgq6DN+iKMW2CDJKLiQttGEREZeLxe8Eb3zywyEpYUgE+ioq6FB97Yzp9Wl5IU6+Puaybz6dk5+CI0KOu49m+E1++Cnf+wGs4xF8EFX7UBElpWUkREREJMAfg4KupaePitnfxxVSkdgSCfm5PHbQvHkxKnuqLj8dXvgb/cZ/NCxqbasrIFn7H5Y0VEREQGCAXgI1TUtfDIW7t4alUJHYEg103P5OsLxpMzXJfqj6tyGyy/l7GbnoGIaJh3O8y7TSvriIiIyICkANypor6FR5Z1B99PTM/k6wvGaS7fE9m/0SY9L3wWfLEcHH8Tw6++CxLTQ90yERERkeMK+wDc2NrBQ8t28JvlxR8G369dMo68NAXfY6rZA9tfg01LoPRdiEqwOXvnfI2KPVUMV/gVERGRAS5sA3AgEOTZ9fv4+atbqahv/XD1NgXfY6jZY6t2bX4OytbZY8PG2lrqBZ+B2JTOHatC1kQRERGRUxWWAXhtySF+9OJmNu6tZVpWMg9/diYzc7WIxWHqymDLC1besHe1PTa6ABbeDc6VtuyspoATERGRQSisAvC+mmbueXUrz28oY2RiNPfdMI1PTM/E61WQIxCAis22MlvRi7BnNRCEUVNgwZ22nKRW7BIREZEhICwCcF1LOw8v28lvVxQD8LVLxvHV+WOJjw6LP79bR6stN9l8EJoOQu0eqCmFShd2r7DHAdKnwCXfh0kfhxETQttmERERkT4WFgnwtj9t4B9bK/jE9EzuuGwCWalDeEozf7uts15ZBBVboWILVG2H+v22xvqRPF5IzoYJV8CYi23RiuSs/m+3iIiISD8JiwB8x2UT+PfLHfJHJ4W6KX2now1qSqBya3fQrdxqYTfQ3rmTB4aNgRETIW8eJIyChBEQl2YLVSRnQVImRITFYSAiIiIChEkAnpwxCBdkaKmDQ8XQXAN1+2wmhppSqC2FQyVWvhAMdO+fkgsj82H8ZTByEoycCGkTwBcbur9BREREZAAKiwA8oLXWWw1uRZH14Hb16NbtPXrfhHRIyYas82DqTTDsHKvRTXMgOqH/2y4iIiIyCCkA96dgEKp3QMlK2L0S9rxnvbpdIqIt0ObOsbKFtPEQOwySMqxUwRcTuraLiIiIDBEKwGfboRLYvtRmWSh5Bxor7PH4EZA7F2Z8DkbkW/lCah54I0LaXBEREZGhTgH4bOhog60vwrrf2by6YD2458y30Js3D4aP00ISIiIiIiGgANyXavfB2idg7ZPQWAnJOXDJf8CU6yF1jAKviIiIyACgAHymAn4ofgvefwK2/s1mZphwBcz6IoxdAF5vqFsoIiIiIj2cUgB2HGc28DPXdec7jjMOeBIIAoXAra7rBhzH+SFwFdAB3Oa67uqz1ObQCwRg7xooXAKbn7e63thUmPs1OO8LVssrIiIiIgPSSQOw4zjfBm4GGjsf+h9gseu6yxzHeQS41nGcEuAjwGwgG/gLMOvsNDlEWmqhdJX19m55webhjYyBCZfDuZ+E8ZdrlgYRERGRQeBUeoB3AtcBv+/8eibwVuf9V4DLABdY6rpuECh1HCfScZwRrutWHvnDioqKzrzVZ1swiK9hL3FVm4it3kRs1QdE1+7CQ5CgN5LGUedTO/ELNGReTMAXb9+zozi0bR4AWlpaBsfrK2eVjgMBHQdidBwIDMzj4KQB2HXdvziOk9fjIU9n0AWoB5KBJKC6xz5djx8VgPPz80+7sWdFS60tQlFeCOVboHyzLSvcWmfPRydB1iyYfiPkzMGTNYuEqDi07MTRioqKBt7rK/1Ox4GAjgMxOg4EQnccrF279rjPnc4guB7r75II1AB1nfePfHxgaDoIBzZZ2G2pheaDsG+dbbU9FqKIToZRk2HqjTDqXMiebQtSaCCbiIiIyJBxOgF4veM4813XXQYsAt4EdgA/dxznXiAL8LquW9V3zTxDz9xitbs9JWVawD3vFhg52YJvcpamKhMREREZ4k4nAN8BPOY4ThRQBCxxXdfvOM5y4F3AC9zah208c9f92pYgjknu3qKTFHZFREREwtApBWDXdXcDF3Te34bN+HDkPncBd/Vd0/pQYrptIiIiIhL2VNwqIiIiImFFAVhEREREwooCsIiIiIiEFQVgEREREQkrCsAiIiIiElYUgEVEREQkrCgAi4iIiEhYUQAWERERkbCiACwiIiIiYUUBWERERETCigKwiIiIiIQVBWARERERCSsKwCIiIiISVhSARURERCSsKACLiIiISFhRABYRERGRsKIALCIiIiJhxRMMBvvtl61du7b/fpmIiIiIhLWZM2d6jvV4vwZgEREREZFQUwmEiIiIiIQVBWARERERCSsKwCIiIiISViJD3QAZPBzH8QGPA3lANPBjYAvwJBAECoFbXdcNOI7zQ+AqoAO4zXXd1aFos5w9juOMBNYCl2Kv85PoOAgrjuN8D7gGiAIeAt5Cx0FY6fxc+F/sc8EPfAm9H4QVx3FmAz9zXXe+4zjjOMXX/nj79le71QMsvfFZoNp13YuARcCDwP8Aizsf8wDXOo4zA/gIMBv4FPCrELVXzpLOD71HgebOh3QchBnHceYDc4ELsdc5Gx0H4ehKINJ13bnAj4D/QsdB2HAc59vAb4CYzod689oftW9/tl0BWHrjGeDOHl93ADOxXh+AV4CFwDxgqeu6Qdd1S4FIx3FG9GtL5Wy7F3gEKOv8WsdB+Lkc2AQ8B7wIvISOg3C0DXtNvUAS0I6Og3CyE7iux9e9ee2PtW+/UQCWU+a6boPruvWO4yQCS4DFgMd13a659OqBZOxNsLbHt3Y9LkOA4zi3AJWu677W42EdB+EnDTgPuAH4CvAU4NVxEHYasPKHrcBjwC/R+0HYcF33L9hJT5fevPbH2rffKABLrziOkw28Cfzedd0/Aj3rdRKBGqCu8/6Rj8vQ8AXgUsdxlgEFwO+AkT2e13EQHqqB11zXbXNd1wVaOPwDTMdBePgmdhxMAKZh9cBRPZ7XcRBeepMJjrVvv1EAllPmOM4oYCnwHdd1H+98eH1nLSBYXfByYCVwueM4XsdxcrBeoap+b7CcFa7rXuy67kdc150PbAA+B7yi4yDsrACucBzH4zhOBhAPvKHjIOwcort37yDgQ58L4aw3r/2x9u03mgVCeuP7QCpwp+M4XbXA3wB+6ThOFFAELHFd1+84znLgXewk69aQtFb60x3AYzoOwofrui85jnMxsJru17cYHQfh5n7g8c7XOAr7nHgfHQfhqjefBUft258N1VLIIiIiIhJWVAIhIiIiImFFAVhEREREwooCsIiIiIiEFQVgEREREQkrCsAiIiIiElYUgEVEREQkrCgAi4iIiEhY+T+CxEg0Q/tj8QAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 864x576 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plt.figure(figsize=(12,8))\n",
|
|
"plt.plot(vol_df['Price'])\n",
|
|
"plt.plot(vol_df['P_Ext_Markets']/250)\n",
|
|
"plt.legend()\n",
|
|
"plt.title('Rolling Average of Zeus Price')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 30,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/plain": [
|
|
"100.0"
|
|
]
|
|
},
|
|
"execution_count": 30,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df[\"Price\"].min()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"df[\"Price\"].max()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.6.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|